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In this paper we propose a feasible numerical scheme for high-dimen-
sional, fully nonlinear parabolic PDEs, which includes the quasi-linear PDE
associated with a coupled FBSDE as a special case. Our paper is strongly mo-
tivated by the remarkable work Fahim, Touzi and Warin [Ann. Appl. Probab.
21 (2011) 1322–1364] and stays in the paradigm of monotone schemes ini-
tiated by Barles and Souganidis [Asymptot. Anal. 4 (1991) 271–283]. Our
scheme weakens a critical constraint imposed by Fahim, Touzi and Warin
(2011), especially when the generator of the PDE depends only on the diag-
onal terms of the Hessian matrix. Several numerical examples, up to dimen-
sion 12, are reported.

1. Introduction. In this paper we are interested in feasible numerical schemes
for the following fully nonlinear parabolic PDE on [0, T ]×R

d , especially in high-
dimensional cases,

−∂tu − G
(
t, x, u,Du,D2u

)= 0; u(T , ·) = g(·).(1.1)

The standard numerical schemes in the PDE literature, for example, finite dif-
ference methods and finite elements methods, work only for low-dimensional
problems, typically d ≤ 3, due to the well-known curse of dimensionality. How-
ever, in many applications, especially in finance, the dimension d can be higher.
We thus turn to the probabilistic approach, which is less sensitive to the dimension.

In the semilinear case G = 1
2 tr[σ 2(t, x)D2u] + f (t, x, u,Du), PDE (1.1) is

associated to a Markovian backward SDE due to the nonlinear Feynman–Kac for-
mula introduced by Pardoux and Peng [28]. Based on the regularity results of
BSDEs established by Zhang [33], Bouchard and Touzi [8] and Zhang [33] pro-
posed the so called backward Euler scheme for such BSDEs and hence for the
semilinear PDEs, and obtained the rate of convergence. This scheme approximates
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the BSDE by a sequence of conditional expectations, and several efficient numer-
ical algorithms have been proposed to compute these conditional expectations,
notably: Bouchard and Touzi [8], Gobet, Lemor and Warin [20], Bally, Pages and
Printems [1], Bender and Denk [4] and Crisan and Manolarakis [13]. There have
been numerous publications on the subject, and the schemes have been extended
to more general BSDEs, for example, reflected BSDEs which correspond to obsta-
cle PDEs and are appropriate for pricing and hedging American options. Typically
these algorithms work for 10 or even higher-dimensional problems.

We intend to numerically solve PDE (1.1) in the fully nonlinear case, in par-
ticular the Hamilton–Jacobi–Bellman equations and the Bellman–Isaacs equations
which are widely used in stochastic control and in stochastic differential games.
We remark that this is actually one main motivation of the developments of sec-
ond order BSDEs by Cheridito et al. [10] and Soner, Touzi and Zhang [30]. Our
scheme is strongly inspired by the work of Fahim, Touzi and Warin [17]. Based on
the monotone scheme of Barles and Souganidis [3], Fahim, Touzi and Warin [17]
extended the backward Euler scheme to fully nonlinear PDE (1.1). In the case that
G is convex in (u,Du,D2u), they obtained the rate of convergence by using the
techniques in Krylov [21] and Barles and Jakobsen [2]. They applied the linear
regression method (see, e.g., [20]), to compute the involved conditional expecta-
tions, and presented some numerical examples up to dimension 5. We remark that
the rate of convergence has been improved recently by Tan [32], by using purely
probabilistic arguments.

There is one critical constraint in [17] though. In order to ensure the mono-
tonicity of the backward Euler scheme, they assume the lower and upper bounds
of Gγ , the derivative of G with respect to D2u, satisfies certain constraint. How-
ever, when the dimension is high, this constraint implies that Gγ is essentially a
constant, and thus PDE (1.1) is essentially semilinear; see (2.8) for more details.
This is, of course, not desirable in practice.

The main contribution of this paper is to propose a new scheme so as to relax
the above constraint. In [17] the involved conditional expectations are expressed
in terms of Brownian motion, which is unbounded. Our first simple but important
observation is that we may replace it with a bounded trinomial tree, which helps to
maintain the monotonicity of the scheme. We next modify the scheme by introduc-
ing a new kernel for the Hessian approximation [see the K2(ξ) in (3.6) below], but
still in the paradigm of monotone scheme. In the special case where Gγ is diago-
nal, namely G involves D2u only through its diagonal terms, the above constraint
is removed completely. Rate of convergence of our scheme is also obtained. Sev-
eral numerical examples are presented. In the low-dimensional case, our scheme is
comparable to finite difference method and is superior to the simulation methods.
When Gγ is diagonal, our scheme works well for 12-dimensional problems.

We note that PDE (1.1) covers the quasi-linear PDEs as a special case, which
corresponds to a coupled forward–backward SDE due to the four-step scheme of
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Ma, Protter and Yong [24]. There are only a few papers on numerical methods for
FBSDEs, for example, Douglas, Ma and Protter [16], Makarov [26], Cvitanic and
Zhang [14], Delarue and Menozzi [15], Milstein and Tretyakov [27], Bender and
Zhang [6] and Ma, Shen and Zhao [25]. Most of them deal with low-dimensional
FBSDEs only, except that [6] reported a 10-dimensional numerical example. How-
ever, [6] proved the rate of convergence only for time discretization, and the con-
vergence of the linear regression approximation is not analyzed theoretically. Our
scheme works for FBSDEs as well, especially when the diffusion coefficient σ is
diagonal. A numerical example for a 12-dimensional coupled FBSDE is reported.

We have also presented a few numerical examples which violate our assump-
tions, and thus the scheme may not be monotone. Numerical results show that
our scheme still converges. In particular, we note that our current theoretical result
does not cover the G-expectation, a nonlinear expectation introduced by Peng [29].
We nevertheless implement our scheme for a 10-dimensional HJB equation, which
corresponds to a second order BSDE and includes the G-expectation as a special
case, and it indeed converges to the true solution. It will be very interesting to in-
vestigate the convergence of our scheme, or its variations if necessary, when the
monotonicity condition is violated. We shall leave this for our future research.

Finally, we note that we have recently extended the idea of monotone schemes
to the so called path dependent PDEs; see Zhang and Zhuo [34].

The rest of the paper is organized as follows. In Section 2 we present some pre-
liminaries. In Section 3 we propose our scheme and prove the main convergence
results. Section 4 is devoted to the study of quasi-linear PDEs and the associated
coupled FBSDEs. In Section 5 we discuss how to approximate the involved con-
ditional expectations. Finally we present several numerical examples in Section 6,
up to dimension 12.

2. Preliminaries. Let T > 0 be the terminal time, d ≥ 1 the dimension of
the state variable x, Sd the set of d × d symmetric matrices and R

d×d+ the set of
nondegenerate d ×d matrices. For γ, γ̃ ∈ S

d , we say γ ≤ γ̃ if γ̃ −γ is nonnegative
definite. For x, x̃ ∈R

d and γ, γ̃ ∈ R
d×d , denote

x · x̃ :=
d∑

i=1

xix̃i , |x| := √
x · x and γ : γ̃ := tr

(
γ γ̃ T ), |γ | := √

γ :γ ,

where T denotes transpose. For any γ = [γij ] ∈ S
d , denote

D[γ ] := the diagonal matrix whose (i, i)th component is γii .(2.1)

It is clear that, for any γ, γ̃ ∈ S
d ,

D[γ ] : γ̃ = D[γ ] :D[γ̃ ] = γ :D[γ̃ ].(2.2)

Moreover, we use the same notation 0 to denote the zeroes in R
d and S

d .



MONOTONE SCHEME FOR HIGH-DIMENSIONAL PDE 1543

Our objective is PDE (1.1), where G : (t, x, y, z, γ ) ∈ [0, T ] ×R
d ×R×R

d ×
S

d → R and g :x ∈ R
d → R. We first recall the definition of viscosity solutions:

an upper (resp., lower) semicontinuous function u is called a viscosity subsolution
(resp., viscosity supersolution) of PDE (1.1) if u(T , ·) ≤ (resp.,≥) g(x) and for
any (t, x) ∈ [0, T ) ×R

d and any smooth function ϕ satisfying

[u − ϕ](t, x) = 0 ≥ (resp.,≤) [u − ϕ](s, y) for all (s, y) ∈ [0, T ] ×R
d,

we have [−∂tϕ − G
(·, ϕ,Dϕ,D2ϕ

)]
(t, x) ≤ (resp.,≥)0.

For the theory of viscosity solutions, we refer to the classical references [12]
and [18]. We remark that Barles and Souganidis [3] consider more general dis-
continuous viscosity solutions, which is unnecessary in our situation due to the
regularities we will prove; see also [17], Remark 2.2. We shall always assume the
following standing assumptions:

ASSUMPTION 2.1. (i) G(·,0,0,0) and g are bounded.
(ii) G is continuous in t , uniformly Lipschitz continuous in (x, y, z, γ ) and g is

uniformly Lipschitz continuous in x.
(iii) PDE (1.1) is parabolic; that is, G is nondecreasing in γ .
(iv) Comparison principle for PDE (1.1) holds in the class of bounded viscosity

solutions. That is, if u1 and u2 are bounded viscosity subsolution and viscosity
supersolution of PDE (1.1), respectively, then u1 ≤ u2.

For notational simplicity, throughout the paper we assume further that

G is differentiable in (y, z, γ ) so that we can use the notation Gγ , etc.

However, we emphasize that all the results in the paper do not rely on this ad-
ditional assumption. Our goal of the paper is to numerically compute the viscosity
solution u. In their seminal work Barles and Souganidis [3] proposed a monotone
scheme in an abstract way and proved its convergence by using the viscosity so-
lution approach. To be precise, for any t ∈ [0, T ) and h ∈ (0, T − t), let Tt

h be an
operator on the set of measurable functions ϕ :Rd →R. For n ≥ 1, denote h := T

n
,

ti := ih, i = 0,1, . . . , n, and define

uh(tn, ·) := g(·), uh(t, ·) := T
t
ti−t

[
uh(ti, ·)], t ∈ [ti−1, ti)(2.3)

for i = n, . . . ,1. The following convergence result is due to Fahim, Touzi and
Warin [17], Theorem 3.6, which is based on [3].

THEOREM 2.2. Let Assumption 2.1 hold. Assume T
t
h satisfies the following

conditions:
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(i) Consistency: for any (t, x) ∈ [0, T ) ×R
d and any ϕ ∈ C1,2([0, T ) ×R

d),

lim
(t ′,x′,h,c)→(t,x,0,0)

T
t ′
h [[c + ϕ](t ′ + h, ·)](x′) − [c + ϕ](t ′, x′)

h

= ∂tϕ(t, x) + G
(
t, x, ϕ,Dϕ,D2ϕ

)
.

(ii) Monotonicity: Tt
h[ϕ] ≤ T

t
h[ψ] whenever ϕ ≤ ψ .

(iii) Stability: uh is bounded uniformly in h whenever g is bounded.
(iv) Boundary condition: for any x ∈ R

d , lim(t ′,x′,h)→(T ,x,0) uh(t
′, x′) = g(x).

Then the PDE (1.1) has a unique bounded viscosity solution u, and uh converges
to u locally uniformly as h → 0.

We remark that in [17] the Monotonicity condition is weakened slightly.
Roughly speaking, Fahim, Touzi and Waxin [17] proposed a scheme �Tt

h as
follows. Assume there exist ¯σ, σ̄ : [0, T ] × R

d → R
d×d+ such that 1

2 ¯a(t, x) ≤
Gγ (t, x, y, z, γ ) ≤ 1

2 ā(t, x), for any (t, x, y, z, γ ), where ¯a := ¯σ ¯σ
T and ā :=

σ̄ σ̄ T . Denote

�F(t, x, y, z, γ ) := G(t, x, y, z, γ ) − 1
2 ¯a :γ,(2.4)

and define

�Tt
h[ϕ](x) := �Dt,0

h ϕ(x) + h�F (t, x, �Dt,0
h ϕ(x), �Dt,1

h ϕ(x), �Dt,2
h ϕ(x)

)
,(2.5)

where, for a d-dimensional standard Normal random variable N ,

�Dt,i
h ϕ(x) := E

[
ϕ(x + √

h¯σN)�Ki(N)
]
, i = 0,1,2,

�K0(N) := 1, �K1(N) := ¯σ
−T N√

h
,(2.6)

�K2(N) := ¯σ
−T [NNT − Id ]¯σ

−1

h
,

and ¯σ
−T := (¯σ

−1)T . This scheme satisfies the consistency, and the stability fol-
lows from the monotonicity. However, to ensure the monotonicity, one needs to
assume �Fγ : ¯a

−1 ≤ 1, see [17], proof of Lemma 3.12. This essentially requires[1
2 ā − 1

2 ¯a
]
: ¯a

−1 ≤ 1 and thus ā : ¯a
−1 ≤ d + 2.(2.7)

In the case ¯a = ¯αId, ā = ᾱId for some scalar functions 0 < ¯α ≤ ᾱ, we have

1 ≤ ᾱ/¯α ≤ 1 + 2/d.(2.8)

When d is large, this implies ᾱ ≈ ¯α, and thus G is essentially semilinear, which of
course is not desirable in practice.

Our goal of this paper is to modify algorithm (2.5)–(2.6) so as to relax the above
constraint, mainly in the case that Gγ is diagonally dominant. In particular, when
Gγ is diagonal, we remove this constraint completely.
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3. The numerical scheme. In this section we present our numerical scheme
and study its convergence. Our scheme involves two functions σ0 : [0, T ] ×R

d →
R

d×d+ and p : [0, T ] ×R
d → (0,1) satisfying

σ0, σ−1
0 and p−1 are bounded.(3.1)

Denote

F(t, x, y, z, γ ) := G(t, x, y, z, γ ) − 1
2a0(t, x) :γ

(3.2) where a0 := σ0σ
T
0 ;

G̃γ (t, x, y, z, γ ) := σ−1
0 (t, x)Gγ (t, x, y, z, γ )σ−T

0 (t, x).

For notational simplicity, we will be suppressing the variables when there is no
confusion. Unlike Fahim, Touzi and Waxin [17], we emphasize that we do not
require 1

2a0 ≤ Gγ . Let (	,F,P) be a probability space. For each (t, x), let ξ :=
ξ t,x be an R

d -valued random variable such that its components ξi , i = 1, . . . , d are
independent and have the identical distribution

P

(
ξi = 1√

p

)
= p

2
, P

(
ξi = − 1√

p

)
= p

2
, P(ξi = 0) = 1 − p.(3.3)

This implies that

E[ξi] = E
[
ξ3
i

]= 0, E
[
ξ2
i

]= 1, E
[
ξ4
i

]= 1

p
.(3.4)

We now modify algorithm (2.5)–(2.6),

T
t
h[ϕ](x) := Dt,0

h ϕ(x) + hF
(
t, x,Dt,0

h ϕ(x),Dt,1
h ϕ(x),Dt,2

h ϕ(x)
)
,(3.5)

where, recalling (2.1) and suppressing the variables (t, x),

Dt,i
h ϕ(x) := E

[
ϕ(x + √

hσ0ξ)Ki(ξ)
]
, i = 0,1,2,

K0(ξ) := 1, K1(ξ) := σ−T
0 ξ√

h
,(3.6)

K2(ξ) := σ−T
0 [(1 − p)ξξT − (1 − 3p)D[ξξT ] − 2pId ]σ−1

0

(1 − p)h
.

One may check straightforwardly that

E
[
K1(ξ)

]= 0, E
[
K2(ξ)

]= 0.(3.7)

We recall that the approximating solution uh is defined by (2.3).

REMARK 3.1. If we assume 1
2a0 ≤ Gγ and set p = 1

3 , then our scheme is ob-
tained by replacing the normal random variable N in (2.6) with trinomial random
variable ξ . This in fact has already been mentioned in [17].
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REMARK 3.2. (i) The seemingly complicated kernel K2(ξ) is to ensure the
consistency of the scheme; see Lemma 3.3 below.

(ii) The σ0 is used to construct the forward process, on which we will compute
the conditional expectations. This is fundamental in Monte Carlo methods which
we will use.

(iii) The introduction of p allows us to obtain the monotonicity of our scheme;
see Section 3.2 below. However, we should point out that the crucial property
is (3.4). Additional freedom of parameters, for example, by replacing the trino-
mial tree with 5-nomial trees, will not help to weaken the monotonicity condition
Assumption 3.4 below.

(iv) An additional advantage of using trinomial tree (instead of Brownian mo-
tion) is that it is bounded, which helps to ensure the monotonicity; see the proof of
Lemma 3.6 and Remark 3.9(ii) below.

3.1. Consistency. We first justify our scheme by checking its consistency.

LEMMA 3.3. Under Assumption 2.1 and (3.1), Tt
h satisfies the consistency

requirement in Theorem 2.2(i).

PROOF. Fix (t, x) ∈ [0, T )×R
d. Let ϕ ∈ C1,2([0, T ]×R

d) and (t ′, x′, h, c) →
(t, x,0,0). Apply Taylor expansion to h: with the right-hand side taking values at
(t ′, x′),

ϕ
(
t ′ + h,x′ + √

hσ0ξ
)

= ϕ + ∂tϕh + √
hDϕ · σ0ξ + h

2
D2ϕ : [σ0ξ ][σ0ξ ]T + o(h).

We emphasize that, thanks to (3.1), the o(·) in this proof is uniform in (t ′, x′, h, c).
By (3.4) and the independence of ξk one may check straightforwardly that

Dt,0
h ϕ

(
t ′ + h, ·)(x′)= ϕ + ∂tϕh + h

2
D2ϕ :a0 + o(h);

(3.8)
Dt,1

h ϕ
(
t ′ + h, ·)(x′)= Dϕ + o(

√
h).

Moreover, for any i 
= j ,

E
[
(1 − p)ξξT − (1 − 3p)D

[
ξξT ]− 2pId

]= 0;
E
[
ξi

[
(1 − p)ξξT − (1 − 3p)D

[
ξξT ]− 2pId

]]= 0;
E
[
ξ2
i

[
(1 − p)ξξT − (1 − 3p)D

[
ξξT ]− 2pId

]]= 2(1 − p)δi,i;
E
[
ξiξj

[
(1 − p)ξξT − (1 − 3p)D

[
ξξT ]− 2pId

]]= (1 − p)(δi,j + δj,i).
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Here δi,j is the d × d-matrix whose (i, j)th component is 1, and all other compo-
nents are 0. Then, denoting A = [ai,j ] := σT

0 D2ϕσ0,

E
[(

D2ϕ : [σ0ξ ][σ0ξ ]T )σ−T
0

[
(1 − p)ξξT − (1 − 3p)D

[
ξξT ]− 2pId

]
σ−1

0

]
= σ−T

0 E
[(

A : ξξT )[(1 − p)ξξT − (1 − 3p)D
[
ξξT ]− 2pId

]]
σ−1

0

= σ−T
0

d∑
i,j=1

ai,jE
[
ξiξj

[
(1 − p)ξξT − (1 − 3p)D

[
ξξT ]− 2pId

]]
σ−1

0

= (1 − p)σ−T
0

d∑
i,j=1

ai,j (δi,j + δj,i)σ
−1
0

= 2(1 − p)σ−T
0 Aσ−1

0 = 2(1 − p)D2ϕ,

and thus

Dt,2
h ϕ

(
t ′ + h, ·)(x′)= D2ϕ + o(1).(3.9)

Plugging (3.8) and (3.9) into (3.5) and recalling (3.7), we have

T
t ′
h

[[c + ϕ](t ′ + h, ·)](x′)
= c + ϕ + ∂tϕh + h

2
D2ϕ :a0 + o(h)

+ hF

(
t ′, x′, c + ϕ + ∂tϕh + h

2
D2ϕ :a0 + o(h),

Dϕ + o(
√

h),D2ϕ + o(1)

)
.

Then, by (3.2),

1

h

[
T

t ′
h

[[c + ϕ](t ′ + h, ·)](x′)− [c + ϕ](t ′, x′)]
= ∂tϕ

(
t ′, x′)− 1

2
o(1) :a0

(
t ′, x′)+ o(1)

+ G

(
t ′, x′, c + ϕ + ∂tϕh + h

2
D2ϕ :a0 + o(h),

Dϕ + o(
√

h),D2ϕ + o(1)

)
.

Sending (t ′, x′, h, c) → (t, x,0,0), we obtain the consistency immediately. �

3.2. The monotonicity. To obtain the monotonicity of our scheme, we need to
impose an additional assumption. Let σ0 : [0, T ] × R

d → R
d×d+ and G̃γ , D[G̃γ ]
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be defined by (3.2) and (2.1). Introduce the following scalar functions associated
to σ0:

¯α(t, x) := sup
{
α > 0 :αId ≤ D[G̃γ ](t, x, y, z, γ ), ∀(y, z, γ )

};
ᾱ(t, x) := inf

{
α > 0 :αId ≥ D[G̃γ ](t, x, y, z, γ ), ∀(y, z, γ )

};
�(t, x) := ᾱ(t, x)

¯α(t, x)
, θ(t, x) := inf

{
θ ≥ 0 :D[G̃γ ] ≤ (1 + θ)G̃γ

};
(3.10)

αp := p(2 + 3θ) − θ

p(1 + θ)
, cp :=

√
2p� + αp − 2p;

λp := √
p

[
(1 − p + pd)cp − 2pd�

cp

] √
¯α|σ−1

0 | ;

λ∗ := inf
(t,x)∈[0,T ]×Rd

sup
p∈[θ/(2(1+θ)),1/3]∩(0,1/3]

λp(t, x).

We remark that if we rescale σ0 by a constant c, then ¯α and ᾱ will be rescaled
by c−2. However, �, θ , αp , cp , λp and λ∗ are all invariant. The following assump-
tion is crucial.

ASSUMPTION 3.4. There exist σ0 and p satisfying (3.1) and:

(i) θ(t, x) ≤ 2 for all (t, x) and λ∗ > 0;
(ii) p ∈ [ θ

2(1+θ)
, 1

3 ] ∩ (0, 1
3 ], λp ≥ λ∗

2 and ¯α = c−2
p .

This assumption is somewhat complicated. We shall provide several remarks
concerning it after proving the monotonicity of our scheme. At below we first
explain our choices of parameters which will be used in the proof of next lemma.

REMARK 3.5. (i) We need p ≤ 1
3 so that 1 − 3p, the coefficient of D[ξξT ], is

nonnegative. For 0 ≤ θ ≤ 2, we have θ
2(1+θ)

≤ 1
3 . Moreover, for p ∈ [ θ

2(1+θ)
, 1

3 ] ∩
(0, 1

3 ], it holds that αp ≥ 2p.
(ii) To ensure the monotonicity, we shall first choose σ ′

0 with |σ ′
0| = 1 satisfying

Assumption 3.4, preferably the one maximizing the corresponding λ∗. We next
choose p ∈ [ θ

2(1+θ)
, 1

3 ] ∩ (0, 1
3 ] such that λp ≥ λ∗

2 . Finally we rescale σ ′
0 to obtain

σ0 satisfying ¯α = c−2
p .

(iii) The above choices of p and σ0 is somewhat optimal in order to maintain
the monotonicity. However, given G, they may not be optimal for the convergence
of the scheme. For example, a smaller p may help for the monotonicity, but may
increase the variance of the Monte Carlo simulation which will be introduced later.
In our numerical examples in Section 6 below, we may choose them slightly dif-
ferently. It is not clear to us how to choose p and σ0 so as to optimize the overall
efficiency of the algorithm.
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LEMMA 3.6. Let Assumptions 2.1 and 3.4 hold, and consider the algorithm
by using the p and σ0 as specified in Remark 3.5(ii). Then there exists a constant
h0 > 0, depending on d,T ,λ∗, and the bounds and Lipschitz constants in Assump-
tion 2.1 and (3.1), such that Tt

h satisfies the monotonicity in Theorem 2.2(ii) for all
h ∈ (0, h0].

PROOF. Let ϕ1 ≤ ϕ2 be bounded and ψ := ϕ2 − ϕ1 ≥ 0. Then by (3.5) we
have, at (t, x),

T
t
h[ϕ2] −T

t
h[ϕ1] = Dt,0

h ψ + h
[
FyDt,0

h ψ + Fz ·Dt,1
h ψ + Fγ :Dt,2

h ψ
]
.(3.11)

Here the terms Fy,Fz,Fγ are defined in an obvious way, and we emphasize that
they are deterministic. Plug (3.6) into the above equality, then

T
t
h[ϕ2] −T

t
h[ϕ1]

= E[ψ(x + √
hσ0ξ)

[
1 + h

[
Fy + Fz · K1(ξ) + Fγ :K2(ξ)

]]
(3.12)

= E

[
ψ(x + √

hσ0ξ)

[
1 + hFy + √

hFz · (σ−T
0 ξ

)+ I

1 − p

]]
,

where

I := Fγ :
(
σ−T

0

[
(1 − p)ξξT − (1 − 3p)D

[
ξξT ]− 2pId

]
σ−1

0

)
= [

G̃γ − 1
2Id

]
:
[
(1 − p)ξξT − (1 − 3p)D

[
ξξT ]− 2pId

]
= (1 − p)

[
G̃γ − 1

2Id

]
:
(
ξξT )− (1 − 3p)

[
D[G̃γ ] − 1

2Id

]
:
(
ξξT )

− 2p tr(G̃γ ) + pd.

Denote αi := (G̃γ )ii . Then it follows from the definition of θ that

I ≥ (1 − p)

[
1

1 + θ
D[G̃γ ] − 1

2
Id

]
:
(
ξξT )− (1 − 3p)

[
D[G̃γ ] − 1

2
Id

]
:
(
ξξT )

− 2p tr(G̃γ ) + pd

= pαpD[G̃γ ] :
(
ξξT )− p|ξ |2 − 2p tr(G̃γ ) + pd

= pd − p

d∑
i=1

[
ξ2
i + 2αi − αpαiξ

2
i

]
.

Note that ¯α ≤ αi ≤ ᾱ, αp ≥ 2p by Remark 3.5(i), ¯α = c−2
p by Remark 3.5(ii) and

ξ2
i takes only values 0 and 1

p
. Then

p
[
ξ2
i + 2αi − αpαiξ

2
i

]≤ (2pαi) ∨ [1 − (αp − 2p)αi

]
≤ 2pᾱ ∨ [1 − (αp − 2p)¯α

]= 2pᾱ = 2p�c−2
p .
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Thus

1 − p + I ≥ 1 − p + pd − 2pd�c−2
p = λp|σ−1

0 |√
p

≥ λ∗|σ−1
0 |

2
√

p
.(3.13)

By the Lipschitz continuity of G in γ , we have

C
∣∣σ−1

0

∣∣2 ≥ ᾱ = �c−2
p = �

2p� + αp − 2p
≥ 1

αp

≥ 1

3
.(3.14)

Note that p ≤ 1
3 and |ξi | takes values 0 or 1√

p
. Then

∣∣hFy + √
hFz · (σ−1

0 ξ
)∣∣≤ Ch + C

√
h√

p

∣∣σ−1
0

∣∣≤ C1
√

h0√
p

∣∣σ−1
0

∣∣,(3.15)

for some constant C1. Set h0 := ( 3λ∗
4C1

)2, and recall again that p ≤ 1
3 and (3.1).

Plugging (3.13) and (3.15) into (3.12), we see that

1 + hFy + √
hFz · (σ−1

0 ξ
)+ I

1 − p
≥ 0

and thus proves the monotonicity. �

We remark that our algorithm works well when G̃γ is diagonally dominated,
namely when θ is uniformly small. In this case, we have the following simple
sufficient condition for Assumption 3.4.

PROPOSITION 3.7. Let Assumption 2.1 hold. Assume there exist σ0 : [0, T ] ×
R

d → R
d×d+ and a small constant ε0 > 0 such that σ0 and σ−1

0 are bounded and,
for the C0 in (3.14),

θ ≤ ε0

4dC0
and ¯α(t, x)

|σ−1
0 |2 ≥ ε0.(3.16)

Then Assumption 3.4 holds, and consequently T
t
h is monotone.

PROOF. First, set p := ε0
4dC0

∈ [ θ
2(1+θ)

, 1
3 ] ∩ (0, 1

3 ]. It is clear that (3.1) holds.

By the first inequality of (3.14) and second inequality of (3.16), we have � ≤ C0
ε0

.

Then αp ≥ p(1+3θ)
p(1+θ)

≥ 1, cp ≥ √
αp ≥ 1, and thus,

λp ≥ √
p

[
1 − p + pd − 2pd

C0

ε0

]
ε0 ≥

√
ε0

4dC0

1

2
ε0 = ε

3/2
0

C
.

This implies Assumption 3.4 immediately. �

REMARK 3.8. In this remark we investigate the bound of � for our algorithm,
and compare it with (2.8).
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(i) When G̃γ is diagonally dominated, in particular when θ = 0, under (3.16)
we remove the constraint (2.8) completely and thus improve the result of [17]
significantly. We also note that when d = 1 we always have θ = 0 and thus the
bound constraint does not exist in our case.

(ii) Let 0 < θ ≤ 2 and d ≥ 2. For simplicity, we shall assume ¯α, ᾱ and θ are all
constants. Note that

λp =
√

p ¯α
cp|σ−1

0 |
[
(1 − p + pd)(2p� + αp − 2p) − 2pd�

]
= 2p(1 − p)

√
p(d − 1)

√
p ¯α

cp|σ−1
0 |

[
(1 − p + pd)(αp − 2p)

2p(1 − p)(d − 1)
− �

]

= 2p(1 − p)(d − 1)

√
p ¯α

cp|σ−1
0 |

[[
1 + 1

(d − 1)p

][
1 − θ

2(1 + θ)p

]
− �

]
.

Then our constraint is

� < �θ := sup
p∈[θ/(2(1+θ)),1/3]

[
1 + 1

(d − 1)p

][
1 − θ

2(1 + θ)p

]
.(3.17)

When 0 < θ ≤ 2
d+3 , one may compute straightforwardly that the optimal p :=

2θ
2−(d−3)θ

∈ [ θ
2(1+θ)

, 1
3 ] and thus �θ = 1 + [2−(d−3)θ ]2

8θ(1+θ)(d−1)
. Once again, we see that

�θ is large when θ is small. In particular, there exists unique θd ≤ 2
d+3 such that

�θd
= 1 + 2

d
. Therefore, when θ < θd , our scheme allows for a larger bound of �

than (2.8).
(iii) When θ ≥ 2

d+3 , or more generally when θ ≥ θd , we may set p := 1
3 and our

algorithm reduces back to [17], by replacing the Brownian motion with trinomial
tree; see Remark 3.1. In this case Assumption 3.4 may be violated, but we can still
easily obtain the same bound (2.7) as in [17]. That is, under (2.7) our algorithm
(with p = 1

3 ) is still monotone, but the proof should follow the arguments in [17],
rather than those in Lemma 3.6.

(iv) By (3.17), to maintain monotonicity it suffices to choose p such that [1 +
1

(d−1)p
][1 − θ

2(1+θ)p
] ≥ �. In particular, when θ = 0, one natural choice is

p := min
(

1

(� − 1)(d − 1)
,

1

3

)
.

We remark further that, in light of Remark 3.5(iii), we may not want to choose
smaller p although it also maintains the monotonicity.

REMARK 3.9. This remark concerns the degeneracy of G.

(i) The second inequality of (3.16) implies immediately the uniform nonde-
generacy of Gγ : D[σ−1

0 Gγ σ−T
0 ] ≥ ε0|σ−1

0 |2Id . This is mainly due to the term
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Fz · (σ−1
0 ξ) in (3.12). In [17], Gγ is assumed to be nondegenerate, but not neces-

sarily uniformly, under the additional assumption that FT
z F−1

γ Fz is bounded (Fγ is
nondegenerate in [17]). If we assume that |Fz| ≤ C|¯α|, then following similar argu-
ments, in particular by using a weaker version of monotonicity in the spirit of [17],
Lemma 3.12, we may remove the uniform nondegeneracy in (3.16) as well.

(ii) Unlike [17], we do not require Gγ ≥ 1
2a0 and thus F can be degenerate.

This is possible mainly because we use a bounded trinomial tree instead of an
unbounded Brownian motion.

(iii) When G is degenerate, namely ¯α can be equal to 0, one can approximate
the generator G by Gε := G + εId :γ and numerically solve the corresponding
solution uε . By the stability of viscosity solutions we see that uε converges to u

locally uniformly.
(iv) Motivated from pricing Asian options, in a recent work Tan [31] investi-

gated the numerical approximation for the following type of PDE with solution
u(t, x, y):

−∂tu(t, x, y) − G
(
t, x, y,u,Dxu,D2

xxu
)− H(t, x, y,u,Dxu,Dyu) = 0,

where G is nondegenerate in D2
xxu, but the PDE is always degenerate in D2

yyu.

3.3. Stability. Given the monotonicity, one may prove stability following stan-
dard arguments.

LEMMA 3.10. Let Assumptions 2.1 and 3.4 hold. Then for any h ∈ (0, h0], Tt
h

satisfies the stability in Theorem 2.2(iii).

PROOF. First, it follows from Lemma 3.6 that Tt
h satisfies the monotonicity.

Denote Cn := supx∈Rd |uh(tn, x)| and Ci := sup(t,x)∈[ti ,ti+1)×Rd |uh(t, x)|, i = n −
1, . . . ,0. Since g is bounded, we see that Cn ≤ C. We claim that

Ci ≤ (1 + Ch)Ci+1 + Ch.(3.18)

Then by the discrete Gronwall inequality, we see that

max
0≤i≤n−1

Ci ≤ C(1 + Ch)n[Cn + nh] ≤ C.

This proves the lemma.
We now prove (3.18). Let (t, x) ∈ [ti , ti+1) × R

d and denote h′ := ti − t ≤ h,
ξ := ξ t,x . Similar to (3.11), one may easily get

uh(t, x) = E
[
uh

(
ti+1, x + √

h′σ0ξ
)
Ii+1

]+ h′F(ti, x,0,0,0),(3.19)

where, for some deterministic Fy(ti),Fz(ti),Fγ (ti) defined in an obvious way,

Ii+1 := 1 + h′[Fy(ti) + Fz(ti) · K1(ξ) + Fγ (ti) :K2(ξ)
]
.
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The monotonicity in Lemma 3.6 exactly means Ii+1 ≥ 0. Noting that
F(ti, x,0,0,0) = G(ti, x,0,0,0) is bounded, then∣∣uh(t, x)

∣∣≤ E
[∣∣uh

(
ti+1, x + √

h′σ0ξ
)∣∣Ii+1

]+ Ch′ ≤ Ci+1E[Ii+1] + Ch′.

By (3.7), we see that Eti [Ii+1] = 1 + h′Fy(ti) ≤ 1 + Ch′. Then∣∣uh(t, x)
∣∣≤ (1 + Ch′)Ci+1 + Ch′ ≤ (1 + Ch)Ci+1 + Ch.

Since (t, x) is arbitrary, we obtain (3.18). �

3.4. Boundary condition.

LEMMA 3.11. Let Assumptions 2.1 and 3.4 hold, then∣∣uh(t, x) − g(x)
∣∣≤ C(T − t)1/2.

PROOF. Without loss of generality, we assume t = tk for some k. Fix (tk, x),
and denote Xn

tk
:= x, Fn

tk
:= {∅,	}. For j = k + 1, . . . , n, define recursively

Xn
tj

:= Xn
tj−1

+ √
hσ0

(
tj−1,X

n
tj−1

)
ξj , Fn

tj
:= Fn

tj−1
∨ σ

(
ξj ),

where ξj := ξ
tj−1,X

n
tj−1 is determined by (3.3) and is independent of Fn

tj−1
. Then it

is clear,

uh

(
tj−1,X

n
tj−1

)= Etj−1

[
uh

(
tj ,X

n
tj

)]
+ hF

(
tj−1,X

n
tj−1

,Etj−1

[
uh

(
tj ,X

n
tj

)]
,

Etj−1

[
uh

(
tj ,X

n
tj

)
K1
(
ξj )],Etj−1

[
uh

(
tj ,X

n
tj

)
K2
(
ξj )]).

Similar to the proof of Lemma 3.10, we have

uh

(
tj−1,X

n
tj−1

)= Etj−1

[
uh

(
tj ,X

n
tj

)
Ij

]+ hF
(
tj−1,X

n
tj−1

,0,0,0
)
,

where, by abusing the notation I slightly,

Ij := 1 + h
[
Fy(tj−1) + Fz(tj−1) · K1

(
ξj )+ Fγ (tj−1) :K2

(
ξj )]≥ 0,

and Fy(tj−1),Fz(tj−1),Fγ (tj−1) are defined in an obvious way. Denote

Jk := 1 and Ji :=
i∏

j=k+1

Ij , i = k + 1, . . . , n.

Recalling uh(tn, x) = g(x), by induction we get

uh(tk, x) = uh

(
tk,X

n
tk

)= E

[
g
(
Xn

tn

)
Jn + h

n−1∑
j=k

JjF
(
tj ,X

n
tj
,0,0,0

)]
.
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Since g is bounded and uniformly Lipschitz continuous, we may let gε be a stan-
dard smooth molifier of g such that

‖gε − g‖∞ ≤ Cε, ‖Dgε‖∞ ≤ C and
∥∥D2gε

∥∥∞ ≤ Cε−1.(3.20)

Then, noting again that F(t, x,0,0,0) = G(t, x,0,0,0) is bounded,∣∣uh(tk, x) − g(x)
∣∣

≤ ∣∣E[gε

(
Xn

tn

)
Jn

]− gε(x)
∣∣+ CεE[Jn] + ChE

[
n−1∑
j=k

Jj

]
+ Cε

=
∣∣∣∣∣

n∑
i=k+1

E
[
gε

(
Xn

ti

)
Ji − gε

(
Xn

ti−1

)
Ji−1

]∣∣∣∣∣+ CεE[Jn] + ChE

[
n∑

j=k

Jj

]
+ Cε

=
∣∣∣∣∣

n∑
i=k+1

E
[[

gε

(
Xn

ti

)− gε

(
Xn

ti−1

)]
Ji + gε

(
Xn

ti−1

)
Ji−1[Ii − 1]]∣∣∣∣∣

+ CεE[Jn] + ChE

[
n−1∑
j=k

Jj

]
+ Cε.

Since Etj−1[Ij ] = 1 + hFy(tj−1), we have∣∣Eti−1[Ii] − 1
∣∣≤ Ch and E[Ji] ≤ (1 + Ch)i−k ≤ C.(3.21)

Thus ∣∣uh(tk, x) − g(x)
∣∣

(3.22)

≤
∣∣∣∣∣

n∑
i=k+1

E
[[

gε

(
Xn

ti

)− gε

(
Xn

ti−1

)]
Ji

]∣∣∣∣∣+ C(n − k)h + Cε.

Moreover, for some appropriate Fti -measurable X̃n
ti

,

gε

(
Xn

ti

)− gε

(
Xn

ti−1

)= √
hDgε

(
Xn

ti−1

) · σ0ξ
i + h

2
D2gε

(
X̃n

ti

)
:
(
σ0ξ

i)(σ0ξ
i)T .

By (3.1), we have∣∣Eti−1

[
Dgε

(
Xn

ti−1

) · σ0ξ
iIi

]∣∣
= ∣∣Eti−1

[
h
[
Dgε

(
Xn

ti−1

) · σ0ξ
i][Fz(ti−1) · K1

(
ξ i)]]∣∣≤ C

√
h;∣∣Eti−1

[
D2gε

(
X̃n

ti

)
:
(
σ0ξ

i)(σ0ξ
i)T Ii

]∣∣≤ Cε−1
Eti−1[Ii] ≤ Cε−1.

Then ∣∣Eti−1

[[
gε

(
Xn

ti

)− gε

(
Xn

ti−1

)]
Ii

]∣∣≤ Ch
[
1 + ε−1].
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Plugging this into (3.22) and recalling (3.21), we have∣∣uh(tk, x) − g(x)
∣∣≤ C(n − k)h

[
1 + ε−1]+ Cε.

Note that (n − k)h = T − tk . Setting ε := √
T − tk , we obtain the result. �

3.5. Convergence results. First, combine Lemmas 3.3, 3.6, 3.10, 3.11, and im-
mediately from Theorem 2.2, we have the following:

THEOREM 3.12. Let Assumptions 2.1 and 3.4 hold. Then the PDE (1.1) has
a unique bounded viscosity solution u, and uh converges to u locally uniformly as
h → 0.

We next study the rate of convergence. We first consider the case that u is
smooth. Let C

[2]
b ([0, T ] ×R

d) denote the subset of C1,2([0, T ] ×R
d) such that u,

∂tu,Du,D2u are bounded; and C
[4]
b ([0, T ]×R

d) the set of u ∈ C
[2]
b ([0, T ]×R

d)

such that each component of ∂tu,Du,D2u is also in C
[2]
b ([0, T ] ×R

d).

THEOREM 3.13. Let Assumptions 2.1 and 3.4 hold and h ∈ (0, h0). Assume
further that u ∈ C

[4]
b ([0, T ]×R

d), and G is locally uniformly Lipschitz continuous
in x, locally uniformly on (y, z, γ ). Then there exists a constant C, independent of
h (or n), such that ∣∣uh(t, x) − u(t, x)

∣∣≤ Ch for all (t, x).

PROOF. Again, since h < h0, it follows from Lemma 3.6 that T
t
h satis-

fies the monotonicity. Denote Cn := supx∈Rd |uh(tn, x) − u(tn, x)| and Ci :=
sup(t,x)∈[ti ,ti+1)×Rd |uh(t, x) − u(t, x)|, i = n − 1, . . . ,0. We claim that

Ci ≤ (1 + Ch)Ci+1 + Ch2.(3.23)

Since Cn = 0, then by the discrete Gronwall inequality, we see that

max
0≤i≤n−1

Ci ≤ C(1 + Ch)n
[
Cn + nh2]≤ Ch.

This proves the theorem.
We now prove (3.23). Similar to the proof of Lemma 3.10, we shall only esti-

mate |uh(ti, x) − u(ti, x)|, and the estimate for the general |uh(t, x) − u(t, x)| is
similar. For this purpose, recall (3.5), (3.6), and define

ũh(ti, x) := [
Dti ,0u(ti+1, ·)](x)

+ hF
(
ti , x,

[
Dti ,0u(ti+1, ·)](x),

[
Dti ,1u(ti+1, ·)](x),(3.24) [
Dti ,2u(ti+1, ·)](x)

)
.
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We note that the right-hand side of above uses the true solution u, instead of uh

in (2.3). It is clear that∣∣uh(ti, x) − u(ti, x)
∣∣≤ ∣∣uh(ti, x) − ũh(ti, x)

∣∣+ ∣∣ũh(ti , x) − u(ti, x)
∣∣.(3.25)

Compare (2.3) and (3.24), and by the first equality of (3.11) we have, at (ti, x),

uh(ti, x) − ũh(ti , x)

= E
[[uh − u](ti+1, x + √

hσ0ξ)
[
1 + h

[
Fy + Fz · K1(ξ) + Fγ :K2(ξ)

]]]
.

Then it follows from similar arguments in the proof of Lemma 3.10 that∣∣uh(ti, x) − ũh(ti, x)
∣∣≤ (1 + Ch)Ci+1.(3.26)

Next, since u ∈ C
[4]
b ([0, T ] × R

d), applying Taylor expansion and by (3.4), one
may check straightforwardly that, at (ti , x),[

Dti ,0u(ti+1, ·)](x) = u + ∂tuh + h

2
D2u :a0 + O

(
h2);[

Dti ,1u(ti+1, ·)](x) = Du + O(h); [
Dti ,2u(ti+1, ·)](x) = D2u + O(h),

where O(·) is uniform, thanks to (3.1). Then, again at (ti , x),

ũh − u = ∂tuh + h

2
D2u :a0 + O

(
h2)

+ hF
(
ti , x, u + O(h),Du + O(h),D2u + O(h)

)
= ∂tuh − h

2
O(h) :a0 + O

(
h2)

+ hG
(
ti , x, u + O(h),Du + O(h),D2u + O(h)

)
.

Note that u satisfies the PDE (1.1), and recall (3.2). Then∣∣ũh(ti, x) − u(ti, x)
∣∣

= O
(
h2)+ h

∣∣G(·, u + O(h),Du + O(h),D2u + O(h)
)

− G
(·, u,Du,D2u

)∣∣(ti, x).

Since u and its derivatives are bounded, and G is locally uniformly Lipschitz con-
tinuous in x, then we have ∣∣ũh(ti , x) − u(ti, x)

∣∣≤ Ch2.

Plug this and (3.26) into (3.25), we obtain

sup
x

∣∣uh(ti, x) − u(ti, x)
∣∣≤ (1 + Ch)Ci+1 + Ch2.

Similarly we may estimate supx |uh(t, x) − u(t, x)| for t ∈ (ti , ti+1) and thus
prove (3.23). �
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We finally study the case when u is only a viscosity solution. Given the
monotonicity, our arguments are almost identical to those of Fahim, Touzi and
Waxin [17], Theorem 3.10, which in turn relies on the works Krylov [21] and
Barles and Jakobsen [2]. We thus present only the result and omit the proof.

The result relies on the following additional assumption.

ASSUMPTION 3.14. (i) G is of the Hamilton–Jocobi–Bellman type

G(t, x, y, z, γ ) = inf
α∈A

[
1

2
σα(σα)T (t, x) :γ + bα(t, x)y + cα(t, x) · z + f α(t, x)

]
,

where σα , bα , cα and f α are uniformly bounded, and uniformly Lipschitz contin-
uous in x and uniformly Hölder- 1

2 continuous in t , uniformly in α.

(ii) For any α ∈A and δ > 0, there exists a finite set {αi}Mδ

i=1 such that

inf
1≤i≤Mδ

(∣∣σα − σαi
∣∣∞ + ∣∣bα − bαi

∣∣∞ + ∣∣cα − cαi
∣∣∞ + ∣∣f α − f αi

∣∣∞)≤ δ.

We then have the following result analogous to [17], Theorem 3.10.

THEOREM 3.15. Let Assumptions 2.1 and 3.4 hold and h ∈ (0, h0):

(i) under Assumption 3.14(i), we have u − uh ≤ Ch1/4,
(ii) under the full Assumption 3.14, we have −Ch1/10 ≤ u − uh ≤ Ch1/4.

REMARK 3.16. The arguments in [17] rely heavily on the viscosity proper-
ties of the PDE. Very recently Tan [32] provides a purely probabilistic arguments
for HJB equations. His argument works for the non-Markovian setting as well and
thus provides a discretization for second order BSDEs. Moreover, under his con-
ditions he shows that |uh − u| ≤ Ch1/8, which improves the left-hand side rate in
Theorem 3.15(ii).

4. Quasi-linear PDE and coupled FBSDEs. In this section we focus on the
following G which is quasi-linear in γ :3

G = 1
2

[
σσT ](t, x, y) :γ + b

(
t, x, y, σ (t, x, y)z

) · z
(4.1)

+ f
(
t, x, y, σ (t, x, y)z

)
.

Here f is scalar, b is R
d -valued, and σ is R

d×m-valued for some m. In this case
the PDE (1.1) is closely related to the following coupled FBSDE:⎧⎪⎪⎨⎪⎪⎩

Xt = x +
∫ t

0
b(s,Xs,Ys,Zs) ds +

∫ t

0
σ(s,Xs,Ys) dWs;

Yt = g(XT ) +
∫ T

t
f (s,Xs,Ys,Zs) ds −

∫ T

t
Zs · dWs.

(4.2)

3The idea of rewriting this PDE in the form of (3.2) for numerical purpose was communicated to
the second author by Nizar Touzi back in 2003, which was in fact a main motivation to study the
second order BSDE in [10, 30].
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Here W is a m-dimensional Brownian motion, and (X,Y,Z) is the solution triplet
taking values in R

d , R, and R
m, respectively. Due to the four-step scheme of Ma,

Protter and Yong [24], when the PDE (1.1) has the classical solution, the following
nonlinear Feynman–Kac formula holds:

Yt = u(t,Xt), Zt = σ
(
t,Xt , u(t,Xt)

)
Du(t,Xt).(4.3)

The feasible numerical method for high-dimensional FBSDEs has been a chal-
lenging problem in the literature. There are very few papers on the subject (e.g.,
[6, 14, 15, 24–27]), most of which are not feasible in high-dimensional cases. To
our best knowledge, the only work which reported a high-dimensional numerical
example is Bender and Zhang [6].

Our scheme works for quasi-linear PDE as well, especially when σσT is diag-
onally dominated, and thus is appropriate for numerically solving FBSDE (4.2).
We remark that the σ0(t, x) we will choose is different from σ(t, x, y) in (4.1),
and the F defined by (3.2) is different from f . We shall present a 12-dimensional
example; see Example 6.5 below.

One technical point is that the G in (4.1) is not Lipschitz continuous in y, mainly
due to the term 1

2 [σσT ](t, x, y) :γ . This can be overcome when the PDE has a

classical solution u ∈ C
[4]
b ([0, T ] ×R

d) (as in Theorem 3.13).

THEOREM 4.1. Let G take the form (4.1). Assume:

(i) σ, b, f, g are bounded, continuous in all variables, and uniformly Lipschitz
continuous in (x, y, z).

(ii) Assumption 3.4 holds.
(iii) The PDE (1.1) has a classical solution u ∈ C

[4]
b ([0, T ] ×R

d).
Then |uh − u| ≤ Ch when h is small enough.

PROOF. We follow the proof of Theorem 3.13. Define Ci , i = 0, . . . , n and ũh

as in Theorem 3.13 and again it suffices to prove (3.23).
We first estimate |uh(ti, x) − ũh(ti , x)|. Denote

ϕh(x) := uh(ti+1, x), ϕ(x) := u(ti+1, x), ψ := ϕh − ϕ.

Then, denoting Dj := Dti ,j , j = 0,1,2, and suppressing the variables (ti, x),

uh − ũh = D0ψ + hF
(·,D0ϕh,D1ϕh,D2ϕh

)− hF
(·,D0ϕ,D1ϕ,D2ϕ

)
= D0ψ − h

2
a0 :D2ψ + hG

(·,D0ϕh,D1ϕh,D2ϕh

)
− hG

(·,D0ϕ,D1ϕ,D2ϕ
)

= D0ψ + h
[
L1ψ +L2ψ +L3ψ

]
,
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where, denoting a(t, x, y) := σσT (t, x, y),

L1ψ := −1
2a0 :D2ψ + 1

2a
(·,D0ϕh

)
:D2ψ + b

(·,D0ϕh,σ
(·,D0ϕh

)
D1ϕh

) ·D1ψ;
L2ψ := 1

2

[
a
(·,D0ϕh

)− a
(·,D0ϕ

)]
:D2ϕ;

L3ψ := [
b
(·,D0ϕh,σ

(·,D0ϕh

)
D1ϕh

)− b
(·,D0ϕ,σ

(·,D0ϕ
)
D1ϕ

)] ·D1ϕ

+ [f (·,D0ϕh,σ
(·,D0ϕh

)
D1ϕh

)− f
(·,D0ϕ,σ

(·,D0ϕ
)
D1ϕ

)]
.

Let η denote a generic function with appropriate dimension which is uniformly
bounded and may vary from line to line. Since u ∈ C

[4]
b ([0, T ] × R

d), one may
easily check that D0ϕ,D1ϕ,D2ϕ are bounded. Then

L1ψ = 1
2a
(·,D0ϕh

)
:D2ψ − 1

2a0 :D2ψ + η ·D1ψ;
L2ψ = ηD0ψ;
L3ψ = ηD0ψ + η · [σ (·,D0ϕh

)
D1ϕh − σ

(·,D0ϕ
)
D1ϕ

]
= ηD0ψ + η · σ (·,D0ϕh

)
D1ψ + η · [σ (·,D0ϕh

)− σ
(·,D0ϕ

)]
D1ϕ

= ηD0ψ + η ·D1ψ.

Thus

uh − ũh = D0ψ + h
[
ηD0ψ + η ·D1ψ

]+ h

2
[a − a0] :D2ψ

= E

[
ψ(x + √

hσ0ξ)

[
1 + hη + hη · K1(ξ) + h

2
[a − a0] :K2(ξ)

]]
.

Now following the same arguments as in Lemma 3.6, for small h we have

1 + hη + hη · K1(ξ) + h

2
[a − a0] :K2(ξ) ≥ 0.

Then it follows from the arguments in Theorem 3.13 that∣∣uh(ti, x) − ũh(ti , x)
∣∣≤ (1 + Ch)Ci+1.

Similarly we may prove |ũh(ti, x) − u(ti, x)| ≤ Ch2. Thus we prove (3.23) and
hence the theorem. �

REMARK 4.2. (i) The existence of classical solutions for quasi-linear PDEs
can be seen in [22]. The rationale for the convergence in this case is as follows.
Let C0 be a bound for u, Du, D2u and assume d = 1 for simplicity. Let ẑ :=
(−C0) ∨ z ∧ C0 and γ̂ := (−C0) ∨ γ ∧ C0 be the truncation. Consider

Ĝ(·, z, γ ) := 1
2a : γ̂ + b(·, σ ẑ) · ẑ + f (·, σ ẑ).(4.4)

Then u is a classical solution of the following PDE as well:

−∂tu − Ĝ
(
t, x, u,Du,D2u

)= 0.(4.5)
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Under the conditions of Theorem 4.1, one can easily check that Ĝ satisfies As-
sumption 2.1. However, we should point out that Ĝ violates the nondegeneracy
required in Assumption 3.4, so one still cannot apply Theorem 3.13 directly on
PDE (4.5).

(ii) If the PDE has a classical solution, by applying the so called partial com-
parison (comparison between classical semisolution and viscosity semisolution),
which is much easier than the comparison principle for viscosity solutions, one
can easily see that u is unique in viscosity sense.

(iii) In general viscosity solution cases, even if the PDE is wellposed in the
viscosity sense, we are not able to extend Theorems 3.12 and 3.15 directly, because
G violates the uniform Lipschitz continuity. However, if one can approximate G

by certain Gε and the PDE with generator Gε has classical solution, then following
the stability of viscosity solutions we may numerically approximate u, in the spirit
of Remark 3.9(iii).

5. Implementation of the scheme. In this section we discuss how to imple-
ment the scheme. Fix x0 ∈ R

d , 0 = t0 < · · · < tn = T , and some desirable σ0 and p,
our goal is to numerically compute uh(t0, x0). Define (Xn

ti
,Fn

ti
) as in the proof of

Lemma 3.11. That is, denote Xn
t0

:= x0, Fn
t0

:= {∅,	}, and define recursively: for
i = 0, . . . , n − 1,

Xn
ti+1

:= Xn
ti

+ √
hσ0

(
ti ,X

n
ti

)
ξ i+1, Fn

ti+1
:= Fn

ti
∨ σ

(
ξ i+1),(5.1)

where ξ i+1 := ξ
ti ,X

n
ti is determined by (3.3) [corresponding to p(ti,X

n
ti
)] and is

independent of Fn
ti

. We next define Yn
tn

:= g(Xn
tn
), and for i = n − 1, . . . ,0,

Yn
ti

:= Eti

[
Yn

ti+1

]
(5.2)

+ hF
(
ti ,X

n
ti
,Eti

[
Yn

ti+1

]
,Eti

[
Yn

ti+1
K1
(
ξ i+1)],Eti

[
Yn

ti+1
K2
(
ξ i+1)]),

where the kernels K1 and K2 are defined in (3.6). Then one can easily check

Yn
ti

= uh

(
ti ,X

n
ti

)
.(5.3)

In particular, uh(t0, x0) = Yn
t0

, and thus it suffices to compute Yn
t0

. Clearly, the main
issue is to compute efficiently the conditional expectations in (5.2).

5.1. Low-dimensional case. If p and σ0 are constants, then the forward pro-
cess (Xn

ti
)0≤i≤n form a trinomial tree with

∑n
i=0(2i + 1)d nodes. When the di-

mension is low, say d ≤ 3, we may generate the whole trinomial tree and compute
the exact value of Yn (and hence uh) at each node, where the conditional expecta-
tions in (5.2) are computed by the weighted average. This method is very efficient
and the result is deterministic. It is in fact comparable to the standard finite dif-
ference method. We remark that Bonnans and Zidani [7] proposed an improved
finite difference scheme for HJB equations. We will implement our algorithm on
Example 6.1 below with dimension 3.
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When p and σ0 vary for different (t, x), the number of nodes in the trinomial
tree (Xn

ti
)0≤i≤n grows exponentially in n, and the above exact method is not feasi-

ble anymore. Similarly, the number of nodes will grow exponentially in d and thus
this method also becomes infeasible when d is high, even if p and σ0 are constants.
In these cases we will use least square regression combined with Monte Carlo sim-
ulation to approximate the conditional expectations in (5.2). This method has been
widely used in the literature; see, for example, Longstaff and Schwartz [23] and
Gobet, Lemor and Warin [20], and will be the subject of the next subsections.

5.2. Least square regression. For each i = 0, . . . , n − 1, fix an appropriate set
of basis functions ei

j :Rd → R, j = 1, . . . , Ji . Typically we set Ji and ei
j inde-

pendent of i, but in general they may vary for different i. For k = 0,1,2 and any
function ϕ :Rd → R, let P i

k(ϕ) denote the least regression function of ϕ on the
linear span of {ei

j ,1 ≤ j ≤ Ji} as follows:

P i
k(ϕ) :=

Ji∑
j=1

α
i,k
j ei

j where

(5.4) {
α

i,k
j

}
1≤j≤Ji

:= arg min{αj }1≤j≤Ji

E

[∣∣∣∣∣
Ji∑

j=1

αje
i
j

(
Xn

ti

)− ϕ
(
Xn

ti+1

)
Kk

(
ξ i+1)∣∣∣∣∣

2]
.

We then define uJ
h(tn, ·) := g, and for i = n − 1, . . . ,0,

uJ
h(ti, x) := P i

0
(
uJ

h(ti+1, ·))
+ hF

(
ti , x,P i

0
(
uJ

h(ti+1, ·)),P i
1
(
uJ

h(ti+1, ·)),P i
2
(
uJ

h(ti+1, ·))).(5.5)

Assume we have actually chosen a countable set of basis functions (ei
j )j≥0

satisfying

lim
J→∞ inf{αj }1≤j≤J

E

[∣∣∣∣∣
J∑

j=1

αje
i
j

(
Xn

ti

)−Eti

[
uh

(
ti+1,X

n
ti+1

)
Kk

(
ξ i+1)]∣∣∣∣∣

2]
(5.6)

= 0 ∀(i, k).

Then, following the arguments in [11] or [20], one can easily show that

lim
J→∞uJ

h(t0, x0) = uh(t0, x0).(5.7)

The rate of convergence in (5.7) depends on that in (5.6). Since the focus of this
paper is the monotone scheme (in terms of the time discretization), we omit the
detailed analysis of the convergence (5.7).

Clearly, it is crucial to find good basis functions. Notice that the conditional ex-
pectations in (5.6) are approximations of u(ti, ·), Du(ti, ·), and D2u(ti, ·), respec-
tively. Ideally, in the case that the true solution u is smooth, we want to choose
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(ei
j )1≤j≤Ji

whose linear span include u(ti, ·), Du(ti, ·) and D2u(ti, ·). This is of
course not feasible in practice since u is unknown. Another naive choice is to use
the indicator functions of the hypercubes from uniform space discretization. The-
oretically this will ensure the convergence very well. However, in this case the
number of hypercubes will grow exponentially in dimension d , and thus the curse
of dimensionality remains exactly as in standard finite difference method.

In the literature, people typically use orthogonal basis functions such as Hermite
polynomials, which is convenient for solving the optimal arguments in (5.4). There
are some efforts to improve the basis functions; see, for example, the martingale
basis functions in Bender and Steiner [5], and the local basis functions in Bouchard
and Warin [9]. However, overall speaking to find good basis functions is still an
open problem and is certainly our interest in future research.

5.3. Monte Carlo simulation. As standard in the literature of BSDE numer-
ics, in high-dimensional cases we use Monte Carlo approach to approximate the
minimum arguments (α

i,k
j )1≤j≤Ji

in (5.5). To be precise, we simulate L-paths for

the forward diffusion Xn and the corresponding trinomial random variables ξ i ,
denoted as (Xn,l)1≤l≤L and (ξ i,l)1≤l≤L, i = 1, . . . , n. Then, in the backward in-
duction the expectation in (5.4) is replaced by the sample average

1

L

L∑
l=1

[∣∣∣∣∣
Ji∑

j=1

αje
i
j

(
X

n,l
ti

)− ϕ
(
X

n,l
ti+1

)
Kk

(
ξ i+1,l)∣∣∣∣∣

2]
.(5.8)

This can be easily solved by linear algebra. Let u
J,L
h be defined by (5.5), but replac-

ing α
i,k
j with ᾱ

i,k
j , the optimal arguments of (5.8). We remark that u

J,L
h is random,

and by the law of large numbers,

lim
L→∞u

J,L
h (t0, x0) = uJ

h(t0, x0), a.s.(5.9)

Moreover, one may obtain the rate of convergence in the spirit of the central limit
theorem. We refer to [20] for more details.

To understand convergence (5.9), it is important to understand the variance of
u

J,L
h for given L. One can easily see that the variance in each step of our scheme

is O(d/L), which leads to an O(nd/L) variance in total. As the theoretical rate of
convergence for PDE with smooth solution is 1/n (see Theorem 3.13), the standard
deviation of the numerical result vanishes in the same rate only when L = O(n3).
On the other hand, Glasserman and Yu [19] illustrated that the number of paths
should be of O(exp(J )), J being the number of basis functions. Hence around
O(n3 exp(J )) paths are supposed to be sampled in theory. This is prohibitive, if
not impossible in practice, especially when J is large. However, various exam-
ples in next section show that it’s generally feasible to obtain a desirable rate of
convergence with much fewer paths in practice.
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Finally we remark that the Monte Carlo method is much less sensitive to dimen-
sions. For example, it can be seen in next section that we can use the Monte Carlo
method to approximate a 12-dimensional PDE with 160 time steps and 13,333,333
paths, while for finite difference method with d = 12, even for 2 time steps the
number of grid points already exceeds 13,333,333.

5.4. Some further comments. We note that there are three types of errors in-
volved in this algorithm:

Total Err = Discretization Err + Regression Err + Simulation Err.

The main contribution of this paper is the introduction of the new monotone
scheme, and thus we have focused our discussion on the discretization error in
Sections 3 and 4. We remark that the analysis of the Regression Error and the Sim-
ulation Error is independent of the Discretization Error. Since this is not the main
focus of the present paper, we shall apply standard procedure for the regression
and the simulation steps. In particular, since we know the true solution for many
examples below, we will include the true solution (and its derivatives) in the basis
functions, thus the numerical results in these examples will reflect the discretiza-
tion error and the simulation error only.

We have also tested examples where the basis functions do not include the true
solution (Example 6.2) or the true solution is unknown (Example 6.4 and the last
part of Example 6.3). We shall emphasize though, when the true solution is un-
known, the numerical result is an approximation of uJ

h , which roughly speaking is
the least square regression of the true solution u in the span of the basis functions.
For fixed basis functions, the increase of n and L cannot eliminate the Regression
Error and thus the convergence we observe in numerical results does not necessar-
ily reflect a small total error. Again, a thorough analysis of the Regression Error,
especially a good mechanism for choosing basis functions, is an important open
problem.

Moreover, although our theoretical results hold true only under the monotonicity
Assumption 3.4, we nevertheless implement our scheme to some examples which
violate Assumption 3.4, and thus our scheme may not be monotone. It is interesting
to observe the convergence in these examples as well. As far as we know, a rigorous
analysis of nonmonotone schemes is completely open.

6. Numerical examples. In this section we apply our scheme to various ex-
amples.4 For simplicity, except in Example 6.2, we shall choose constant σ0 and p,
and assume the ¯α and ᾱ in (3.10) are also constants [or more precisely, use

4All numerical examples below are computed using a personal Laptop, which is a core i5 2.50 GHz
processor with 8 GB memory.
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inf(t,x) ¯α(t, x) and sup(t,x) ᾱ(t, x) instead]. Quite often, we will use the following
functions:

SIN(t, x) := sin

(
t +

n∑
i=1

xi

)
, COS(t, x) := cos

(
t +

n∑
i=1

xi

)
.(6.1)

6.1. Examples under monotonicity condition. In this subsection we consider
examples with diagonal Gγ , and we shall always choose σ0 diagonal, again except
Example 6.2, so θ = 0 and thus there is no constraint on �; see Remark 3.8(i).

We start with a 3-dimensional example for which we can compute its values
over the trinomial tree by using the weighted averages. We remark that in this
example only the discretization error is involved.

EXAMPLE 6.1 (A 3-dimensional fully nonlinear PDE).

−∂tu − 1

2
sup

¯σ≤σ≤σ̄

[(
σ 2Id

)
:D2u

]+ f (t, x, u,Du) = 0 in [0, T ) ×R
d,

(6.2)
u(T , x) = SIN(T , x) on R

d,

where 0 < ¯σ < σ̄ are both in R, and

f (t, x, y, z) = 1

d

d∑
i=1

zi − d

2
inf

¯σ≤σ≤σ̄

(
σ 2y

)
.(6.3)

We remark that we set f in this way so that (6.2) has the classical solution: u =
SIN, with which we can verify the convergence of our numerical approximation.

To test its convergence under different nonlinearities, we assume that d = 3,

¯σ = 1, σ̄ = √
2,

√
4, or

√
6. Supposing that T = 0.5 and x0 = (5,6,7), we know

the true solution is u(0, x0) = sin(5 + 6 + 7) ≈ −0.750987.
According to our scheme, when G̃γ is diagonal, θ = 0, which implies αp = 2

and, recalling Remark 3.8(iv), we can choose the following parameters:

� = σ̄ 2

¯σ
2 , p = min

(
1

2(� − 1)
,

1

3

)
,

¯α = 1

2p� + αp − 2p
, σ0 = ¯σ√

2¯α
Id.

We remark that � = 2,4,6, respectively, which violates the constraint (2.8) and
thus the algorithm in [17] may not be monotone. Denote the number of time parti-
tions by n. By applying the weighted average method we can obtain the results in
Figure 1, where the cost in time increases from 0.1 second to 800 seconds expo-
nentially as n increases from 20 to 160 linearly. The table in Figure 1 contains the
numerical solutions when σ̄ 2 = 2 exclusively, while the graph depicts the errors
under three different choices of σ̄ 2.
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Approx.
n σ̄ 2 = 2

20 −0.72984
40 −0.74028
60 −0.74382
80 −0.74667

100 −0.74560
120 −0.74738
140 −0.74790
160 −0.74829
Ans. −0.750987

FIG. 1. A 3-dimensional example with various degrees of nonlinearity in Example 6.2.

As we can see from Figure 1, the rate of convergence is approximately C · h,
whereas the C depends on the structure of G. Therefore, our scheme works gener-
ally for large � when G̃ is diagonal or diagonally dominant with a small θ .

In Figure 2 we compare the convergence of our scheme with that of finite dif-
ference method by fixing ¯σ = 1, σ̄ = √

2. It can be seen that our result converges
slightly slower than, but is comparable to, the finite difference method in solving
low-dimensional problems.

To see more of our scheme in extreme condition, we assume ¯σ = 0. Then we
truncate Gγ from below with a positive definite matrix εId > 0. That is, we ap-

n Ours F.D.

20 −0.72984 −0.76420
40 −0.74028 −0.75785
60 −0.74382 −0.75562
80 −0.74667 −0.75447

100 −0.74560 −0.75379
120 −0.74738 −0.75332
140 −0.74790 −0.75300
160 −0.74829 −0.75274
Ans. −0.75099 −0.75099

FIG. 2. Comparison with finite difference method in Example 6.2.
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Approx.
n σ̄ 2 = 2

20 −0.76285
40 −0.75705
60 −0.75508
80 −0.75401

100 −0.75339
120 −0.75297
140 −0.75269
160 −0.75247
Ans. −0.750987

FIG. 3. Convergence of a degenerate PDE truncated in Example 6.2.

proximate (6.2) by the following nondegenerate PDE:

−∂tu − 1

2
sup

ε≤σ≤σ̄

[(
σ 2Id

)
:D2u

]+ f (t, x, u,Du) = 0, ε = 0.01,

where f is given by (6.3) (with ¯σ = 0).
Figure 3 shows the feasibility of truncation in dealing with ¯σ = 0.

EXAMPLE 6.2 [A 4-dimensional PDE with (σ0,p) depending on (t, x)].{
−∂tu − G

(
D2u

)+ f (t, x) = 0, in [0, T ) ×R
4,

u(T , x) = SIN(T , x), on R
4,

(6.4)

where SIN2 := 2 SIN×COS, and

¯σ =

⎛⎜⎜⎝
1 0 0 0

SIN 1 0 0
COS SIN 1 0
SIN COS SIN 1

⎞⎟⎟⎠ , A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 SIN

27

SIN2

54

SIN2

54
2 SIN

27
1

2 SIN

27

SIN2

54
SIN2

54

2 SIN

27
1

2 SIN

27
SIN2

54

SIN2

54

2 SIN

27
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
;

� = 4

5
· (6 − |SIN |)(3 − 2|SIN |)

(3 − |SIN |)2 = 4

5

(
2 − 2|SIN |

(3 − |SIN |)2

)
∈
[
1,

8

5

]
;

¯a := ¯σ ¯σ
T , ā = �

[
¯σA¯σ

T ], G(M) := max{¯a :M, ā :M};
and f is chosen so that u := SIN is a classical solution of the PDE.
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We first specify the parameters so that monotonicity Assumption 3.4 holds. Set
σ0 := β ¯σ for some scalar function β > 0. Then, roughly speaking, G̃γ is either
1
β2 Id or �

β2 A. This implies D[G̃γ ] ≤ (1 + θ)G̃γ for

θ := 2|SIN |
9 − 2|SIN | ≤ 2

7
= 2

d + 3
.

Next, notice that � := ᾱ/¯α = � = 4
5 · (6−|SIN |)(3−2|SIN |)

(3−|SIN |)2 and recall 3.8(ii). Set

p := 2−θ
6(1+θ)

∈ [ θ
2(1+θ)

, 1
3 ] ∩ (0, 1

3 ]. One can check that[
1 + 1

(d − 1)p

][
1 − θ

2(1 + θ)p

]
> �.

We remark that here we do not use p := 2θ
2−(d−3)θ

as specified in Remark 3.8(ii)
because it becomes zero when θ = 0. Finally, β is determined by

β2 = 1

¯α
= c2

p = 2p� + αp − 2p

= 1944 − 24|SIN |2 − 1260|SIN |
270(3 − |SIN |) ∈

[
11

9
,

12

5

]
.

In particular, we emphasize that here σ0 and p depend on (t, x).
As explained in Section 5.1, in this case we cannot use the weighted averages as

in previous example. We thus use the combination of least square regression and
Monte Carlo simulation. To illustrate the important role of the basis functions, we
implement our scheme using three different set of basis functions:

• the true solution and its derivatives;
• second order polynomials consisting of {1, {xi}di=1, {xixj }1≤i≤j≤d};
• the local basis functions proposed by Bouchard and Warin [9].

The idea of local basis functions is as follows. Divide the samples at each time
step into 3d local hypercubes, such that there are 3 partitions in each dimension,
and there are approximately the same amount of particles in each hypercubes.
Then we project samples in each hypercubes into a linear polynomial of d + 1
degrees of freedom, so there are 3d · (1 + d) local basis functions in total. Since
each linear polynomial has local hypercube support, the corresponding matrix in
the regression is sparse, making it easier to solve than a regression problem of
dense matrix.

Set T = 0.1, x0 = (2,3,4,5), and thus the true solution is sin(2 + 3 + 4 +
5) ≈ 0.9906. As our first example using Monte Carlo regression, we will sample
L = 3125n2 to see how the convergence works. Moreover, we shall repeat the tests
identically and independently for K times. The numerical results are reported in
Figure 4, where the average of the results is denoted as Ans. and the average time
(in seconds) is denoted as Cost.
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Basis functions Polynomials Local basis True solution basis

n L K Ans. Cost Ans. Cost Ans. Cost

3 28,125 27 1.094 0.27 1.1057 0.47 1.0959 0.17
5 78,125 16 1.0488 1.6 1.0679 2.8 1.0421 0.89

10 312,500 8 1.0271 16 1.0390 34 1.0123 8.6
15 703,125 6 1.0261 58 1.0311 142 1.0008 30
20 1,250,000 4 1.0221 137 1.0258 355 1.001 71
25 1,953,125 4 1.0240 276 1.0247 710 0.9986 142
30 2,812,500 3 1.0228 444 1.0209 1250 0.9966 243
40 5,000,000 2 1.0218 897 1.0156 2725 0.9952 567

True solution 0.9906 0.9906 0.9906

FIG. 4. Numerical results using different basis functions in Example 6.2.

Without surprise, the true solution basis functions perform the best. We remark
that the results for the other two sets of basis functions include the regression
error as well. From the numerical results, the local basis functions seem to have
smaller regression error than the polynomials, when n is large. However, when
applying the local basis functions it is time consuming to sort the L sample paths
and localize them into different hypercubes. When the same number of paths are
sampled, the more basis functions we used, the slower simulation will be. More
seriously, when the dimension d increases, the number of basis functions increases
dramatically, which requires an exponential increase in the number of paths in
return; see [19] for a detailed investigation of the relation between basis functions
and paths. So further efforts are needed for higher-dimensional problems.

Our main motivation is to provide an efficient algorithm for high-dimensional
PDEs. At below we test our scheme on a 12-dimensional example, for which we
shall again use the regression-based Monte Carlo method.



MONOTONE SCHEME FOR HIGH-DIMENSIONAL PDE 1569

EXAMPLE 6.3 (A 12-dimensional example). Consider the PDE (6.2) with
d = 12, ¯σ = 1, σ̄ = √

2,

f (t, x, y, z) = COS−d

2
inf

¯σ≤σ≤σ̄

(
σ 2 SIN

)
.(6.5)

The true solution is again u = SIN. As explained in Section 5.4, in this paper
we want to focus on the discretization error and simulation error, so we rule out the
regression error and test our algorithm by using the following perfect set of basis
functions:

1, x, SIN(T , x), COS(T , x).

To test the result, we fix T = 0.2 and x0 = {1,2, . . . ,12}, which implies that the
true solution is sin(78) = 0.513978. As the nonlinear term is diagonal, under the
same framework as in Example 6.1, we take p := min{1/3,1/(1 + d(� − 1))} =
1/13, σ0 := Id , which also satisfy the monotonicity condition Assumption 3.4.
Assuming that we repeat K identical and independent tests, and we sample L paths
in each test. We do not use L = O(N3) in this example and the ones following,
since it’s usually not necessary in practice. The results are reported in Figure 5,
where we conduct fewer tests for larger L, because the results are stable enough to
draw our conclusion.

It can be seen from Figure 5 that the error shrinks slightly slower than O(h),
which is due to the simulation error. Hence we want to explore the influence of
simulation error by using all the parameters as above but fixing n = 40, K = 2,
d = 12, T = 0.2, n = 40, ¯σ = 1, σ̄ = √

2. We increase the sample size L to see
how the error reduces in Figure 6. While the variance and error decrease with more
paths sampled, the cost in time increases linearly with respect to L from 8 seconds
to 1400 seconds in Figure 6.

We have seen that our scheme converges to the true classical solution if it exists.
Meanwhile, if the PDE only has a unique viscosity solution, our scheme can render
a converging result as well.

Let f be zero in (6.2). Then this equation has some unknown viscosity solu-
tion. However, our numerical results in Figure 7 still demonstrate a converging
sequence. The number of paths we sampled in 7 is the same as that in Figure 5.
This can be also be observed from the decreasing differences between the numer-
ical results. The �i−j in Figure 7 denotes a numerical result with i partitions in
time minus another numerical result with j time steps. We shall remark though in
this case our choice of basis functions may not be the best, and roughly speaking
the numerical result we obtain is an approximation of the regression of the true
solution in the linear span of the basis functions. Again, we leave the analysis of
the basis functions to future study.

It is well known that Isaacs equations have a unique viscosity solution under
mild technical conditions. We next test our scheme on the following Isaacs equa-
tion to see its performance.
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n L K Avg(Ans.) Var(Avg.) Cost (in seconds)

2 2083 160 0.659639 3.53 × 10−6 4.48 × 10−2

5 13,021 64 0.562635 1.99 × 10−6 1.46 × 10−1

10 52,083 32 0.546598 8.41 × 10−7 1.17 × 100

20 208,333 16 0.530432 8.04 × 10−7 1.08 × 101

40 833,333 8 0.521343 2.25 × 10−7 9.11 × 101

80 3,333,333 4 0.519701 1.21 × 10−7 7.28 × 102

160 13,333,333 2 0.517363 6.17 × 10−8 5.86 × 103

True solution 0.513978

FIG. 5. Numerical results of a 12-dimensional example in Example 6.3.

L Approx.

83,333 0.543643
166,667 0.526979
416,667 0.523897
833,333 0.524683

1,666,667 0.521531
333,333 0.521017

6,666,667 0.520083
13,333,333 0.518607

Ans.: 0.513978

FIG. 6. Relation between size of sample and errors in Example 6.3.
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�5−2 0.0334337
�10−5 0.0077685
�20−10 0.0076637
�40−20 0.0034146
�80−40 0.0012785
�160−80 0.0002586

FIG. 7. Numerical results for a PDE with unknown viscosity solution in Example 6.3.

EXAMPLE 6.4 (A 12-dimensional Isaacs equation with unknown viscosity so-
lution).

−ut − G
(
D2u

)= 0 on [0, T ) ×R
d,

u(T , x) = SIN(T , x) on R
d,

where

G(γ ) :=
d∑

i=1

sup
0≤u≤1

inf
0≤v≤1

[
1

2
σ 2(u, v)γii + f (u, v)

]

=
d∑

i=1

inf
0≤v≤1

sup
0≤u≤1

[
1

2
σ 2(u, v)γii + f (u, v)

]
,

σ 2(u, v) := (1 + u + v), f (u, v) := −u2

4
+ v2

4
.

One can easily simplify G(γ ) as: G(γ ) =∑d
i=1 g(γii) where

g(γii) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

γii − 1

4
, γii ∈ (1,+∞),

γii

2
+ (γ +

ii )2

4
− (γ −

ii )2

4
, γii ∈ [−1,1],

γii + 1

4
, γii ∈ (−∞,−1).

Therefore G(γ ) is neither concave nor convex when γ = 0. Setting T = 0.2,
d = 12, we assign arbitrary initial value x0 = {x(i)

0 }di=1 to inspect the outcome. Ob-
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�5−2 −0.019953
�10−5 −0.005390
�20−10 −0.003752
�40−20 −0.002893
�80−40 −0.001213
�160−80 −0.000426

FIG. 8. A 12-dimensional Isaacs equation with unknown viscosity solution in Example 6.4.

viously here ā = 2Id and ¯a = Id . We then take p = min{1/3,1/(1 +d(�− 1))} =
1/13, σ0 = Id . One example tested here is x

(i)
0 = 2iπ − T −0.5π

d
. The number of

paths we sampled is 625 · n2.
Though the viscosity solution is unknown, our scheme still renders a converging

numerical result in Figure 8.
We next test our scheme for a 12-dimensional coupled FBSDE.

EXAMPLE 6.5 (A 12-dimensional coupled FBSDE). Consider FBSDE (4.2)
with m = d = 12, σ is diagonal, and

bi(t, x, y, z) := cos(y + zi), σii(t, x, y) := 1 + 1

3
sin

(
1

d

d∑
j=1

xj + y

)
,

f (t, x, y, z) := d

2
SIN(t, x)

[
1 + 1

3
sin

(
1

d

d∑
i=1

xi + y

)]2

− (1/d)
∑d

i=1 zi

1 + (1/3) sin((1/d)
∑d

j=1 xj + y)

− d COS(t, x) cos
(
y + COS(t, x)

);
g(x) := SIN(T , x).

The associated PDE (4.1) looks quite complicated; however, the coefficients are
constructed in a way so that u := SIN is the classical solution. Consequently, the
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n L K Avg(Ans.) Var(Avg.) Cost (in seconds)

2 2083 160 1.462543 3.35 × 10−5 1.56 × 10−2

5 13,021 64 1.111675 2.30 × 10−5 2.36 × 10−1

10 52,083 32 1.014295 2.48 × 10−5 2.43 × 100

20 20,8333 16 0.925712 8.10 × 10−6 2.29 × 101

40 83,3333 8 0.912373 2.46 × 10−6 1.94 × 102

80 3,333,333 4 0.908013 2.89 × 10−7 1.56 × 103

160 13,333,333 2 0.888747 1.62 × 10−8 3.42 × 104

FIG. 9. A 12-dimensional coupled FBSDE in Example 6.5.

FBSDE has the following solution: denoting �Xt := 1
d

∑d
j=1 X

j
t ,

Yt = sin(t + d�Xt), Zi
t = cos(t + d�Xt)

[
1 + 1

3 sin
(�Xt + sin(t + d�Xt)

)]
.

For PDE (4.1), we see that Gγ = 1
2σ 2 is diagonal and 2

3 ≤ σii ≤ 4
3 for each i.

Hence a reasonable choice of parameters that maintains the monotonicity would
be σ0 := 4

9Id , p := min{ 1
1+d(�−1)

, 1
3} = 1/37. We note that f is not bounded and

not Lipschitz continuous in y; however, since Z is bounded, then f (t, x, y,Zt) is
bounded and Lipschitz continuous in y, and thus actually we may still apply The-
orem 4.1. Set d = 12, T = 0.2, X0 = (2,3,4, . . . ,13), and apply the parameters
specified before for our scheme. An approximation of Y0 is shown in Figure 9,
where the true solution Yt = sin(t +∑d

i=1 Xi
t ) has value 0.893997 at t = 0.

6.2. Examples violating the monotonicity condition. In this subsection we ap-
ply our scheme to some examples which do not satisfy our monotonicity Assump-
tion 3.4. So theoretically we do not know if our scheme converges or not. However,
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our numerical results show that the approximation still converges to the true so-
lution. It will be very interesting to understand the scheme under these situations,
and we shall leave it for future research.

EXAMPLE 6.6 (A 12-dimensional PDE with ¯σ = 0). Consider the same set-
ting as Example 6.3 except that ¯σ = 0.

Instead of truncating Gγ as we did at the end of Example 6.2, we will pick
parameters p and σ0 as if ¯σ were some small positive number: p := 1/d , σ0 :=√

2/(2 − p)σ̄ Id . Then Assumption 3.4 is violated, and our scheme is in fact not
monotone. Nevertheless, our numerical results show that our approximations still
converge to the true solution if L := 625n2 paths are used; see Figure 10.

We next apply our scheme to the following HJB equation which is associated
with a Markovian second order BSDEs, introduced by [10, 30]:⎧⎪⎨⎪⎩

−∂u

∂t
− 1

2
sup

¯σ≤σ≤σ̄

[
σ 2 :D2u

]− f (t, x) = 0, on [0, T ) ×R
d ,

u(T , x) = g(x), on R
d .

(6.6)

When f = 0, this PDE induces exactly the G-expectation introduced by Peng [29].
We emphasize that, unlike in previous examples, here ¯σ, σ̄, σ ∈ S

d are matrices and
0 < ¯σ ≤ σ ≤ σ̄ . In particular, Gγ is not diagonal anymore. We remark that one has
a representation for the solution of this PDE in terms of stochastic control,

u(0, x) = sup
σ

E

[
g
(
Xσ

T

)+ ∫ T

0
f
(
t,Xσ

t

)
dt

]
, Xσ

t := x +
∫ t

0
σs dWs,

n Approx.

2 0.22363
5 0.28971

10 0.38098
20 0.44215
40 0.47712
80 0.49699

160 0.50097
Ans. 0.51398

FIG. 10. A 12-dimensional example without monotonicity in Example 6.6.
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where W is a d-dimensional Brownian motion, and the control σ is an F
W -prog-

ressively measurable S
d -valued process such that ¯σ ≤ σ ≤ σ̄ . Due to this connec-

tion, these kind of PDEs and the related G-expectation and second order BSDEs
are important in applications with diffusion control and/or volatility uncertainty.

EXAMPLE 6.7 (A 10-dimensional HJB equation). Consider the PDE (6.6)
with g(x) = sin(T + x1 + x2

2 + · · · + xd

d
) and appropriate f (t, x) so that

u(t, x) = sin
(
t + x1 + x2

2
+ · · · + xd

d

)
is the true solution to the PDE. We set d = 10.

To begin our test, we select randomly an initial point X0 and two 10-dimen-
sional positive definite matrices σ̄ 2 and ¯σ

2. The parameters used in this PDE are
chosen randomly as:

X0 = (0.8870626082,1.8313582937,2.1710945122,2.3703744353,

1.2018847713,2.6518851292,2.2648022663,1.9037585152,

2.336892572579084,1.1590768112),

which gives a true solution −0.99966,

σ̄ 2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2.29 0.07 −0.48 0.15 0.89 −0.06 0.14 0.31 0.59 −0.36

0.07 1.82 0.55 0.32 0.28 0.08 −0.30 −0.07 −0.46 0.66

−0.48 0.55 2.54 −0.35 0.14 −0.25 −0.31 0.16 −0.71 −0.10

0.15 0.32 −0.35 1.71 −0.16 0.67 0.20 1.11 −0.03 −0.64

0.89 0.28 0.14 −0.16 1.36 −0.47 −0.46 0.07 −0.07 −0.03

−0.06 0.08 −0.25 0.67 −0.47 2.60 0.26 0.34 −0.02 −0.67

0.14 −0.30 −0.31 0.20 −0.46 0.26 2.61 −0.26 0.32 0.29

0.31 −0.07 0.16 1.11 0.07 0.34 −0.26 2.66 −0.19 −1.78

0.59 −0.46 −0.71 −0.03 −0.07 −0.02 0.32 −0.19 1.80 −0.43

−0.36 0.66 −0.10 −0.64 −0.03 −0.67 0.29 −1.78 −0.43 2.16

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

¯σ
2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.53 −0.40 −0.30 −0.20 0.66 −0.43 0.38 0.10 0.84 −0.31

−0.40 0.72 0.58 −0.06 −0.15 −0.28 −0.07 −0.14 −0.32 0.42

−0.30 0.58 1.55 −0.05 −0.07 −0.54 −0.03 −0.20 −0.51 0.38

−0.20 −0.06 −0.05 0.55 −0.14 0.22 −0.09 0.60 −0.13 −0.37

0.66 −0.15 −0.07 −0.14 0.61 −0.50 −0.09 −0.10 0.25 −0.12

−0.43 −0.28 −0.54 0.22 −0.50 1.27 0.15 0.34 −0.06 −0.21

0.38 −0.07 −0.03 −0.09 −0.09 0.15 1.78 0.13 −0.24 0.17

0.10 −0.14 −0.20 0.60 −0.10 0.34 0.13 1.04 0.16 −0.94

0.84 −0.32 −0.51 −0.13 0.25 −0.06 −0.24 0.16 1.22 −0.56

−0.31 0.42 0.38 −0.37 −0.12 −0.21 0.17 −0.94 −0.56 1.36

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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n L K Avg(Ans.) Var(Avg.) Cost (in seconds)

2 283 40 −1.1703 9.62 × 10−7 0.057
5 1118 16 −1.12773 3.80 × 10−6 1.9

10 3162 8 −1.0802 5.98 × 10−6 23.6
15 5809 5 −1.0557 2.32 × 10−6 103
20 8944 4 −1.0405 1.57 × 10−6 291
30 16,432 3 −1.0253 9.05 × 10−6 1135
40 25,298 2 −1.0124 2.16 × 10−5 3074

True solution −0.99966

FIG. 11. A 10-dimensional HJB equation in Example 6.7.

One can check that σ̄ 2 > ¯σ
2 because the smallest eigenvalue of σ̄ 2 − ¯σ

2 is
0.001634, which is positive. This PDE is not diagonally dominant, and typically
we cannot find σ0 and p to make our scheme monotone. However, it is very in-
teresting to observe that our scheme converges to the true solution if we choose

p := 1/3 and σ0 := d
√

d

2
√

d+1

√
σ̄ 2; see Figure 11. We emphasize again that these

parameters still do not satisfy Assumption 3.4. It will be very interesting to under-
stand further these numerical results, and we will leave them for future research.

Note that PDE (6.6) involves the computation of sup
¯σ≤σ≤σ̄ [σ 2 :γ ]. We provide

some discussion below.

REMARK 6.8. Let σ̄ 2 − ¯σ
2 = LLT be the Cholesky Decomposition, namely

L is a d × d lower triangular matrix. Then for any γ ∈ S
d , we have

sup

¯σ
2≤σ 2≤σ̄ 2

[
σ 2 :γ

]= ¯σ
2 :γ +

n∑
i=1

γ̂ +
i ,
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where γ̂i , i = 1, . . . , d , are the eigenvalues of LT γL.

PROOF. Obviously, any σ 2 ∈ S
d between ¯σ

2 and σ̄ 2 can be expressed as σ 2 =
¯σ

2 + A, where 0 ≤ A ≤ LLT . Then 0 ≤ L−1AL−T ≤ Id . We make the following
eigenvalue decompositions:

L−1AL−T = UÂUT , LT γL = P γ̂P T ,

where UUT = PP T = Id , and Â and ĝ diagonal matrices. It is clear that the
diagonal terms of Â are âi ∈ [0,1], and the diagonal terms of γ̂ are γ̂i . Denote
Q := UT P . Then

σ 2 :γ − ¯σ
2 :γ = A :γ = [

L−1AL−T ] :
[
LT γL

]= [
UÂUT ] :

[
LT γL

]
= Â :

[
UT LT γLU

]= Â :
[
Qγ̂QT ]

=
d∑

i=1

âi

d∑
j=1

q2
ij γ̂j ≤

d∑
i=1

(
d∑

j=1

q2
ij γ̂j

)+
.

Note that
∑d

j=1 q2
ij = 1. Then by Jensen’s inequality,

σ 2 :γ − ¯σ
2 :γ ≤

d∑
i=1

(
d∑

j=1

q2
ij γ̂j

)+
≤

d∑
i=1

d∑
j=1

q2
ij γ̂

+
j =

d∑
j=1

γ̂ +
j

d∑
i=1

q2
ij =

d∑
j=1

γ̂ +
j .

This proves the remark.
Moreover, from the proof we see that the equality holds when

âi = 1{∑d
j=1 q2

ij γ̂j>0} and Q = Id .

That is, U = P and thus σ 2 = ¯σ
2 + LPÂP T LT , where Â is the diagonal matrix

whose diagonal terms are âi = 1{γ̂i>0}. �

We remark that the above computation is in fact quite time consuming. Below
we provide another example where Gγ is tridiagonal, and the scheme becomes
much more efficient.

EXAMPLE 6.9 (A 10-dimensional example with tridiagonal structure). Con-
sider the PDE (1.1) with

G(t, x, y, z, γ ) :=
(

3
d∑

i=1

γii + ∑
|i−j |=1

1√
1 + (γij )2

)
+ f (t, x),

(6.7)
g(x) := SIN(T , x),

and f is chosen so that u := SIN is the true solution of the PDE.
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n L K Avg(Ans.) Var(Avg.) Cost (in seconds)

2 2500 160 −1.47362 1.0 × 10−5 1.2 × 10−2

5 15,625 64 −1.15004 1.7 × 10−6 1.4 × 10−1

10 62,500 32 −1.06194 9.1 × 10−6 1.0 × 100

20 250,000 16 −1.04519 2.1 × 10−6 8.9 × 100

40 1,000,000 8 −1.03326 6.2 × 10−7 7.1 × 101

80 4,000,000 4 −1.03092 5.8 × 10−8 5.9 × 102

160 16,000,000 2 −1.01910 3.0 × 10−9 1.4 × 104

FIG. 12. A 10-dimensional example with tridiagonal generator in Example 6.9.

In this case one may check straightforwardly that

[Gγ ]ii = 3 and
[
Gγ (t, x, y, z, γ )

]
ij = − γij

(1 + γ 2
ij )

3/2
, |i − j | = 1.

When d = 10, this example is out of the scope of our monotonicity Assump-
tion 3.4, even with our choice of p and σ0: p := min(1

3 , 1
(1+d∗(5−1))

) = 1/41,

σ0 = Id . However, if we test it using T = 0.2, x0 = (1,2, . . . ,10), the numeri-
cal results show that our scheme still converges to the true solution, sin(55) =
−0.999755, as presented in Figure 12.

We shall remark though that this example is computationally more expensive
than Example 6.3 because here we need to approximate 3d − 2 second derivatives.

Acknowledgments. The authors would like to thank Arash Fahim, Xiaolu Tan
and two anonymous referees for very helpful comments.
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