
The Annals of Applied Probability
2015, Vol. 25, No. 2, 986–1029
DOI: 10.1214/14-AAP1016
© Institute of Mathematical Statistics, 2015

A DECREASING STEP METHOD FOR STRONGLY OSCILLATING
STOCHASTIC MODELS

BY CAMILO ANDRÉS GARCÍA TRILLOS

Université Nice Sophia Antipolis

We propose an algorithm for approximating the solution of a strongly os-
cillating SDE, that is, a system in which some ergodic state variables evolve
quickly with respect to the other variables. The algorithm profits from ho-
mogenization results and consists of an Euler scheme for the slow scale vari-
ables coupled with a decreasing step estimator for the ergodic averages of the
quick variables. We prove the strong convergence of the algorithm as well as
a C.L.T. like limit result for the normalized error distribution. In addition, we
propose an extrapolated version that has an asymptotically lower complexity
and satisfies the same properties as the original version.

1. Introduction. Consider a system of stochastic equations of the form⎧⎪⎪⎨
⎪⎪⎩

Xε
t = x0 +

∫ t

0
f
(
Xε

s , Y
ε
s

)
ds +

∫ t

0
g
(
Xε

s , Y
ε
s

)
dWs,

Y ε
t = y0 + ε−1

∫ t

0
b
(
Xε

s , Y
ε
s

)
ds + ε−1/2

∫ t

0
σ
(
Xε

s , Y
ε
s

)
dW̃s,

(1)

where Xε
t is a dx -dimensional process, Y ε

t a dy-dimensional process, W and W̃ are
two independent Brownian motions of dimensions dx and dy , and the functions
b,σ,f and g have the right dimensions.

This type of system models the dynamics of two sets of interacting variables
evolving in different time scales. The difference between time scales is controlled
by the parameter ε. In many domains the most interesting case of study is that of
the regime when ε � 1, that is, the situation in which Xε is evolving very slowly
compared to Y ε (for this reason we will frequently denominate them as slow scale
and fast scale variables, resp.). This regime may be studied by singular pertur-
bation techniques as the ones presented in Bensoussan, Lions and Papanicolaou
(1978) for deterministic models: instead of looking at the system with a small ε,
we study the limit of (1) as ε → 0 (when it exists) and estimate the error induced
by this approximation.

There exist several analytical works with applications in different domains on
the described type of approximation for stochastic models. For example in Majda,
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Timofeyev and Vanden-Eijnden (2001) a climate model is considered and studied
on the advection scale (i.e., in the time scale of the slow variable). In Fouque, Pa-
panicolaou and Sircar (2000) and Fouque et al. (2003) a system similar to (1) is
presented and studied for pricing derivatives in the context of stochastic volatility
models. A complete study with rather general hypothesis on the coefficients of the
system is found in Pardoux and Veretennikov (2001) and Pardoux and Vereten-
nikov (2003). In these papers a system with a fast scale ergodic diffusion is con-
sidered. More precisely, if

Yx
t = y0 +

∫ t

0
b
(
x,Y x

s

)
ds +

∫ t

0
σ
(
x,Y x

s

)
dW̃s,(2)

is ergodic with unique invariant measure μx , we might define the effective equation

Xt = x0 +
∫ t

0
F(Xs) ds +

∫ t

0
G(Xs) dWs,(3)

with coefficients given by

F(x) =
∫

f (x, y)μx(dy), G(x) = √
H(x),

(4)
H(x) =

∫
h(x, y)μx(dy),

where h(x, y) = gg∗(x, y), and G(x) could be in principle any matrix with square
given by H , but we choose it to represent the Cholesky decomposition of the
positive semi-definite matrix H . It follows that under appropriate assumptions

Xε L−→X as ε → 0; cf. Pardoux and Veretennikov (2003). The idea behind this
kind of singular perturbation method is that when the difference between scales
is large enough, the dynamics of the system behave as if the slow scale would be
frozen and the ergodic limit of the fast diffusion would be attained.

However, except for a few particular examples, it is not an easy task to find
explicit expressions for the averages (4). Naturally, this leads to the question of
designing numerical methods of approximation of the effective equation. Several
methods have been developed for a purely deterministic case; see, for example, the
review E et al. (2007). Most of them are based on choosing a macro-solver for the
slow scale in which some information from the fast scale is added via parameters’
introduction to guarantee the correct approximation.

The literature with respect to numerical approximation of the general stochastic
case is, to our knowledge, much more restricted. In E, Liu and Vanden-Eijnden
(2005) the authors present an algorithm based on the use of an approximation
scheme for the slow scale (e.g., the Euler scheme), and at each step of the slow
scale another scheme is used to solve for the fast scale contribution; the weak and
strong error induced by the scheme is analyzed when considering the particular
case of an ODE with random coefficients slow scale equation and a stochastic
ergodic fast scale variable [i.e., when g(x, y) = 0 in (1)].



988 C. A. GARCÍA TRILLOS

In our work we use a similar approach. We focus on approaching numeri-
cally equation (3). With this objective in mind, we propose a Multi-scale De-
creasing Step (MsDS) algorithm defined as a composition of an Euler scheme
for the slow scale, the decreasing Euler step algorithm and estimator proposed in
Lamberton and Pagès (2002) for the ergodic average approximation at each step,
and a Cholesky decomposition for finding the volatility coefficient.

In order to control the total error approximation of this proposed algorithm we
need to take into account four effects. First, we need an estimate on the ergodic
average approximation at each step. We show that this control is based on the
existence, regularity and control of the solution of the Poisson equation associated
to the fast scale diffusion

Lx
yφψ(x, y) = ψ(x, y),(5)

where

Lx
y := 1

2

dy∑
i,j=1

aij (x, y)
∂2

∂yi ∂yj

+
dy∑
i=1

bi(x, y)
∂

∂yi

(6)

with a := σσ ∗, when considering as sources (i.e., the right-hand side functions)
the coefficients F and H centered with respect to their respective invariant mea-
sures. Second, we need to control the error obtained after performing a Cholesky
decomposition. Then, we have to account for discretization errors. Finally, we need
to control the error propagation which will be possible under some growth control
on the coefficients of the effective equation.

The MsDS algorithm strongly converges to the exact solution and proves to be
more efficient than a simple Euler scheme for highly oscillating problems. More-
over, it features a nonstandard C.L.T. property in the sense that the normalized
error distribution converges toward the solution of an SDE. The coefficients ap-
pearing in this normalized error SDE depend on the solution of the previously
mentioned Poisson problem and are, in general, unknown. Nevertheless, the avail-
able explicit expression for them is valuable for the estimation of confidence in-
tervals and eases the task of parameter tuning for actual implementation of the
algorithm.

We study as well an extrapolated MsDS (EMsDS) version of the algorithm, dif-
fering from the original one in that it uses a Richardson–Romberg extrapolation
of the decreasing step estimator (i.e., a well-chosen linear combination of the de-
creasing step Euler estimator with appropriate parameters) to approach the ergodic
averages. As the MsDS, the EMsDS also features a nonstandard C.L.T. property
and shares the same rate of convergence. However, the extrapolated version has
lower asymptotic complexity and hence higher asymptotic efficiency than the orig-
inal one.
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1.1. Outline of the paper. The organization of the paper is as follows: in Sec-
tion 2, we describe the algorithm and state the standing hypothesis and our main
results (strong convergence, limit distribution). The proof of the main theorem is
presented in Section 4 after having reminded some regularity properties of the ef-
fective equation and available results on the decreasing Euler estimation algorithm
in Section 3. We extend the main results to an extrapolated version of the algorithm
that we introduce and study in Section 5. Finally, we perform some numerical stud-
ies in Section 6. The paper ends with an Appendix containing the proof of a couple
of technical results.

2. The MsDS algorithm. Let (�,F,P) be a probability space and W be an
F -adapted Brownian motion. Suppose we are given an independent probability
space (�̃, F̃, P̃) and a family of independent Brownian motions W̃ q, q ∈ Q with an
associated filtration F̃q

t := σ {W̃ q
s , s ≤ t}. Define the extended space (�̄, F̄, F̄t , P̄)

by

�̄ := � × �̃, P̄(dω, dω̄) = P(dω)P̃(dω̄),

F̄ := F ⊗ F̃, F̃q
t := ∨

q∈Q;q≤t

F̃ q∞, F̄t := Ft ∨ F̃q
t .

Such extended space will be useful for treating independently the noise coming
from the Brownian in the effective diffusion and the one related to the approxi-
mation of the ergodic diffusion averages. Consider the decreasing step Euler algo-
rithm introduced in Lamberton and Pagès (2002) to approach the invariant measure
of a recursive diffusion. Let {γk}k∈N be a decreasing sequence of steps satisfying:

HYPOTHESIS (Hγ ) (On the sequence of steps for the average estimation algo-
rithm).

(i) γk > 0 for all k;
(ii) γk is a sequence of decreasing steps with limn→∞ γk = 0;

(iii) limk→∞ 
k = ∞; where 
k := ∑k
j=0 γj ;

(iv)
∑∞

k=1(
γ 2
k


k
) < +∞.

For any q ∈ Q, let
√

γk+1U
q
k+1 := W̃

q

k+1

− W̃
q

k

so that Uk+1 is a standard

Gaussian vector. Let y0 ∈Rdy . We define the decreasing step Euler approximation
of the ergodic diffusion by

Ỹ
x,q
0 = y0,

(7)
Ỹ

x,q
k+1 = Ỹ

x,y0,q
k + γk+1b

(
x, Ỹ

x,q
k

)+ √
γk+1σ

(
x, Ỹ

x,q
k

)
U

q
k+1,

and the decreasing step average estimator by

F̃ k(x, q) = 1


k

k∑
j=1

γjf
(
x, Ỹ

x,q
j−1

)
.(8)
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The idea behind the particular form of estimator (8) is to take advantage of the
ergodicity of the diffusion: the long-term time average approaches the invariant
measure of the diffusion. Note that the estimator can also be written recursively as

F̃ 0(x, q) = 0; F̃ k(x, q) = F̃ k−1(x, q) + γk


k

(
f
(
x, Ỹ

x,q
k−1

)− F̃ k−1(x, q)
)
.

Evidently, using the same ergodic average argument, it is also possible to use a
uniform step estimator of the type k−1 ∑k

j=1 γjf (x, Ỹ
x,q
j−1) as studied, for exam-

ple, in Talay (1990). The main difference between both estimators appears in the
type of error that they generate. The uniform step estimator induces two types of
errors coming from the truncation of the series and the fact that the ergodic limit
of the approached sequence is not the ergodic limit of the original diffusion. In
contrast, the decreasing Euler scheme estimator eliminates the asymptotic gap be-
tween the invariant law of the continuous equation and that of its discretization;
see Lamberton and Pagès (2002). Moreover, the decreasing step method features a
kind of “error expansion” [as shown in Lemaire (2005)] when applied to a certain
family of functions. These properties are important to show the limit properties of
our algorithm and to deduce the extrapolated version.

We should remark that we have chosen to work with a simplified version of the
algorithm in Lamberton and Pagès (2002): its more general version allows the use
of different sequences for the Euler scheme step and for the weights in the average.

With this estimator in hand we can define an Euler scheme to approach our
effective diffusion. Assuming a time horizon T , for n ∈ N∗ we put tk = T k/n, so
that the Euler scheme will be given by

X̌n
tk+1

= X̌n
tk

+ F̃M(n)(X̌n
tk
, tk

)
�tk+1 + G̃M(n)(X̌n

tk
, tk

)
�Wk+1,

where F̃M is defined in (8) and G̃M(x, q) is defined in two steps: First we find
H̃M(x, q) using the decreasing step algorithm as in (8) [recall that h(x, y) =
g∗g(x, y)], and then we perform a Cholesky decomposition on it to find

G̃M(x, q) =
√

H̃M(x, q). Note that the number of steps in the decreasing Euler
estimator, M , is expressed as a function of the number of steps in the Euler scheme
for the slow scale n. The form of M(n) will be clear from the main theorems.

It will be easier to work mathematically with a continuous interpolation of the
Euler approximation. Let us denote by t(n) = �nt�/n. We will usually omit the
explicit dependence on n and write t when clear from the context. The continuous
Euler approximation is then given by

X̃n
t = x0 +

∫ t

0
F̃M(n)(X̃n

s , s
)
ds +

∫ t

0
G̃M(n)(X̃n

s , s
)
dWs,(9)

that is, a linear interpolation from the discrete Euler scheme. Clearly, at times tk the
continuous Euler coincide with the Euler algorithm. All our results will be derived
for the continuous version of the algorithm.
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2.1. Standing hypothesis and main result. Let us introduce the assumptions
under which our main results follow.

HYPOTHESIS (Hs.s.) (On the slow-scale coefficients).

(i) Lipschitz in x: There exist constants K,m such that for all x, x′ ∈ Rdx and
y ∈ Rdy , ∣∣f (x, y) − f

(
x′, y

)∣∣+ ∣∣g(x, y) − g
(
x′, y

)∣∣ ≤ K|y|m∣∣x − x′∣∣;
(ii) regularity: f,h belong to C

2,ry

b,p for some ry > 3, where the subindex b,p

means the derivatives ∂i
x∂

j
y for 0 ≤ i ≤ 2 and 0 ≤ j ≤ ry − i are bounded in x and

polynomially bounded in y;
(iii) degeneracy: either h is identically zero, or it is uniformly nondegenerate,

that is, there exists λ′− ∈R+∗ such that λ′−I ≤ h(x, y).

Before giving the standing hypothesis on the fast scale equation, recall that we
have defined the matrix a(x, y) = σσ ∗(x, y).

HYPOTHESIS (Hf.s.) (On the fast-scale coefficients).

(i) a, b ∈ C
2,0
b,l , that is, they are continuous and linearly bounded in y and C2

and bounded in x.
(ii) The matrix a is uniformly continuous and uniformly nondegenerate and

bounded, that is, there exist λ−, λ+ ∈ R+∗ such that

λ−I ≤ a(x, y) ≤ λ+I ;
(iii) supx b(x, y) · y ≤ −c1|y|2 + c2, for some c1 ∈ R∗+, c2 ∈ R.

The regularity and growth hypothesis contained in (Hs.s.) are assumed to con-
trol the error propagation. The main goal of imposing conditions on the fast scale
diffusion is to guarantee the existence of an invariant limit for any possible fixed
value of x and a uniform control on its averages. For this reasons they are quite
restrictive: note that (Hf.s.)(i) implies supx |b(x, y)| = O(|y|) and (Hf.s.)(iii) de-
duces lim|y|→∞ supx b(x, y) · y = −∞, meaning that the drift has at most linear
growth in y and that it is mean reverting uniformly in x. In turn, the ellipticity and
nondegeneracy assumption (Hf.s.)(ii) is helpful to deduce the uniqueness of the
invariant measure.

We are ready to state our main Theorem on the MsDS algorithm. Its proof is
found in Section 4.

THEOREM 2.1. Let 0 < θ < 1, γ0 ∈ R+ and γk = γ0k
−θ . Let M1 be a positive

constant. Assume (Hf.s.) and (Hs.s.). Define M(n) by

M(n) = ⌈
M1n

1/(1−θ)⌉,
then:
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(i) ODE with random coefficients case [g(x, y) ≡ 0]:
(a) (Strong convergence). There exists a constant K such that

E
[

sup
0≤t≤T

∣∣Xt − X̃n
t

∣∣2] ≤ Kn−2[(1−θ)∧θ ]/(1−θ).

(b) (Limit distribution of the error). Assume in addition that ry ≥ 7 and θ ≥
1/2. Then

n
(
X − X̃n) =: ζ n ⇒ ζ∞,

where ⇒ denotes convergence in law, and ζ∞ is the solution of an SDE
stated explicitly on Theorem 4.12.

(ii) Full SDE case:
(a) (Strong convergence). There exists a constant K such that

E
[

sup
0≤t≤T

∣∣Xt − X̃n
t

∣∣2] ≤ Kn−[(1−θ)∧2θ ]/(1−θ).

(b) (Limit distribution of the error). Assume in addition that ry ≥ 7 and θ ≥
1/3. Then

n1/2(X − X̃n) =: ζ n ⇒ ζ∞,

where ζ∞ is the solution of an SDE stated explicitly on Theorem 4.12.

Note that we study the mean square error of our approximation algorithm toward
the effective equation. We perform this strong error analysis to guarantee that the
algorithm will be used for applications demanding to approach functions that de-
pend on the whole trajectory (as in finance). As will be clear from Theorem 4.12,
the SDE defining the limit results both for the fully stochastic and the ODE with
random coefficients case are explicitly given in terms of the invariant law of the
ergodic diffusion and are consequently unknown. Nevertheless, the key point is
that, being explicit, they might be estimated numerically for practical purposes.

We have announced an extrapolated version of the algorithm. Given that its
proper introduction requires a further understanding of the basic algorithm, we
postpone the presentation to Section 5.

3. Preliminaries. In this section we present the main tools needed to analyze
the presented algorithm.

Let us start by stating properly the stochastic approximation theorem we men-
tioned in the Introduction and that justifies the relation between the effective equa-
tion (3) and the original strongly oscillating system (1).

THEOREM 3.1 [Theorem 4 in Pardoux and Veretennikov (2003)]. Let b,σ,

f, g be defined as in (1) and a = σσ ∗. Assume we have a recurrence condition
of the type lim|y|→∞ b(x, y) · y = −∞, and that the matrix “a” is nondegenerate
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and uniformly elliptic. Assume that a, b ∈ C
2,1+α
b , and that f,g are Lipschitz with

respect to the x variable uniformly in y and have at most polynomial growth in y

and linear growth in x.
Then, for any T > 0, the family of processes {Xε

t ,0 ≤ t ≤ T }0<ε≤1 is weakly
relatively compact in C([0, T ];Rl). Any accumulation point X is a solution of the
martingale problem associated with the operator L̄.

If moreover, the martingale problem is well posed, then Xε L−→X, where X is
the unique (in law) diffusion process with generator L̄.

It is worth mentioning that the actual framework of Pardoux and Vertennikov’s
statement includes the case in which there is an ε−1 order term in the slow variable,
which complicates the proof with respect to the framework we present here. Note
that under the standing hypothesis, the martingale problem is well posed and X in
the theorem is the unique solution to (3).

3.1. A priori estimates. An important result is related to some a priori esti-
mates valid for general SDEs. Since they are quite standard, we will state the result
without giving the details of the proof.

PROPOSITION 3.2. Let

ϑt = ϑ0 +
∫ t

0
V1(ϑs, s) ds +

∫ t

0
V2(ϑs, s) dWs,(10)

where V1,V2 are adapted random functions.

(i) For all α ≥ 2,

E
[

sup
0≤t≤T

|ϑt |α
]

≤ KαE
[|ϑ0|α]+ K(α,T )

∫ T

0

(
E
[∣∣V1(ϑs, s)

∣∣α]+E
[∣∣V2(ϑs, s)

∣∣α])ds

≤ KαE
[|ϑ0|α]

+ K ′(α,T )
(

sup
0≤t≤T

E
[∣∣V1(ϑt , t)

∣∣α]+ sup
0≤t≤T

E
[∣∣V2(ϑt , t)

∣∣α]).
(ii) Assume that ∀α ≥ 2,

E
[∣∣V1(ϑt , t)

∣∣α]+E
[∣∣V2(ϑt , t)

∣∣α]≤ K
(
1 +E

[|ϑt |]α).
Then:
(a) for t ∈ [0, T ] and α ≥ 2, E[|ϑt |α] ≤ K(α,T );
(b) for α ≥ 2, E[sup0≤s≤t |ϑs |α] ≤ K(α,T ) P(sup0≤s≤t τr ≤ t) ≤ K ′(α,t)

rα .
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3.2. Cholesky decomposition. The Cholesky decomposition of a positive def-
inite matrix consists of expressing this matrix as the product of a lower triangular
matrix and its conjugate transpose. A stability analysis of this procedure is a key
point in our analysis for the SDE case behavior of our algorithm.

Recall that we denote by | · | the induced operator norm. Let us denote by ‖ · ‖F

the Frobenius norm. Recall that if H is a d × d matrix,

|H | ≤ ‖H‖F ≤ √
d|H |.(11)

THEOREM 3.3 [Theorem 1.1 in Sun (1991)]. Let H be a d × d positive defi-
nite matrix with Cholesky factorization H = GG∗. If �H is a d × d symmetrical
matrix satisfying |H−1|‖�H‖F < 1/2, then there is a unique Cholesky factoriza-
tion H + �H = (G + �G)(G + �G)∗ and

‖�G‖F

|G| ≤ √
2

κκ2(H)

1 + √
1 − 2κ2(H)κ

,(12)

where κ = |�H‖F |H |−1 and κ2(H) = |H ||H−1|.

Theorem 3.3 gives a control on the sensitivity of the Cholesky procedure. In
Lemma 3.4 we study the propagation effect at each stage of the Cholesky factor-
ization to say a little bit more on the particular form of the error. Its proof is given
in Appendix B.

LEMMA 3.4. Suppose the hypothesis of Theorem 3.3 holds. Then

�Gi,i = �Hi,i − 2
∑i−1

k=1 �Gi,kGi,k

2Gi,i

+ O
(|�H |2),

�Gi,j = �Hi,j − Gi,j�Gj,j

∑j−1
k=1(�Gj,kGi,k + �Gi,kGj,k)

Gj,j

+ O
(|�H |2)

for i > j .

Lemma 3.4 gives a first order approximation of the error matrix �G knowing
the perturbation matrix �H . From this lemma, we can deduce on the regularity of
the Cholesky approximation. The following corollary follows from the definition
of H and Lemma 3.4.

COROLLARY 3.5. Let H :Rd → Md×d be C2
b and nondegenerate [in the

sense given in Hypothesis (Hs.s.)]. Then G is also C2
b and nondegenerate.
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3.3. Decreasing step Euler algorithm. In this section we present some con-
trol and error expansion results valid for the decreasing step Euler algorithm. The
results here presented are found in Lamberton and Pagès (2002) or in the Ph.D.
thesis of Lemaire (2005).

A first interesting property is that the sequence of estimators defined in (8) con-
verges almost surely to the ergodic average for any fixed x.

PROPOSITION 3.6. Assume (Hf.s.), and let ψ :Rdx ×Rdy →R, and suppose
that ψ(x, y) ≤ C(x)(1 + |y|π). Let �̃M(x, q) be defined as in (8). Then, for any
x ∈ Rdx , q ∈ Q,

�̃M(x, q)
a.s.−→

∫
ψ(x, y)μx(dy) as M → ∞,

where μx is the invariant measure of (2).

PROOF. (Hf.s.) imply that V (y) := 1 + |y|2 is a uniformly in x function sat-
isfying the hypothesis of Theorem 1 in Lamberton and Pagès (2002), from which
the claim follows. �

We have as well a control on the moments of any order of Ỹ
x,q
k .

PROPOSITION 3.7. Let π > 0 and let Ỹ
x,q
k be given by (7). Then there exists a

constant Kπ given only by π , λ−, λ+ and γ0 such that for all x ∈ Rdx and q ∈Q,

sup
i∈N

E
[∣∣Ỹ x,q

i

∣∣π ] < Kπ.

Moreover, for every π > 1,

sup
M∈N

(
1


M

M∑
i=1

γi

∣∣Ỹ x,q
i

∣∣π) < +∞.

PROOF. By Lemma 2 in Lamberton and Pagès (2002) given that U
q
k has mo-

ments of any order and V (y) = |y|2 + 1 satisfies the needed hypothesis uniformly
in x, we get that for any π ≥ 1 and q ∈Q,

sup
i∈N

E
[∣∣Ỹ x,q

i

∣∣2π ] ≤ sup
i∈N

E
[
V
(
Ỹ

x,q
i

)π ]
< Kπ.

The extension to all π > 0 is straightforward.
The second claim follows from Theorem 3 in Lamberton and Pagès (2002). �

Proposition 3.8 is an adaptation of a result appearing in the Ph.D. thesis Lemaire
(2005). The proof comes from performing a Taylor expansion and reordering the
terms in a proper way. For the statement, we introduce in addition to the sequence
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{γk}{k∈N∗} a new sequence that we denote by {ηk}{k∈N∗} (that may be taken equal
to the former). This added flexibility will be useful in the following, in particular
to prove Proposition 3.10. We may interpret Proposition 3.8 as an error expansion
result. Indeed if we fix ηk = γk satisfying (Hγ ), then we will have an explicit
expression for the approximation error of the decreasing Euler algorithm.

PROPOSITION 3.8. Let ψ :Rdx ×Rdy →R. Under the assumptions of Propo-
sition 3.6, suppose that for each x ∈ Rdx there exists φx

ψ :Rdy →R solution of the
centered Poisson equation

Lx
yφ

x
ψ(y) = ψ(x, y) −

∫
ψ(x, z)μx(dz).(13)

Suppose as well for r ∈ N, r ≥ 2, that φx
ψ is Cr in the y-variable uniformly in x,

and Drφψ is Lipschitz in y uniformly in x. Let γk and ηk be two decreasing se-
quences with γk → 0, ηk → 0, 
k = ∑

1≤j≤k γk , Hk = ∑
1≤j≤k ηk . Let Ỹ

x,q
k be

defined as in (7) (with step sequence γk). Then

M∑
k=1

ηk

(
ψ
(
x, Ỹ

x,q
k−1

)−
∫

ψ(x, z)μx(dz)

)
= A0

ψ,M − Nψ,M −
r∑

i=2

Ai
ψ,M − Zr

ψ,M,

where

A0
ψ,M(x, q) :=

M∑
k=1

ηk

γk

[
φx

ψ

(
Ỹ

x,q
k

)− φx
ψ

(
Ỹ

x,q
k−1

)]
,(14)

Nψ,M(x, q) :=
M∑

k=1

ηk√
γk

〈
Dyφ

x
ψ

(
Ỹ

x,q
k−1

)
, σ

(
x, Ỹ

x,q
k−1

)
U

q
k

〉
,(15)

A2
ψ,M(x, q) := 1

2

M∑
k=1

ηk

[
D2φx

ψ

(
Ỹ

x,q
k−1

) · (σ (x, Ỹ
x,q
k−1

)
U

q
k

)⊗2

(16)
− Tr(D2φx

ψ

(
Ỹ

x,q
k−1

)(
σ ∗σ

(
x, Ỹ

x,q
k−1

))]
,

Ai
ψ,M(x, q) :=

M∑
k=1

ηkγ
i/2−1
k v

i,r
ψ

(
x, Ỹ

x,q
k−1,U

q
k

)
(17)

for i = 3, . . . , r with

v
i,r
ψ (x, y, z) =

i∧r∑
j≥i/2

(
j

i − j

)
1

j !D
j
yφx

ψ(y) · 〈b(x, y)⊗(i−j),
(
σ(x, y)z

)⊗(2j−i)〉

and

∣∣Zr
ψ,M

∣∣(x, q) ≤ K

M∑
k=1

ηkγ
(r−1)/2
k

(
1 + ∣∣Ỹ x,q

k−1

∣∣r+1)(1 + ∣∣Uq
k

∣∣)r+1
.(18)
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The average of each expansion term will play an important role in our analysis,
so that we will present a special notation for them. Indeed, let

v̄
i,r
ψ (x, y)

:= E
[
v

i,r
ψ

(
x, y,U0

1
)]

(19)

=
i∧r∑

j≥i/2

(
j

i − j

)
1

j !D
j
yφx

ψ(y)E
[〈
b(x, y)⊗(i−j),

(
σ(x, y)U

q
k

)⊗(2j−i)〉|F̃
k−1

]
.

REMARK 3.9. Consider A2i+1
ψ,M for i ≤ �(r − 1)/2�. As 2j − 2i − 1 is odd for

any j integer and given the fact that the odd powers of a centered Gaussian are
centered, we deduce v̄

2i+1,r
ψ = 0. Of course this property transfers to A2i+1

ψ,M so that

E[A2i+1
ψ,M ] = 0, implying in turn that the terms with an odd index are centered.

Under some additional hypotheses, Proposition 3.8 may be used to obtain an L2
control on the error of the approximation. For the sake of the presentation, let us
denote from now on



[r]
M =

M∑
k=1

(γk)
r .(20)

Note we have in particular 

[1]
M = 
M .

PROPOSITION 3.10. Under the assumptions of Proposition 3.8, let α ≥ 1. As-
sume {γk} satisfies (Hγ ), and that 


[α]
M → ∞, for 


[α]
M defined as in (20). Assume

as well that the solution of the centered Poisson equation φψ is in C
2,r
b,p for r > 3.

Let �̄ := ∫
ψ(x, z)μx(dz), then

E

[∣∣∣∣∣ 1



[α]
M

M∑
k=1

γ α
k

(
ψ
(
x, Ỹ

x,q
k−1

)− �̄(x)
)∣∣∣∣∣

2]
≤ K

1 + 

[2α−1]
M + 


[2α]
M + (


[α+1]
M )2

(

[α]
M )2

.

PROOF. We recall first some martingale inequalities. Let {ak} be any sequence
of random tensors. By Cauchy–Schwarz inequality we have that

E

[∣∣∣∣∣
M∑

k=1

γ
p
k ak

∣∣∣∣∣
2]

≤ E

[



[p]
M

M∑
k=1

γ
p
k |ak|2

]
= 


[p]
M

M∑
k=1

γ
p
k E

[|ak|2].(21)

Let {bk} be also a sequence of tensors. If s0 < s1 < · · · < sk < · · · , the {ak}, {bk}
are F̃q

sk adapted, and for all k, E[ak|F̃q
sk ] = E[bk|F̃q

sk ] = 0, we have by martingale
properties that

E

[〈
M∑

k=1

γ
p
k ak,

M∑
k=1

γ
p
k bk

〉]
=

M∑
k=1

γ
2p
k E

[〈ak, bk〉](22)
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and in particular,

E

[∣∣∣∣∣
M∑

k=1

γ
p
k ak

∣∣∣∣∣
2]

=
M∑

k=1

γ
2p
k E

[|ak|2].(23)

Now, take the error expansion in Proposition 3.8 with r = 3, and let ηk = γ α
k . By

Abel’s transformation, using convexity, estimate (21), the regularity properties of
φψ and Proposition 3.7, we get

E
[∣∣A0

ψ,M(x, q)
∣∣2]

= E

[∣∣∣∣∣
M∑

k=1

γ α−1
k

[
φx

ψ

(
Ỹ

x,q
k

)− φx
ψ

(
Ỹ

x,q
k−1

)]∣∣∣∣∣
2]

= E

[∣∣∣∣∣γ α−1
M φx

ψ

(
Ỹ

x,q
M

)− γ α−1
0 φx

ψ

(
Ỹ

x,q
0

)

+
M−1∑
k=1

[(
γ α−1
k − γ α−1

k+1

)
φx

ψ

(
Ỹ

x,q
k

)]∣∣∣∣∣
2]

(24)

≤ 3E
[∣∣γ α−1

M φx
ψ

(
Ỹ

x,q
M

)∣∣2]+ 3E
[∣∣γ α−1

0 φx
ψ

(
Ỹ

x,q
0

)∣∣2]

+ 3E

[∣∣∣∣∣
M−1∑
k=1

[(
γ α−1
k − γ α−1

k+1

)
φx

ψ

(
Ỹ

x,q
k

)]∣∣∣∣∣
2]

≤ K

[(
γ α−1
M

)2 + 1 +
(

M−1∑
k=1

(
γ α−1
k − γ α−1

k+1

))2]
≤ K.

Moreover, using the fact that the terms are centered from Remark 3.9, equa-
tion (23) and the finite moments of the Brownian increments imply

E
[∣∣Nψ,M(x, q)

∣∣2] =
M∑

k=1

γ 2α−1
k E

[∣∣〈σ ∗Dyφψ

(
x, Ỹ

x,q
k−1

)
,U

q
k

〉∣∣2]≤ K
2α−1
M ,(25)

E
[∣∣A2

ψ,M(x, q)
∣∣2] ≤ 1

4

M∑
k=1

γ 2α
k E

[∣∣D2
yφψ

(
x, Ỹ

x,q
k−1

) · (σ (x, Ỹ
x,q
k−1

)
U

q
k

)⊗2∣∣2]
(26)

≤ K

[2α]
M .

More generally, estimate (23) leads to

E
[∣∣A3

ψ,M(x, q)
∣∣2] =

M∑
k=1

γ 2α+1
k E

[∣∣v3,r
ψ

(
x, Ỹ

x,q
k−1,U

q
k

)∣∣2] ≤ K

[2α+1]
M ,(27)
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while by virtue of (21), we find as estimate

E
[∣∣Z3

ψ,M(x, q)
∣∣2] ≤ KE

[∣∣∣∣∣
M∑

k=1

γ α+1
k

(
1 + ∣∣Ỹ x,q

k−1

∣∣4)(1 + ∣∣Uq
k

∣∣)4

∣∣∣∣∣
2]

(28)
≤ K

(



[α+1]
M

)2
.

On the other hand, from (Hγ ) and given that 

[α]
M → ∞, we have for M large

enough that, if i > j ,



[i]
M



[α]
M

≤ 

[j ]
M



[α]
M

.

The claim follows from Proposition 3.8 and (24)–(28). �

3.4. Ergodic average and Poisson equation. Being basic to our analysis, we
introduce in this section some known properties of the exact averages and the effec-
tive diffusion. These results are studied in Pardoux and Veretennikov (2001, 2003).

Let us start by stating a growth control result proved in Veretennikov (1997).

PROPOSITION 3.11. Let α > 0, and let Yx
t be the solution of (2) with deter-

ministic initial condition y0 and coefficients satisfying (Hf.s.).
Then there exists a constant K given only by α, λ−, λ+ such that for all t ≥ 0

and x ∈ Rdx ,

E
[∣∣Yx

t

∣∣α] < K
(
1 + |y0|α+2).

This proposition has a natural corollary.

COROLLARY 3.12. Under the same hypothesis of the theorem, for any α > 0
and all x ∈ Rdx , ∫

|y|αμx(dy) < K.

LEMMA 3.13. Let ψ(x, y) be a function satisfying the regularity and growth
conditions in (Hs.s.), and let �(x) = ∫

ψ(x, y)μx(dy), then �(x) is C2
b .

PROOF. The claim follows from adapting Theorems 3 and 5 in Veretennikov
(2011) to the linear growth case: the needed equivalent results of convergence in
total variation and control of expectations may be found in Meyn and Tweedie
(1993). �

As it was shown in Proposition 3.8, the centered Poisson equation (13) plays
a special role in understanding the error expansion of the decreasing Euler al-
gorithm. Proposition 3.14, which is an adaptation of Theorem 1 in Pardoux and
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Veretennikov (2001) and Veretennikov (2011), states some sufficient conditions
for having the solution of such an equation when f belongs to a certain family of
functions.

PROPOSITION 3.14. Consider a function ψ(x, y) satisfying the regularity
and growth conditions in (Hs.s.)(i), (ii) and such that∫

ψ(x, y)μx(dy) = 0 ∀x.

Assume (Hf.s.). Then there exists a function φψ(x, y), continuous in y and be-
longing to the class

⋂
p>1 W 2

p,loc in y, such that for every x ∈Rdx :

(i) Lx
yφψ(x, y) = ψ(x, y),

(ii)
∫

φψ(x, y)μx(dy) = 0,

(iii) φψ ∈ C
2,ry

b,p .

This function is the unique solution up to an additive constant of the Poisson equa-
tion on the class of continuous and

⋂
p>1 W 2

p,loc functions in y which are locally
bounded and grow at most polynomially in |y| as |y| → ∞. Moreover, it has the
representation

φψ(x, y) = −
∫ ∞

0
Ex,y

(
ψ
(
x,Y x

t

))
dt.

4. Convergence results for the MsDS algorithm. We focus now on the study
of the MsDS algorithm. First, we show that the proposed approximated coefficients
(by means of Decreasing Euler step and Cholesky procedures) satisfy a growth
control and error control properties. As a consequence, we will conclude on some
regularity property of the approximated diffusion (9) and show its strong conver-
gence toward (3). Then we will study the limit error distribution property.

4.1. Existence, uniqueness, continuity. From Hypotheses (Hs.s.), (Hf.s.),
Proposition 3.11 and Proposition 3.2, it follows that there exists a unique solution
to equation (3), and that it has a continuous modification. We show the defined
approximation has the same properties.

Proposition 4.1 uses the results of Section 3 to show that, under the standing
hypothesis, the coefficients of the approximated diffusion have finite moments of
any order, and that its error with respect to the exact coefficients decrease as a
power of the number of steps n.

PROPOSITION 4.1. Assume (Hs.s.), (Hf.s.) and (Hγ ). Let β0 > 0, and define
M(n) implicitly by 
M(n) = C0n

2β0 , where C0 is some constant.

(i) There exist φf and φh solutions of the centered Poisson equations:

• Lx
yφf (x, y) = f (x, y) − ∫

f (x, y′)μx(dy′);
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• Lx
yφh(x, y) = h(x, y) − ∫

h(x, y′)μx(dy′).

(ii) Let

ς := min
l≥4,i=1,...,d

(
v̄

l,ry

F i �= 0
)∧ min

l≥4,i,j=1,...,d

(
v̄

l,ry

H i,j �= 0
)∧ (

ry + 1
)

(29)

[with the convention that min(∅) = ∞] and v̄
l,r

F i , v̄
l,ry

H i,j defined as in (19) ap-

plied to F 1, . . . ,F dx , H 1,1, . . . ,Hdx,dx . Assume the asymptotic expantion



[ς/2]
M


M

= C1n
−β1 + o

(
n−β1

)
,(30)

for some β1 > 0, and some constant C1, holds. Let

β := β0 ∧ β1.(31)

Then F̃ n (and resp., H̃ n, G̃n :=
√

H̃ n) satisfies for any α ∈ R+ and k =
0, . . . , n {

E
[∣∣F̃ n(x, tk)

∣∣α] ≤ K,

E
[∣∣F̃ n(x, tk) − F(x)

∣∣2]≤ Kn−2β.

REMARK 4.2. We should understand ς as marking the first nonzero value in
the error expansion of either F̃ n or H̃ n. It depends exclusively on the coefficients
of the effective and ergodic diffusion (in particular it does not depend on n).

REMARK 4.3. Proposition 4.1 means that we have a rate of convergence in
norm L2 for the coefficient estimators of order O(n−β). Since we choose β0 by
taking M(n) as needed, the actual limit to β comes from β1. But of course, increas-
ing β0 implies growing M faster as a function of n, increasing the algorithm’s cost.

PROOF OF PROPOSITION 4.1. Note first that (i) follows from (Hs.s.) and
Proposition 3.14.

We prove (ii). By Jensen’s inequality and Proposition 3.7, we have for every
α ≥ 1 and n big enough,

E
[∣∣F̃ n(x, q)

∣∣α] = E

[∣∣∣∣∣ 1


M

M∑
k=1

γkf
(
x, Ỹ

x,q
k−1

)∣∣∣∣∣
α]

≤ E

[
1


M

M∑
k=1

γk

∣∣f (x, Ỹ
x,q
k−1

)∣∣α] ≤ K,

and similarly for every α ≥ 2,

E
[∣∣G̃n(x, q)

∣∣α]= E
[∣∣H̃ n(x, q)

∣∣α/2] ≤ K,
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since |G|2 = |H |. The result extends trivially to every α > 0.
It remains to prove the error control. We obtain an expansion of order ry in

Proposition 3.8. We can bound the first terms as we did in Proposition 3.10 by
taking γk = ηk for all k = 1, . . . ,M (i.e., taking α = 1 in the statement of Proposi-
tion 3.10). More generally, from the definition of ς in (29), we have that for every
l < ς or l odd v̄

l,ry

F i (x, y) = 0, (23) leads to

E
[∣∣Al

F i,M
(x, q)

∣∣2] =
M∑

k=1

γ l
kE

[∣∣vl,ry

F i

(
x, Ỹ

x,q
k−1,U

q
k

)∣∣2] ≤ K

[l]
M ,(32)

while for even l with l ≥ ς , by virtue of (21), we find as estimate

E
[∣∣Al

F i,M
(x, q)

∣∣2] ≤ 

l/2
M

M∑
k=1

γ
l/2
k E

[∣∣vl,ry

F i

(
x, Ỹ

x,q
k−1,U

q
k

)∣∣2] ≤ K
(



[l/2]
M

)2
.(33)

Likewise,

E
[∣∣Zry

F i,M
(x, q)

∣∣2]

≤ KE

[∣∣∣∣∣
M∑

k=1

γ
ry+1/2
k

(
1 + ∣∣Ỹ x,q

k−1

∣∣ry+1)(1 + ∣∣Uq
k

∣∣)ry+1

∣∣∣∣∣
2]

(34)

≤ K
(



[ry+1/2]
M

)2
.

Note that estimates (32) and (33) are uniform in x. On the other hand, from (Hγ ),
we have for M big enough and l ≤ ry that

1 ≥ 

[2]
M


M

≥ 

[3]
M


M

≥ · · · ≥ 

[l]
M


M

.

Hence from Proposition 3.8 and equations (24)–(26), (32), (33),

E
[∣∣F̃ i;n(x, q) − F i(x, q)

∣∣2] ≤ K(

[ς/2]
M )2

(
M)2 + K


M

≤ K ′n−2(β0∧β1),

implying our claim for F , F̃ n. Since H satisfies the same properties as F , the
claim follows for H,H̃n. As a final step, we prove the error control for G̃n. Let
�Hn(x, q) := H(x) − H̃ n(x, q) and E = {|�Hn(x, q)| ≥ |2H−1|−1}. Markov
inequality gives us the control

P(E) ≤ 4
∣∣H−1(x)

∣∣2E[∣∣�Hn(x, q)
∣∣2] ≤ Kn−2(β0∧β1),

which, in conjunction with Theorem 3.3, deduces

E
[∣∣G(x) − G̃n(x, q)

∣∣2]
= E

[∣∣G(x) − G̃n(x, q)
∣∣21E

]+E
[∣∣G(x) − G̃n(x, q)

∣∣21
E�

]
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≤ K ′n−2(β0∧β1) +E
[∣∣G(x) − G̃n(x, q)

∣∣21
E�

]
≤ K ′n−2(β0∧β1) + Kn−2(β0∧β1) = K ′′n−2(β0∧β1). �

We can deduce from Proposition 4.1 and the assumed structure, the following a
priori estimates.

COROLLARY 4.4. Under the hypothesis and notation of Proposition 4.1, for
any 0 ≤ s ≤ T ,

E
[∣∣F̃ n(X̃n

s , s
)∣∣α] ≤ K(35)

and

E
[∣∣F̃ n(X̃n

s , s
)− F

(
X̃n

s

)∣∣2] ≤ Kn−2β.(36)

The same bounds hold with F̃ n,F replaced by H̃ n,H and G̃n,G.

PROOF. Define

F̄t,t− :=
(
Ft ∨ ∨

q∈Q,q<t

F̃q∞
)

(37)

by construction, X̃s is F̄s,s− measurable and since F̃ n(x, s)⊥⊥ F̄s,s− for any de-
terministic x, we get from Proposition 4.1,

E
[∣∣F̃ n(X̃s, s

)∣∣α] = E
[
E
[∣∣F̃ n(X̃s, s

)∣∣α|F̄s,s−
]] ≤ E[K] = K.

A similar argument leads to (36), and to the claims for H̃ n,H and G̃n,G. �

Corollary 4.4 should be understood as an a priori control on the approximated
process. From this control, we can deduce, using Proposition 3.2 as in the case
of the effective equation, the existence and strong uniqueness of the solution of
the approximated diffusion (9). In addition, Proposition 4.5 states that approxima-
tion (9) has a continuous modification. The result follows from Proposition 3.11,
the estimates in Corollary 4.4 and Kolmogorov’s criterion.

PROPOSITION 4.5. Under the hypothesis and notation of Proposition 4.1, for
every α ≥ 2,

E
[∣∣X̃n

t − X̃n
s

∣∣α] ≤ Kα,T (t − s)α/2((t − s)α/2 + 1
)
.

Moreover, the solution of (9) has a continuous modification.
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4.2. Strong convergence. In what follows, we choose X̃ to be continuous in
time. We can proceed to show the mean square convergence of X̃n toward X.

THEOREM 4.6. Under (Hs.s.), (Hf.s.) and (Hγ ), let X be defined by (3) and
X̃n by (9). Let β be defined as in (31). Then:

• if g ≡ 0 (ODE with random coefficients), then E[sup0≤t≤T |Xt − X̃n
t |2] ≤

Kn−2(1∧β);
• under the full SDE case, E[sup0≤t≤T |Xt − X̃n

t |2] ≤ Kn−(1∧2β).

PROOF. We treat the full SDE case. By definition,

Xt − X̃n
t =

∫ t

0

[
F(Xs) − F̃ n(X̃n

s , s
)]

ds +
∫ t

0

[
G(Xs) − G̃n(X̃n

s , s
)]

dWs.

Our plan is to use Proposition 3.2(ii). By convexity,∣∣F(Xs) − F̃ n(X̃n
s , s

)∣∣2
≤ 3

∣∣F(Xs) − F
(
X̃n

s

)∣∣2 + 3
∣∣F (

X̃n
s

)− F
(
X̃n

s

)∣∣2 + 3
∣∣F (

X̃n
s , s

)− F̃ n(X̃n
s , s

)∣∣2.
By Lipschitz assumption in (Hs.s.),

E
[∣∣F(Xs) − F

(
X̃n

s

)∣∣2] ≤ KE
[∣∣Xs − X̃n

s

∣∣2],
(38)

E
[∣∣F (

X̃n
s

)− F
(
X̃n

s

)∣∣2] ≤ KE
[∣∣X̃n

s − X̃n
s

∣∣2]≤ Kn−1,

the last inequality being possible for n large enough thanks to Proposition 4.5.
Also, by Corollary 4.4, we get

E
[∣∣F (

X̃n
s , s

)− F̃ n(X̃n
s , s

)∣∣2]≤ Kn−2β.

Therefore,

E
[∣∣F(Xs) − F̃ n(X̃n

s , s
)∣∣2] ≤ K

(
n−(1∧2β) +E

[∣∣Xs − X̃n
s

∣∣2]).(39)

Since we may obtain similar bounds for the terms with G, we also have

E
[∣∣G(Xs) − G̃n(X̃n

s , s
)∣∣2] ≤ K

(
n−(1∧2β) +E

[∣∣Xs − X̃n
s

∣∣2]).(40)

Now, Proposition 3.2(ii) shows

E
[∣∣Xt − X̃n

t

∣∣2] ≤ K

∫ T

0

(
n−(1∧2β) +E

[∣∣Xs − X̃n
s

∣∣2])ds.

Therefore, by Gronwall’s lemma,

sup
0≤t≤T

E
[∣∣Xt − X̃n

t

∣∣2] ≤ Kn−(1∧2β).
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Replacing (39) and (40) we get

sup
0≤t≤T

(
E
[∣∣F(Xs) − F̃ n(X̃n

s , s
)∣∣2]+E

[∣∣G(Xs) − G̃n(X̃n
s , s

)∣∣2]) ≤ Kn−(1∧2β).

So that by Proposition 3.2,

E
[

sup
0≤t≤T

∣∣Xt − X̃n
t

∣∣2] ≤ Kn−(1∧2β).

Note that the case g ≡ 0 is proven in the same way, but the Euler error (39) is
bounded by n−2 and G ≡ 0. This implies the stated result. �

4.3. Limit distribution. In this section we show under slightly stronger regu-
larity assumptions on the coefficients of the diffusion, that we have convergence in
the weak (uniform topology) sense toward a limit distribution given as the solution
of a particular SDE.

Our plan to prove the limit distribution result is to look at the rescaled error and
its associated stochastic differential equation. We prove the joint weak convergence
of the terms appearing in that SDE and use the fact that under certain hypothesis
the joint convergence of the terms suffices to deduce the weak convergence of the
solution of the equation. The reader may find most of the needed material on weak
convergence of stochastic integrals and stochastic SDEs in Jakubowski, Mémin
and Pagès (1989), Kurtz and Protter (1991a, 1996).

DEFINITION 4.7. Let Xn be a sequence of Rd -valued semimartingales, and
let An(δ) be the predictable process with finite variation null at zero and Mn(δ)

the local martingale null at zero appearing in the representation of Xn as

Xn
t = Xn

0 + An
t (δ) + Mn

t (δ) +∑
s≤t

�Xn
s 1{|�Xn

s |>δ}.

We say that the sequence Xn satisfies property (∗) if for some δ > 0,

〈
Mn(δ),Mn(δ)

〉
T +

∫ T

0

∣∣dAn(δ)s
∣∣+ ∑

s≤T

∣∣�Xn
s

∣∣1{|�Xn
s |>δ}(∗)

is tight. (The notation
∫ T

0 |dA| denotes the total variation of A on [0, T ].)
The importance of property (∗) is shown by the following theorem; see

Jakubowski, Mémin and Pagès (1989), Jacod and Protter (1998) and Kurtz and
Protter (1996).

THEOREM 4.8. Let Xn be a sequence of Rd -valued semimartingales relative
to the filtration Ft . Suppose that Xn weakly converges in the Skorokhod topology
DRdx . Then (∗) is necessary and sufficient for goodness: for any sequence Hn of
(Ft )-adapted càdlàg processes such that (Hn,Xn) ⇒ (H,X) in the Skorokhod
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topology DMdx×dx ×Rdx , then X is a semimartingale w.r.t. the filtration generated
by (H,X) and (Hn,Xn,

∫
Hn dXn) ⇒ (H,X,

∫
H dX) in the Skorokhod topology

DMdx×dx ×Rdx ×Rdx .

Goodness gives us a direct way to show the convergence of sequences of
stochastic integrals, and will play a key role for the convergence of sequences
of SDEs.

Before proceeding to the main propositions of this section, we cite another use-
ful result concerning weak convergence of sequences of solutions of SDEs, allow-
ing us to compare the limit of two sequences with converging coefficients.

THEOREM 4.9 [Theorem 2.5(b) Jacod and Protter (1998)]. Consider a se-
quence of linear SDEs

ϑn
t = P n

t +
∫ t

0
ϑn

s−Qn
t dJt ,(41)

where the P n
t are stochastic processes in Rd , Qn

t are stochastic processes in Rd×d ′

and Jt is a semimartingale in Rd ′
, and all processes are in same the filtered prob-

ability space. Suppose that we have another sequence of equations like (41) with
solution ϑ ′n and coefficients P ′n and Q′n. If the sequences sup0≤s≤T ‖P n

s ‖ and
sup0≤s≤T ‖Qn

s ‖ are tight, and if

sup
0≤s≤T

∥∥P n
s − P ′n

s

∥∥ P−→0, sup
0≤s≤T

∥∥Qn
s − Q′n

s

∥∥ P−→0,

then

sup
0≤s≤T

∥∥ϑn
s − ϑ ′n

s

∥∥ P−→0.

Proposition 4.10 shows the weak convergence of some tuples appearing in the
rescaled error SDE.

PROPOSITION 4.10. Let I be a set of indices, and consider a family of inde-
pendent standard Gaussian variables {νi;n

tk
}n∈N∗;0≤k≤n;i∈I where for any n, i we

have ν
i;n
tk

is F̄tk measurable.
Consider the sequence of random processes A0;n (dimension 1), A1;n,B0;n (di-

mension dx ), B2;n (dimension dx ×dx ), B1;n (dimension |I|) and B3;n (dimension
|I| × dx ) defined component-wise by

B
0;j ;n
t :=

∫ t

0
(s − s) dWj

s ; A
0;n
t := 2

∫ t

0
(s − s) ds;(42)

B
2;l,j ;n
t :=

∫ t

0

√
2
(
Wl

s − Wl
s

)
dWj

s ; A
1;j ;n
t :=

∫ t

0

(
Wj

s − Wj
s

)
ds;(43)

B
3;i,j ;n
t :=

∫ t

0
νi;n
s dWj

s ; B
1;i;n
t :=

∫ t

0
νi;n
s ds.(44)
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Then we have the following limit results:(
X, X̃n,W,nA0;n,

√
nB1;n) ⇒ (

X,X,W,A0,B1)(45) (
X, X̃n,W,n1/2A0;n, n1/2B0;n, n1/2A1;n, n1/2B2;n

s ,B1;n,B3;n)
(46)

⇒ (
X,X,W,0,0,0,B2,0,B3),

where A0
t = t ; B0, B1, B2 and B3 are standard Brownian motions defined on an

extension of the space W , with dimensions dx , d2
x , |I| × dx and |I|, respectively.

Moreover, we have {B0, B2, B3, W } are independent; {B0, B2, B1, W } are
independent, and B1;n,

√
nB2;n and B3;n are “good” in the sense of Theorem 4.8.

The proof of Proposition 4.10 will be given in Section A.1.

PROPOSITION 4.11. Under the assumptions and notation of Proposition 4.1,
assume that ry > ς +3 in (Hs.s.), and that there is β2 ≥ 0 such that the asymptotic
expansion



[ς/2+1]
M



[ς/2]
M

= C2n
−β2 + o

(
n−β2

)
,(47)

where ς is defined in (29), holds. Let

ρ = 1{β0>β1}
(
β2 ∧ (β0 − β1)

)+ 1{β0<β1}
(
β0 ∧ (β1 − β0)

)
.(48)

(i) Let �F be the dx × dx matrix defined component-wise as

�
i,j
F (x) := C−1

0

∫ 〈
σ ∗DyφFi (x, y), σ ∗DyφFj (x, y)

〉
μx(dy),

where φFi is the solutions of the Poisson equation (13) with source F i . Let

ϕF (x) := 1{β1≥β0}
√

�F (x); Ri
F (x) := 1{β0≥β1}C1

∫
v̄

ς,ry

F i (x, y)μx(dy),

with the square root meaning the Cholesky root. Then there exists a family of inde-
pendent standard Gaussian variables {νi;n

k }n∈N∗;0≤k≤n;1≤i≤dx
, such that each ν

i;n
k

is F̄tk measurable and

E

[∣∣∣∣∣nβ(F i(x) − F̃ i;n(x, tk)
)−

dx∑
j=1

ϕ
i,j
F (x)ν

j ;n
k − Ri

F (x)

∣∣∣∣∣
2]

= O
(
n−2ρ),

for all x ∈ Rdx .
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(ii) Under the full SDE case, define in a similar way a d2
x dimensional random

function RH and a d2
x × d2

x dimensional random function �H , with

�
i,j,i′,j ′
H (x) := C−1

0

∫ 〈
σ ∗DyφHi,j (x, y), σ ∗DyφHi′,j ′ (x, y)

〉
μx(dy);

ϕH (x) := 1{β1≥β0}
√

�H(x);
R

i,j
H (x) := 1{β0≥β1}C1

∫
v̄

ς,ry

H i,j (x, y)μx(dy).

Then there exists a family of independent standard Gaussian variables
{νi,j ;n

k }n∈N∗;0≤k≤n;0≤i,j≤dx
, such that each ν

i,j ;n
k is F̄tk measurable and

E

[∣∣∣∣∣nβ(Hi,j (x) − H̃ i,j ;n(x, tk)
)−

dx∑
i′,j ′=1

ϕ
i,j,i′,j ′
H (x)ν

i′,j ′;n
k − R

i,j
H (x)

∣∣∣∣∣
2]

= O
(
n−2ρ),

for all x ∈ Rdx . Moreover, letting RG, ϕG be defined component-wise for 0 ≤
i ′, j ′ ≤ dx as

R
i,i
G = R

i,i
H − 2

∑i−1
k=1 R

i,k
G Gi,k

2Gi,i
,

ϕ
i,i,i′,j ′
G = ϕ

i,i,i′,j ′
H − 2

∑i−1
j=1 ϕ

i,j,i′,j ′
G Gi,j

2Gi,i
,

and for i > j ,

R
i,j
G = R

i,j
H − R

j,j
G Gi,j −∑j−1

l=1 (R
j,l
G Gi,l + R

i,l
G Gj,l)

Gj,j
,

ϕ
i,j,i′,j ′
G = ϕ

i,j,i′,j ′
H − ϕ

j,j,i′,j ′
G Gi,j −∑j−1

l=1 [ϕj,l,i′,j ′
G Gi,l + ϕ

i,l,i′,j ′
G Gj,l]

Gj,j
.

Then

E

[∣∣∣∣∣nβ(Gi,j (x) − G̃i,j ;n(x, tk)
)−

dx∑
i′,j ′=1

ϕ
i,j,i′,j ′
G (x)ν

i′,j ′;n
k − R

i,j
G (x)

∣∣∣∣∣
2]

= O
(
n−2ρ).

PROOF. (i) We prove the first claim. We use the expansion of Proposition 3.8
up to order ς as in Proposition 4.1, and estimates (24)–(26), (32)–(34) to get for
any x that

E

[∣∣∣∣(F i(x) − F̃ i;n(x, q)
)− 1


M

(
NFi,M(x, q) + A

(ς)

F i,M
(x, q)

)∣∣∣∣
2]

(49)
= O

(
(
M)−2[1 + (



[ς/2+1]
M

)2])
.
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Let us examine separately three cases depending on the relation between β0
and β1:

• If β0 > β1: In this case β = β1, and by definition of β1 it follows that

E
[∣∣nβ(F i(x) − F̃ i;n(x, q)

)− Ri
F (x)

∣∣2]
≤ KE

[∣∣(
[ς/2])−1

M

(
F i(x) − F̃ i;n(x, q)

)− Ri
F (x)

∣∣2]
≤ K ′E

[∣∣
[ς/2]
M

∣∣−2∣∣
M

(
F i(x) − F̃ i;n(x, q)

)
(50)

− NFi,M(x, q) − A
ς

F i,M
(x, q)

∣∣2]
+ K ′E

[∣∣(
|[ς/2]
M

)−1(
A

ς

F i,M
(x, q) − Ri

F (x)
)∣∣2]

+ K ′E
[∣∣(
|[ς/2]

M

)−1
NFi,M(x, q)

∣∣2].
The first term in the right-hand side of (50) can be controlled by rescaling (49)

to get

E
[∣∣
[ς/2]

M

∣∣−2∣∣
M

(
F i(x) − F̃ i;n(x, q)

)− NFi,M(x, q) − A
ς

F i,M
(x, q)

∣∣2]
(51)

= O
((



[ς/2]
M

)−2[(



[ς/2+1]
M

)2 + 1
])

.

From (25) we control the third term in the right-hand side of (50)

E
[∣∣(
[ς/2]

M

)−1
NFi,M(x, q)

∣∣2] = O
((



[ς/2]
M

)−2

M

)
.(52)

To control the second term of (50), let us define

Ā
ς

F i,M
(x, q) :=

M∑
k=1

γ
ς/2
k v̄

ς,ry

F i

(
x, Ȳ

x,q
k−1

)
(53)

for v̄
ς,ry

F i defined in (19). We can compare (

[ς/2]
M )−1A

ς

F i,M
and (


[ς/2]
M )−1 ×

Ā
ς

F i,M
in L2 by (23). Indeed, thanks to controls (32) and (33), and the fact that

for some K ∈ R+, 

[ς]
M ≤ K
M , we have

E
[∣∣(
[ς/2]

M

)−1(
A

ς

F i,M
(x, q) − Ā

ς

F i,M
(x, q)

)∣∣2]

= E

[∣∣∣∣∣(
[ς/2]
M

)−1
M∑

k=1

γ
ς/2
k

(
v

ς,ry

F i

(
x, Ȳ

x,q
k−1,U

q
k

)− v̄
ς,ry

F i

(
x, Ȳ

x,q
k−1

))∣∣∣∣∣
2]

(54)

= O
((


[ς/2])−2

M

)
.

It remains to show that

E
[∣∣(
[ς/2]

M

)−1
Ā

ς

F i,M
(x, q) + Ri

F (x)
∣∣2] = O

(
n−2ρ).(55)
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Indeed, from the definition of β0 and β1, 

[ς/2]
M = O(nβ0−β1) so that it diverges.

Moreover, from the assumed regularity hypothesis, v̄
ς,ry

F i (x, y) is C
2,ry−ς
p,b .

Therefore, Proposition 3.14 guarantees the existence of a solution to the cen-
tered Poisson equation with source Ā

ς,ry

F i (x, y) of the same regularity, and thus
Proposition 3.10 shows that Ā

ς

F i,M
(x, q) converges uniformly with respect to x

in L2 to −Ri
F (x) with rate (β0 − β1) ∧ β2 ≥ ρ since

(



ς/2
M

)−2(1 + 

[ς]
M + 


[ς−1]
M + (



[ς/2+1]
M

)2)
≤ K

(



ς/2
M

)−2(

M + (



[ς/2+1]
M

)2) = O
(
n−2((β0−β1)∧β2)

)
.

The claim follows from replacing (51), (52), (54) and (55) in (50).
• If β1 > β0, we follow a similar approach. We expand the rescaled error term to

find

E
[∣∣nβ(F i(x) − F̃ i;n(x, q)

)− Ri
F (x)

∣∣2]
≤ K ′E

[|
M |−1/2∣∣
M

(
F i(x) − F̃ i;n(x, q)

)
− NFi,M(x, q) − A

ς

F i,M
(x, q)

∣∣2](56)

+ K ′E
[∣∣(
M)−1/2A

ς

F i,M
(x, q)

∣∣2]
+ K ′E

[∣∣(
M)−1/2(NFi,M(x, q) − �F

)∣∣2].
By rescaling (49) we get

E
[|
M |−1/2∣∣
M

(
F i(x) − F̃ i;n(x, q)

)− NFi,M(x, q) − A
ς

F i,M
(x, q)

∣∣2]
= O

(
(
M)−1[1 + (



[ς/2+1]
M

)2])
,

and from (33),

E
[∣∣(
M)−1/2A

ς

F i,M
(x, q)

∣∣2] = O
(
(
M)−1(
[ς/2]

M

)2)
.

So it remains to consider the NM term. Note that since the U
q
k are independent

standard Gaussian vectors, (C0
√


M)−1NFi,M(x, q) when i ranges 1, . . . , dx is
a Gaussian vector.

Let us study its covariance matrix �n
F . Using (22) we get for i, j = 1, . . . , n

�
i,j ;n
F (x, q) := E

[
1


M

NFi,M(x, q)NFj ,M

(
x, q ′)]

= 1{q=q ′}
M∑

k,k′=1

γk

〈
σ ∗(·)DyφF i (·), σ ∗(·)DyφFj (·)〉(x, Ỹ

x,q
k−1

)
.
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Define ϕn
F =

√
�n

F (the Cholesky decomposition). Then, there exists a family

of independent Gaussian variables ν
i,j ;n
tk

, F̄tk -measurable such that

(
M)−1NFi,M(x, q) =
dx∑

j=1

ϕi,j ;nνi,j ;n
tk

.

Moreover, from Proposition 3.6 and Proposition 4.1, we have that �n
F (x, q) con-

verges uniformly in x in L2 to �F (x) as defined in the claim with rate O(n−β).
By Theorem 3.3 we get the same uniform convergence for ϕn

F . The claim fol-
lows in this case.

• The case β0 = β1 is straightforward from what has been proven in the previous
cases.

(ii) Since H,H̃n satisfy the same properties as F, F̃ n, we get the claim for RH ,
ϕH and ν

i,j ;n
k by analogous arguments. Replacing this result in the sensitivity of the

Cholesky procedure given in Lemma 3.4, and taking into account the independence
of the Gaussian entries, we get the claim for RG and ϕG. �

Let {υn} be a sequence of increasing positive numbers, and let us consider the
sequence of rescaled error processes ζ n, defined by

ζ n
t := υn

(
Xt − X̃n

t

)
.

We can show that this sequence of processes converges in distribution in the
uniform convergence topology to a process ζ defined as the solution to a certain
stochastic differential equation. We divide the analysis in two main cases: a first
one in which G(x) ≡ 0, that is, when X is the solution to an ordinary differential
equation, and the case when G(x) is nondegenerate. Just as in the asymptotic error
obtained for the usual stochastic Euler method given in Jacod and Protter (1998),
we will obtain different rates and different components in the equation for both
cases.

THEOREM 4.12 (Limit distribution). Under the assumptions and notation of
Proposition 4.11, let ρ,RF ,ϕF ,RG,ϕG be defined as in Proposition 4.11 and β

defined in (31).

(i) [ODE case-G(x) ≡ 0.] Let B1 be the Brownian process given in Proposi-
tion 4.10. Let r = 1 ∧ (1/2 + β), and suppose ρ ≥ r − β . Let

ζ n
t := nr(Xt − X̃n

t

)
.
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Then ζ n ⇒ ζ∞ in the uniform convergence sense, where ζ∞ is solution of the
system

ζ
∞,i
t =

dx∑
j=1

(∫ t

0
∂xj F

i(Xs)ζ
∞,j
s ds + 1{β≥1/2}

1

2

∫ t

0
∂xj F

i(Xs)F
j (Xs) ds

)
(57)

+ 1{β≤1/2}
(∫ t

0
Ri

F (Xs) ds +
dx∑
l=1

∫ t

0
ϕ

i,l
F (Xs) dB1;l

s

)
.

(ii) [SDE case-G(x) �= 0.] Let B2 and B3 be the independent Brownian pro-
cesses given in Proposition 4.10. Let r = (1/2 ∧ β) and

ζ n
t := nr(Xt − X̃n

t

)
.

Then ζ n ⇒ ζ∞, where ζ∞ is solution of the system for i = 1, . . . , dx of

ζ
∞,i
t = ∑

j

(∫ t

0
∂xj F

i(Xs)ζ
∞,j
s ds +

∫ t

0
R

i,j
G (Xs) dWj

s

)

+ 1{β≤1/2}
dx∑

j,k,l=1

∫ t

0
ϕ

i,j,l,k
G (Xs) dB3;l,k,j

s

(58)

+ 1{β≤1/2}
dx∑

j,l=1

∫ t

0
∂xj G

i,l(Xs)ζ
∞,j
s dWl

s

+ 1{β≥1/2}
1√
2

dx∑
j,k,l=1

∫ t

0
∂xj G

i,l(Xs)G
j,k(Xs) dB2;k,l

s .

Let us remark that if β > 1/2 in Theorem 4.12, the error of the Euler scheme
dominates: we recover the limit distribution error for an Euler scheme with exact
coefficients given in Kurtz and Protter (1991b) or Jacod and Protter (1998). By
contrast, if β < 1/2, it is the decreasing Euler estimate error that becomes domi-
nant. Since a higher β is generally only achieved by paying a higher price in the
required number of steps for the decreasing Euler step, the optimal choice implies
fixing β = 1/2.

Before proving Theorem 4.12, let us show how it implies Theorem 2.1.

PROOF OF THEOREM 2.1. The result is obtained, from Theorems 4.6
and 4.12, since (Hs.s.) and (Hf.s.) are directly assumed and as the sequence de-
fined as γk = γ1k

−θ for 0 < θ < 1 satisfies Hypothesis (Hγ ). Moreover, recall that
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we fixed M(n) = �M1n
1/(1−θ)�, and we have for n large enough,


M ≈ γ0M
1−θ
1 n

1 − θ
,



[ς/2]
M


M

≈ (1 − θ)M
−(ς/2−1)θ
1 n−(ς/2−1)θ/(1−θ)

1 − ςθ/2
,



[ς/2+1]
M



[ς/2]
M

≈ (1 − ςθ/2)M−θ
1 n−θ/(1−θ)

1 − (ς/2 + 1)θ
,

so that we get from Proposition 4.11, that β0 = 1/2 and

β1 = (ς/2 − 1)θ

1 − θ
, β2 = θ

1 − θ
, C0 ≈ γ0M

1−θ
1

1 − θ
, C1 ≈ (1 − θ)M−θ

1

1 − 2θ
.

Recall that ς is defined in (29) and stands for the first nonzero term in the error
expansion of the decreasing Euler estimator. Let us assume we are in the worst
case when it attains its minimal value ς = 4. Hence

β1 = θ

1 − θ
, C1 = (1 − θ)M−θ

1

1 − 2θ
.

Let us now deduce the conditions on θ are then deduced from the conditions in
Theorem 4.12 for each of our study cases:

• ODE with random coefficients: From the conditions of Theorem 4.12 we have

r = 1 ∧ (1
2 + β

) = 1
2 + (1

2 ∧ β
)= 1

2 + (1
2 ∧ (β0 ∧ β1)

)= 1
2 + β

since we should verify ρ ≥ r − β = 1/2, this implies

|β0 − β1| =
∣∣∣∣12 − θ

1 − θ

∣∣∣∣ ≥ ρ ≥ 1

2
,

which is the case if θ ∈ [1/2,1). Moreover, since in this case β1 ≥ 1 > β0 = 1/2,
we get r = 1/2, and the RF term disappears.

• Full SDE case: We have r = β = 1/2 ∧ (θ/(1 − θ)) the only restriction comes
from imposing β = 1/2. This is obtained for 1/3 ≤ θ < 1. Note that the RG

term is different from zero only if θ = 1/3.

Finally, note that if ς > 4, we get from the constraints θ ∈ [1/2,1) in the ODE
with random coefficients case that β1 > β0 + 1/2 and from fixing θ ∈ [1/3,1) in
the full SDE case that β1 > β0 = 1/2, β1 > β2. In both those cases the RG term is
zero. �

REMARK 4.13. It should be noted from the proof of Theorem 2.1 that know-
ing a priori that ς > 4 makes it possible to obtain a lower inferior bound for θ in
the theorem. Since in general we do not know ς , we have stated our results with
the sometimes sub-optimal limits.
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PROOF OF THEOREM 4.12. (a) Let us deal first with the full SDE case. We
have from the definition of ζ n that

ζ n
t =

∫ t

0
nr(F(Xs) − F̃ n(X̃n

s , s
))

ds +
∫ t

0
nr(G(Xs) − G̃n(X̃n

s , s
))

dWs.(59)

Let us examine each one of these terms separately. Denoting by xi the ith compo-
nent of x, let x, y ∈ Rdx . We define the set of vectors �j(x, y)

�j (x, y) :=
{

x, for j = 0,

(y1, y2, . . . , yj , xj+1, xj+2, . . . , xdx )
∗, for 1 ≤ j ≤ dx ,

and

�jF i(x, y) := 1{xj �=yj }
(

F i(�j−1(x, y)) − F i(�j (x, y))

xj − yj

)
+ 1{xj=yj }∂xj F

i(x),

and recalling that

X̃j,n
s − X̃j,n

s = Fj (X̃n
s

)(
s − s

)+
dx∑
l=1

Gj,l(X̃n
s

)(
Wl

s − Wl
s

)
,

we have∫ t

0
nr [F i(Xs) − F̃ i;n(X̃n

s , s
)]

ds

=
∫ t

0
nr(F i(Xs) − F i(X̃n

s

))
ds +

∫ t

0
nr(F i(X̃n

s

)− F i(X̃n
s

))
ds

+
∫ t

0
nr(F i(X̃n

s

)− F̃ i;n(X̃n
s , s

))
ds

so that ∫ t

0
nr[F i(Xs) − F̃ i;n(X̃n

s , s
)]

ds

=
∫ t

0

∑
j

[
nr�jF i(Xs, X̃

n
s

)(
Xj

s − X̃j ;n
s

)

+ nr�jF i(X̃n
s , X̃n

s

)
Fj (X̃n

s

)
(s − s)

+
dx∑
l=1

nr�jF i(X̃n
s , X̃n

s

)
Gj,l(X̃n

s

)(
Wl

s − Wl
s

)]
ds

+ nr−β
∫ t

0
nβ(F i(X̃n

s

)− F̃ i;n(X̃n
s , s

))
ds.
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Following the same approach we obtain for each l = 1, . . . , dx ,∫ t

0
nr [Gi,l(Xs) − G̃i,l;n(X̃n

s , s
)]

dWl
s

=
∫ t

0

∑
j

[
nr�jGi,l(Xs, X̃

n
s

)(
Xj

s − X̃j ;n
s

)

+ nr�jGi,l(X̃n
s , X̃n

s

)
Fj (X̃n

s

)
(s − s)

+
dx∑

k=1

nr�jGi,l(X̃n
s , X̃n

s

)
Gj,k(X̃n

s

)(
Wk

s − Wk
s

)]
dWl

s

+ nr−β
∫ t

0
nβ(Gi,l(X̃n

s

)− G̃i,l;n(X̃n
s , s

))
dWl

s .

By identifying terms in the obvious way, we write

ζ
i,n
t = (

P
i,n
1 (t) + P

i,n
2 (t)

)+
∫ t

0

〈
Q

i;n
1 (s), ζ n

s

〉
ds +

dx∑
l=1

∫ t

0

〈
Q

i,l;n
2 (s), ζ n

s

〉
dWl

s ,

where Qi
1, Q

i,l
2 are dx dimensional random processes with components

Q
j,i;n
1 (s) = �jF i(Xs, X̃

n
s

)
, Q

j,i,l;n
2 (s) = �jGi,l(Xs, X̃

n
s

)
and

P
i;n
2 (s) = nr−β

∫ t

0
nβ(F i(X̃n

s

)− F̃ i;n(X̃n
s , s

))
ds

+ nr−β
∫ t

0
nβ(Gi,l(X̃n

s

)− G̃i,l;n(X̃n
s , s

))
dWl

s .

P
i;n
1 (s) =

∫ t

0

∑
j

[
nr�jF i(X̃n

s , X̃n
s

)
Fj (X̃n

s

)
(s − s)

+
dx∑
l=1

nr�jF i(X̃n
s , X̃n

s

)
Gj,l(X̃n

s

)(
Wl

s − Wl
s

)]
ds

+
∫ t

0

dx∑
j,l=1

[
nr�jGi,l(X̃n

s , X̃n
s

)
Fj (X̃n

s

)
(s − s)

×
dx∑

k=1

nr�jGi,l(X̃n
s , X̃n

s

)
Gj,k(X̃n

s

)(
Wk

s − Wk
s

)]
dWl

s .
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(b) In this step, we introduce a nicer diffusion and study its convergence, and
prove it shares the limit distribution of the previous SDE. Let

ζ̌
i,n
t = (

P̌
i,n
1 (t) + P̌

i,n
2 (t)

)+
∫ t

0

〈
Q̌

i;n
1 (s), ζ̌ n

s

〉
ds +

dx∑
l=1

∫ t

0

〈
Q̌

i,l;n
2 (s), ζ̌ n

s

〉
dWl

s ,

where

Q̌
i;n
1 (s) = ∇F i(Xs); Q̌

i,l;n
2 (s) = ∇Gi,l(Xs);

P̌
i;n
1 (s) = 1

2

∫ t

0
nr 〈∇F i(Xs),F (Xs)

〉
dA0;n

+
dx∑
l=1

∫ t

0
nr 〈∇F i(Xs),G

·,l(Xs)
〉
dA1;l;n

s

+
∫ t

0
nr 〈∇Gi,l(Xs),F (Xs)

〉
dB0;l,n

s

+
dx∑

k,l=1

1√
2

∫ t

0
nr 〈∇Gi,l(Xs)G

·,k(Xs)
〉
dB2;k,l,n

s ,

P̌
i;n
2 (s) = nr−β

∫ t

0

dx∑
j,k,l=1

ϕ
i,j,l,k
G (Xs) dB3;l,k,j,n

s + nr−β
∫ t

0

dx∑
j=1

R
i,j
G (Xs) dWj

s

+ nr−β
∫ t

0

dx∑
j=1

ϕ
i,j
F (Xs) dB1;j,n

s + nr−β
∫ t

0
Ri

F (Xs) ds,

for RF ,RG,ϕF ,ϕG defined in Proposition 4.11. By (Hs.s.), F,G are bounded;
by Lemma 3.13, ∇F and ∇G are well defined and bounded and have bounded
derivatives; and from the definition of RF ,RG,ϕF ,ϕG are C1

b .
Note that (46) in Proposition 4.10 gives us goodness and convergence of the tu-

ple (nrA0,n, nrA1,n, nrB0,n,B1,n, nrB2,n,B3,n). Hence, by virtue of Theorem 5.4
in Kurtz and Protter (1991a) ζ̌ n(·∧ τn

K) is tight and any limit point will satisfy (58)
on the interval [0, τK ] where τK = (inf{t : |ζ(t)| > K} ∧ T ). Moreover

sup
0≤s≤τK

∥∥P̌ n
s

∥∥, sup
0≤s≤τK

∥∥Q̌n
1(s)

∥∥, sup
0≤s≤τK

∥∥Q̌n
2(s)

∥∥
are tight.

(c) We prove now that both ζ n and ζ̌ n have the same limit on the interval [0, τK ].
By Theorem 4.9, it suffices to prove that sup norm of the difference of the coeffi-
cients converge in probability. By Theorem 4.6 the regularity properties of F and
the mean value theorem we have

E
[

sup
0≤t≤τK

∣∣Qi,n
1 (t) − Q̌

i,n
1 (t)

∣∣] ≤ E
[
sup
x

∣∣D2F(x)
∣∣ sup

0≤t≤τK

∣∣Xt − X̃n
t

∣∣]→ 0.
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The terms of Qn
2,P

n
1 are treated in the same way. On the other hand, we get from

Corollary 4.4, Proposition 3.2, and Burckholder–Davis–Gundy inequality that

sup
0≤t≤T

∣∣∣∣∣nr−β
∫ t

0

[
nβ(F i(·) − F̃ i;n(·, s))−

dx∑
j=1

ϕ
i,j
F (·)νj ;n

s − Ri
F (·)

](
X̃n

s

)
ds

∣∣∣∣∣,

sup
0≤t≤T

∣∣∣∣∣nr−β
∫ t

0

[
nβ(Gi,j (·) − G̃i,j ;n(·, s))

−
dx∑

j,k=1

ϕ
i,j,l,k
G (·)νl,k;n

s − R
i,j
G (·)

](
X̃n

s

)
dWl

s

∣∣∣∣∣
are tight and converge to zero.

Thus, by Theorem 4.9 we will have that ζ i;n and ζ̌ i;n will converge to the same
limit.

(d) Finally, note that τn
K → ∞ and τK → ∞, proving our claim in the full SDE

case.
(e) To prove (i) it suffices to follow the same approach. We obtain an equivalent

development for the ODE with random coefficients case (replacing by zero all the
“g-terms”). The rest of the proof proceeds as before, this time using (45) for the
weak convergence of the tuple. �

5. The EMsDS algorithm. Given the error expansion for the decreasing step
algorithm presented in Proposition 3.8, it seems natural to explore if a Richardson–
Romberg extrapolation may be used to obtain the approximation with the same
convergence properties we have proven. The idea of such a procedure is to decrease
the complexity by performing a linear combination of two (or more) realizations
of the algorithm with carefully chosen parameters. We borrow here the procedure
as defined in Lemaire (2005).

Let λ be a positive real. If {γk} is a sequence of steps satisfying (Hγ ), the
sequence γ λ

k := γk

λ
will also satisfy (Hγ ). We will denote 
λ

M and 

λ,[r]
M the sum

of the γ λ
k and its power as before.

Let us denote by F̃ λ,M(x, q) the approximation as defined in (8) when the co-
efficients {γ λ

k }k∈N∗ are used.
With ς given as in (29), let us define the extrapolated approximation estimator

as

F̂ λ;M(n)(x, q) = 1

λς/2−1 − 1

(
λς/2−1F̃ λ,M(n)(x, q) − F̃M(n)(x, q)

)
.(60)

The first question we might ask is if estimator (60) does converge to the actual
ergodic average, and what type of properties it inherits. To clarify the situation
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consider an extension of (2). Let �Yx = (Y 1;x, Y 2;x)∗ with

Y
1;x
t = y1

0 +
∫ t

0

b(x,Y 1;x
s )

λ
ds +

∫ t

0

σ(x,Y 1;x
s )√

λ
dŴ 1

s ,

(61)

Y
2;x
t = y2

0 +
∫ t

0
b
(
x,Y 2;x

s

)
ds +

∫ t

0
σ
(
x,Y 2;x

s

)
dŴ 2

s .

If Ŵ 1 and Ŵ 2 are independent, then this system satisfies (Hf.s.) with a unique
invariant measure defined by �μx(d �y) = μx(dy1)μx(dy2). If we define

�f (x, �y) := 1

λς/2−1 − 1

(
λς/2−1f

(
x, y1)− f

(
x, y2)),(62)

and defining in an analogous way �h, then it can be seen that �f , �g, �h := �g�g∗ satisfy
(Hs.s.). Moreover if we apply the decreasing step algorithm to �f (resp., �h) in the
extended framework, we obtain the expression (60). Hence, we conclude that the
EMsDS algorithm is equivalent to the MsDS algorithm applied to an extended
system.

Let us denote by X̂n the approximation of the diffusion X using the extrapo-
lated version of the algorithm. In view of the discussion we presented before, the
following result is mainly a corollary of Theorems 4.6 and 4.12, and extends the
main Theorem to the extrapolation algorithm. It shows the advantage of using the
EMsDS algorithm: assuming higher regularity, all the properties of the MsDS al-
gorithm are conserved, but the extrapolated version allows a lower value for θ in
the definition of the sequence γk = γ0k

−θ . More precisely we pass from 1/2 to
1/3 in the ODE case and from 1/3 to 1/5 in the SDE case as minimal θ values.
As a consequence of this reduction, the complexity of the modified version is in
general asymptotically lower than that of the nonextrapolated version (refer to the
efficiency analysis on Section 6.1).

THEOREM 5.1. Let 0 < θ < 1, γ1 ∈ R+ and γk = γ1k
−θ . Assume (Hf.s.) and

(Hs.s.), M(n) defined as in Theorem 2.1, and assume in addition that ry > 5.
Let X̂n be the approximated diffusion where we replace the ergodic estimator (8)
by (60).

(i) (Strong convergence). There exists a constant K such that

• Case g ≡ 0 (ODE with random coefficients):

E
[

sup
0≤t≤T

∣∣Xt − X̂n
t

∣∣2] ≤ Kn−2[(1−θ)∧2θ ]/(1−θ).

• (Full SDE case):

E
[

sup
0≤t≤T

∣∣Xt − X̂n
t

∣∣2] ≤ Kn−[(1−θ)∧4θ ]/(1−θ).
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(ii) (Limit distribution). Assume in addition that ry ≥ 8, and define

Ĉϕ := (λ3 + 1)1/2

λ − 1
; Ĉ1 := γ 2

0 (1 − θ)M−2θ
1

1 − 3θ
;

ϕ̂F (x) := 1{θ=1/5}Ĉϕ

√
�̂F (x); ϕ̂G(x) := 1{θ=1/5}Ĉϕ

√
�̂G(x);

R̂i
F (x) := 1{θ≥1/5}Ĉ1

(
1 − λ−1) ∫ v̄

ς+2,ry

F i (x, y)μx(dy);

R̂
i,j
H (x) := 1{θ≥1/5}Ĉ1

(
1 − λ−1) ∫ v̄

ς+2,ry

H i,j (x, y)μx(dy).

• [ODE case: G(x) ≡ 0]. If θ ≥ 1/3, then ζ̂ n := n(Xt − X̂n) satisfies the limit
distribution result given in Theorem 2.1(a) with new coefficients ϕ̂F instead
of ϕF .

• (SDE case). If θ ≥ 1/5, then ζ̂ n := n1/2(Xt − X̂n) satisfies the limit distri-
bution result given in Theorem 2.1(b) with the coefficients R̂F , R̂G, ϕ̂F and
ϕ̂G instead of RF , RG, ϕF and ϕg , respectively.

PROOF OF THEOREM 5.1. We will deduce the proof only for the full SDE
case the other case being analogous. We assume that ς = 4, which is the most
common case.

(a) As in the proof of Theorem 2.1, the sequence of coefficients satisfies (Hγ ).
Moreover, the EMsDS algorithm is the MsDS algorithm applied to an extended
system, and hence the strong convergence and limit distribution properties are a
consequence from Theorems 4.6 and 4.12: it remains just to express the values of
the functions and constants appearing in Propositions 4.1 and 4.11 in terms of the
original system.

Indeed, recall that

�b(x, �y) =
(

λ−1b
(
x, y1)

b
(
x, y2)

)
; �σ(x, �y) =

(
λ−1/2σ

(
x, y1) 0

0 σ
(
x, y2)

)
.(63)

By (i) in Proposition 4.1 applied to the extended problem [i.e., for the system (61)
and �f defined in (62)], we have a solution for the extended centered Poisson equa-
tion given by

�φFi (x, �y) = (λ − 1)−1(λ2φFi

(
x, y1)− φFi

(
x, y2)),

that is, the solution of equation (13) with function F i under the extended set-up is
a linear combination of the solution in the original set-up. Thus, for any j > 0,

Dj
y
�φFi (x, �y) = 1

λ − 1

(
λ2D

j
yφF i

(
x, y1)

−D
j
yφF i

(
x, y2)

)
.(64)
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It follows that

Dj
y
�φFi (x, �y)E

[〈�b(x, �y)⊗(l−j),
(�σ(x, �y)U0

1
)⊗(2j−l)〉]

= λ2

λ − 1
Dj

yφF i

(
x, y1)E[〈(b(x, y1)

λ

)⊗(l−j)

,

(
σ(x, y1)√

λ
U0

1

)⊗(2j−l)〉]

− 1

λ − 1
Dj

yφF i

(
x, y2)E[〈�b(x, y2)⊗(l−j)

,
(
σ
(
x, y2)U0

1
)⊗(2j−l)〉]

.

Therefore

�̄vl,ry

F i =
(

λ(4−l)/2 − 1

λ − 1

)
v̄

l,ry

F i ,(65)

and we deduce that the terms of the error expansion will be zero for l ≤ 5.
(b) Let �ς be defined by (29) under the extended setup. From (65) we conclude

that �ς ≥ 6, being �ς = 6 the worst case. Hence, we deduce that defining

β0 = 1

2
, β̂1 = 2θ

1 − θ
, β̂2 = θ

1 − θ
,

then


M ≈ γ0M
1−θ
1 n

1 − θ
,



[3]
M


M

≈ γ 2
0 (1 − θ)M−2θ

1 n−2θ/(1−θ)

1 − 3θ
,



[4]
M



[3]
M

≈ γ0(1 − 3θ)M−θ
1 n−θ/(1−θ)

1 − 4θ
,

and so, β1, β̂2, β̂3 are the coefficients appearing in Proposition 4.1 applied to this
setup. We conclude as well that R̂i

F is the function appearing in Proposition 4.11.

Similar developments for H allow us to extend the conclusion to R̂
i,j
H .

(c) Finally, looking at the definition of ϕF and �F from Proposition 4.11
and (64) we get that

�̂
i,j
F (x) = C−1

0

(λ − 1)2

(
λ2

∫ 〈
σ ∗DyφFi , σ

∗DyφFj

〉(
x, y1)μx(dy1)

+
∫ 〈

σ ∗DyφFi , σ
∗DyφFj

〉(
x, y2)μx(dy2));

that is, �̂F (x) = (λ2 + 1)(λ − 1)−2�F (x). We get a similar result for �̂G. We
obtain the value Ĉϕ given in the statement. The claim follows. �

REMARK 5.2. Ĉϕ is a constant multiplying the uncertainty coming from the
decreasing step estimator. Since we would like this quantity as small as possible,
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having an explicit value for Ĉϕ is very useful from a numerical point of view: we
can choose λ to minimize Ĉϕ . We get

λ∗ = 1 + (
√

3 + 1)1/3 + (
√

3 + 1)−1/3 ≈ 3.196

inducing Ĉϕ ≈ 2.64. This is the initial additional cost that has to be paid for the
extrapolation, making the EMsDS algorithm useful for large n, where the reduction
in complexity of the EMsDS is enough to compensate for the higher error.

6. Numerical results.

6.1. Efficiency analysis. We can approximate the execution time of both al-
gorithms, the original and extrapolated versions of the algorithm, by estimating
the total number of operations needed to perform one path approximation of the
effective equation (3). Note that since both algorithms share the same structure,
a similar analysis is valid for both of them: the total cost κ(n) of the algorithm
with n steps may be written as

κ(n) = [
κ1(n, dx, dy) + κ2(dx)

]
n,

where κ1 stands for the cost coefficient estimation at each step of the decreasing
Euler, and κ2 for the cost of calculating the Euler iteration. The latter will be of
order O(dx) in the ODE case and O(d2

x ) for the SDE case.
Let us focus now on κ1. Both algorithms perform M1n

1/(1−θ) iterations for ap-
proximating the diffusion Ỹ and the calculation of estimators F̃ , G̃. For the MsDS
algorithm, each one of these iterations has a cost of O(dydx) in the ODE case,
or O(dyd

2
x ) in the SDE case. In the latter, we need also to perform a Cholesky

decomposition with a cost of O(d3
x ) operations. Hence

κMsDS
1 (n, dx, dy) =

{
O
(
dydxn

1/(1−θ)
)
, in ODE case,

O
([

dyd
2
x + d3

x

]
n1/(1−θ)

)
, in SDE case.

On the other hand, from the definition of the EMsDs algorithm, we get κEMsDS
1 ≤

λκMsDS
1 , and thus both share the same order of complexity, with the only difference

that θ is allowed to be smaller in the extrapolated algorithm.
It may be more interesting to compare the efficiency of both algorithms, that is,

the time spent to obtain a given error tolerance �. We have from Theorems 2.1
and 5.1 that �(n) := O(n−1) for the ODE, and �(n) := O(n−1/2) for the SDE
case. Replacing the minimum possible θ values we obtain the complexity figures
given in Table 1.

How do these figures compare with a straightforward Euler scheme applied
to the original system? For the ODE case, an Euler scheme implemented for
the original system (1) would require a total of (dx + dy)ε−1�−2 operations.
Then the MsDS algorithm is more efficient if ε < �(dx ∨ dy)

−1, and the EMsDS
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TABLE 1
Minimal efficiency (operations for fixed error) of the basic and extrapolated algorithm for ODE and

full SDE cases

ODE ODE (extrapol.) SDE SDE (extrapol.)

θmin 1/2 1/3 1/3 1/5
τmin(�) O(dydx�−3) O(dxdy�−2.5) O([d2

xdy + d3
x ]�−5) O([d2

xdy + d3
x ]�−4.5)

if ε < �1/2(dx ∨ dy)
−1. With respect to the algorithm presented in E, Liu and

Vanden-Eijnden (2005), the efficiency is equivalent to the one obtained when us-
ing a weak scheme of order one for approximating the ergodic averages. The ad-
vantage of our method is that we have in addition to the rate of convergence an
expression for a C.L.T. type result.

In the SDE case, on the other hand, the proposed algorithm will be advan-
tageous in the case in which ε < �3(dx ∨ dy)

−1 for the MsDS version, and
ε < �2.5(dx ∨ dy)

−1 for the EMsDS. In other words, our proposed algorithms
will be more efficient in our regime of interest of a strong scale separation (i.e.,
when ε → 0). It should be remarked that the SDE case is not explicitly studied for
the algorithm in E, Liu and Vanden-Eijnden (2005).

6.2. Numerical tests.

6.2.1. A toy problem. Let us illustrate the main features of the algorithm by
evaluating its behavior when used for solving a toy system for which we are able
to obtain an exact solution. Consider

dY x
t = ((|x|2 + 1

)−1/2 − Yx
t

)+ √
2dW̃t ,

which is an Ornstein–Uhlenbeck system having a unique invariant measure with
normal distribution with mean (|x|2 + 1)−1/2 and variance 1, and define the SDE
system

dXt = F(Xt) dt + G(Xt) dWt,

with

f (x, y) :=
(

1 + y − (|x|2 + 1
)−1/2

1

)
;

g(x, y) :=
√

|x|2 + 1

2|x|2 + 3

(
y2 + 1

)(1 0
1 1

)
,

with F,G defined as before and where W̃ is a real Brownian motion independent
of the planar Brownian motion W . The form of the assumed coefficients is chosen
to satisfy the regularity and uniform bound hypothesis in (Hs.s.) and (Hf.s.) and
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FIG. 1. Q–Q plot comparing the rescaled errors in the simulation with n = 510 and the theoretical
limit distribution (the reference line represents a perfect match). Left: SDE decreasing step. Right:
SDE interpolated.

to give a simple effective equation expression. In fact, it is easily verified that the
exact effective equation is

Xs =
(

x1
0 + s + W 1

s

x2
0 + s + W 1

s + W 2
s

)
.

We will look at the numerical results of applying the decreasing step with
sequence γk = k−1/3 and the EMsDS version with sequence γk = k−1/5 and
λ = 3. Let us examine the distribution of the error at a fixed time T = 1 (i.e.,
ζ = X̃1 − X1). Figure 1 shows a Q–Q plot of the rescaled simulated errors

√
nζ

and the limit distribution error in the studied cases. As shown, the empirical dis-
tributions obtained after 1600 simulations with n = 510 verify the expected limit
behavior.

Figure 2. Left plots in a log–log scale the evolution of the L2 error

ζL2 =
(
E
[

sup
0≤t≤T

|X̃t − Xt |2
])1/2

in function of the number of steps n, comparing both versions of the algorithm.
The empirically obtained slope (close to −0.5 in both cases) represents the power
of the approximation and is the one expected from the convergence theorems.
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FIG. 2. Left: L2 error as a function of steps for the SDE case (log–log scale). Note that the esti-
mated values for the slopes verify the rate of convergence for the algorithm in both implementations.
Right: L2 error as a function of execution time for the SDE case (log–log scale). Although a higher
price must be payed for a small step number, the slope difference signals a change in the asymptotic
order of convergence.

We show as well in Figure 2 (right) a comparison in the efficiency of both meth-
ods (measured as the error in terms of the execution time) of each one of the algo-
rithms. The effect of the extrapolation in the cost of the algorithm is evidenced in
the difference in slope of the empirical plot for both algorithms. Note that solving
for � in Table 1 we get �MsDS = O(τ−0.2) and �EMsDS ≈ O(τ−0.222), values
that are retrieved in the numerical experiment. It is worth observing the difference
in the intercept of both lines, showing that the higher slope comes with a cost in
the initial error. The conclusion drawn from the toy example may well be gener-
alized: the user should consider implementing the extrapolated version only when
requiring a very high precision on the approximation results.

6.2.2. Pricing in finance. We apply now the algorithm to a pricing problem
in finance. Consider the mean-reverting corrected Heston’s stochastic volatility
model presented in Fouque and Lorig (2011) and given by

dXt = rXt dt + �tXt dWx
t ,

dYt = ε−1Zt(m − Yt ) dt + ν

√
2Ztε−1 dW

y
t ,

dZt = κ(θ − Zt) dt + σ
√

Zt dWz
t ,

�t = √
Zt

(
1 + Y 2

t

)
,

where we assume Wx
t ,W

y
t ,Wz

t are one-dimensional Brownian motions with cor-
relations ρxy , ρxz and ρyz. We suppose the model is already written in terms of
the risk neutral probability measure with known parameters and initial conditions
given in Table 2. We are interested in pricing several types of options depending
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TABLE 2
Initial condition and parameters of the model

x0 z0 y0 m ν κ r θ σ ρxy ρyz ρxz

100 0.24 0.06 0.06 1.0 1.0 0.05 1.0 0.39 0 0 −0.33

on the whole trajectory on this model. For this test, we price a floating strike Asian
call (the payoff being ACfloat = ST −T −1 ∫ St dt) and a lookback call with floating
strike (with payoff LCfloat = ST − Smin).

In this test, we compare the algorithm with a simple Euler scheme with different
values for ε. We carry out 6000 Monte Carlo simulations. The results are presented
in Table 3.

Note that the system does not satisfy all the hypothesis (Hf.s.) and (Hs.s.),
particularly it fails to satisfy the boundedness of the coefficients with respect to
the slow variables, and the uniform ellipticity hypothesis. Nevertheless, the MsDS
algorithm seems to work even under these relaxed conditions, and, in addition,
appears to be more stable than the algorithm using small values of ε. Note as well
that for similar values of total operations [represented by the column n × M(n)],
the MsDS algorithm gives better results.

APPENDIX A: TECHNICAL RESULTS

A.1. Weak convergence of tuples.

PROOF OF PROPOSITION 4.10. (a) Let us start by proving (45). Note that the
approximations defined by (9) are defined in the same sample space of the effective

TABLE 3
Simulation values

Method ε n M(n) n × M(n) Asian Lookback

Euler 10−3 5 × 106 1 5 × 104 40,988 81,591
Euler 10−3 107 1 1 × 105 40,503 81,256
Euler 10−3 2 × 107 1 2 × 105 40,086 80,769
Euler 10−4 5 × 106 1 5 × 105 22,091 54,119
Euler 10−4 107 1 1 × 106 21,897 53,806
Euler 10−4 2 × 107 1 2 × 106 20,908 52,095
Euler 10−5 5 × 106 1 5 × 106 18,203 45,947
Euler 10−5 107 1 1 × 107 15,164 39,123
Euler 10−5 2 × 107 1 2 × 107 20,659 51,240

MsDS – 50 3540 1.77 × 105 20,738 47,920
MsDS – 100 10,010 1 × 106 20,681 48,841
MsDS – 200 28,290 5.66 × 106 20,669 49,557
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equation (3) and that we have, thanks to Theorem 4.6, that

sup
0≤s≤t

∣∣X̃n
s − Xs

∣∣ P−→0.

Hence, (
X, X̃n,W

)⇒ (X,X,W).(66)

Now, nA0;n is deterministic, continuous and

lim
n→∞nA

0;n
t = lim

n→∞ 2n

(
t2

2
− �nt�(�nt� − 1)

2n2

)
= t,

and the convergence is uniform in t .
On the other hand, we can easily verify that for any t , and 1 ≤ i ≤ dx ,

√
nB

1;i,n
t = √

n

∫ t

0
νi;n
s ds =

�nt�∑
i=0

1√
n
νi;n
s + nt − �nt�

n3/2 ν
i;n
t ,

but by the Cauchy–Schwarz inequality we have

E

[∣∣∣∣ sup
0≤t≤T

(
nt − �nt�

n3/2 ν
i;n
t

)∣∣∣∣
2]

≤ E

[∣∣∣∣∣
n∑

k=1

1

n3/2

∣∣νi;n
tk

∣∣∣∣∣∣∣
2]

≤ E

[
n

n3

∑∣∣νi;n
tk

∣∣2] → 0.

Then it suffices to study the convergence of the Gaussian martingale
∑�nt�

i=0 n−1/2 ×
νi;n
s . Let 0 ≤ j ≤ dx . Then the independence properties and an application of a

multi-dimensional C.L.T. gives us that
〈�nt�∑

i=0

1√
n
νi;n
s ,

�nt�∑
i=0

1√
n
νj ;n
s

〉
= 1

n

�nt�∑
i=0

νi;n
s νj ;n

s

P−→ δi=j .

We conclude that B1 is (up to a modification) a Brownian motion independent from
W and X, by remarking its Gaussian nature with independent increments property
and covariance matrix as the one of the standard Brownian. Thus (45) follows.
Note that we have shown property (∗) as well, and consequently goodness of the
sequence.

(b) To prove (46) note first that
√

nB2;i,j ;n is a continuous martingale. In view
of the results in Jacod (1997), we examine the component-wise quadratic variation.
By standard techniques we find

〈√
nB2;i,j ;n,

√
nB2;i′,j ;n〉

t = 2n

∫ t

0

(
Wi

s − Wi
s

)(
Wi′

s − Wi′
s

)
ds

P−→ 1{i=i′}t,



A DECREASING STEP METHOD FOR STRONGLY OSCILLATING SDES 1027

and due to independence we find as well that, taking, j �= j ′,〈√
nB2;i,j ;n,Wj 〉

t

P−→ 0,〈√
nB2;i,j ;n,

√
nB2;i,j ′;n〉

t = 0; 〈√
nB2;k;n,Wj 〉

t = 0.

By Theorem 4-1 in Jacod (1997), B2;n convergences stably in law toward B2 a
standard Brownian Motion independent from W ; for the definition of this type
of convergence see Aldous and Eagleson (1978) or Jacod (1997). Since all the
processes are continuous, stable convergence in law implies joint convergence.
Therefore considering (66), we have(

X, X̃n,W,B2;n) ⇒ (
X,X,W,B2).

Note that we proved tightness of the quadratic variation of the martingale
√

nB2;n,
so that it has property (∗), and therefore it is good.

Now, B3;n is also a continuous Gaussian martingale, and we can make use
again of Theorem 4-1 in Jacod (1997). Let us check the convergence in prob-
ability of its quadratic variation toward tI and of its quadratic covariation with
respect to the other martingales. Indeed, it is straightforward that if j �= j ′,
〈B3;i,j ;n,B3;i′,j ′;n〉t = 0, while we deduce from the multidimensional C.L.T.

〈B3;i,j ;n,B3;i′,j ;n〉t P−→1{i=i′}t. As before this also shows goodness of B3;n. Us-
ing the same techniques we prove for any i, j, l that 〈B3;l,j ;n,

√
nB2;i;n〉t =

0, and 〈B3;l,j ;n,W 〉 = 0. Hence(
X, X̃(n),W,B2;n,B3;n) ⇒ (

X,X,W,B2,B3).
We prove now the convergence in probability toward zero of the remaining terms
in the left side tuple in (46).

Since n−1/2 → 0 and nA0,n ⇒ A0, we have n1/2A0,n ⇒ 0 and thus n1/2 ×
A0,n P−→0.

On the other hand, for any t ≥ 0 and k,

E
[〈√

nB0;k;n,
√

nB0;k;n〉
t

] = n

∫ t

0

(
s − s

)2
ds

=
�nt�∑
i=0

n

∫ 1/n

0
r2 dr + n

∫ t−�nt�/n

0
r2 dr

≤
�nt�+1∑

i=0

1

3n2 = O
(
n−1).

So that by the Burckholder–Davis–Gundy inequality, E[sup0≤t≤T |√nB0;n|2]
tends to zero as n → ∞, implying

√
nB0;n P−→0. In addition, it can be readily

seen that

E
[∣∣nA1;k;nA1;j ;n∣∣]= 0
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for j �= k, so that we have by using convex and Cauchy–Schwarz inequalities,

E
[

sup
0≤t≤T

∣∣√nA
1;n
t

∣∣2] ≤ nT

dx∑
j=1

∫ T

0
E
[(

Wj
s − W

j
ts

)]≤ dxT

2
,

and hence, by the law of large numbers,
√

nA1;n P−→E[√nA1;n] = 0.

Finally, as
√

nB1;n converges in law to a Brownian, B3;n P−→0. Therefore (46)
is proved. �

APPENDIX B: CHOLESKY DECOMPOSITION

PROOF OF LEMMA 3.4. Since G + �G is the lower triangular factor of H +
�H , we have

(Gi,i + �Gi,i)
2 = Hi,i + �Hi,i −

i−1∑
k=1

(Gi,k + �Gi,k)
2.

By algebraic manipulation and the fact that G is the Cholesky decomposition of H ,
we get

�Gi,i = �Hi,i − 2
∑i−1

k=1 �Gi,kGi,k

2Gi,i

−
(
(�Gi,i)

2 +
i−1∑
k=1

(�Gi,k)
2

)
.

The first claim follows by controlling the last term by induction in i, Theorem 3.3
and norm equivalence given by (11). The case i > j is proved in the same way.

�
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