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Nonparametric Bayesian Bi-Clustering for Next
Generation Sequencing Count Data

Yanxun Xu ∗¶, Juhee Lee †, Yuan Yuan ‡, Riten Mitra §, Shoudan Liang ¶,
Peter Müller § and Yuan Ji ∥

Abstract. Histone modifications (HMs) play important roles in transcription
through post-translational modifications. Combinations of HMs, known as chro-
matin signatures, encode specific messages for gene regulation. We therefore ex-
pect that inference on possible clustering of HMs and an annotation of genomic
locations on the basis of such clustering can contribute new insights about the
functions of regulatory elements and their relationships to combinations of HMs.
We propose a nonparametric Bayesian local clustering Poisson model (NoB-LCP)
to facilitate posterior inference on two-dimensional clustering of HMs and genomic
locations. The NoB-LCP clusters HMs into HM sets and lets each HM set define
its own clustering of genomic locations. Furthermore, it probabilistically excludes
HMs and genomic locations that are irrelevant to clustering. By doing so, the
proposed model effectively identifies important sets of HMs and groups regulatory
elements with similar functionality based on HM patterns.

Keywords: ChIP-Seq, Histone modifications, Nonparametric Bayes, Bi-Clustering,
Markov chain Monte Carlo

1 Introduction

Histones are proteins that package DNA into structural units called nucleosomes. Through
post-translational modifications, histones play key roles in transcription (Bernstein et al.
(2002); Roh et al. (2005)), chromosomal segregation (Andersson et al. (2009)), and DNA
repair. Combinations of such histone modifications (HMs) are known as the “histone
code”, which modulates chromatin structure to regulate gene expression. For exam-
ple, combinations of HMs have been linked to cancer prognosis (Kurdistani (2007)) and
clinical decisions (Kurdistani (2011)).

Recently, several HM patterns have been shown to be associated with various classes
of regulatory elements, known as chromatin signatures (Bernstein et al. (2006)). For
example, distinct and predictive chromatin signatures are used to characterize active
promoters and enhancers (Heintzman et al. (2007); Heintzman et al. (2009)). These
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results lead us to look for more such patterns. We expect that regulatory elements with
similar functionality are likely to share similar patterns of some subset of HMs. We
conjecture that annotating genomic location on the basis of such patterns could be a
promising step towards deciphering the histone code.

We consider data from ChIP-Seq experiments, which are applications of next gener-
ation sequencing (NGS) technology and will be introduced in the next Section. The
sequencing data is a matrix of HM counts, with rows representing genomic locations
and columns representing HMs. Traditional one-dimensional clustering techniques aim
to partition either the HMs or genomic locations. While useful, such clustering methods
are often inadequate to identify co-localized HMs that are important factors in deciding
functions of genomic regions. In addition, how genomic regions cluster should depend on
which subset of HMs we focus on. Different HM sets might partition genomic locations
in different ways, which might indicate different cellular or chromatin states.

These considerations lead us to consider two-dimensional clustering. Getz et al. (2000)
presented a coupled two-way clustering approach that employs hierarchical clustering
to each separate dimension, combining the clustering results along each dimension in
a problem-specific manner. Later, Cheng and Church (2000) introduced the concept
of biclustering to find biclusters within a data matrix. They proposed a quantitative
measure as a guide to search for biclusters in gene expression data. Lazzeroni and
Owen (2002) developed the plaid model that describes gene expression data as a sum of
biclusters. In their model, each bicluster contains a group of genes expressed similarly
within a given set of samples, indicating the presence of a particular biological process.
Turner et al. (2005) proposed an improved algorithm for fitting the plaid model. Li
et al. (2009) reported an effective and computationally efficient biclustering algorithm,
QUBIC, to identify overlapping biclusters by employing a combination of qualitative
measures of gene expression data and a combinatorial optimization technique.

We extend these approaches to incorporate two important new features: first, we de-
velop models for discrete count data as opposed to continuous measurements. Second,
we introduce full model-based inference that defines a posterior probability model for
the random partitions, including a full probabilistic description of the associated un-
certainties. Specifically, we propose a nonparametric Bayesian local clustering Poisson
model (NoB-LCP) to close this gap in the existing literature. The proposed method
builds on Lee et al. (2013a) who developed bi-directional clustering for continuous pro-
tein activation data. The proposed NoB-LCP model clusters any two HMs (columns)
together if they give rise to the same partition of genomic locations. That is, the par-
titions of genomic locations (rows) are nested within clusters of HMs, with a separate
partition of locations for each HM cluster. This definition of HM clusters based on
inducing the same (nested) clustering of genomic locations distinguishes the proposed
model from most currently used models, including Bayesian nonparametric approaches,
that define clusters based on common parameters in the sampling model. We will refer
to the column clusters as “HM clusters” and to the row clusters as “location clusters”.
Location clusters can be used to define different functional signatures that are char-
acterized by subsets of HMs, while HM clusters suggest unique combinatory patterns
that annotate chromatin states. One advantage of nonparametric Bayesian clustering
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is that it provides model-based posterior probability models for the random partitions.
It entirely avoids the problem of specifying the number of clusters in advance. Another
key difference between NoB-LCP and other biclustering methods is that we allow that
some HMs and some genomic locations might not meaningfully cluster with the other
HMs or locations. In practice, experimental data usually include noisy rows and/or
columns that are irrelevant to the scientific problem being addressed. Excluding them
significantly increases the power of detecting meaningful signals in the remaining rows
and columns.

The paper proceeds as follows. We introduce the motivating application and the data
set in Section 2. In Section 3, we present probability models and computational methods
for posterior inference. We present a simulation study in Section 4, and in Section 5,
we report inference results on the ChIP-Seq data. We conclude with a discussion in
Section 6.

2 ChIP-Seq Data

ChIP-Seq integrates chromatin immunoprecipitation (ChIP) with massively parallel
DNA sequencing (Seq) to identify genome-wide expression patterns of DNA-binding pro-
teins. ChIP-Seq data record the counts of sequence tags mapped onto non-overlapping
positions that cover the genome. By applying HM-specific antibodies, ChIP-Seq exper-
iments can record the counts of DNA fragments that include a certain HM. And the
fragments are mapped to specific locations across the whole genome. A large count of
DNA fragments indicates high occurrence of the targeted HM.

We consider a ChIP-Seq experiment for CD4+ T lymphocytes (Barski et al. (2007);
Wang et al. (2008)), in which 39 types of HMs, including 18 acetylations, 20 methy-
lations, and a special histone modification H2A.Z, are reported. We focus on genomic
locations with at least one enriched HM for meaningful inference and use the peak-
calling program SICER (Zang et al. (2009)) to decide enrichment. SICER parameters
were set to W SIZE=200, GAP SIZE=600, EVALUE=1000, FRAG SIZE=150. Also
any adjacent windows with unchanged SICER calls for the 39 HM counts are merged
to create larger regions.

3 Methodology

3.1 Probability Model

The ChIP-Seq data is arranged in an N × G matrix Y = [yig] with each element yig
representing the read count for HM g in genomic location i, i = 1, 2, . . . , N and g =
1, 2, . . . , G. Here, genomic locations are defined as windows of 200 base pairs. We start
the model construction with a random partition of HMs {1, . . . , G} into non-overlapping

subsets Cq as {1, . . . , G} =
∪Q

q=0 Cq. The unusual indexing starting with q = 0 is in
anticipation of the upcoming discussion. The number Q+1 of subsets is random itself.
It is part of the random partition {C0, . . . , CQ}. In the following discussion we find
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it convenient to index the partition equivalently by cluster membership indicators cg,
g = 1, . . . , G with cg = q if g ∈ Cq. Under the proposed model some HMs are singled
out as not giving rise to a nested partition of genomic locations. We refer to these HMs
as the “idle HMs”, and to the remaining ones as “active HMs”. We use the special
cluster C0 to combine the idle HMs, i.e., cg = 0 for all idle HMs. Assume that there
are G′ < G active HMs and (G−G′) idle HMs. We propose a zero-enriched Pólya urn
(Sivaganesan et al. (2011)) prior for c = (c1, c2, . . . , cG)

T :

P (c) = πG′

0 (1− π0)
G−G′ αQ

∏Q
q=1 Γ(pq)∏G′

g=1(α+ g − 1)
, (1)

where pq is the number of HMs in HM set q and α is the total mass parameter of the
Pólya urn scheme. Under this model, cg = 0 with probability (1− π0), i.e., HM g falls
into the idle HM set with probability (1 − π0). When cg is non-zero, HM g is either
assigned to an existing active HM set q with probability proportional to pq, or assigned
to a new singleton active HM set with probability proportional to α. We refer to (1)
as a nonparametric Bayesian prior model. The Pólya urn is traditionally considered
a nonparametric Bayesian model since it can be constructed as the partition that is
implied by the ties under i.i.d. sampling from a probability measure with a Dirichlet
process prior. See, for example, a recent review by Lee et al. (2013b).

Next, we consider clustering of genomic locations for each of the Q active HM sets.
Recall that the partition of locations is nested within HM sets, i.e., we want to allow
for a different set of location clusters with respect to each HM cluster. We define
rq = (rq1, rq2, . . . , rqN )T to be the N cluster labels rqi ∈ {0, . . . , Dq} that describe the
partition of genomic locations corresponding to the q-th HM set. Again we allow for a
special cluster rqi = 0 of inactive genomic locations that do not meaningfully co-cluster
with other loci with respect to the q-th HM set. We assume that rq includes Dq active
location clusters with rqi = d indicating that locus i is assigned to active location cluster
d, and rqi = 0 indicating that genomic location i is assigned to the idle location cluster.
Let r = (rT1 , . . . , r

T
Q)

T . We assume independent zero-enriched Pólya urn priors for each
rq given by

P (r | c) =
Q∏

q=1

P (rq) and P (rq) = π
mq

1 (1− π1)
N−mq

βDq
∏Dq

d=1 Γ(nqd)∏mq

i=1(β + i− 1)
. (2)

Note that Q is random and depends on c. In (2), for a given active HM set q, nqd is the

number of genomic locations in the active location cluster d(> 0) and mq =
∑D

d=1 nqd.
In addition, β is the total mass parameter of the Pólya urn. The cluster label rqi is
allowed to be 0 with probability (1− π1), characterizing the idle location cluster.

The described prior probability model can be characterized as a partition of HMs and a
nested partition of locations, nested within each (active) cluster of HMs. In words, we
identify subsets of HMs that are characterized by the fact that genomic locations cluster
into the same subsets with respect to all HMs in a HM cluster. These subsets will provide
important information on the co-location patterns of HMs and actionable target HMs
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for diagnosis and prognosis. In addition, the resulting clusterings of genomic regions can
be examined and integrated with other information (e.g., transcription binding sites) to
potentially achieve better understanding of gene regulation.

Given c and r, we now define a sampling model for the observed counts yig. Let Poi(θ)
denote a Poisson distribution with mean θ. We start with a Poisson sampling model for
the count data, i.e.,

yig ∼ Poi(θig).

The prior probability model for θig makes use of the clustering. Let Ga(a, b) denote a
gamma distribution with mean a/b. We define P (θig | c, r) as follows. Assume cg = q
and rqi = d. The model gives meaning to the partition of locations by assuming a

shared rate θ̃dg for all locations in the same location cluster, i.e., θig = θ̃dg for all i with
rqi = d. But HMs in the same HM cluster share the same partition of locations only,

not the same rate, i.e., θjh = θ̃dh ̸= θ̃dg for all (h, j) with ch = q and rqj = d and h ̸= g.
We assume

θ̃dg
iid∼ Ga(k0g, λ0g),

For the idle genomic locations in the active HM sets, i.e., rqi = 0 with q > 0, we assume

a priori θig
iid∼ Ga(k1g, λ1g). For idle HMs, i.e., cg = 0, we assume θig

iid∼ Ga(k2g, λ2g) for
all locations i. Note that taking a Poisson sampling model with parameter θig and a
gamma prior for θig, we equivalently constructed a negative binomial sampling model
for the count data, which provides additional variabilities to account for potential over
dispersion.

Finally, denoting with Beta(a, b) a beta distribution with parameters (a, b), we assume
conditionally conjugate priors

π0 ∼ Beta(a0, b0), π1 ∼ Beta(a1, b1).

The beta hyperprior on π0 and π1 is important to allow for inference about the number of
active HMs and locations, as it allows adjustment of the priors p(c | π0) and p(rq | c, π1)
to adapt to the level of noise in the data. See, for example Scott and Berger (2010) for
a discussion of this multiplicity correction feature.

Figure 1 is a graphical illustration of the proposed NoB-LCP model. It demonstrates
the core idea of how we define local clusters. In Figure 1, we assume that 9 HMs belong
to two active HM sets and and an idle HM set, including HMs 5, 8 and 9. In the two
active HM sets, cells in off-white are idle genomic locations. The rest of cells marked
with the same color in the same column form local clusters of genomic locations (rows).

Different colors indicate different values of parameters θ̃dg. Within each local cluster,
the colors are the same across the genomic locations but different across different HMs.
We define an active HM set as the set of HMs that partition the genomic locations
in the same way, regardless of the actual values of θ̃dg. This highlights the important
difference between NoB-LCP and other clustering methods that often assume common
values of θ̃dg for items in the same cluster. In other words, in Figure 1, the cells in
each local cluster would be marked in the same color across both genomic locations and
HMs.
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Figure 1: An illustration of the proposed NoB-LCP model with 9 HMs and 10 genomic
locations. There are two active HM sets and an idle HM set, including HMs 5, 8, 9. In
the two active HM sets, cells in off-white are idle genomic locations. The rest of the
cells marked with the same color in the same column form local clusters of genomic
locations (rows). Different colors indicate different values of parameters θ̃dg.
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In summary, the joint model is:

P (Y, c, r, θ,k,λ, π0, π1) = P (Y | θ)P (θ | c, r,k,λ)P (r | c)P (c)P (π0)P (π1). (3)

3.2 Markov Chain Monte Carlo Simulations

We carry out posterior inference using MCMC simulation. Letting [x | y, z] generically
denote a transition density that updates an unknown parameter x conditional on cur-
rently imputed values for y and z, we propose a Gibbs sampler that iterates over the
following sampling steps that draw random values from the transition densities:

[r | Y, c, π1], [c | Y, r, π0], [θ | Y, c, r], [π0 | c], [π1 | c, r]

We start by generating rqi, q = 1, . . . , G′, i = 1, . . . , N , from its full conditional posterior
distribution. When resampling rqi and cg, we marginalize over θ.

Let Q denote the currently imputed number of active HM clusters. A challenge in
constructing a valid transition probability arises when cg = Q + 1 is considered, i.e.,
when we consider placing g into a new, (Q+ 1)-th, singleton HM cluster. The problem
is that a proposal cg = Q + 1 gives rise to a new partition rQ+1 of locations. We use
the pseudo prior mechanism of Carlin and Chib (1995) to construct an MCMC scheme.
We introduce a set of auxiliary variables r̃g = (r̃ig, i = 1, 2, . . . , N), g = 1, 2, . . . , G, and
augment the probability model with a pseudo prior P (r̃g | π1). Let p1g(r | π1) denote
the conditional posterior of the location partition with respect to a singleton HM cluster
{g}. We define P (r̃g | π1) = p1g(r̃g | π1). Think of r̃g as a potential genomic location
partition with respect to a singleton HM set {g}. In other words, when a new singleton
HM set is proposed for cg, the proposal distribution for the genomic location clusters
under this new HM set is determined by imputed value r̃g. Lastly we draw θ, π0

and π1 whose full conditional posterior distributions are in closed forms. More MCMC
technical details are included in the Appendix.

3.3 Posterior Inference

A practical challenge related to posterior inference is the need to summarize a distribu-
tion over random partitions. Medvedovic et al. (2004) initially addressed this problem by
estimating posterior probabilities that any two HMs are clustered together. They eval-
uated probabilities Hgh = P (cg = ch | data) of pair-wise co-clustering, and used H as
a distance matrix for a (deterministic) hierarchical clustering algorithm. Alternatively,
Dahl (2006) proposed a point estimate of a random partition under a Dirichlet process
mixture model by reporting a least-squares partition. Specifically, the least-squares
clustering cLS is the observed clustering c which minimizes the Frobenius distance (L2

norm for matrices) between Sc and H, where Sc is an association G×G matrix whose
(g, g′) element is an indicator that HM g is clustered with HM g′. We include HMs
in the idle HM set by letting scg,g′ = 0 for all g′ if cg = 0. Following Dahl (2006), we
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propose a least-square summary

cLS = argminc || Sc −H ||2,

as a point estimate of the clustering of HMs, which minimizes the sum of the squared de-
viation of association matrix S from the matrix H of the posterior pairwise co-clustering
probabilities. Given cLS , we compute rLS

q , the least square estimate of the clustering
for genomic locations, based on the same formulation.

4 Simulation Studies

4.1 Simulation setup

We conducted simulation studies to evaluate the performance of the proposed NoB-LCP
model. We compared posterior inference with the simulation truth and with inference
under two alternative clustering methods, the plaid model and the QUBIC. Furthermore,
to show the importance of zero-enriched Pólya urn priors which allow some HMs or
genomic locations to be idle, we performed a sensitivity analysis by using regular Pólya
urn priors without zero-enrichment as the prior for the random partitions of HMs and
genomic locations. It means that we let π0 = 1 and π1 = 1 in (1) and (2) respectively.

We simulated a data matrix Y with N = 300 genomic locations and G = 18 HMs. We
let 13 out of 18 HMs belong to two active HM sets, in which HMs 1-7 belonged to set
1 and HMs 8-13 to set 2. The remaining 5 HMs, HMs 14–18, belonged to the idle HM
set. We assumed that the active HM set 1 partitioned the genomic locations into four
location clusters including one idle location cluster, i.e., D1 = 3, and that the active
HM set 2 partitioned the genomic locations into three location clusters including one
idle location cluster, i.e., D2 = 2. We generated location cluster labels, rqi, for each
active HM set assuming that a genomic location belonged to one of the location clusters
with equal probability. In keeping with the definition of the idle HM set (q = 0), we did

not generate location clusters with respect to the idle HMs with cg = 0. We fixed θ̃dg
for all the active location clusters for each of the 13 HMs residing in the active HM set
as listed in Table 1. Finally, denoting with NB(mean = a, size = b) a negative binomial
distribution with mean=a, variance=a+a2/b and with Unif(0, 1) a Uniform distribution
on (0, 1), the remaining θig were independently generated from NB(mean = µ, size = 1),
where µ ∼ Unif(0, 10), including the idle genomic locations in the active HM sets and all
the genomic locations in the idle HM set. The NB distribution was chosen to examine
the sensitivity of posterior inference with respect to deviations from the assumed Poisson
sampling model.

4.2 Simulation Results

The left panel of Figure 2 shows the heatmaps of yig under the simulation truth. After
rearranging the HMs and the genomic locations within each active HM set according to
the simulation truth, we can clearly observe the local clustering patterns in the data. In
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HM set 1

HM 1 HM 2 HM 3 HM 4 HM 5 HM 6 HM 7
cluster 1 11 9 7 13 13 9 13
cluster 2 15 7 15 7 9 7 7
cluster 3 13 11 9 9 7 11 15

HM set 2
HM 8 HM 9 HM 10 HM 11 HM 12 HM 13

cluster 1 9 15 9 11 7 9
cluster 2 11 11 15 9 13 7

Table 1: The true mean counts for active genomic location clusters, θ̃dg, in the simulated
data.

the active HM sets, the idle genomic locations, which are located in the first row block,
do not show a noticeable pattern: the colors are more or less randomly scattered. In
contrast, the active genomic locations in the columns corresponding to active HM sets
show clear patterns and the colors are more homogeneous within each location cluster.
In the idle HM set, since the genomic locations do not cluster, the corresponding color
mapping exhibits large variability.

We applied the proposed NoB-LCP model to the simulated data. In the MCMC poste-
rior simulation, we initialized the HMs allocation variable c using the clustering result
from hierarchical clustering by cutting the dendrogram to achieve two active HM sets
and one idle HM set. HMs 2, 4, 5 and 6 belonged to active HM set 1, HMs 8, 11 and
13 belonged to active HM set 2 and the remaining belonged to the idle HM set. The
initial values and priors of π0 and π1 were set to 0.5 and Beta(1, 1), respectively. We
fixed parameters k0g and λ0g by setting the mean of θ̃dg equal to g-th column mean

of Y and setting the variance of θ̃dg equal to 10. Finally, k1g, λ1g, k2g and λ2g were
computed by setting the mean of θig equal to g-th column mean of Y and variance equal
to 50. After 10,000 MCMC iterations with 5,000 burn-in, the Markov chains converged
and mixed well. We conducted convergence diagnostics using the R package coda and
found no evidence for convergence problems. Traceplots and empirical autocorrelation
plots (not shown) for the imputed parameters indicate a well mixing Markov chain. For
example, the empirical autocorrelation of π0 and π1 is practically zero beyond lag 2.
The simulation was carried out on a MacBook Pro laptop with 2.53 GHz Intel Core and
8GB memory. Computation was completed in 2.5 hours.

The least-squares summary of the posterior on c was cLS = (1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2,
2, 2, 0, 0, 0, 0, 0). Conditional on cLS , we further calculated the least-squares estimates
of genomic location clusters for active HM sets, rLS

q , q = 1, 2. Figure 2 right panel
shows that the NoB-LCP model correctly detected the two active HM sets in the sim-
ulation data: HMs 1-7 belonged to the active HM set 1 and HMs 8-13 belonged to the
active HM set 2, the remaining HMs belonged to the idle HM set, consistent with the
simulation truth. Tables 2 and 3 show that there are five estimated active genomic
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Figure 2: Heatmaps of the HM sets in the simulation truth versus the identified HM sets
under the NoB-LCP model. The first row block of each active HM set is the idle genomic
location cluster for that HM set. The remaining blocks are active genomic location
clusters. The division of genomic location clusters is indicated by white horizontal lines

location clusters and one idle genomic location cluster for HM set 1, where clusters
{0, 1, 2, 3} dominate and largely overlap with the four true genomic location clusters.
And the model identified four active genomic location clusters and one idle genomic
location cluster with respect to HM cluster 2, where clusters {0, 1, 2} dominated and
largely overlapped with the three true genomic location clusters of true HM set 2.

For comparison, the two alternative methods, the plaid model and QUBIC, were applied
to the same simulated data. Figure 3 shows the heatmaps of HMs in two biclusters
identified by the plaid model. The first bicluster included 18 genomic locations of HMs
8, 9, 10, 11 and 12, all of which belonged to true genomic location cluster d = 0 of true

0 1 2 3 4 5
active HM set 1 89 75 63 64 1 8
active HM set 2 91 101 18 89 1 -

Table 2: The number of genomic locations in each genomic location cluster for active
HM sets.
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HM set 1

cLS
1

cTRUE 0 1 2 3 4 5
d=0 80 0 0 0 0 0
d=1 3 68 1 1 1 3
d=2 5 0 61 1 0 4
d=3 0 7 1 60 0 1

HM set 2

cLS
2

cTRUE 0 1 2 3 4
d=0 87 0 0 18 0
d=1 3 85 17 0 0
d=2 1 4 84 0 1

Table 3: Comparisons of the location cluster membership estimated by the NoB-LCP
model with the true location cluster membership.

HM set 2. The second bicluster included 37 genomic locations of HMs 14 and 15, which
belonged to the idle HM set under the simulation truth. The QUBIC method detected
23 biclusters, 17 of which only included one single HM and the other six included two
HMs. Figure 4 shows the heatmaps of HMs in the six biclusters with two HMs. Some of
those six biclusters included idle HMs such as HMs 14, 16 and 17, and others included
either idle genomic locations, active genomic locations, or multiple active location sets.
For example, bicluster 1 included 15 genomic locations of HMs 4 and 7, among which 7
belonged to the true genomic location cluster d = 1 of true HM set 1, and 5 belonged
to the true genomic location cluster d = 2 of true HM set 1; bicluster 2 included 21
genomic locations of HMs 8 and 10, among which 17 belonged to the true genomic
location cluster d = 2 of true HM set 2.

Next we replaced the zero-enriched Pólya urn priors in (1) and (2) with regular Pólya
urn priors. And we used the same hyperparameters and initialized the parameters as
before, except for c. We initialized c by letting HMs 1-13 belong to active HM set 1 and
HMs 14-18 belong to active set 2. After 10,000 iterations of MCMC simulation with
5,000 burn-in, the Markov chains converged and mixed well.

The least-squares summary of the posterior on c was cLS = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 2, 2, 2, 2, 2). Conditional on cLS , we further calculated the least-squares estimates
of genomic location clusters for active HM sets, rLS

q , q = 1, 2. Figure 5 shows the
heatmaps of two detected active HM sets. Compared to the simulation truth, the model
with regular Pólya urn priors failed to differentiate the two active HM sets. In addition,
many small and meaningless genomic location clusters nested within two active HM sets
can be observed.
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Figure 3: Heatmaps of HMs in two biclusters of the simulated data identified by the
plaid model. The division of genomic locations is indicated by white horizontal lines.
Below the white line is the detected bi-cluster.
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Figure 4: Heatmaps of HMs in six biclusters for the simulated data identified by QUBIC.
The division of genomic locations is indicated by white horizontal lines. Below the white
line is the detected bi-cluster.
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Figure 5: Heatmaps of HMs in two active HM sets for the simulated data identified
by the model with regular Pólya urn priors without zero-enrichment. The division of
genomic locations is indicated by white horizontal lines.
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5 ChIP-Seq Data Analysis

We present local clustering results for the ChIP-Seq data described in Section 2. For
demonstration purpose, we apply our NoB-LCP model to clustering of promoters and
insulators, both of which are important regulatory elements. Information on the genomic
location for promoters was obtained from the UCSC Genome Browser (Fujita et al.
(2011)). Read counts were recorded for all genomic locations and all HMs. The insulator
information was obtained from the CTCFBSDB (Bao et al. (2008)), a CTCF binding
site database to identify insulators.

We consider a small subset of the ChIP-Seq data covering randomly selected 50 genomic
locations in promoter regions and 50 genomic locations in insulator regions. The data
is a 100 × 39 matrix with genomic locations as rows and HMs as columns. To fit the
NoB-LCP model, c is initialized by the clustering determined by a (deterministic) hi-
erarchical clustering algorithm. We chose parameters k0g and λ0g by fixing the prior

variance of θ̃dg at Var(θ̃dg) = 10, and matching the mean of θ̃dg with the column means
of the data matrix. Similarly, k1g, λ1g, k2g and λ2g are chosen by fixing the prior vari-
ance at 50, and matching the prior mean of θig with the column means. Finally, π0 and
π1 are initially set to 0.5 and we used a0 = b0 = a1 = b1 = 1, i.e., uniform hyperpri-
ors. After 10,000 iterations with a 5,000 burn-in for MCMC posterior simulation, we
evaluated convergence diagnostics (R package coda) and found no evidence for practical
convergence problems. The chain mixed well.

We compute the least-squares estimates cLS and rLS to summarize posterior inference.
The NoB-LCP model identifies 3 active HM sets, each of which partitions genomic
locations differently. Figure 6 shows the heatmaps of all active HM sets. These three
sets are candidates of co-localized HMs that relate to gene transcription. In addition,
the heatmap shows genomic location clusters nested in each active HM set.

Posterior inference distinguishes different types of regulatory elements and clusters sim-
ilar types together reasonably well. For example, active HM set 1 includes the following
HMs: H4K12ac, H3K79me2, H3K79me3. Genomic location clusters 1 and 5 in active
HM set 1 include only promoter regions, in which H4K12ac, H3K79me2 and H3K79me3
clearly show relatively high expression in Figure 6. Our results are consistent with
previous findings that H4K12ac counts are elevated in the promoter and transcribed
regions of active genes (Wang et al. (2008)), H3K79me2 and H3K79me3 are important
histone markers for the prediction of promoter regions (Wang et al. (2009); Weishaupt
et al. (2010)). Out of the 12 HMs in active HM set 2, all of them are acetylations; out
of the 21 HMs in active HM set 3, 15 of them are methylations. From this fact, we
can conjecture that the same types of histone modifications (methylations, acetylations,
etc.) are more likely to be clustered together.

In addition, highly correlated HM patterns can be identified by our model. For exam-
ple, active HM set 2 includes the following HMs: H2BK120ac, H2BK12ac, H2BK20ac,
H2BK5ac, H3K18ac, H3K27ac, H3K36ac, H3K4ac, H3K9ac, and H4K91ac, which were
reported to have relatively high correlation according to Wang et al. (2008).

For comparison, we applied the plaid model and QUBIC to the same ChIP-Seq data.
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Figure 6: Heatmaps of three active HM sets for ChIP-Seq data. White horizontal lines
indicate division of location clusters.
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The plaid model did not report any biclusters. QUBIC found 57 biclusters, but none
of them provide us clear divisions of regulatory elements. In addition, it is not easy to
extract useful information from so many biclusters.

Finally, we used a qq-plot to validate the assumed sampling model. Assuming a Pois-
son/gamma hierarchical sampling model, we have implicitly defined a negative bino-
mial marginal sampling model. The negative binomial model allows larger variabilities
in modeling the counts. We made a qq-plot of the empirical c.d.f. of the observed
ChIP-Seq data versus simulated data sampled from the imputed negative binomial dis-
tribution. We can see a linear relationship between two quantiles, suggesting that the
hierarchical sampling model is well calibrated (Figure not shown).

6 Discussion

We propose a nonparametric Bayesian local clustering Poisson model for a count data
matrix. The NoB-LCP model detects local clustering patterns by performing simultane-
ous clustering on columns and rows of a data matrix. Idle local clusters are introduced
to better separate noisy HMs and location from the actual signals in the genomics data.
Through simulation studies and the analysis of ChIP-Seq data we demonstrate the effec-
tiveness of our model in grouping regulatory elements with similar functionality based
on HMs patterns.

In this paper, we used zero-enriched Pólya urn priors to model random partitions of
HMs and genomic locations. Although partitions do not allow overlap between the
partitioning subsets in one imputation of the parameters, posterior inference could still
report positive (marginal) posterior probability for membership in multiple clusters
for the same HM (reporting such probabilities also requires a resolution of the label
switching problem). Alternatively, one could use feature allocation models, such as
the Indian buffet processes (Griffiths and Ghahramani (2005)) as priors for a random
allocation of HMs to subsets, including membership in multiple subsets.

Acknowledgments

Yuan Ji and Peter Müller’s research is supported in part by NIH R01 CA132897. Shoudan

Liang’s research in supported in part by NCI 5 K25 CA123344.

References

Andersson, R., Enroth, S., Rada-Iglesias, A., Wadelius, C., and Komorowski, J. (2009).
“Nucleosomes are well positioned in exons and carry characteristic histone modifica-
tions.” Genome research, 19(10): 1732–1741. 759

Bao, L., Zhou, M., and Cui, Y. (2008). “CTCFBSDB: a CTCF-binding site database for
characterization of vertebrate genomic insulators.” Nucleic acids research, 36(suppl
1): D83–D87. 773



776 Nonparametric Bayesian Bi-Clustering

Barski, A., Cuddapah, S., Cui, K., Roh, T., Schones, D., Wang, Z., Wei, G., Chepelev,
I., and Zhao, K. (2007). “High-resolution profiling of histone methylations in the
human genome.” Cell, 129(4): 823–837. 761

Bernstein, B., Mikkelsen, T., Xie, X., Kamal, M., Huebert, D., Cuff, J., Fry, B., Meiss-
ner, A., Wernig, M., Plath, K., et al. (2006). “A bivalent chromatin structure marks
key developmental genes in embryonic stem cells.” Cell, 125(2): 315–326. 759

Bernstein, B. E., Humphrey, E. L., Erlich, R. L., Schneider, R., Bouman, P., Liu, J. S.,
Kouzarides, T., and Schreiber, S. L. (2002). “Methylation of histone H3 Lys 4 in
coding regions of active genes.” Proceedings of the National Academy of Sciences,
99(13): 8695–8700. 759

Carlin, B. and Chib, S. (1995). “Bayesian model choice via Markov chain Monte Carlo
methods.” Journal of the Royal Statistical Society. Series B (Methodological), 473–
484. 765

Cheng, Y. and Church, G. (2000). “Biclustering of expression data.” In Proceedings
of the eighth international conference on intelligent systems for molecular biology ,
volume 1, 93–103. 760

Dahl, D. (2006). “Model-based clustering for expression data via a Dirichlet process
mixture model.” In Vannucci, M., Do, K.-A., and Müller, P. (eds.), Bayesian infer-
ence for gene expression and proteomics, 201–215. Cambridge: Cambridge University
Press. 765

Fujita, P., Rhead, B., Zweig, A., Hinrichs, A., Karolchik, D., Cline, M., Goldman, M.,
Barber, G., Clawson, H., Coelho, A., et al. (2011). “The UCSC genome browser
database: update 2011.” Nucleic acids research, 39(suppl 1): D876–D882. 773

Getz, G., Levine, E., and Domany, E. (2000). “Coupled two-way clustering analysis
of gene microarray data.” Proceedings of the National Academy of Sciences, 97(22):
12079–12084. 760

Griffiths, T. L. and Ghahramani, Z. (2005). “Infinite Latent Feature Models and the
Indian Buffet Process.” In In NIPS, 475–482. MIT Press. 775

Heintzman, N., Hon, G., Hawkins, R., Kheradpour, P., Stark, A., Harp, L., Ye, Z., Lee,
L., Stuart, R., Ching, C., et al. (2009). “Histone modifications at human enhancers
reflect global cell-type-specific gene expression.” Nature, 459(7243): 108–112. 759

Heintzman, N., Stuart, R., Hon, G., Fu, Y., Ching, C., Hawkins, R., Barrera, L.,
Van Calcar, S., Qu, C., Ching, K., et al. (2007). “Distinct and predictive chromatin
signatures of transcriptional promoters and enhancers in the human genome.” Nature
genetics, 39(3): 311–318. 759

Kurdistani, S. (2007). “Histone modifications as markers of cancer prognosis: a cellular
view.” British journal of cancer, 97(1): 1–5. 759



Xu, Y, Lee, J, Yuan, Y, Mitra, R, Liang, S, Müller, P and Ji, Y 777

— (2011). “Histone modifications in cancer biology and prognosis.” Epigenetics and
Disease, 91–106. 759

Lazzeroni, L. and Owen, A. (2002). “Plaid models for gene expression data.” Statistica
Sinica, 12(1): 61–86. 760

Lee, J., Müller, P., Zhu, Y., and Ji, Y. (2013a). “A nonparametric Bayesian model for
local clustering with Application to Proteomics.” Journal of the American Statistical
Association, to appear. 760

Lee, J., Quintana, F., Müller, P., and Trippa, L. (2013b). “Defining Predictive Proba-
bility Functions for Species Sampling Models.” Statistical Science, to appear. 762

Li, G., Ma, Q., Tang, H., Paterson, A., and Xu, Y. (2009). “QUBIC: a qualitative
biclustering algorithm for analyses of gene expression data.” Nucleic acids research,
37(15): e101–e101. 760

Medvedovic, M., Yeung, K., and Bumgarner, R. (2004). “Bayesian mixture model based
clustering of replicated microarray data.” Bioinformatics, 20(8): 1222–1232. 765

Roh, T., Cuddapah, S., and Zhao, K. (2005). “Active chromatin domains are defined
by acetylation islands revealed by genome-wide mapping.” Genes and development,
19(5): 542–552. 759

Scott, J. and Berger, J. (2010). “Bayes and empirical-Bayes multiplicity adjustment in
the variable-selection problem.” The Annals of Statistics, 38(5): 2587–2619. 763

Sivaganesan, S., Laud, P., and Müller, P. (2011). “A Bayesian subgroup analysis with
a zero-enriched Polya Urn scheme.” Statistics in Medicine, 30(4): 312–323. 762

Turner, H., Bailey, T., and Krzanowski, W. (2005). “Improved biclustering of microarray
data demonstrated through systematic performance tests.” Computational statistics
and data analysis, 48(2): 235–254. 760

Wang, X., Xuan, Z., Zhao, X., Li, Y., and Zhang, M. (2009). “High-resolution human
core-promoter prediction with CoreBoost HM.” Genome research, 19(2): 266–275.
773

Wang, Z., Zang, C., Rosenfeld, J., Schones, D., Barski, A., Cuddapah, S., Cui, K.,
Roh, T., Peng, W., Zhang, M., et al. (2008). “Combinatorial patterns of histone
acetylations and methylations in the human genome.” Nature genetics, 40(7): 897–
903. 761, 773

Weishaupt, H., Sigvardsson, M., and Attema, J. L. (2010). “Epigenetic chromatin
states uniquely define the developmental plasticity of murine hematopoietic stem
cells.” Blood, 115(2): 247–256. 773

Zang, C., Schones, D., Zeng, C., Cui, K., Zhao, K., and Peng, W. (2009). “A clustering
approach for identification of enriched domains from histone modification ChIP-Seq
data.” Bioinformatics, 25(15): 1952–1958. 761



778 Nonparametric Bayesian Bi-Clustering

Appendix: MCMC details

Joint pdf

p(Y, c, r, θ, π0, π1) = p(π0)p(π1)p(c)p(r | c)p(θ | c, r,k,λ)p(Y | θ)

= p(π0)p(π1)p(c)

Q∏
q=1

[p(rq)

×
Dq∏
d=1

{
∏

g∈Vq

(p(θ̃dg | k0g , λ0g)
∏

i∈Rqd

p(yig | θ̃dg)}

×
∏

g∈Vq

∏
i∈Rs0

(p(θig | k1g , λ1g)p(yig | θig))]

×
∏

g∈V0

N∏
i=1

(p(θig | k2g , λ2g)p(yig | θig))

where Vq = {g | cg = q, g = 1, . . . , G} is the set of HMs in an HM set q, q = 0, . . . , Q,
and Rqd = {i | rqi = d, i = 1, . . . , N} is the set of genomic locations in genomic location
cluster d corresponding to HM set q for q = 1, . . . , Q and d = 1, . . . , Dq. We include λ
and k in the conditioning sets to indicate the relevant (fixed) hyperparameters.

The prior probability distributions of c and rq are a zero-enriched Pólya urn scheme
given in Equations (1) and (2) of the main paper.

Full conditional

(i) Update θ

(a) For active HMs (cg > 0) and active genomic locations (rqi > 0), q = 1, . . . , Q
and d = 1, . . . , Dq,

θ̃dg | k0g, λ0g, c, rq,yg ∼ Gamma(k0g +

N∑
i∈Rqd

yig, λ0g + nqd).

(b) For active HMs (cg > 0) and idle genomic locations (rqi = 0), i = 1, . . . , N ,

θig | k1g, λ1g, c, rq,yg ∼ Gamma(k1g + yig, λ1g + 1).

(c) For idle HM set (cg = 0), i = 1, . . . , N ,

θig | k2g, λ2g, c,yg ∼ Gamma(k2g + yig, λ2g + 1).

(ii) Update π0

π0 | c ∼ Beta(a0 +G′, b0 +G−G′).



Xu, Y, Lee, J, Yuan, Y, Mitra, R, Liang, S, Müller, P and Ji, Y 779

(iii) Update π1

π1 | r ∼ Beta(a1 +
∑
q

∑
i

I(rqi > 0), b1 +NQ−
∑
q

∑
i

I(rqi > 0)),

where I is an indicator function: I(rqi > 0) = 1 if rqi > 0; I(rqi > 0) = 0 if
rqi = 0.

(iv) Update rq

Update rq for active HM sets, q = 1, . . . , Q and i = 1, . . . , N .

Remove θq
i , define m

−
q ,θ

q−, D−
q , r

−
q , n

−
q and R−

qd, and integrate with respect to θ.
We find

p(rqi = d | c, r−q ,k0,λ0,y)

∝ (π1
n−
qd

β+m−
q

∏
g∈Vq

1
yig !

∏
g∈Vq

Γ(k0g+
∑

l∈R
−
qd

∪
{i}

ylg)

Γ(k0g+
∑

l∈R
−
qd

ylg)

× (λ0g+n−
qd)

k0g+
∑

l∈R
−
qd

ylg

(λ0g+n−
qd+1)

k0g+
∑

l∈R
−
qd

∪
{i}

ylg
) if d = 1, . . . , D−

q ,

∝ π1
β

β+m−
q

∏
g∈Vq

Γ(k0g+yig)
Γ(k0g)

(λ0g)
k0g

(λ0g+1)k0g+yigyig!
if d = D− + 1,

∝ (1− π1)
∏

g∈Vq

Γ(k1g+yig)
Γ(k1g)

(λ1g)
k1g

(λ1g+1)k1g+yigyig!
if d = 0.

(v) Update c

Remove cg, and define G
′−, Q−, p−, c− and n−. Sample cg as follows: cg ∈

{0, 1, , . . . , Q−, (Q− + 1)}. Note that cg = 0 implies becoming idle, 1 ≤ cg ≤ Q−

joining one of the existing HM sets, and cg = Q−+1 starting a new singleton HM
set.

p(cg = q | yg) ∝


p(cg = 0)p(yg | cg = 0) q = 0

p(cg = q)p(yg | cs) q = 1, . . . , Q−

p(cg = Q− + 1)
∑

r p(r | cg = Q− + 1)p(yg | r) q = Q− + 1.

The marginalization of r is difficult and computationally intensive. To avoid this prob-
lem, we consider a pseudo prior p(r̃g | yg) and let rQ−+1 = r̃g. Finally, after canceling∏G

g′=1 p(r̃g | yg), we have the following:

p(cg = q | yg) ∝


p(cg = 0)p(yg | cg = 0) q = 0

p(cg = q)p(yg | cs) q = 1, . . . , Q−

p(cg = Q− + 1)p(rQ−+1)p(yg | rQ−+1) q = Q− + 1.
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For joining an existing cluster, q = 1, . . . , Q−,

p(cg = q | c−, rest) ∝ π0
p−q

α+G′−

×
Dq∏
d=1

 λ
k0g

0g

Γ(k0g)

Γ(k0g +
∑

i∈Rqd
yig)

(nqd + λ0g)
(k0g+

∑
i∈Rqd

yig)

∏
i∈Rqd

1

yig!


×

∏
i∈Rq0

Γ(k1g + yig)

Γ(k1g)

(λ1g)
k1g

(λ1g + 1)k1g+yigyig!
,

for starting a new (singleton) cluster

p(cg = Q− + 1 | c−, rest) ∝ π0
α

α+G′− π
mq

1 (1− π1)
(N−mq) β

Dq
∏Dq

d=1 Γ(nqd)∏mq

i=1(β + i− 1)

×
Dq∏
d=1

 λ
k0g

0g

Γ(k0g)

Γ(k0g +
∑

i∈Rqd
yig)

(nqd + λ0g)
(k0g+

∑
i∈Rqd

yig)

∏
i∈Rqd

1

yig!


×

N∏
i∈Rq0

Γ(k1g + yig)

Γ(k1g)

(λ1g)
k1g

(λ1g + 1)k1g+yigyig!
,

and for joining the inactive cluster

p(cg = 0 | c−, rest) ∝ (1− π0)
N∏
i=1

Γ(k2g + yig)

Γ(k2g)

(λ2g)
k2g

(λ2g + 1)k2g+yigyig!
.


