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Abstract. I describe an approach to compiling common idioms in R code
directly to native machine code and illustrate it with several examples. Not
only can this yield significant performance gains, but it allows us to use
new approaches to computing in R. Importantly, the compilation requires no
changes to R itself, but is done entirely via R packages. This allows others
to experiment with different compilation strategies and even to define new
domain-specific languages within R. We use the Low-Level Virtual Machine
(LLVM) compiler toolkit to create the native code and perform sophisticated
optimizations on the code. By adopting this widely used software within R,
we leverage its ability to generate code for different platforms such as CPUs
and GPUs, and will continue to benefit from its ongoing development. This
approach potentially allows us to develop high-level R code that is also fast,
that can be compiled to work with different data representations and sources,
and that could even be run outside of R. The approach aims to both provide
a compiler for a limited subset of the R language and also to enable R pro-
grammers to write other compilers. This is another approach to help us write
high-level descriptions of what we want to compute, not how.

Key words and phrases: Programming language, efficient computation,
compilation, extensible compiler toolkit.

1. BACKGROUND & MOTIVATION

Computing with data is in a very interesting period
at present and this has significant implications for how
we choose to go forward with our computing platforms
and education in statistics and related fields. We are
simultaneously (i) leveraging higher-level, interpreted
languages such as R, MATLAB, Python and recently
Julia, (ii) dealing with increasing volume and complex-
ity of data, and (iii) exploiting, and coming to terms
with, technologies for parallel computing including
shared and nonshared multi-core processors and GPUs
(Graphics Processing Units). These challenge us to in-
novate and significantly enhance our existing comput-
ing platforms and to develop new languages and sys-
tems so that we are able to meet not just tomorrow’s
needs, but those of the next decade.

Duncan Temple Lang is Associate Professor, Department of
Statistics, University of California at Davis, 4210 Math
Sciences Building, Davis, California 95616, USA (e-mail:
duncan@r-project.org).

Statisticians play an important role in the “Big Data”
surge, and therefore must pay attention to logistical and
performance details of statistical computations that we
could previously ignore. We need to think about how
best to meet our own computing needs for the near
future and also how to best be able to participate in
multi-disciplinary efforts that require serious comput-
ing involving statistical ideas and methods. Are we best
served with our own computing platform such as R (R
Core Team, 2013)? Do we need our own system? Can
we afford the luxury of our own system, given the lim-
ited resources our field has to develop, maintain and
innovate with that system? Alternatively, would we be
better off reimplementing R or an R-like environment
on a system that is developed and supported by other
larger communities, for example, Python or Java? Or
can we leave it to others to build a new, fast comput-
ing environment that we can leverage within the field
of statistics? Would “doing it right” give us an opportu-
nity to escape some of the legacy in our current systems
and position ourselves for more innovation? Would de-
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veloping a new system splinter our already small com-
munity and reduce our effectiveness in disseminating
new statistical methods as effectively as we do through
R’s excellent package mechanism?

I have wrestled with these questions for over a
decade. I don’t believe there is a simple answer as to
what is the best way to proceed. It is as much a so-
cial issue as a technical one. The R community is an
amazing and valuable phenomenon. There is a large R
code base of packages and scripts in widespread use
for doing important science. Even if new systems do
emerge and replace R, this will take several years. We
need significant improvements in performance to make
R competitive with other systems, at least for the near
future. We must improve R’s performance to allow us
to continue to deal with larger and more complex data
and problems. In this paper, I discuss one direct ap-
proach to improve the performance of R code that is
extensible and enables many people to further improve
it.

The essence of the approach I am suggesting is con-
ceptually quite simple and emerged in numerous other
languages and platforms, around the same time we first
started implementing it for R. The idea is that we com-
pile R code directly to low-level native machine in-
structions that will run on a CPU or GPU or any device
we can target. Instead of insisting that R code be eval-
uated by the one and only R interpreter, we may gener-
ate the code to perform the equivalent computations in
a quite different way. We can dynamically compile fast
native code by combining information about the code,
the data and its representation being processed by that
code, the available computing “hardware” (i.e., CPU
or GPU or multi-core), the location of the different
sources of the data, whether we need to handle missing
values (NAs) or not, and so on. This is a form of just-in-
time (JIT) compilation. It leverages additional knowl-
edge about the context in which code will be run. It
maps the code to low-level machine instructions rather
than having it evaluated by a high-level interpreter.

The approach presented here is quite different from
how programmers typically improve performance for
R code. They manually implement the slow, compu-
tationally intensive parts in C/C++, and call these
routines from R. I call this “programming around R.”
Instead, I am trying to “compile around R.” In this ap-
proach, statisticians use familiar R idioms to express
the desired computations, but the compiler infrastruc-
ture generates optimized instructions to realize the in-
tended computations as efficiently as possible on the

hardware platform in use. The input from the statisti-
cian or analyst to this process is R code, not low-level
C/C++ code. This is good because humans can more
easily understand, debug, adapt and extend code writ-
ten in R. Furthermore, the compiler can “understand”
what is intended in the high-level code and optimize
in quite different ways. This also allows the code to
be optimized in very different ways in the future. The
high-level code says what to do, but not how to do it.
How is left to the compiler.

What makes this approach feasible and practical now
is the availability of the Low-Level Virtual Machine
Compiler Infrastructure (LLVM) (Lattner and Adve,
2004). LLVM is the winner of the 2012 Association for
Computing Machinery System Software Award (the
same award conferred on the S language in 1999) and is
a highly extensible compiler toolkit. LLVM is a C++
library we can integrate into R (and other languages) to
generate native code for various different CPUs, GPUs
and other output targets. The ability to integrate this
very adaptable and extensible tool into high-level lan-
guages is a “game changer” for developing compilation
tools and strategies. We can use a technology that will
continue to evolve and will be developed by domain
experts. We can adapt these to our purposes with our
domain knowledge. We do this within an extensible
R package rather than in the R interpreter itself. This
leaves the compilation infrastructure in “user” space,
allowing development of any new compilation strate-
gies to be shared without any changes to the R inter-
preter. This contrasts with R’s byte-code compiler and
the byte-code interpreter which is part of the fixed R
executable.

The Rllvm (Temple Lang, 2010b) package provides
R bindings to the LLVM C++ API. We can use this
to generate arbitrary native code. The RLLVMCompile
(Temple Lang and Buffalo, 2011) package provides a
simple “compiler” that attempts to translate R code to
native code by mapping the R code to instructions in
LLVM, leaving LLVM to optimize the code and gener-
ate the native machine code.

Before we explore some examples of how we can
use LLVM in R to improve performance and change our
computational strategies for certain types of problems,
it is worth thinking a little about the potential implica-
tions of fast R code:

• Alternative data models. On a practical level, if we
can compile scalar (i.e., nonvectorized) R functions
so that they are almost as fast as C/C++ code, we
can use them to process individual observations in
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a streaming or updating manner. This means we can
escape the highly-vectorized or “all data in memory”
approaches that R strongly rewards.

• Exporting code to alternative execution environ-
ments. We can write R code and then export it to run
in other different systems, for example, databases,
Python, JavaScript and Web browsers. We can map
the R code to LLVM’s intermediate representation
(IR). We can then use emscripten (Zakai, 2010)
to compile this directly to JavaScript code. For other
systems, we can share the IR code from R and they
can use their own LLVM bindings to compile it to
native code for the particular hardware.

• Richer data structures. R provides a small number
of primitive data types, for example, vectors, lists,
functions. We can currently use these to create new
aggregate or composite data structures. However, we
can only introduce new and different data structures
such as linked lists and suffix trees as opaque data
types programmed in native (C/C++) code. When
we compile code to native instructions, we also have
the opportunity to have that new code use these dif-
ferent data structures and to represent the data differ-
ently from R. The same R code can be merged with
descriptions of new data types to yield quite different
native instructions that are better suited to particular
problems.

• Templating concepts. Our ability to create native
code from R code allows us to think about R func-
tions or expressions differently. They are descrip-
tions of what is to be done, without the specifics of
how to do them. An R compiler can rewrite them
or generate code that will behave differently from
the R interpreter but give the same results (hope-
fully). The functions are “templates.” The compiler
can use knowledge of the particular representation of
the data the functions will process to generate the na-
tive code in a more intelligent manner. For example,
the code may access elements of a two-dimensional
data set—rows and columns. There are two very dif-
ferent representations of this in R— data frames and
matrices. How the individual elements are accessed
for each is very different. The compiler can generate
specialized code for each of these and might even
change the order of the computations to improve ef-
ficiency (cache coherency) for these representations.
The function is not tied to a particular data represen-
tation.

In summary, compiling R programs through LLVM
yields novel computational potentials that are directly

relevant to improving statistical learning and commu-
nication in the big data era. Compiling high-level code
to native code is used in many systems. Julia is an inter-
esting modern project doing this. NumPy (Jones et al.,
2001) in Python is another. Several years ago, Ross
Ihaka and I explored using LISP (Ihaka and Temple
Lang, 2008) as the platform for a new statistical com-
puting platform. The same ideas have been used there
for many years and the performance gains are very im-
pressive.

A very important premise underlying the approach
in this paper is that the R project and its large code
base are important, and will be for at least another 5
years. Users are not likely to immediately change to a
new system, even if it is technically superior. For that
reason, it is important to improve the performance of
R now. It is also important to allow developers outside
of the core R development team to contribute to this
effort and to avoid many forked/parallel projects. For
this, we need an extensible system within R, and not
one that requires continual changes to the centralized
R source code.

In addition to focusing on the immediate and near-
term future and improving R, we also need to be explor-
ing new language and computing paradigms within the
field of statistics. Julia is an interesting modern project
doing this. We need to foster more experiments so new
ideas emerge. To do this, we also need to increase the
quantity and quality of computing within our curricula.

Section 2 constitutes the majority of this paper. In it I
explore different examples of computing in R and how
compiling code can make the computations more effi-
cient, both by simply obtaining faster execution speed
and also by allowing us to change how we approach the
problem. In Section 3 I discuss some additional gen-
eral strategies we can exploit to improve computations
in the future. I briefly discuss other exciting research
projects to improve R’s efficiency and contrast them
with the LLVM approach. I outline in Section 6 a road
map of the ongoing work on the LLVM approach and
other related projects as part of our future activities.
The aim of this is to illustrate the feasibility of the en-
tire approach.

In this paper I focus on reasonably standard R code
and approaches that can be improved by generating na-
tive code. The semantics of the generated code are the
same as the original R code. The approach also allows
us to develop new languages and semantics within the
compilation framework and to explore different com-
putational models. However, the examples discussed in
this paper stay within R’s existing computational model
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in order to anchor the discussion and avoid too many
degrees of freedom becoming a distraction. I do hope
that we will explore new semantics and language fea-
tures within R via compilation.

2. ENHANCING R WITH ADVANCED
COMPILATION TOOLS AND METHODS

In this section we’ll explore some examples of how
we can write code in R and compile it to machine code.
These explore different strategies and illustrate how we
can approach computations differently when we have
the option to compile code rather than only interpret it.
We have chosen the problems for several reasons. They
are each reasonably simple to state, and they illustrate
the potential benefits of compilation. Like most bench-
marks, some of the examples may not reflect typical
use cases or how we would do things in R. However,
most of these problems are very concrete and practi-
cal, and represent ways we would like to be able to
program in R, were it not for the performance issues. In
this way, the examples illustrate how we can continue
to use R with an additional computational model and
can overcome some of the interpreter’s performance is-
sues while still using essentially the same R code.

NOTE. In the following subsections, we present
absolute and comparative timings for different ap-
proaches and implementations to the different tasks.
These timings were performed on three different ma-
chines. We used a MacBook Pro running OS X
(2.66 GHz Intel Core i7, 8 GB 1067 MHz DDR3) and
also two Linux machines. The first of these Linux ma-
chines is an older 2.8 GHz AMD Opteron, 16 GB. The
second is a much more recent and faster machine—
3.50 GHz Intel Core i7-2700K, with 32 GB of RAM.
Additionally, the different machines have different
compilers used to compile R itself and these may im-
pact the timings. We used GCC 4.2.1 on OS X, and
GCC 4.3.4 on the first Linux machine and both GCC
4.8.0 and clang on the second Linux box. In all cases,
R was compiled with the -O3 optimization level flag.
The absolute times are quite different across machines,
as we expect, and the within-machine relative perfor-
mance of our LLVM generated code to native code
differs between OS X and Linux. However, the within-
machine results are very similar across Linux ma-
chines. Finally, our current steps to optimize the native
code we generate with LLVM are quite simple and we
expect to improve these in the near future.

We have not included the time to compile the code
in our measurements. There are two steps in this—
compiling the R code to intermediate representation
(IR) and then compiling the IR to native code. The for-
mer can be done once, and the latter for each R session
and is done in LLVM’s C++ code. There are several
reasons for omitting these steps in the timings. First,
our focus is on tasks that take a long time to run in
R, for example, many hours or days. Compilation time
will be on the order of, at most, a few minutes and so
the compilation time is negligible. Second, we expect
that the compiled code will be reused in multiple calls
and so the overhead of compiling will be amortized
across calls. We have also ignored the time to byte-
compile R functions, or compile and install C/C++
code to be used in R packages.

2.1 The Fibonacci Sequence

The Fibonacci sequence is an interesting mathe-
matical sequence of integers defined by the recur-
rence/recursive relation

Fn = Fn−1 + Fn−2, n ≥ 0

with F0 = 0 and F1 = 1. We can implement this as an
R function in an easy and obvious manner as

fib = function(n)
{
if (n < 2L)

n
else

fib(n - 1L) + fib(n - 2L)
}

For simplicity, we don’t verify that n is nonnega-
tive, assuming the caller will provide meaningful in-
puts. This maps the mathematical description of the
sequence to a computational form essentially in a one-
to-one manner. This is a good thing, as it makes the
code and computations easy to understand, debug and
maintain. However, this is a scalar function and not
vectorized, meaning that it computes the value of the
Fibonacci sequence for a single integer value rather
than element-wise for a vector of inputs. This makes it
slow in R if we want to compute multiple values from
the sequence, for example, apply it to each element of a
vector. Instead of implementing the function in this nat-
ural form, to gain performance, we would look to other
implementations. Since the sequence is described by a
recurrence relationship, there is a simple closed-form
formula for computing the nth value of the sequence
which can be easily implemented in R as a vectorized
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function of n. Alternatively, we might use memoization
to remember results computed in previous calls to the
function to avoid repeating computations. We might
even use a lookup table of pre-computed results for
common input values, or some combination of these
approaches. The key is that to get good performance,
we have to think about the problem quite differently.
Instead, we’ll explore how we make the simple imple-
mentation above perform better and hope to avoid hav-
ing to change our entire approach or rely on R’s other
vectorized operations.

We use the function compileFunction() in the
RLLVMCompile package to create a native compiled
version of the fib() function with

fib.ll = compileFunction(fib,
Int32Type, list(n = Int32Type))

We have to specify the type of the return value and also
the type of the input(s), that is, n in this case. For this
function, both the return type and the input are regular
integer values corresponding to the 32-bit integer type
Int32Type. We could use a 64-bit integer by using
the type Int64Type if we wanted to deal with larger
numbers. In fact, we can create two separate and differ-
ent versions of this function with different types with
two calls to compileFunction(). This is a simple illus-
tration of how easy it is to adapt the same R code to
different situations and create different compiled rou-
tines with different characteristics.

compileFunction() can return an R function which
we can invoke directly. However, by default, it cur-
rently returns an object representing the compiled rou-
tine in LLVM. We can invoke the routine using this ob-
ject and the .llvm() function, analogous to the .Call()
and .C() functions in R. So

.llvm(fib.ll, 30)

calls our compiled routine and returns the value
832,040. Unlike the .Call()/.C() functions, the .llvm()
function knows the expected types of the routine’s pa-
rameters and so coerces the inputs to the types expected
by the routine. In this case, it converts the R value 30
from what is a numeric value to an integer.

After verifying that the routine gives the correct re-
sults, we can explore the performance of the code. This
recursive function is very computationally intensive.
When calculating, for example, fib(30), we calcu-
late fib(28) twice [once for each of fib(30 -
1) and fib(30 - 2)] and, similarly, we compute
fib(27) multiple times and so on. This repetition is
one of the reasons the code is so slow. We’ll compare
the time to evaluate fib(30) using three different
versions of the fib() function: the original interpreted
function, the LLVM-compiled routine (fib.ll) and a
version of fib() that is compiled by R’s byte-compiler.
The LLVM-compiled routine is the fastest. Table 1
shows the elapsed times for each and a ratio of the time
for each function relative to the time for the interpreted
function. These convey the relative speedup factor. We
see that on a Macbook Pro, the LLVM-compiled routine
is 600 times faster than the R interpreter. On a Linux
machine, the speedup is a bit smaller, but still very sig-
nificant at a factor of 500. While we have attempted
to reduce the variability of these timings, we have ob-
served different speedups ranging from 400 to 600 on
OS X and 230 to 540 on Linux. The timings we report
here are the most recent (rather than the “best”).

Again, this is a simple example and not necessar-
ily very representative of how we would calculate the
Fibonacci sequence in production code. However, the
ability to express an algorithm in its natural mathemati-
cal form makes it easier to program, verify and extend.
We would very much like to be able to write code in
this manner, without sacrificing good run-time perfor-
mance.

TABLE 1
Timings for computing Fibonacci Sequence Values

OS X Linux 1 Linux 2

Time Speedup Time Speedup Time Speedup

Interpreted R code 80.49 1.00 112.70 1.0 51.780 1.0
Byte-compiled R code 31.70 2.53 45.85 2.5 21.620 2.4
Rllvm-compiled code 0.12 653.90 0.21 526.4 0.097 531.0

These are the timings for a call to fib(30) using the regular R function, the byte-compiled version and the LLVM-compiled version. To
improve the accuracy of the timings, we calculate the duration for 20 replications for the two slower functions and 200 replications of the
LLVM-compiled routine and divided the duration by 10. The LLVM-compiled version is clearly much faster.



186 D. TEMPLE LANG

2.2 2-Dimensional Random Walk

Ross Ihaka developed a very instructive example of
writing straightforward R code compared with clever,
highly vectorized R code as a means to illustrate pro-
filing in R and how to make code efficient. The task is
simulating a two-dimensional random walk. It is very
natural to write this as a loop with N iterations corre-
sponding to the N steps of the walk. For each step, we
toss a coin to determine whether we move horizontally
or vertically. Given that choice, we toss another coin to
determine whether to move left or right, or up or down.
Then we calculate and store the new location. We’ll
call this the naïve approach and the code is shown in
Figure 1. After several refinements based on profiling
and nontrivial knowledge of R, Ihaka defines a very ef-
ficient R implementation of the random walk, shown
in Figure 2. It removes the explicit loop, samples all N
steps in one call to sample(), and determines the po-
sitions using two calls to the cumsum() function. This
makes very good use of several of R’s vectorized func-
tions which are implemented in C code and therefore
fast.

We manually compiled the naïve implementation us-
ing Rllvm and, similarly, used R’s byte-compiler to
create two compiled versions of this function. We then
simulated a 10 million step random walk using each
of the original naïve function, the byte-code compiled
function, the fully vectorized version and the LLVM-
compiled version. Table 2 shows the relative speedups.

rw2d1 =
function(n = 100)
{

xpos = ypos = numeric(n)
truefalse = c(TRUE, FALSE)
plusminus1 = c(1, -1)
for(i in 2:n) {

# Decide whether we are moving
# horizontally or vertically.

if (sample(truefalse, 1)) {
xpos[i] = xpos[i-1] +

sample(plusminus1, 1)
ypos[i] = ypos[i-1]

}
else {

xpos[i] = xpos[i-1]
ypos[i] = ypos[i-1] +

sample(plusminus1, 1)
}

}
list(x = xpos, y = ypos)

}

FIG. 1. The naïve implementation of the 2-D random walk.

rw2d5 =
# Sample from 4 directions, separately.
function(n = 100000)
{

xsteps = c(-1, 1, 0, 0)
ysteps = c( 0, 0, -1, 1)
dir = sample(1:4, n - 1, replace = TRUE)
xpos = c(0, cumsum(xsteps[dir]))
ypos = c(0, cumsum(ysteps[dir]))
list(x = xpos, y = ypos)

}

FIG. 2. The fast, vectorized implementation of the 2-D random
walk.

We see that the manually vectorized R function is 175
times faster than the naïve implementation, illustrating
how important vectorization is to make R code effi-
cient. However, we also see that compiling the naïve
implementation with LLVM outperforms even the vec-
torized version, taking about between 55% to 65% of
the time of the vectorized version. This is probably due
to the compiled code using a single loop, while the vec-
torized version has two calls to cumsum() and hence at
least one additional C-level loop over the N steps.

2.3 Sampling a Text File

Suppose we have one or more large comma-separated
value (CSV) files. For example, we can download air-
line traffic delay data for each year as an approximately
650 megabyte CSV file from the Research and Inno-
vative Technology Administration (RITA), part of the
Bureau of Transportation, at http://www.transtats.bts.
gov/DL_SelectFields.asp?Table_ID=236. Rather than
working with the entire data set, we might choose to
take a random sample of the observations. (We don’t
concern ourselves here with the appropriateness of a
simple random sample.) We’ll also assume that we
know the number of observations in the CSV file.

How do we efficiently extract a sample of the lines
from the file? We could use UNIX shell tools, but it is
difficult to randomly generate and specify the lines to
sample. Sampling the indices is something we want to
do in R, but then passing all of these to a shell com-
mand is awkward, at best. Alternatively, we could do
the entire sampling in R. We could read the entire file
into memory [via the readLines() function] and then
subset the ones we want. However, this requires a sig-
nificant amount of memory. We first store all of the
lines, then make a copy of the ones we want and then
discard the larger vector. This may not be feasible, as
we may not have enough memory, or it may simply be
too slow.

http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236
http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236
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TABLE 2
Timings for simulating a 2-D Random Walk

OS X Linux 1 Linux 2

Time Speedup Time Speedup Time Speedup

Interpeted R code 171.08 1.0 196.6 1.0 100.3 1.0
Byte compiled code 123.92 1.4 120.8 1.6 60.51 1.66
Vectorized R code 0.97 176.5 1.8 106.8 0.63 159.46
Rllvm-compiled code 0.52 329.3 1.1 180.3 0.40 250.12

We generate 10 million steps for each approach. We compare a manually vectorized implementation in R code with a naïve version written
in R, both a byte-compiled and LLVM-compiled version of that naïve function. The vectorized version is 175 times faster than the regular R
function. However, the LLVM-compiled version outperforms the vectorized version, most likely by removing one C-level loop.

We can think of different strategies. One is to first
identify the indices of all of the lines we want in our
sample, and then read the file in chunks until we get
to a line that is in our sample. We store that line and
continue to read from where we are up to the next line
in our sample, and so on. To make this work, we need
to be able to continue to read from where we currently
are in the file. We can use an R file connection to do
this.

Our first step is to generate the vector of the line
numbers we want to sample using, for example,

lineNum = sort(sample(1:N,
sampleSize))

where N is the number of lines in the CSV file. We
have sorted the line numbers, as we will read the sam-
ple lines in the file sequentially. The next step is to de-
termine how many lines there are between successive
lines in our sample. We can compute this in R with

lineSkips = diff(c(0, lineNum))

which gives a vector of the pairwise difference between
successive elements. For example, suppose the first two
lines we want to sample are 60 and 200. The first two
elements in lineSkips will be 60 and 140. We can
then read the first two lines in our sample with

con = file("2012.csv", "r")
readLines(con, 60)[60]
readLines(con, 140)[140]

Each element of lineSkips tells us how many
lines to read to get the next line in our sample. So next
we need a function that can read that many lines and re-
turn the last of these. The following function does this:

readTo = function(numLines, con)
readLines(con, numLines)[numLines]

The final step to obtaining our entire sample is to call
readTo() for each element of lineSkips, for exam-
ple,

readSelectedLines =
function(lineSkip, file)
sapply(lineSkip, readTo, file)

To obtain our sample, we call readSelectedLines(),
passing it the variable lineSkips and our open con-
nection:

con = file("2012.csv", "r")
sample =

readSelectedLines(lineSkips, con)

Each of these functions is concise and efficient since
sapply() is essentially implemented as a C-level loop
within the R interpreter. Using the connection and
readLines() to read blocks of lines in readTo() is effi-
cient as it uses C code within R. Unfortunately, it does
involve reading, allocating, storing, subsetting and dis-
carding a potentially large character vector returned by
each call to readLines(). However, we only want a sin-
gle line at the end of that vector in each call. While
each call involves significantly fewer lines than reading
the entire file, allocating a large character vector still
slows the computations, as it extensively involves the
memory manager in R. A different approach to avoid
the memory issue is to change the readTo() function so
that it reads each line individually and then returns the
last one. We could change it to

readTo =
function(numLines, con)
{

ans = ""
for(i in 1:numLines)

ans = readLines(con, 1)
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ans
}

Again, this is straightforward and easy to understand.
Unfortunately, it is extremely slow as we are now loop-
ing in R over almost every line in the file.

The idea of reading one line at a time would work
well if we could avoid the overhead of the R loop mech-
anism. We can do this if we compile this new version of
readTo() into native code. We can almost do this now,
but we need to have an equivalent of readLines() to
read a single line of a file. This is exactly what the stan-
dard C routine fgets() does. Similar to a connection,
we pass fgets() a pointer to an opaque C-level FILE
data structure, and it puts the contents of the next line
it reads into a location in memory that we also provide.
For simplicity of exposition, we will define our own
function Fgets() in R as a proxy to call fgets() with

Fgets = function(file)
fgets(ptr, 1000L, file)

This is R code and it just assumes there is a function
named fgets() and that ptr is somehow (the address
of) an array in memory with 1000 character elements,
that is, space for a long string. We won’t run this code
in R, so these variables [ptr, file and fgets()] don’t
actually have to exist in R. Instead, we will allocate
them in LLVM for the compiled, native routine we gen-
erate from Fgets().

We compile the Fgets() function in an LLVM mod-
ule, a collection of routines and variables, using com-
pileFunction(). We also define the module-level
“global” variable ptr to be the pointer to the array we
want, after creating the actual array of 1000 characters
as another global variable. When compiling Fgets(),
we also need to tell the compiler about the signature of
the external fgets() routine so that it can make the call
to fgets() correctly. We do this via

mod = Module()
FILEType = pointerType(Int32Type)
declareFunction(list(StringType,

StringType, Int32Type, FILEType),
"fgets", mod)

[While we have done this explicitly, we could automate
this step using the RCIndex (Temple Lang, 2010a)
package to obtain the signature programmatically.] We
also need to tell the LLVM run-time engine how to lo-
cate the fgets() routine which we do with

llvmAddSymbol("fgets")

Note that in our Fgets() function, we assumed that
the longest line was less than 1000 characters. We can
specify a different length if we knew or suspected oth-
erwise. Similarly, we didn’t provide any error checking
about whether we had reached the end of the file. This
is because we are assuming that the caller knows the to-
tal number of lines and is sampling only up to, at most,
that number. This is an example of the context-specific
shortcuts we can make when compiling the code for
a particular situation and not writing general, robust
code which can be used in many different situations.
We could also tell the compiler to add these tests for
us, if we wanted, but can avoid the extra computations
when we know they are redundant.

How do we obtain the instance of the FILE data type
to pass to the compiled Fgets() routine? We can use the
C routine fopen() and again, we can write an R func-
tion that mimics that and then compile it. However, the
RLLVMCompiler package has a function to automate
the creation of that proxy function in R, if we know
the signature of the C routine of interest. So this exam-
ple illustrates how we can dynamically create bindings
to existing compiled routines in different libraries. In
the case of FILE, we can also use the existing function
CFILE() in the RCurl (Temple Lang, 2002) package.

So now we can read a single line from an open FILE
object in R via our compiled Fgets() routine. We can
redefine our readTo() function as

readTo =
function(numLines, con)
{
ans = ""
for(i in 1:numLines)

ans = Fgets(con)
ans

}

This is almost identical to the original function above
but replaces the call readLines(con, 1) with
Fgets(con). Now we can compile this into native
code via compileFunction() and the resulting code will
be quite fast.

We now have a fast replacement for reading up to
the next line in our sample. The last step is to make
readSelectedLines() fast. Recall that this was imple-
mented simply as sapply(lineSkip, readTo,
file). When we compile this as returning an R char-
acter vector, our compiler recognizes the sapply() call
and converts this into a loop in native code and popu-
lates and returns a new R character vector.



ENHANCING R WITH ADVANCED COMPILATION TOOLS AND METHODS 189

TABLE 3
Timings for sampling a CSV file

OS X Linux 1 Linux 2

Time Speedup Time Speedup Time Speedup

Interpreted R loop & readLines() 68.93 1.0 103.25 1.0 42.78 1.0
Rllvm-compiled loop & Fgets() 3.278 21.09 6.54 15.8 2.59 16.5
C code (FastCSVSample) 3.0 22.97 6.28 16.4 2.40 17.8

We use vectorized code in R to read blocks of data and extract the final line of each block. The LLVM approach compiles simple R functions
that read one line at a time. The FastCSVSample does the same thing with manually written C code. The compiled approaches avoid the mem-
ory usage related to readLines() and see a nontrivial speedup. The C-code in the FastCSVSample package outperforms the LLVM-compiled
version, but both approaches outperform the approach using R’s connections and readLines() functionality which are also implemented with
C code.

In summary, we have compiled three R functions
[Fgets(), readTo() and readSelectedLines()] and these
now allow us to read one line at a time and use the
minimal amount of memory to collect the lines for our
sample, but using two loops in native code rather than
in R.

We can now compare the performance of our R-
based approach using readLines() to consume chunks
of lines and our compiled version that reads one line
at a time. In addition to these two approaches, we also
have a manual C implementation essentially equivalent
to our LLVM-compiled approach in the FastCSVSam-
ple package (Temple Lang, 2013). Our timings are
based on extracting a sample of one hundred thousand
lines uniformly from a CSV file that contains one hun-
dred million lines—the same lines for each approach.
The elapsed times are given in Table 3. We see that
our compiled approach of reading one line at a time
is around twenty times faster than collecting many un-
necessary lines with readLines() and looping in R, even
with sapply(). The difference between the LLVM and
native C approaches may be inherent, but also possibly
due to different optimization techniques that we may
be able to enhance with LLVM. In short, we can out-
perform R’s native vectorized code by compiling our
relatively straightforward R code.

The exposition of this example may make it seem
more complicated than it is. Essentially, we want to ef-
ficiently read one line of a file at a time in order to get
to the next line in our sample. We compiled the Fgets()
function for this and then compiled two other func-
tions in R to perform loops over the number of lines.
The important implications from this example is that
we can sidestep R’s memory management, get fine-
grained control over computations using dynamically
generated routines, and we can use existing native rou-
tines and data structures, such as fgets() and FILE, in

our R code that will be compiled. We could already dy-
namically call native routines directly from R using, for
example, rdyncall (Adler, 2012) or Rffi (Temple Lang,
2011). What is important here is that we are also com-
piling the iterations and not doing them in R.

2.4 Fusing Loops

Consider computing the log-likelihood for a given
vector of observations x and a density function, say,
dnorm(). In R, we can write the log-likelihood very ef-
ficiently as

sum(log(dnorm(x, mu, sigma)))

Indeed, we could reduce this to sum(dnorm(x,
mu, sigma, log = TRUE)), but the purpose of
this example is to consider a general sequence of calls
to vectorized R functions.

Each of the functions dnorm(), log() and sum() are
built-in to R and are implemented in C code, and two of
them use the very efficient .Primitive() mechanism. As
a result, this code seems to be as fast as it can be. This
is true given the way R interprets the expression, one
sub-expression at a time. However, there are two ways
we can make this more efficient by compiling such
an expression. The first is by reducing the number of
loops (in C) from three to one. Generally, if we have n

nested-calls to element-wise and vectorized functions,
we can reduce n loops to one. Second, we can typi-
cally eliminate at least one allocation of a potentially
large vector. A third way we might speed up the com-
putations is to use parallel capabilities such as a GPU
or multiple cores or CPUs. We won’t discuss this here,
but it is conceptually quite straightforward to do gen-
erally when we are compiling the code dynamically.
Indeed, the ability to programmatically combine a par-
ticular function with a general parallel strategy makes
it more expedient than writing it ourselves in C/C++.
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How does R evaluate the expression above? It uses
three separate loops. Ignoring pedantic details, essen-
tially R evaluates the call to dnorm() and so loops over
all of the elements of x and computes the density at
each of those values. It stores these values in a newly
allocated vector and then returns that. This becomes
the input to the call to log(). R then iterates over the
elements of this vector and computes the log() for each
individual value. In this case, R may recognize that it
doesn’t need to create a new vector in which to return
the results, but that it can reuse the input vector since it
is essentially anonymous. The final step in the overall
expression is the call to sum() and this iterates over the
elements of the vector it receives and returns a single
scalar value.

Importantly, there are three loops over three vectors
all of the same length, and we allocate one new and
large vector. We could use a single loop and avoid al-
locating this intermediate vector by rewriting the code
as

normalLogLik =
function(x, mu = 0, sigma = 1) {

ans = 0
for(val in x)
ans = ans +

log(dnorm(val, mu, sigma))
ans

}

Instead of the vectorized calls in R, we have put scalar
function calls inside a single loop. We have combined
the calls to dnorm() and log() together. Then we took
the result for each element and added it to the cumula-
tive sum. This combination of operations is called loop
fusion and for large vectors can yield significant per-
formance improvements.

This new scalar version is faster by avoiding the
loop and allocation. Of course, it is evaluated in R
and so will be much slower. We could write this in
C, but it would be very specific to the log-likelihood
for a Normal density. Generally, we would have to
write implementations for various sequences of calls,
for example, for different density functions [i.e.,
sum(log(pdf(x, ...)))], and expressions in-
volving other functions [e.g., prod(dchisq(x^2,
p))]. This isn’t practical. However, given our abil-
ity to dynamically generate native code, we can com-
pile any expression such as our original expression
sum(log(dnorm(x, mu, sigma))) into the
native equivalent of our scalar code above.

To compile the normalLogLik() function above, we
need to be able to call scalar versions of the log() and
dnorm() routines. The log() function is available in the
ubiquitous math library (libm) and we can just refer
to it. The Normal density function is not standard. We
can arrange for our native code to invoke R’s dnorm()
function for each scalar value in the vector. This is both
awkward and inefficient. Instead, we can write our own
version of dnorm() directly in R. While this would be
slow to invoke many times in R, we will compile our
dnorm() and normalLogLik() functions together into a
single module and both will be fast. Another possible
approach, in this case, is to take advantage of the good
design and modularity of the Rmath library. It provides
the routine dnorm4() as a regular native routine (uncon-
nected with R’s data types, etc.) and so we can invoke
it, just as we do the log() routine.

For reasons that are not quite clear at present, on the
OS X machine, our loop-fused version takes about 40%
longer than the R code for 10 million observations and
27% longer for 100 million observations. Again, we
suspect that we will be able to improve the LLVM-
compiled code by exploring more of its optimization
facilities. However, on the Linux machines, we do see
a speedup, even for 10 million observations where the
LLVM loop-fused code runs in about 75% the time of
the R code. The timings and relative performances are
given in Table 4. Regardless of the exact numbers, the
results indicate that compiling our own code is com-
petitive with manually writing vectorized routines in R,
and that we can outperform these built-in C routines.

A difference between the two approaches is that R
uses the .Primitive() mechanism rather than a stan-
dard function call which we have to do via the .llvm()
function. However, not only do we reduce three loops
to one, but we also avoid dealing with missing val-
ues (NAs) and additional parameters such as base
for the log() function. So we should be doing even
better. If we have access to multiple cores or GPUs,
we may be able to execute this code much more ef-
ficiently simply via parallel execution. By fusing the
loops operations together, we can also avoid three sep-
arate transitions from the host to the GPU and transfer-
ring memory between the two systems more times than
we need.

We explicitly wrote the normalLogLik() function to
show how to fuse the loops. We could also have written
the original expression sum(log(dnorm(x, mu,
sigma))) as

Reduce(‘+‘, Map(log, Map(dnorm, x,
MoreArgs = list(mu, sigma))))
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TABLE 4
Times and relative performance for fusing loops

OS X Linux 1 Linux 2

Rllvm-compiled fused loops 0.73 1.69 0.84
Interpreted R vectorized functions 0.52 2.28 1.07

Regular R time/Rllvm time 0.71 1.35 1.27

The first two rows show the times for fusing the loops by compiling the R with LLVM and using a
sequence of calls to R’s vectorized functions. The final row shows the ratio of the two times within each
machine. Fusing the loops is slower on OS X, but faster on Linux.

By explicitly using these functional programming
concepts, it is easy for us to see how to fuse loops
and rewrite the code into the loop above. The
RLLVMCompile package can recognize such an ex-
pression and compile it to the loop-fused instructions.
We can either require R programmers to do this in or-
der to gain the performance from native code or we
can try to make the compiler recognize the vectorized
nested function call idiom of the form f(g(h(x))).

2.5 Computing Distances between Observations

Distances between pairs of observations are impor-
tant in common statistical techniques such as clus-
tering, multi-dimensional scaling, support vector ma-
chines and many methods that use the “kernel trick”
(Schölkopf and Smola, 2001). R provides the dist()
function that allows us to compute the distance be-
tween all pairs of observations in a matrix or data
frame, using any of six different metrics. The core
computations are implemented in C and are fast. How-
ever, there are some issues and rigidities.

The dist() function insists that the data passed to
the C code are represented as a matrix, and so will
make a copy of the data if a data frame is given by
the caller. For large data sets, this can be a signifi-
cant issue as we will essentially have two copies of
the data in memory. Also, the dist() function only ac-
cepts a single data set and computes the distances be-
tween all pairs of observations within it. In contrast,
a reasonably common situation is that we start with
two separate data sets—X and Y—and want to com-
pute the distance between each observation in X and
each observation in Y, but not the distances between
pairs of observations within X or within Y. Not only
do we risk having three copies of the data in mem-
ory (the two separate data frames, the two combined
into one data frame and then converted to a matrix),
but the dist() function will also perform many unnec-
essary computations for these within-same-set obser-

vations that we will discard. If we have two data sets
with n1 and n2 observations, respectively, the dist()
function computes (n1 + n2) × (n1 + n2 − 1)/2 dis-
tances. We are only interested in n1 × n2 of these. As
n1 and n2 diverge, the number of unnecessary compu-
tations increases, and this is especially burdensome if
the number of variables for each observation is large.

Another rigidity is that the choice of distance metric
is fixed. If we wanted to introduce a new distance met-
ric, it would be useful to be able to reuse the C code un-
derlying dist(). We could do this with a function pointer
in C, but the code for dist() would need to be modified
to support this. Accordingly, if we want to introduce a
new metric, we have to copy or re-implement the entire
C code.

The C code underlying dist() can use parallel capa-
bilities (OpenMP) if they are detected when R is com-
piled. We cannot use GPUs or change the parallel strat-
egy within an R session without rewriting the C code.
As a result, we would like to be able to express the
computations in R and select a different strategy for
parallelizing the computations at run-time.

In short, as useful as dist() is, we would like it to be
much more flexible. We want to be able to compute the
distances between two sets of observations, not within
a single data set; use a data frame or a matrix or perhaps
some other data representation without making a copy
of the data; introduce new metrics within the same in-
frastructure; and use different parallel computing ap-
proaches. The current dist() function in R cannot help
us meet these goals and is essentially static/fixed code.

The package pdist (Wong, 2013) provides a way
to compute pairwise distances between two data sets.
This avoids the redundant computations. Unfortu-
nately, it only supports the Euclidean metric and also
insists on matrices being passed to the C code. Also, it
has no support for parallel computing.

If we could write the basics of the dist() function
in R and make it fast, we could address all of the en-
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hancements we listed above as well as make the code
more comprehensible and accessible to users. The ba-
sic approach to computing the distance between each
pair of observations in two data sets X and Y can be
expressed in R with the following quite specific/rigid
function (written to aid compiling):

dist =
function(X, Y, nx = nrow(X),

ny = nrow(Y), p = ncol(X))
{

ans = numeric(nx * ny)
ctr = 1L
for(i in 1:nx) {
for(j in 1:ny) {

total = 0.0
posX = i
posY = j
for(k in 1:p) {
total = total +

(X[posX] - Y[posY])^2
posX = posX + nx
posY = posY + ny

}
ans[ctr] = sqrt(total)
ctr = ctr + 1L

}
}
ans

}

The basic steps are to loop over each observation in
the first data set (X) and then to loop over each obser-
vation in the other data set (Y). For each pair of ob-
servations, we compute the distance between them via
the third nested loop. We could have made this simpler
(and more general) by using a vectorized R expression
or calling a function to do this final loop. However,
we have inlined the computations directly for a reason.
Suppose we had written this part of the computation
as (X[i,] - Y[j,])^2. Unfortunately, in R, this
would cause us to create two new intermediate vectors,
one for each of the specific rows in the two data sets.
This is because the row of each data set is not a simple
vector containing the elements of interest which we can
pass to the subtraction function (-). Instead, we have to
arrange the data in each row of the matrix or data frame
into a new vector of contiguous values. This is where
R is convenient, but inefficient. This does not happen
in the C code for R’s builtin dist() routine, or ours, as
it uses matrices and knows how to access the elements

individually rather than creating a new temporary vec-
tor. We use this same approach in our loop. We also
could allocate the vectors for the row values just once
and reuse them for each observation, but we still have
to populate them for each different observation.

To avoid the intermediate vectors, our code explicitly
accesses the individual elements X[i, k] and Y[j,
k] directly. A matrix in R is merely a vector with the
elements of the matrix arranged sequentially in column
order. Therefore, the first element of observation i in X
is at position i in the vector. The second element of the
ith observation is at position i + nrow(X), and so
on. To compute the distance between the two observa-
tions, we loop over the p variables present in each of
the observations and compute the difference.

The code illustrates these computations for the Eu-
clidean distance. We could easily change this to im-
plement other distance metrics. We could do this
by changing the code either manually or program-
matically by replacing the expression (X[posX]-
Y[posY])^2 with, for example, abs(X[posX] -
Y[posY]). Rewriting code programmatically is a
powerful feature that allows us treat R code as a tem-
plate.

We can compile this three-level nested loop R code
via RLLVMCompile to native instructions. Our com-
piler currently works primarily with primitive data
types and has limited support for working directly with
R objects, for example, knowing the dimensions of an
R matrix. Accordingly, we arrange to pass the matrices
and their dimensions to the routine and currently have
to explicitly specify the signature:

distc = compileFunction(dist,
REALSXPType,
list(X = DoublePtrType,

Y = DoublePtrType,
nx = Int32Type, ny = Int32Type,
p = Int32Type))

In the future, we will allow the caller to specify just the
two data sets (X and Y). However, we are making the
representation as matrices more explicit here, which is
valuable information for the compiler.

Now that we have the native code, we can then com-
pare this to using R code that computes the same dis-
tances but does so by combining the two data sets, calls
dist(), and converts the result to the sub-matrix of in-
terest. This comparison favors our code since this is
the form of our inputs and the expected form of the
output. However, these are quite reasonable. We timed
the functions to compute the distances for two data
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TABLE 5
Timings for computing pair-wise distances

OS X Linux 1 Linux 2

Rllvm-compiled code 8.72 11.94 6.22
R dist() function (calling native code) 14.74 79.65 27.37

Speedup factor 1.69 6.67 4.4

This shows the total elapsed time for distance computations with 40 variables and 8000 and 1000 observations in the
two data sets. In the R approach with the dist() function, there is extra memory allocation and also 80% of the distances
computed are discarded. We outperform the native R implementation on both platforms.

sets of size 8000 and 1000 observations, each with 40
variables. In this case, 80% of the distances computed
using R’s dist() function are irrelevant and discarded.
Table 5 shows the results and illustrates that by doing
fewer computations, we do indeed outperform the na-
tive C code in R, on both platforms. If we had used data
sets with similar numbers of observations, the results
would have been less dramatic. However, with 3000
observations in Y, the LLVM-generated native code was
still three times faster on Linux and only 18% slower
on OS X.

Comparing the results above to similar native code
in the pdist package, the timings again show that na-
tive C code in pdist outperforms our LLVM-compiled
code, 60% faster on one machine and 9 times faster on
another. This illustrates that there is room for signifi-
cant improvement in our LLVM compilation. However,
the fact that we can outperform R’s native approach is
encouraging. That we can readily adapt this to differ-
ent purposes and different computational strategies in-
dicates significant opportunities and potential.

As a final note, we could remove the third loop
and insert a call to a function to compute the
distance for these two variables, for example,
euclidean(X[i,], Y[j,]). The compiler could
recognize that X and Y are matrices and arrange for the
compiled version of the euclidean() function to access
the elements as we have displayed above, that is, with-
out computing the intermediate vector for each row.
If we tell the compiler X and/or Y are data frames, it
would generate different code to access the elements so
as to avoid these intermediate vectors. Since the com-
piler has the opportunity to compile both the code for
the main loop and for the metric function together and
knows the representations of the inputs, it can create
better code than if we wrote these separately and more
rigidly.

3. POSSIBLE COMPILATION ENHANCEMENT
STRATEGIES

The examples in the previous section explored dif-
ferent ways we could change the way we compute in R
with new facilities for generating native code. We con-
sidered compiling R code to native routines, reusing
existing native routines within these generated rou-
tines, and changing the computational strategies we
employ within R to embrace these new approaches.
There are many other simple examples we could con-
sider to improve the performance of R code. One is the
ability to write functions that focus on scalar opera-
tions and then to create vectorized versions of these au-
tomatically. Given a scalar function f(), we can write a
vectorized version as sapply(x, f, ...) or with
mapply(). The compiler can then turn this into a na-
tive loop. Indeed, many of the performance gains are
achieved by making looping faster. They also poten-
tially reduce the necessity to use vectorized code in R
and so hopefully make programming in R more intu-
itive for new users.

In addition to handling loops, there are several other
aspects of R’s evaluation model that we might be able
to improve by choosing different compilation strate-
gies in different contexts. The idea is that the R user
compiling the code may have more information about
the computations, the data and its representation, or
the available computing resources than the compiler
does by examining the code. This extra information
is important. The programmer may be able to give
hints to a compiler, or choose a different compiler
function/implementation altogether, to control how the
code is understood and the native instructions are gen-
erated. The following are some reasonably obvious and
general improvements we might be able to infer or
make in certain situations. Guided by the R user, differ-
ent compilers may yield different code, and even differ-
ent semantics, for the same code.
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3.1 Omitting Checks for NA Values

Many of the C routines in R loop over the elements
of a vector and must check each element to see if it is a
missing value (NA). This code is general purpose code
and so this test is a fixed part of almost every computa-
tion involving that routine. However, when we dynam-
ically generate the code, we may know that there are no
missing values in the data set on which we will run that
code and so omit the code to perform these additional,
redundant tests.

Similarly, in our example of sampling a CSV file,
we knew the number of lines in a file and we knew
that each call to the fgets() routine would succeed. As
a result, we did not have to check the return status of
the call for reading at the end of the file. We also as-
sumed that the largest line was less than 1000 char-
acters and didn’t validate this in each iteration. The
same applies when we are accessing elements of a vec-
tor as to whether we first need to check that the in-
dex is within the extent of the array or not, that is,
bounds checking. When we can verify this conceptu-
ally (within a loop over a vector), or by declaration by
the user, we can omit these checks.

These tests are typically simple and not computa-
tionally expensive. However, they can become signifi-
cant when the instructions are invoked very often, for
example, in a loop over elements of a large vector.

3.2 Memory Allocation

In our example discussing loop fusion, we saw that
not only could we reduce the number of overall itera-
tions in a computation, but we also could reduce mem-
ory usage. We avoided creating a vector for the result
of the call to dnorm() [and log()]. There are potential
opportunities to further reduce memory usage.

R uses the concept of pass-by-value in calls to func-
tions. In theory, R makes a copy of each argument in a
call to a function. (Lazy evaluation means that some ar-
guments are never evaluated and so not copied.) How-
ever, the R interpreter is smarter than this and only
copies the object when it is modified, and only if it is
not part of another object. When compiling R code, we
want to be able to determine that an object is not mod-
ified and avoid copying it. By analyzing code, we can
detect whether parameters can be considered read-only
and so reduce memory consumption in cases where R
cannot verify that it is safe to avoid copying an object.
We can identify this within regular R code, however,
we would have to modify the interpreter to make use
of this information. When generating native code with,

for example, compileFunction(), we can make use of
this information dynamically, bypassing the R inter-
preter.

Another example where we can reduce the memory
footprint of code is when we can reuse the same mem-
ory from a different computation. For example, con-
sider a simple bootstrap computation something like
the following R pseudo-code:

for(i in 1:B) {
d.star = data[sample(1:n, n,

replace = TRUE), ]
ans[[i]] = T(d.star, ...)

}

In R’s computational model, we will allocate a new
data frame d.star for each bootstrap sample. This is
unnecessary. We can reuse the same memory for each
sample, as each sample has the same structure and only
differs in the values in each cell. By analyzing the se-
quence of commands rather than executing each one
separately without knowledege of the others, we can
take advantage of this opportunity to reuse the memory.
We can also reuse the same vector to store the result
of the repeated calls to sample(). It is reasonably clear
that this is what we would do if we wrote this code in
C, reusing the same data structure instances. However,
this is not possible within R, as the individual compu-
tations are not as connected as they are in the large-
picture C code. When we dynamically generate native
code, we can utilize this large-scale information.

Similarly, some R scripts create a large object, per-
form several computations on it and then move to other
tasks. Code analysis can allow us to identify that the
object is no longer being used and so we can insert
calls to remove the object. However, we may be able to
recognize that the object is no longer needed, but that
subsequent tasks can reuse the same data format and
representation. In that case, we can reuse the memory
or at least parts of it.

3.3 Data Representations

The small number of fundamental data types in
R makes computational reasoning quite simple, both
to use and to implement. Of course, the choice of data
type and structure can be important for many computa-
tions. Sequences, for example, 1:n or seq(along =
x), are common in R code and these are represented in
R as explicit vectors containing all of the values in the
sequence. We have seen that we can avoid creating the
sequence vector and populating it when it is used as a
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loop counter. Similarly, we can represent a regular se-
quence with the start, end and stride, that is, the incre-
ment between elements. When generating the code, we
then access elements of such a sequence using appro-
priate calculations specialized to that sequence type.

In many cases, R’s simple data types cause us to
use an integer when we only need a byte, or even just
a few bits, to represent a few possible values/states.
The snpStats (Clayton, 2011) package does this suc-
cessfully using bytes to reduce the memory footprint
for large genomic data. Again, the operations to subset
data in this different format need to be modified from
the default. Doing this element-wise in R is excessively
slow. However, when we generate native code, we are
free to use different ways to access the individual ele-
ments. This idea is important. We specify what to do in
the code, but not precisely how to do it. When gener-
ating the code, we combine the code and information
about how to represent the data and generate different
code strategies and realizations. This is somewhat sim-
ilar to template functions in C++, but more dynamic
due to run-time compilation/generation with more con-
textual information.

There are several other aspects of R code that we can
compile, for example, matching named arguments at
compile time rather than at run time.

4. OVERVIEW OF GENERATING CODE WITH LLVM

In this section we will briefly describe the basic
ideas of how we generate code with LLVM, Rllvm and
RLLVMCompile. This is a little more technical and
low level than our examples and readers do not need to
understand this material to understand the main ideas
of this paper or to use the compiler or the compiled
code. We are describing it here to illustrate how other
R programmers can readily experiment with these tools
to generate code in different ways.

We’ll use the Fibonacci sequence and the fib() func-
tion example again, as it illustrates a few different as-
pects of generating code.

Our fib() function in R expects an integer value and
returns an integer. The body consists of a single if–
else expression. This contains a condition to test and
two blocks of code, one of which will be evaluated de-
pending on the outcome of that condition. To map this
code to LLVM concepts, we need to create different in-
struction blocks, each of which contains one or more
instructions. When we call the routine, the evaluation
starts in the first instruction block and executes each of
its instructions sequentially. The end of each instruc-
tion block has a terminator which identifies the next

block to which to jump, or returns from the routine.
Jumping between blocks allows us to implement con-
ditional branching, loops, etc.

For our fib() function, we start with an entry block
that might create any local variables for the computa-
tions. In our function, this block simply contains code
to evaluate the condition n < 2 and, depending on the
value of this test, the instruction to branch to one of two
other blocks corresponding to the expressions in the if
and the else parts. In the if block (i.e., n is less than
2), we add a single instruction to return the value of
the variable n. In the block corresponding to the else
part, we add several low-level instructions. We start by
computing n - 1L and then call fib() with that value
and store the result in a local variable. Then we cal-
culate n - 2L, call fib() and store that result. Then
we add these two local intermediate results and store
the result. Finally we return that result. Figure 3 shows
the code in what is called Intermediate Representation
(IR) form that LLVM uses. This illustrates the low-level
computations.

While the code for this function is reasonably sim-
ple, there are many details involved in generating the
native code, such as defining the routine and its param-
eters, creating the instruction blocks, loading and stor-
ing values, and creating instructions to perform sub-
traction, call the fib() function and return a value. The
LLVM C++ API (Application Programming Interface)

; ModuleID = ’fib’

define i32 @fib(i32 %n) {
entry:

%0 = icmp slt i32 %n, 2
br i1 %0, label %"body.n < 2L", label %body.last

"body.n < 2L": ; preds = %entry
ret i32 %n

body.last: ; preds = %entry
%"n - 1L" = sub i32 %n, 1
%1 = call i32 @fib(i32 %"n - 1L")
%"n - 2L" = sub i32 %n, 2
%2 = call i32 @fib(i32 %"n - 2L")
%"fib(n - 1L) + fib(n - 2L)" = add i32 %1, %2
ret i32 %"fib(n - 1L) + fib(n - 2L)"

}

FIG. 3. Intermediate Representation for the compiled fib() rou-
tine. We create the Function and Block objects and create and
insert LLVM instruction objects corresponding to the expressions
and sub-expressions in the R function. The result is this low-level
description in intermediate form which LLVM can optimize and
compile to native code for different targets, for example, a CPU
or GPU. The different blocks have a label (e.g., body.last) and
correspond to different parts of an if statement or possibly parts of
a loop, generally.
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provides numerous classes and methods that allow us
to create instances of these conceptual items such as
Functions, Blocks, many different types of instructions
and so on. The Rllvm package provides an R interface
to these C++ classes and methods and allows us to
create and manipulate these objects directly within R.
For example, the following code shows how we can de-
fine the function, the entry instruction block and gen-
erate the call fib(n - 1):

mod = Module()
f = Function("fib", Int32Type,

list(n = Int32Type), mod)
start = Block(f)
ir = IRBuilder(start)
parms = getParameters(f)
n.minus.1 = binOp(ir, Sub, parms$n,

createConstant(ir, 1L))
createCall(ir, f, n.minus.1)

We don’t want to write this code manually ourselves
in R, although Rllvm enables us to do so. Instead,
we want to programmatically transform the R code
in the fib() function to create the LLVM objects. The
RLLVMCompile package does this. Since R functions
are regular R objects which we can query and manip-
ulate directly in R, we can traverse the expressions in
the body of a function, analyze each one and perform
a simple-minded translation from R concepts to LLVM
concepts. This is the basic way the compileFunction()
generates the code, using customizable handler func-
tions for the different types of expressions. These rec-
ognize calls to functions, accessing global variables,
arithmetic operations, if statements, loops and so on.
They use the functions in Rllvm to create the corre-
sponding LLVM objects and instructions.

Once the compiler has finished defining the instruc-
tions for our routine, LLVM has a description of what
we want to do in the form of these blocks and instruc-
tions. This description is in this intermediate repre-
sentation (IR). We can look at this “code” and it will
look something similar to that shown in Figure 3. The
IR code shows the somewhat low-level details of the
blocks and instructions as we described above. We see
the three blocks labeled entry, body.n < 2L and
body.last. Again, it is not important to understand
these details to be able to use the compiled routine
translated from the R function. I show it here to illus-
trate the different steps in the compilation process and
to indicate that an R programmer can chose to change
any of these steps.

Next, we instruct LLVM to verify and optimize the
code. At this point, we can call the new routine via
the .llvm() function in Rllvm which corresponds to a
method in the LLVM API. The first time the code is
used, LLVM generates the native code from the IR
form.

5. CONTRASTS WITH RELATED RESEARCH

There have been several projects exploring how to
improve the performance of R code. We discuss some
of these in this section.

Byte-Compiler: One of the most visible projects is
the byte-code compiler developed by Luke Tierney
(Tierney, 2001). This consists of an R package that pro-
vides the compiler and some support in the core R in-
terpreter to execute the resulting byte-compiled code.
The compiler maps the R code to instructions in the
same spirit as LLVM’s instructions and intermediate
representation. These instructions are at a higher-level
than LLVM’s and are more specific to R.

The typical speedup provided by the byte-compiler
is a factor of between 2 and 5, with much larger
speedups on some problems. This may not be suffi-
cient to obviate the need for writing code in C/C++.
We probably need to see a factor of more than 10 and
closer to 100 for common tasks.

The byte-code compiler is written in R and so oth-
ers can adapt and extend it. However, the details of
how the resulting byte-code it generates is evaluated
is tightly embedded in the C-language implementation
of the R engine. This means that if one wants to change
the byte-code interpreter, one has to modify the R inter-
preter itself. While one can do this with a private ver-
sion of R, one cannot make these changes available to
others without them also compiling a modified version
of R. In other words, the byte-code interpreter is not
extensible at run-time or by regular R users. Further-
more, the R core development team does not always
greet suggested enhancements and patches with enthu-
siasm. Therefore, this approach tends to be the work of
one person and so has limited resources.

Ra JIT Compiler: The Ra extension to R and the as-
sociated jit package is another approach to using JIT
(Just-in-Time) compilation in R. This focuses on com-
piling loops and arithmetic expressions in loops. Like
the byte-code compiler above, Ra requires almost no
change to existing R code by R users—only the call
to the function jit() before evaluating the code. The
performance gain on some problems can be appar-
ently as high as a factor of 27. (See http://www.milbo.

http://www.milbo.users.sonic.net/ra/times9.html
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users.sonic.net/ra/times9.html.) Unfortunately, this is
no longer maintained on CRAN, the primary central
repository of R packages. This approach suffers from
the fact that it requires a modified version of the R in-
terpreter, again compiled from the C-level source. This
places a burden on the author of Ra to continually up-
date Ra as R itself changes. Also, it requires users trust
Ra and take the time to build the relevant binary instal-
lations of Ra.

As we mentioned previously, important motivating
goals in our work are to avoid modifying R itself, to
allow other people to build on and adapt our tools, and
to directly leverage the ongoing work of domain ex-
perts in compiler technology by integrating their tools
to perform the compilation. Our approach differs from
both the byte-compiler and Ra in these respects.

R on the Java Virtual Machine: There are several
projects working on developing an implementation of
R using the Java programming language and virtual
machine. One is FastR (https://github.com/allr/fastr),
which is being developed by a collaboration between
researchers at Purdue, Oracle and INRIA. Another is
Renjin (https://code.google.com/p/renjin/). Having R
run on the Java virtual machine offers several ben-
efits. There are many interesting large-data projects
implemented in Java, for example, Apache’s Hadoop
and Mahout. Integrating R code and such projects and
their functionality would be much tighter and effec-
tive if they are all on the same platform and share the
same computational engine. Importantly, R would ben-
efit from passively acquiring features in Java and its li-
braries, for example, security, threads. One very inter-
esting development is that researchers in Oracle, col-
laborating with the developers of FastR, are creating
a tool Graal (http://openjdk.java.net/projects/graal/) for
compiling the code ordinarily interpreted by a high-
level virtual machine, for example, FastR. This could
yield the performance gains we seek, but by passively
leveraging the general work of others merely by using
widespread technologies. This contrasts with the on-
going development of R by a relatively small commu-
nity and having to actively and manually import new
technologies, features and ideas from other languages,
systems and communities.

Translating R code to C: Another approach is to
translate R code to C/C++ code. This is attractive, as
it would give us similar speedup as we can get with
LLVM, potentially produces human-readable code, and
allows us to leverage the standard tools for these lan-
guages such as compilers, linkers and, importantly, de-
buggers. We can also potentially reuse (some of) the

generated code outside of R. Simon Urbanek’s r2c
package (Urbanek, 2007) is an example of exploring
translation of R code to C code.

The Rcpp (Eddelbuettel and François, 2011) (and
inline) package are widely used in R to improve per-
formance. The packages provide a way to include high-
level C++ code within R code and to compile and call
it within the R code. The C++ code uses an R-like
syntax to make it relatively easier to write the C++
code. This has been a valuable addition to R to ob-
tain performant code. The approaches that compile R
code directly are preferable if they can get the same
performance. The first reason is because the program-
mer does not have to program in C++. It is also harder
for other programmers to read the code and understand
what it does. The second reason is because the C++
code is essentially opaque to any R code analysis or
compiler. If we do manage to generally compile R code
effectively or implement an automated parallel com-
puting strategy for R code, the C++ code cannot eas-
ily be part of this. For example, if we can map the R
code to run as a GPU kernel on many cores, we cannot
easily combine the R and C++ code to take advantage
of these cores.

Parallel Speedup: There are several interesting proj-
ects that have aimed at improving the performance of R
exclusively by running the code in parallel. This is very
important and in some sense orthogonal to compilation
of R code. If we speed up the computations on a single
CPU, that speedup will benefit running code on each
CPU. However, we also want to compile R code to take
advantage of multiple CPU/GPUs. We hope to be able
to integrate ideas from these projects into our compi-
lation strategies. Unfortunately, some of them are no
longer active projects, for example, pR and taskPR.
This illustrates one aspect we have observed in the R
community. Some researchers implement some ideas
in R, sometimes as a PhD thesis, and then move on to
other projects. One of the terrific aspects of R is the on-
going commitment to support the R community. This is
probably a very significant reason for R’s widespread
use and an important consideration when developing
new environments and languages. It is one of the forces
motivating our continued work within R, even if devel-
oping a new system would be intellectually more stim-
ulating.

A very important aspect of all this work is to recog-
nize that there are many positive ways to make R faster
and more efficient. While one of these approaches may
dominate others in the future, it is very important that

http://www.milbo.users.sonic.net/ra/times9.html
https://github.com/allr/fastr
https://code.google.com/p/renjin/
http://openjdk.java.net/projects/graal/
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we should pursue comparative approaches and con-
tinue to motivate each other’s work. There is much to
be learned from these different approaches that will im-
prove the others.

6. FUTURE WORK

Compiling (subsets of) R code and other Domain
Specific Languages (DSLs) within R using LLVM is
a promising approach that is certainly worth vigor-
ously pursuing in the near term. The work is currently
in its infancy—we started it in the summer of 2010,
but have only recently returned to it after an almost
three-year hiatus due to other projects (ours and other
people’s). However, the foundations of many of the
important components are in place, that is, the Rllvm
package, and the basics of the extensible and adaptable
compiler mechanism in RLLVMCompile should allow
us and others to make relatively quick progress, pro-
gramming almost entirely in R to develop compilation
strategies. However, there are many other tasks to do
to make these transparent and reliable, and many re-
lated projects that will make them more powerful and
convenient.

One of the immediate tasks we will undertake is to
program some rich examples explicitly in R code. We
are implementing R code versions of recursive parti-
tioning trees, random forests and boosting. We also
plan to explore compiling code for the Expectation
Maximization (EM) algorithm and particle filters to
run on GPUs. The aim is to share these sample R
projects with the other researchers investigating differ-
ent compilation strategies for R so that we compare ap-
proaches on substantive and real tasks we want to pro-
gram in pure R code.

We plan to add some of the functionality available in
LLVM that does not yet have bindings in Rllvm. This
includes topics such as different optimization passes
and adding meta data to the instructions. We have
also developed the initial infrastructure to compile R
code as kernel routines that can be used on GPUs,
that is, PTX (Parallel Thread Execution) code. Being
able to generate kernel functions from R code, along
with the existing R-CUDA bindings to manage mem-
ory and launch kernels from the host device, allows us
to program GPUs directly within high-level R code.
This contrasts with the low-level C code developed
for existing R packages that target GPUs, for example,
gputools (Buckner et al., 2009) and rgpu (Kempenaar
and Dijkstra, 2010).

We will also be exploring different approaches to
compiling the R code to run in parallel and distributed

settings. We think that being able to use information
about the distribution of the data to generate/compile
the code will be important so that we can minimize the
movement of data and keep the CPUs/GPUs busy on
the actual computations rather than transferring the in-
puts and outputs to and from the computations.

Being able to write R code that directly calls C rou-
tines is very powerful. As we saw in relation to the
fgets() routine in Section 2.3, we need to specify the
signature for the routines we want to call. It is prefer-
able to be able to programmatically identify these sig-
natures rather than require R programmers to explicitly
specify them. The RCIndex package is an R interface
to libclang (Carruth et al., 2007), the parsing facilities
for the clang compiler. This already allows us to read
C and C++ code in R and to identify the different el-
ements it contains. This allows to not only determine
the signatures of routines, but also discover different
data structures, enumerated constants, etc. We can also
go further and understand more about how the routines
manipulate their arguments and whether they perform
the memory management or leave it to the caller.

As we saw in each of our examples, information
about the types of each parameter and local variable
is a necessity to being able to compile using LLVM.
Currently, the R programmer must specify this infor-
mation not only for the function she is compiling, but
also for all of the functions it calls. Again, we want
to make this transparent, or at least only require the R
programmer to specify this information when there is
ambiguity. To this end, we are working on a type in-
ference package for R. This starts with a known set
of fundamental functions and their signatures. From
this, we can determine the signatures of many higher
level calls. As always, we cannot deal with many fea-
tures of the language such as nonstandard evaluation,
but we most likely can get much of the type informa-
tion we need programmatically. Since R’s types are so
flexible with different return types based on not only
the types of the inputs, but also the content of the
inputs, we need a flexible way to specify types. Per-
haps the existing TypeInfo package (Temple Lang and
Gentleman, 2005) or lambda.r package will help here.
To analyze code for type information and for variable
dependencies, we will build upon the CodeDepends
(Temple Lang, Peng and Nolan, 2007) and codetools
(Tierney, 2011) packages.

While these are some of the related activities we en-
visage working on, we also encourage others to col-
laborate with us or work independently using LLVM
and optionally Rllvm and RLLVMCompile so that our
community ends up with better tools.
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7. CONCLUSION

We have described one approach to making some
parts of the R language fast. We leverage the com-
piler toolkit infrastructure LLVM to generate native
code. This allows us to incorporate technical knowl-
edge from another community, both now and in the fu-
ture. We can generate code for CPUs, GPUs and other
targets. We can dynamically specialize R functions to
different computational approaches, data representa-
tions and sources, and contextual knowledge, giving
us a new and very flexible approach to thinking about
high-level computing.

We are developing a simple but extensible and cus-
tomizable compiler in R that can translate R code to
native code. Not only does this make the code run fast,
but it also allows us to compute in quite different ways
than when we interpret the R code in the usual way. We
can even outperform some of R’s own native code.

In no way should this work be considered a general
compiler for all of the R language. There are many as-
pects of the R language we have not yet dealt with or
considered. Vectorized subsetting, recycling, lazy eval-
uation and nonstandard evaluation are examples. We,
or others, can add facilities to the compiler to support
these when they make sense and are feasible.

The initial results from this simple approach are
very encouraging. An important implication of this and
other efforts to make R code efficient is that we can
be benefit from writing high-level code that describes
what to compute, not how. We then use smart inter-
preters or compilers to generate efficient code, simulta-
neously freeing R programmers to concentrate on their
tasks and leveraging domain expertise for executing the
code. We hope others will be able to use these basic
building blocks to improve matters and also to explore
quite different approaches and new languages within
the R environment.

ACKNOWLEDGMENTS

Vincent Buffalo made valuable contributions to de-
signing and developing the RLLVMCompile package
in the initial work. Vincent Carey has provided impor-
tant ideas, insights, advice and motivation and I am
very grateful to him for organizing this collection of
papers and the session at the 2012 Joint Statistical
Meetings. Also, I appreciate the very useful comments
on the initial draft of this paper by the three reviewers
and also John Chambers.

SUPPLEMENTARY MATERIAL

The code for the examples in this paper, along
with the timing results and their meta-data, are avail-
able from https://github.com/duncantl/RllvmTimings
as a git repository. The versions of the Rllvm and
RLLVMCompile packages involved in the timings can
also be retrieved from their respective git repositories.
The specific code used is associated with the git tag
StatSciPaper.
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