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SHARP BOUNDS ON THE VARIANCE IN RANDOMIZED
EXPERIMENTS

BY PETER M. ARONOW, DONALD P. GREEN AND DONALD K. K. LEE

Yale University, Columbia University and Yale University

We propose a consistent estimator of sharp bounds on the variance of the
difference-in-means estimator in completely randomized experiments. Gen-
eralizing Robins [Stat. Med. 7 (1988) 773–785], our results resolve a well-
known identification problem in causal inference posed by Neyman [Statist.
Sci. 5 (1990) 465–472. Reprint of the original 1923 paper]. A practical impli-
cation of our results is that the upper bound estimator facilitates the asymp-
totically narrowest conservative Wald-type confidence intervals, with appli-
cations in randomized controlled and clinical trials.

1. Introduction. We consider the long-standing problem of estimating the
variance of the difference-in-means estimator as applied to a completely random-
ized experiment performed on a random sample of size n selected without replace-
ment from a population of size N under a nonparametric model of deterministic
potential outcomes. It has been known since Neyman [13] that neither unbiased nor
consistent variance estimation is generally possible in this setting, due to the fact
that the joint distribution of the potential outcomes can never be fully recovered
from data.

In this paper, we propose an interval estimator that is consistent for sharp
bounds, defined as the smallest interval containing all values of the variance that
are compatible with the observable information. The upper bound is never larger
than and often smaller than conventional approximations. Our estimator is also ap-
plicable to all possible cases of N and n (n = N < ∞, n < N < ∞, and N = ∞),
thus providing a unified treatment of the problem. In the case where the outcomes
are dichotomous and n = N < ∞, our estimator reproduces Robins [14] results.
The case n < N < ∞ generalizes the settings considered by prior researchers. Un-
biased variance estimation is not generally possible when N < ∞, but our estima-
tor produces asymptotically sharp bounds. When the population size N is infinite,
our estimator recovers the standard variance point estimator for mean differences
between independent groups [13].

A practical implication of our work is that it facilitates confidence intervals that
are often narrower than intervals produced by conventional methods: our upper
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bound variance estimator may be used to construct conservative Wald-type con-
fidence intervals for the average treatment effect. Asymptotically, these intervals
are the narrowest Wald-type intervals that are assured to have at least the nomi-
nal coverage. We illustrate empirical performance using data from an randomized
controlled trial, discuss extensions and provide R code implementing our estima-
tor. An implementation in Stata is also available from the authors.

2. Setting. Consider a population UN consisting of N ≥ 4 units. From UN ,
n units are randomly sampled into the experimental sample, and the remaining
N − n units are left unsampled. Of the n sampled units, m ≥ 2 units are randomly
assigned to the treatment condition, and n − m ≥ 2 units are randomly assigned
to the control condition. Let the indicator variable XT

i be one if unit i is assigned
to the treatment condition, and let the indicator XC

i be one if unit i is assigned to
the control condition. If XT

i = XC
i = 0, then the unit is unsampled. Since units are

sampled without replacement, XT
i + XC

i ≤ 1. Without loss of generality, assume
an index ordering i = 1, . . . ,N such that those assigned to treatment come first,
XT

1 , . . . ,XT
m = 1, and those assigned to control come after, XC

m+1, . . . ,X
C
n = 1,

and the remaining N − n unsampled units, if any, come last.
Associated with each unit i are two potential outcomes [13, 15] under control

and treatment, respectively: y0i and y1i . For each unit i, the analyst then observes
y0i when XC

i = 1 and y1i when XT
i = 1. Given elements vi , wi for i = 1, . . . ,N ,

we define the finite population mean μN(v), finite population variance σ 2
N(v) and

finite population covariance σN(v,w), respectively, as

μN(v) = 1

N

N∑
i=1

vi, σ 2
N(v) = 1

N

N∑
i=1

{
vi − μN(v)

}2
,

σN(v,w) = 1

N

N∑
i=1

{
vi − μN(v)

}{
wi − μN(w)

}
.

The average treatment effect for the population UN is τN = μN(y1) − μN(y0).
The difference-in-means estimator of τN is

τ̂N = μ̂N(y1) − μ̂N(y0) = 1

m

m∑
i=1

y1i − 1

n − m

n∑
i=m+1

y0i ,(1)

with EX(τ̂N) = τN , where the expectation operator EX averages over all
(N
n

)(n
m

)
possible treatment assignments.

Our inferential target is the variance of τ̂N . Adapting Freedman [3], Proposi-
tion 1, the variance is

VN = 1

N − 1

{
N − m

m
σ 2

N(y1) + N − (n − m)

n − m
σ 2

N(y0) + 2σN(y1, y0)

}
.(2)
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The unknown quantities in this expression are σ 2
N(y1), σ 2

N(y0) and σN(y1, y0). By
Cochran [1], Theorem 2.4, unbiased estimators of σ 2

N(y1) and σ 2
N(y0) are

σ̂ 2
N(y1) = N − 1

N(m − 1)

m∑
i=1

{
y1i − μ̂N(y1)

}2
,

σ̂ 2
N(y0) = N − 1

N(n − m − 1)

n∑
i=m+1

{
y0i − μ̂N(y0)

}2
.

Since both potential outcomes y0i and y1i for the same unit can never be observed
simultaneously, consistent estimators do not generally exist for σN(y1, y0) or for
VN when the population size N is finite. However, when the population being
sampled from is infinite (N = ∞), Neyman [13] noted that the control and treat-
ment units are effectively sampled independently from their respective distribu-
tions. Hence, the covariance term vanishes, and VN is point identified. To see this,
let N → ∞ while holding m and n fixed so that VN → 1

m
σ 2

N(y1) + 1
n−m

σ 2
N(y0),

the sampling variance for the difference of independent means.

2.1. Neyman [13] approximations when n = N . When n = N , the sampling
variance of the difference-in-means estimator reduces to

Vn = 1

n − 1

{
n − m

m
σ 2

n (y1) + m

n − m
σ 2

n (y0) + 2σn(y1, y0)

}
.(3)

Neyman [13] proposed an estimator of Vn that uses the inequality 2σn(y1, y0) ≤
2{σ 2

n (y1)σ
2
n (y0)}1/2 ≤ σ 2

n (y1)+σ 2
n (y0), by application of the Cauchy–Schwarz in-

equality and the inequality of arithmetic and geometric means. An upper bound es-
timate for Vn is obtained by setting 2σn(y1, y0) = σ 2

n (y1)+σ 2
n (y0) and substituting

σ̂ 2
n (y1) and σ̂ 2

n (y0) for σ 2
n (y1) and σ 2

n (y0), respectively:

V̂ a
n = n

n − 1

{
σ̂ 2

n (y1)

m
+ σ̂ 2

n (y0)

n − m

}
.(4)

Since EX{σ̂ 2
n (y1)} = σ 2

n (y1) and EX{σ̂ 2
n (y0)} = σ 2

n (y0), V̂ a
n is conservative as its

bias is nonnegative:

EX

(
V̂ a

n − Vn

) = (n − 1)−1{
σ 2

n (y1) + σ 2
n (y0) − 2σn(y1, y0)

} ≥ 0.(5)

The estimate V̂ a
n is also produced by common estimators that presuppose sampling

from an infinite superpopulation, including heteroskedasticity-robust variance es-
timators [12, 16] and the standard variance estimate for mean differences between
independent groups [13]. Furthermore, V̂ a

n is known to be unbiased for Vn when
effects are constant, as would hold when there exist no treatment effects whatso-
ever [5]. For these reasons, the estimate V̂ a

n is often recommended for the analysis
of experimental data [4, 7].
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Neyman [13] also proposed a method for computing bounds on Vn. Given
only knowledge of the second moments σ 2

n (y1) and σ 2
n (y0), the sharpest bound

on σn(y1, y0) is given by the Cauchy–Schwarz inequality: −{σ 2
n (y1)σ

2
n (y0)}1/2 ≤

σn(y1, y0) ≤ {σ 2
n (y1)σ

2
n (y0)}1/2. By substituting σ̂ 2

n (y1) and σ̂ 2
n (y0) for σ 2

n (y1) and
σ 2

n (y0), Neyman’s bound estimator is

V̂ b±
n = 1

n − 1

[
n − m

m
σ̂ 2

n (y1) + m

n − m
σ̂ 2

n (y0) ± 2
{
σ̂ 2

n (y1)σ̂
2
n (y0)

}1/2
]
.(6)

The plus or minus sign is chosen depending on whether an upper or a lower bound
estimate is desired. Neyman recommended choosing V̂ b+

n as a conservative ap-
proximation to the true variance, and suggested that it is “necessary” (page 471) to
assume that the upper bound given by the Cauchy–Schwarz inequality holds.

3. Sharp bounds on VN given marginal distributions of outcomes. Un-
der the setting considered, estimates for the marginal distributions of y1 and
y0 exist and can be used to obtain asymptotically sharp bounds on VN given
the information available. Let GN(y) = N−1 ∑N

i=1 I (y1i ≤ y) and FN(y) =
N−1 ∑N

i=1 I (y0i ≤ y) be the marginal distribution functions of y1 and y0, respec-
tively. Define their left-continuous inverses as G−1

N (u) = inf{y :GN(y) ≥ u} and
F−1

N (u) = inf{y :FN(y) ≥ u}. Define also

σH
N (y1, y0) =

∫ 1

0
G−1

N (u)F−1
N (u)du − μN(y1)μN(y0),

(7)

σL
N(y1, y0) =

∫ 1

0
G−1

N (u)F−1
N (1 − u)du − μN(y1)μN(y0).

LEMMA 1 (Hoeffding). Given only GN and FN and no other information on
the joint distribution of (y1, y0), the bound

σL
N(y1, y0) ≤ σN(y1, y0) ≤ σH

N (y1, y0)

is sharp. The upper bound is attained if y1 and y0 are comonotonic, that is,
(y1, y0) ∼ {G−1

N (U),F−1
N (U)} for a uniform random variable U on [0,1]. The

lower bound is attained if y1 and y0 are countermonotonic, that is, (y1, y0) ∼
{G−1

N (U),F−1
N (1 − U)}.

Lemma 1 implies that [V L
N ,V H

N ] is the sharpest interval bound for VN :

V H
N = 1

N − 1

{
N − m

m
σ 2

N(y1) + N − (n − m)

n − m
σ 2

N(y0) + 2σH
N (y1, y0)

}
,

V L
N = 1

N − 1

{
N − m

m
σ 2

N(y1) + N − (n − m)

n − m
σ 2

N(y0) + 2σL
N(y1, y0)

}
.
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In practice, we observe neither GN nor FN , but rather their estimates ĜN(y) =
m−1 ∑N

i=1 XT
i I (y1i ≤ y), F̂N(y) = (n − m)−1 ∑N

i=1 XC
i I (y0i ≤ y) and left-

continuous inverses

Ĝ−1
N (u) = inf

{
y : ĜN(y) ≥ u

} = y1(�mu�),

F̂−1
N (u) = inf

{
y : F̂N(y) ≥ u

} = y0(m+�(n−m)u�),

where y1(1) ≤ · · · ≤ y1(m) and y0(m+1) ≤ · · · ≤ y0(n) are the ordered observed out-
comes, and �x� denotes the smallest integer greater than or equal to x. Substituting
(ĜN, F̂N) for (GN,FN) in (7) yields an interval estimator [σ̂ L

N (y1, y0), σ̂
H
N (y1,

y0)] for σN(y1, y0):

σ̂H
N (y1, y0) =

∫ 1

0
Ĝ−1

N (u)F̂−1
N (u)du − μ̂N(y1)μ̂N(y0),

σ̂ L
N(y1, y0) =

∫ 1

0
Ĝ−1

N (u)F̂−1
N (1 − u)du − μ̂N(y1)μ̂N(y0).

Let the [0,1]-partition Pm,n = {p0,p1, . . . , pP } be the ordered distinct ele-
ments of {0,1/m,2/m, . . . ,1} ∪ {0,1/(n − m),2/(n − m), . . . ,1}. Let y1[i] =
y1(�mpi�) and y0[i] = y0{m+�(n−m)pi�}. The inverses Ĝ−1

N and F̂−1
N are piecewise

constant since Ĝ−1
N (u) = y1[i] and F̂−1

N (u) = y0[i] for u ∈ (pi−1,pi]. In addition,
the symmetry pi = 1 − pP−i implies that pi − pi−1 = pP+1−i − pP−i . Thus,
[σ̂ L

N (y1, y0), σ̂
H
N (y1, y0)] reduces to

σ̂ H
N (y1, y0) =

P∑
i=1

(pi − pi−1)y1[i]y0[i] − μ̂N(y1)μ̂N(y0),

(8)

σ̂ L
N (y1, y0) =

P∑
i=1

(pi − pi−1)y1[i]y0[P+1−i] − μ̂N(y1)μ̂N(y0),

where μ̂N(y1) and μ̂N(y0) are as defined in (1).
Substituting σ̂ 2

N(y1), σ̂ 2
N(y0), and (8) for {σ 2

N(y1), σ
2
N(y0), σN(y1, y0)} in the

expressions for V L
N and V H

N , we obtain the interval estimator [V̂ L
N , V̂ H

N ] for VN :

V̂ H
N = 1

N − 1

{
N − m

m
σ̂ 2

N(y1) + N − (n − m)

n − m
σ̂ 2

N(y0) + 2σ̂H
N (y1, y0)

}
,

(9)

V̂ L
N = 1

N − 1

{
N − m

m
σ̂ 2

N(y1) + N − (n − m)

n − m
σ̂ 2

N(y0) + 2σ̂ L
N (y1, y0)

}
.

Since Lemma 1 applies to the sample populations as well, it follows that V̂ H
N is

never greater than V̂ b+
N , and V̂ L

N is never smaller than V̂ b−
N . R code to implement

the estimators V̂ H
N and V̂ L

N is presented in Appendix B.
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It is possible to demonstrate that, when outcomes are dichotomous and n = N ,
our estimator essentially reproduces the estimator proposed by Robins [14], equa-
tion (3), with a slight difference due to finite population corrections. See Copas [2],
Gadbury, Iyer and Albert [6], Heckman, Smith and Clements [9] and Zhang et
al. [19] for additional details on identification of the joint distribution of potential
outcomes when outcomes are dichotomous.

4. Asymptotic sharpness of interval estimator. Let {UN }N be a nested se-
quence of finite populations. The potential outcomes y1 and y0 of each unit are
fixed, and hence the population grows deterministically. As in Isaki and Fuller [10],
we do not assume that the sequences of treatment assignments are nested; instead,
each UN hosts its own random assignment. Let HN(·, ·) be the joint distribution
function of (y1, y0) for UN . Under mild conditions on the scaling of UN , the inter-
val estimator [V̂ L

N , V̂ H
N ] converges to sharp bounds on VN .

PROPOSITION 1. Suppose the following conditions hold as N → ∞:

1. (m/N,n/N) → (θρ, θ) for θ ∈ (0,1] and ρ ∈ (0,1);
2. HN converges weakly to a limit distribution H with marginals G(y) =

H(y,∞) and F(y) = H(∞, y);
3. GN(y) → G(y) at any discontinuity point of G, and FN(y) → F(y) at any

discontinuity point of F ;
4. The sequences of distributions represented by {GN }N and {FN }N are uni-

formly square-integrable. That is, as β → ∞,

sup
N

{
1

N

N∑
i:y2

1i≥β

y2
1i

}
, sup

N

{
1

N

N∑
i:y2

0i≥β

y2
0i

}
→ 0.

Then for the collection H of all bivariate distributions with marginals G and F ,
the moments of each h ∈H exist up to second order and

NV H
N → 1 − θρ

θρ
VarH(y1) + 1 − θ(1 − ρ)

θ(1 − ρ)
VarH(y0) + 2 sup

h∈H
Covh(y1, y0),

NV L
N → 1 − θρ

θρ
VarH(y1) + 1 − θ(1 − ρ)

θ(1 − ρ)
VarH(y0) + 2 inf

h∈HCovh(y1, y0).

Moreover, (V̂ H
N − V H

N , V̂ L
N − V L

N ) = oP (1/N).

REMARK 1. Condition 3 is used to establish the functional convergence of
(GN,FN) to (G,F ). When the units of UN are independent and identically dis-
tributed samples from a superpopulation, the condition holds with probability one
because of the strong law of large numbers. The condition is also satisfied if G and
F are continuous, regardless of whether or not the units come from a superpopu-
lation. We thank Professor A. W. van der Vaart for suggesting the latter as an alter-
nate sufficient condition for convergence, which subsequently inspired condition 3.
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REMARK 2. Given condition 2, any convergence of the marginal second mo-
ments of HN to those of H (should they exist) necessarily implies condition 4.
Thus, the condition is the weakest possible complement to conditions 1–3.

REMARK 3. If condition 4 of Proposition 1 is strengthened to require that y1
and y0 be bounded, then higher order rates of convergence can be obtained, namely
that P(N |V̂ H

N − V H
N | > ε) and P(N |V̂ L

N − V L
N | > ε) are both of order O(1/N).

Interested readers are referred to Proposition 2 in the Appendix.

Outline of proof. The random treatment assignment process can be expressed
as a triangular array X where the N th row (XN,1, . . . ,XN,N) = {(XT

1 ,XC
1 ), . . . ,

(XT
N,XC

N)} is the treatment/control assignment for population UN . Since the treat-
ment/control assignment for UN+1 is not related to that for UN , each row of X is
a random vector of a different probability space. As a result, the sequence of ran-
dom distribution functions (ĜN, F̂N) do not share a common probability space.
However, by treating (ĜN, F̂N) as random elements taking values in the product
space of càdlàg functions D([−∞,∞],R)2 endowed with the uniform metric, we
show that (ĜN, F̂N) → (G,F ) in probability. It then follows from the Skorohod
representation that there exists a sequence of random elements (Ĝ′

N, F̂ ′
N) defined

on a common probability space that has the same law as (ĜN, F̂N). Moreover,
(Ĝ′

N, F̂ ′
N) converges to (G,F ) almost everywhere. Pathwise convergence of the

moments of (Ĝ′
N, F̂ ′

N) then implies probabilistic convergence of the moments of
(ĜN, F̂N) to the desired result. We refer the reader to the Appendix for details of
the formal argument.

5. Confidence intervals for τN . The upper bound estimator V̂ H
N may be used

as a basis for Wald-type confidence intervals for the average treatment effect. The
proof of the following corollary follows directly from Freedman [3], Theorem 1,
and associated remarks.

COROLLARY 1. Suppose that the support of H is nonsingular and that con-
ditions 1–3 of Proposition 1 hold. Suppose in addition that condition 4 is strength-
ened to require uniformly bounded third moments:

sup
N

{
1

N

N∑
i=1

|y1i |3
}
, sup

N

{
1

N

N∑
i=1

|y0i |3
}

< ∞.

Then

τ̂N − τN

(γ V̂ H
N )1/2

converges weakly to the standard normal distribution where γ = limN(NVN)/

limN(NV H
N ) ≤ 1.
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REMARK 4. As V̂ H
N is consistent for the sharp upper bound on VN , then given

large N , a confidence interval constructed as τ̂N ± z1−α/2(V̂
H
N )1/2 is asymptot-

ically the narrowest Wald-type confidence interval assured to have at least the
nominal coverage.

6. Application. We consider the randomized controlled trial reported by Har-
rison and Michelson [8], which assessed the intention-to-treat effects of an experi-
mental phone call on donations to a nonprofit gay rights organization. The control
phone call script contained a standard appeal. The experimental phone call script
included an additional sentence that revealed the sexual orientation of the volunteer
caller. The finite population UN , which was not selected from any broader popula-
tion, contains N = n = 1561 subjects, m = 781 of whom were randomly assigned
to receive the experimental phone call. Outcomes were measured in terms of US
dollars (USD) received per subject, ranging from $0 to $150. The mean donation
given by subjects assigned to control was μ̂N(y0) = $1.397, and the mean dona-
tion given by subjects assigned to treatment was μ̂N(y1) = $0.715, yielding the
difference-in-means estimate τ̂N = −$0.682.

In Table 1, we report the variance estimates and confidence intervals associated
with Neyman’s approximations and our proposed estimator. We find, as expected,
that our estimates are sharper than Neyman’s approximations. Compared to the
conventional variance estimator V̂ a

N , we find that our upper bound estimator yields
a 7% reduction in the nominal variance. Importantly, if using V̂ a

N as a basis for
conservative inference, one would need over 100 additional subjects in order to
achieve the same nominal variance as that of our proposed upper bound estimate
V̂ H

N , all else equal. Similarly, if using V̂ b+
N , one would need over 75 additional

subjects to achieve the nominal variance of V̂ H
N .

6.1. Simulations. We use the data from [8] to assess the operating characteris-
tics of the upper bound estimators and associated Wald-type confidence intervals.

TABLE 1
Variance estimates and confidence intervals for Harrison and Michelson [8]

Variance 95% confidence
estimate (USD2) interval for τN

Conventional (V̂ a
N ) 0.199 (−$1.555,$0.192)

Neyman upper bound (V̂ b+
N ) 0.196 (−$1.548,$0.185)

Neyman lower bound (V̂ b−
N ) 0.003 N/A

Sharp upper bound (V̂ H
N ) 0.186 (−$1.528,$0.165)

Sharp lower bound (V̂ L
N ) 0.098 N/A
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These characteristics depend on the underlying joint distribution of potential out-
comes, which cannot be directly observed and are instead hypothesized as part of
these simulations. We thus impute the missing potential outcomes (potential con-
trol outcomes for treatment subjects, and potential treatment outcomes for control
subjects) by asserting varying hypotheses about treatment effects. We simulate 25
million random assignments and, for each of these random assignments, compute
the upper bound variance estimates V̂ a

N , V̂ b+
N and V̂ H

N , and associated confidence
intervals that would have been obtained. For the collection of 25 million simula-
tions, we calculate the mean variance estimate, the mean width of the associated
95% confidence intervals for τN and the fraction of simulated confidence intervals
covering τN .

The first hypothesis that we evaluate is the sharp null hypothesis of no effect
whatsoever. This hypothesis, denoted “Sharp Null,” assumes that y0i = y1i for
all i. Under the Sharp Null, the treatment effect estimator variance is 0.199 USD2.
As can be seen in Table 2, Neyman’s estimators predictably perform well since
they implicitly assume that the outcomes are perfectly correlated: the bias (5) for
V̂ a

N is zero because σ 2
N(y1) = σ 2

N(y0) = σN(y1, y0). Due to the nonlinearity of
the square root function, the Cauchy–Schwarz inequality implies that V̂ b+

N has
nonpositive bias (−0.007 USD2). The 95% confidence intervals associated with
V̂ a

N and V̂ b+
N have coverage of 95.2% and 94.1%, respectively (the former is not

exactly 95% because the sampling distribution of τN is not perfectly normal). Be-
cause V̂ H

N ≤ V̂ b+
N , V̂ H

N is slightly more negatively biased (−0.010 USD2) and has
lower coverage (93.7%) than V̂ b+

N .
We next consider two hypotheses that embed treatment effect heterogeneity,

denoted “Heterogeneity A” and “Heterogeneity B.” Under Heterogeneity A, we

TABLE 2
Simulated variance estimator properties under varying treatment effect hypotheses for Harrison and

Michelson [8], using 25 million simulated random assignments each

Mean var. Mean 95% Coverage
Effect hypothesis Variance estimator estimate CI width for τN

Sharp Null Conventional (V̂ a
N ) 0.199 1.747 95.2%

(True Var.: 0.199) Neyman upper bound (V̂ b+
N ) 0.193 1.724 94.1%

Sharp upper bound (V̂ H
N ) 0.189 1.703 93.7%

Heterogeneity A Conventional (V̂ a
N ) 0.279 2.067 96.7%

(True Var.: 0.238) Neyman upper bound (V̂ b+
N ) 0.268 2.028 95.9%

Sharp upper bound (V̂ H
N ) 0.258 1.987 95.4%

Heterogeneity B Conventional (V̂ a
N ) 0.244 1.933 97.4%

(True Var.: 0.186) Neyman upper bound (V̂ b+
N ) 0.226 1.860 96.5%

Sharp upper bound (V̂ H
N ) 0.214 1.809 96.0%
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assume that the sharp null hypothesis holds, with the exception of 10 subjects who
had an observed y0i = 0 USD under control. For these 10 subjects, we assume that
y1i = 100 USD. Under Heterogeneity A, the treatment effect estimator variance is
0.238 USD2 and, as expected, all variance estimators are conservative (positively
biased). However, the bias, confidence interval widths, and coverage for τN are
all improved when V̂ H

N is used in place of either of Neyman’s estimators. In for-
mulating the Heterogeneity B hypothesis, we assume that Heterogeneity A holds,
but, in addition, for all 6 subjects under treatment with an observed y1i ≥ 50 USD,
we assume that y0i = 0 USD. Under Heterogeneity B, the treatment effect estima-
tor variance is 0.186 USD2 and, again, while all estimators are conservative, V̂ H

N

improves over Neyman’s estimators.
In Appendix C, we further explore the relative performance of the upper bound

estimates under varying assumptions about the distribution of potential outcomes.
Using the Beta distribution family as an example to represent varying shapes of
marginal treatment and control distributions, we show that it is possible for V̂ H

N

to materially outperform V̂ a
N and V̂ b+

N as the two marginals diverge in shape. Our
simulations therefore illustrate how V̂ H

N can improve upon Neyman’s bounds un-
der effect heterogeneity.

7. Discussion. The proposed variance estimator may also be extended to al-
ternative designs. For block-randomized designs where the number of units per
block grows asymptotically large, Proposition 1 holds within each block, and thus
calculation of the overall variance is straightforward. In cluster-randomized de-
signs with equally-sized clusters, the proposed estimator may be used with the
unit of analysis being the cluster and the outcome being the cluster mean. It is also
straightforward to adapt the estimator to completely randomized experiments with
multiple treatments, which may be shown to be logically equivalent to sampling
from a broader population. In addition, we note that our result can be generalized
to characterize estimation error for arbitrary target populations within the sampling
frame (e.g., unsampled units).

Finally, we remark on the scope of our findings, as our results presuppose de-
terministic potential outcomes. When the potential outcomes are stochastic, the
total variance is greater than the conditional variance (2) because of the additional
stochasticity. If one sought to estimate the total variance or bounds thereof, addi-
tional structure would need to be imposed on the stochastic process (e.g., indepen-
dence across units and finite variances); otherwise it is possible for the identifica-
tion set to be unbounded.

APPENDIX A: PROOFS

PROOF OF LEMMA 1. Let HN(y1, y0) be the joint distribution function of
(y1, y0), and define two other distributions HH

N (y1, y0) = min{GN(y1),FN(y0)}
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and HL
N(y1, y0) = max{0,GN(y1) + FN(y0) − 1}. All three distributions have the

same marginals GN and FN . Defining EQ as the expectation operator with respect
to a distribution Q, a result by Hoeffding, recounted in Tchen [17], shows that

EHL
N
(y1y0) ≤ EHN

(y1y0) ≤ EHH
N

(y1y0).

Since {G−1
N (U),F−1

N (U)} ∼ HH
N and {G−1

N (U),F−1
N (1 − U)} ∼ HL

N , the lower
and upper bounds are equivalent to

EHH
N

(y1y0) =
∫ 1

0
G−1

N (u)F−1
N (u)du,

EHL
N
(y1y0) =

∫ 1

0
G−1

N (u)F−1
N (1 − u)du.

The integrals exist because |G−1
N (u)|, |F−1

N (u)| ≤ maxN
i=1 max(|y1i |, |y0i |) < ∞.

�

Lemma 2 below will be required in the proofs of Propositions 1 and 2. In the
special case where the units of UN are independent and identically distributed
samples from a superpopulation, the first part of the lemma reduces to the clas-
sical Glivenko–Cantelli theorem, and the convergence implied by the second part
follows from the conditional bootstrap convergence results in van der Vaart and
Wellner [18], Example 3.6.14. We thank an anonymous reviewer for suggesting a
more elegant way for bounding (11) and (12) than our original approach.

LEMMA 2. Suppose conditions 1–3 of Proposition 1 hold. Then

sup
y

∣∣G(y) − GN(y)
∣∣ → 0 and sup

y

∣∣F(y) − FN(y)
∣∣ → 0.

In addition, given η1, η0 > 0, there exist two positive integers K1(η1) and K0(η0)

such that

lim sup
N

{
NP

(
sup
y

∣∣G(y) − ĜN(y)
∣∣ ≥ η1

)}
≤ (1 − θρ)K1(η1)

θρη2
1

,

lim sup
N

{
NP

(
sup
y

∣∣F(y) − F̂N(y)
∣∣ ≥ η0

)}
≤ {1 − θ(1 − ρ)}K0(η0)

θ(1 − ρ)η2
0

.

The integers are nonincreasing in η, and depend also on the limiting distribution
H of (y1, y0).

PROOF. For the first part of the lemma, we follow the argument used in the
Glivenko–Cantelli theorem. Given η1 > 0, there exists a partition −∞ = s0 < s1 <

· · · < sK1(η1) = ∞ such that G(si−) < G(si−1) + η1/2. For any 1 ≤ i ≤ K1(η1)

and si−1 ≤ s < si ,

G(si−) − GN(si−) − η1/2 < G(s) − GN(s) < G(si−1) − GN(si−1) + η1/2,
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hence supy |G(y) − GN(y)| < η1 if |G(si−1) − GN(si−1)| < η1/2 and |G(si−) −
GN(si−)| < η1/2 for all i. By conditions 2 and 3, this is satisfied for all N suffi-
ciently large. The uniform convergence of FN follows in the same way.

To establish the second part of the lemma, note that supy |G(y) − ĜN(y)| < η1
on the set

K1(η1)⋂
i=1

{∣∣G(si−1) − ĜN(si−1)
∣∣, ∣∣G(si−) − ĜN(si−)

∣∣ < η1/2
}
.

Since P{(⋂i Ai)
c} = P(

⋃
i A

c
i ) ≤ ∑

i P(Ac
i ), we have

P
{
sup
y

∣∣G(y) − ĜN(y)
∣∣ ≥ η1

}

≤
K1(η1)∑
i=1

P
{∣∣G(si−1) − ĜN(si−1)

∣∣ ≥ η1/2
}

+
K1(η1)∑
i=1

P
{∣∣G(si−) − ĜN(si−)

∣∣ ≥ η1/2
}

(10)

≤
K1(η1)∑
i=1

P
{∣∣ĜN(si−1) − GN(si−1)

∣∣ ≥ η1/2 − o(1)
}

+
K1(η1)∑
i=1

P
{∣∣ĜN(si−) − GN(si−)

∣∣ ≥ η1/2 − o(1)
}

≤
K1(η1)∑
i=1

VarX{ĜN(si−1)} + VarX{ĜN(si−)}
{η1/2 − o(1)}2 ,

where the second inequality follows from |G(y) − GN(y)| = o(1), and the last
inequality from Chebyshev’s inequality and the fact that EXĜN(y) = GN(y).

The argument used to derive (2) can also be used to bound the variances in (10).
Noting that σ 2

N(I {y1 ≤ y}) = GN(y){1 − GN(y)} ≤ 1/4 and similarly σ 2
N(I {y0 ≤

y}) ≤ 1/4, we have for all y,

VarX ĜN(y) = N − m

(N − 1)m
σ 2

N

(
I {y1 ≤ y}) = N − m

4(N − 1)m
,(11)

VarX F̂N(y) = N − (n − m)

(N − 1)(n − m)
σ 2

N

(
I {y0 ≤ y}) ≤ N − (n − m)

4(N − 1)(n − m)
.(12)

Plugging (11) into (10) and taking limits yields the desired result for ĜN , after
absorbing the factor of 2 into K1(η1). The result for F̂N can be obtained in the
same manner. �
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PROOF OF PROPOSITION 1. As indicated in the proof outline, we proceed in
several stages.

(i) Functional convergence of random distribution functions. Let D([−∞,∞],
R)2 be the Cartesian product of the space of càdlàg functions with itself, en-
dowed with the uniform metric induced by the norm ‖(v, u)‖ = max{supy |v(y)|,
supy |u(y)|}. Thus, D([−∞,∞],R)2 is a nonseparable metric space. Lemma 2

shows that the distribution functions (ĜN , F̂N) converge in probability to (G,F )

in D([−∞,∞],R)2. That is, P(‖(ĜN − G, F̂N − F)‖ ≥ ε) → 0 for every ε > 0.
As is the case with the lemma, the statement does not require the use of outer mea-
sures because for each N , (ĜN, F̂N) can take on at most

(N
n

)(n
m

)
distinct values in

D([−∞,∞],R)2; therefore, ‖(ĜN − G, F̂N − F)‖ is finite discrete valued.
(ii) Existence of random distributions (Ĝ′

N, F̂ ′
N) defined on a common prob-

ability space. Since the limit (G,F ) is deterministic, the support of the limiting
probability measure on D([−∞,∞],R)2 is a singleton. Applying the Skorohod
representation [18], Theorem 1.10.3, to (ĜN, F̂N) yields new random elements
(Ĝ′

N, F̂ ′
N) on D([−∞,∞],R)2 that have the same law as (ĜN , F̂N). Further-

more, (Ĝ′
N, F̂ ′

N) converges to (G,F ) almost everywhere, in the sense that along
each sample path ω′ (in a set of measure one), the distribution functions converge
uniformly:

sup
y

∣∣Ĝ′
N

(
y;ω′) − G(y)

∣∣ → 0 and sup
y

∣∣F̂ ′
N

(
y;ω′) − F(y)

∣∣ → 0.

(iii) Convergence of E
ĜN

(y
p
1 ) and E

F̂N
(y

p
0 ) for p = 1, 2. Define EQ as the

expectation operator with respect to a distribution Q. Under condition 1, there
exists N0 such that 1/m ≤ 2/(θρN) and 1/(n−m) ≤ 2/{θ(1 −ρ)N} for N ≥ N0.
Then for each N ≥ N0 and every realization of (ĜN, F̂N), condition 4 implies that
as β → ∞,

E
ĜN

(
y2

1I
{
y2

1 ≥ β
}) =

N∑
i:y2

1i≥β

XT
i y2

1i

m
≤ 2

θρ
sup

N≥N0

{
N∑

i:y2
1i≥β

y2
1i

N

}
→ 0,

E
F̂N

(
y2

0I
{
y2

0 ≥ β
}) =

N∑
i:y2

0i≥β

XC
i y2

0i

n − m
≤ 2

θ(1 − ρ)
sup

N≥N0

{
N∑

i:y2
0i≥β

y2
0i

N

}
→ 0.

Recall that both (Ĝ′
N, F̂ ′

N ) and (ĜN, F̂N ) share the same finite discrete distribu-
tion. Thus, for almost all sample paths ω′ in the probability space of (Ĝ′

N, F̂ ′
N),

the sequences of distributions represented by {Ĝ′
N(·;ω′)}N and {F̂ ′

N(·;ω′)}N are
uniformly square-integrable. Moreover, since Ĝ′

N(·;ω′) → G(·), the random mo-
ments {E

Ĝ′
N
(y1),E

Ĝ′
N
(y2

1)} converge to {EH (y1),EH(y2
1)} almost everywhere,

with the limits being finite. Similarly, {E
F̂ ′

N
(y0),E

F̂ ′
N
(y2

0)} → {EH (y0),EH(y2
0)}
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almost everywhere as well. Translating this back into convergence in probability
for the first two random moments of ĜN and F̂N , we have

σ̂ 2
N(y1) = N − 1

N

m

m − 1

[
E

ĜN

(
y2

1
) − {

E
ĜN

(y1)
}2] → VarH(y1),(13)

σ̂ 2
N(y0) = N − 1

N

n − m

n − m − 1

[
E

F̂N

(
y2

0
) − {

E
F̂N

(y0)
}2] → VarH(y0)(14)

in probability.
(iv) Convergence of σ̂H

N (y1, y0) and σ̂ L
N (y1, y0). Define the distributions

HH(y1, y0) = min{G(y1),F (y0)} and HL(y1, y0) = max{0,G(y1) + F(y0) − 1},
both of which have marginals G and F . Using Hoeffding’s result from the proof
of Lemma 1, we have that

EHH (y1y0) = sup
h∈H

Eh(y1y0),

EHL(y1y0) = inf
h∈HEh(y1y0).

Now fix a sample path and define two sequences of distributions ĤH ′
N (y1, y0;ω′) =

min{Ĝ′
N(y1;ω′), F̂ ′

N(y0;ω′)} and ĤL′
N (y1, y0;ω′) = max{0, Ĝ′

N(y1;ω′)+ F̂ ′
N(y0;

ω′) − 1}. It is clear that ĤH ′
N (·, ·;ω′) converges to HH(·, ·) and ĤL′

N (·, ·;ω′) con-
verges to HL(·, ·) pointwise. Given that the product y1y0 is also uniformly inte-
grable with respect to almost all sequences {ĤH ′

N (·, ·;ω′)}N and {ĤL′
N (·, ·;ω′)}N

because {|XY | ≥ β2} ⊂ {|X| ≥ β} ∪ {|Y | ≥ β}, it follows that E
ĤH ′

N
(y1y0) →

suph∈H Eh(y1y0) and E
ĤL′

N
(y1y0) → infh∈H Eh(y1y0) almost everywhere. Thus,

σ̂ H
N (y1, y0) = E

ĤH
N

(y1y0) − E
ĜN

(y1)EF̂N
(y0) → sup

h∈H
Covh(y1, y0),(15)

σ̂ L
N (y1, y0) = E

ĤL
N
(y1y0) − E

ĜN
(y1)EF̂N

(y0) → inf
h∈HCovh(y1, y0)(16)

in probability. Plugging (13)–(16) into (9) then yields the proposition. �

PROPOSITION 2. Suppose conditions 1–3 of Proposition 1 hold, and that
y1 and y0 are bounded: |y1i |, |y0i | ≤ C < ∞ for all i. Given ε > 0, for any
ε1, ε2, ε3 > 0 such that

∑
i εi = ε,

P
(
N

∣∣V̂ H
N − V H

N

∣∣ ≥ ε
) ≤ O

(
C4

N
κ1(ε1)

)
,

P
(
N

∣∣V̂ L
N − V L

N

∣∣ ≥ ε
) ≤ O

(
C4

N

{
1/ε2

1 + κ2(ε2) + κ3(ε3)
})

,

where κ1(ε1), κ2(ε2) and κ3(ε3) depend on the limiting distribution H .

PROOF. Define the bivariate distribution functions HH
N (y1, y0) =

min{GN(y1),FN(y0)}, HL
N(y1, y0) = max(0,GN(y1) + FN(y0) − 1), ĤH

N (y1,
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y0) = min{ĜN(y1), F̂N(y0)}, and ĤL
N(y1, y0) = max(0, ĜN(y1) + F̂N(y0) − 1).

Let EQ be the expectation operator with respect to a distribution Q. Using an-
other result by Hoeffding as recounted in Lehmann [11], Lemma 2, the following
covariances can be expressed as

σ̂H
N (y1, y0) =

∫ C

−C

∫ C

−C
ĤH

N (y1, y0) dy1 dy0

−
∫ C

−C
ĜN(y1) dy1

∫ C

−C
F̂N(y0) dy0

=
∫ C

−C

∫ C

−C
ĤH

N (y1, y0) dy1 dy0 − C2 + CE
ĜN

(y1)

+ CE
F̂N

(y0) − E
ĜN

(y1)EF̂N
(y0),

σH
N (y1, y0) =

∫ C

−C

∫ C

−C
HH

N (y1, y0) dy1 dy0

−
∫ C

−C
GN(y1) dy1

∫ C

−C
FN(y0) dy0

=
∫ C

−C

∫ C

−C
HH

N (y1, y0) dy1 dy0 − C2 + CEGN
(y1)

+ CEFN
(y0) − EGN

(y1)EFN
(y0),

where the second equality follows from the identity E(W) = C − ∫ C
−C P(W ≤

w)dw for any random variable W bounded by C. Then

N
(
V̂ H

N − V H
N

) = N − m

m − 1

{
E

ĜN

(
y2

1
) − N(m − 1)

m(N − 1)
EGN

(
y2

1
)}

− N − m

m − 1

[{
E

ĜN
(y1)

}2 − N(m − 1)

m(N − 1)

{
EGN

(y1)
}2

]

+ N − (n − m)

n − m − 1

{
E

F̂N

(
y2

0
) − N(n − m − 1)

(N − 1)(n − m)
EFN

(
y2

0
)}

− N − (n − m)

n − m − 1

[{
E

F̂N
(y0)

}2 − N(n − m − 1)

(N − 1)(n − m)

{
EFN

(y0)
}2

]

+ 2N

N − 1
C

{
E

ĜN
(y1) − EGN

(y1) + E
F̂N

(y0) − EFN
(y0)

}
− 2N

N − 1

{
E

ĜN
(y1)EF̂N

(y0) − EGN
(y1)EFN

(y0)
}

+ 2N

N − 1

∫
[−C,C]2

{
ĤH

N (y1, y0) − HH
N (y1, y0)

}
dy1 dy0.



SHARP BOUNDS ON THE VARIANCE IN RANDOMIZED EXPERIMENTS 865

To obtain the desired result, we proceed by bounding the probability that each of
the seven terms are large. Let ν1, . . . , ν8 > 0 be a tuple whose sum is ε1. For the
first term,

P
{
N − m

m − 1

∣∣∣∣EĜN

(
y2

1
) − N(m − 1)

m(N − 1)
EGN

(
y2

1
)∣∣∣∣ ≥ ν1

}

≤ P
{∣∣E

ĜN

(
y2

1
) − EGN

(
y2

1
)∣∣ ≥ (m − 1)ν1

N − m
− (N − m)C2

m(N − 1)

}

≤ VarX
{
E

ĜN

(
y2

1
)}/{

(m − 1)ν1

N − m
− o(1)

}2

≤ (N − m)C4

(N − 1)m

/{
(m − 1)ν1

N − m
− o(1)

}2

,

where the first inequality follows from |E
ĜN

(y2
1) − βNEGN

(y2
1)| ≤ |E

ĜN
(y2

1) −
EGN

(y2
1)| + |(1 − βN)|EGN

(y2
1), and the second inequality from Chebyshev’s in-

equality and the fact that EXE
ĜN

(y
p
1 ) = EGN

(yp). The bound on the variance is
obtained in the same way as (11). Thus,

lim sup
N

NP
{
N − m

m − 1

∣∣∣∣EĜN

(
y2

1
) − N(m − 1)

m(N − 1)
EGN

(
y2

1
)∣∣∣∣ ≥ ν1

}
(17)

≤ (1 − θρ)3C4

θ3ρ3ν2
1

.

For the second term,

P
{
N − m

m − 1

∣∣∣∣{E
ĜN

(y1)
}2 − N(m − 1)

m(N − 1)

{
EGN

(y1)
}2

∣∣∣∣ ≥ ν2

}

≤ P
{∣∣∣∣EĜN

(y1) −
{
N(m − 1)

m(N − 1)

}1/2

EGN
(y1)

∣∣∣∣
≥ (m − 1)ν2/{C(N − m)}

1 + {N(m − 1)/(m(N − 1))}1/2

}

≤ P
{∣∣E

ĜN
(y1) − EGN

(y1)
∣∣ ≥ (m − 1)ν2

{2 + o(1)}(N − m)C
− o(1)

}

≤ VarX
{
E

ĜN
(y1)

}/[
(m − 1)ν2

{2 + o(1)}(N − m)C
− o(1)

]2

≤ (N − m)C2

(N − 1)m

/[
(m − 1)ν2

{2 + o(1)}(N − m)C
− o(1)

]2

,
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where the first inequality follows from the identity u2 − v2 = (u + v)(u − v).
Hence,

lim sup
N

NP
{
N − m

m − 1

∣∣∣∣{E
ĜN

(y1)
}2 − N(m − 1)

m(N − 1)

{
EGN

(y1)
}2

∣∣∣∣ ≥ ν2

}
(18)

≤ 4(1 − θρ)3C4

θ3ρ3ν2
2

.

The same arguments apply to the third and fourth terms:

lim sup
N

NP
{
N − (n − m)

n − m − 1

∣∣∣∣EF̂N

(
y2

0
) − N(n − m − 1)

(N − 1)(n − m)
EFN

(
y2

0
)∣∣∣∣ ≥ ν3

}
(19)

≤ {1 − θ(1 − ρ)}3C4

θ3(1 − ρ)3ν2
3

,

lim sup
N

NP
{
N − (n − m)

n − m − 1

∣∣∣∣{E
F̂N

(y0)
}2 − N(n − m − 1)

(N − 1)(n − m)

{
EFN

(y0)
}2

∣∣∣∣ ≥ ν4

}
(20)

≤ 4{1 − θ(1 − ρ)}3C4

θ3(1 − ρ)3ν2
4

.

For the fifth term,

P
[

2NC

N − 1

∣∣E
ĜN

(y1) − EGN
(y1) + E

F̂N
(y0) − EFN

(y0)
∣∣ < ν5 + ν6

]
≥ P

{∣∣E
ĜN

(y1) − EGN
(y1)

∣∣ <
(N − 1)ν5

2NC
,

∣∣E
F̂N

(y0) − EFN
(y0)

∣∣ <
(N − 1)ν6

2NC

}
≥ 1 − P

{∣∣E
ĜN

(y1) − EGN
(y1)

∣∣ ≥ (N − 1)ν5

2NC

}
−P

{∣∣E
F̂N

(y0) − EFN
(y0)

∣∣ ≥ (N − 1)ν6

2NC

}

≥ 1 − VarX
{
E

ĜN
(y1)

}/{
(N − 1)ν5

2NC

}2

− VarX
{
E

F̂N
(y0)

}/{
(N − 1)ν6

2NC

}2

,

so we have

lim sup
N

NP
[

2NC

N − 1

∣∣E
ĜN

(y1) − EGN
(y1) + E

F̂N
(y0) − EFN

(y0)
∣∣ ≥ ν5 + ν6

]
(21)

≤ 4(1 − θρ)C4

θρν2
5

+ 4{1 − θ(1 − ρ)}C4

θ(1 − ρ)ν2
6

.
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For the sixth term, we use the fact that |uv − u′v′| ≤ |uv − u′v| + |u′v − u′v′|
to obtain

P
{

2N

N − 1

∣∣E
ĜN

(y1)EF̂N
(y0) − EGN

(y1)EFN
(y0)

∣∣ < ν7 + ν8

}
≥ 1 − P

{∣∣E
ĜN

(y1) − EGN
(y1)

∣∣ ≥ (N − 1)ν7

2NC

}
− P

{∣∣E
F̂N

(y0) − EFN
(y0)

∣∣ ≥ (N − 1)ν8

2NC

}
.

Following the rest of the derivation of (21) gives

lim sup
N

NP
{

2N

N − 1

∣∣E
ĜN

(y1)EF̂N
(y0) − EGN

(y1)EFN
(y0)

∣∣ ≥ ν7 + ν8

}
(22)

≤ 4(1 − θρ)C4

θρν2
7

+ 4{1 − θ(1 − ρ)}C4

θ(1 − ρ)ν2
8

.

To bound the probability that the last term exceeds 1 − ε1, first note that |u −
u′| < η and |v − v′| < η implies |min(u, v)− min(u′, v′)| < η. This gives the third
inequality below:

P
[

2N

N − 1

∣∣∣∣∫[−C,C]2

{
ĤH

N (y1, y0) − HH
N (y1, y0)

}
dy1 dy0

∣∣∣∣ < 1 − ε1

]

≥ P
{

sup
y1,y0

∣∣ĤH
N (y1, y0) − HH

N (y1, y0)
∣∣ <

(N − 1)(1 − ε1)

8NC2

}

≥ P
[

sup
y1,y0

∣∣min
{
ĜN(y1), F̂N(y0)

} − min
{
GN(y1),FN(y0)

}∣∣
<

(N − 1)(1 − ε1)

8NC2

]
≥ P

{
sup
y

∣∣GN(y) − ĜN(y)
∣∣, sup

y

∣∣FN(y) − F̂N(y)
∣∣ <

(N − 1)(1 − ε1)

8NC2

}

≥ P
{

sup
y

∣∣G(y) − ĜN(y)
∣∣, sup

y

∣∣F(y) − F̂N(y)
∣∣ <

(N − 1)(1 − ε1)

8NC2 − o(1)

}

≥ 1 − P
{

sup
y

∣∣G(y) − ĜN(y)
∣∣ ≥ (N − 1)(1 − ε1)

8NC2 − o(1)

}

− P
{

sup
y

∣∣F(y) − F̂N(y)
∣∣ ≥ (N − 1)(1 − ε1)

8NC2 − o(1)

}
.

The fourth inequality follows from Lemma 2 which shows that supy |G(y) −
GN(y)| = o(1) and supy |F(y) − FN(y)| = o(1). We can now apply the second
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part of Lemma 2 to bound the probability above. Given ξ > 0,

lim sup
N

NP
[

2N

N − 1

∣∣∣∣∫[−C,C]2

{
ĤH

N (y1, y0) − HH
N (y1, y0)

}
dy1 dy0

∣∣∣∣ ≥ 1 − ε1

]

≤ lim sup
N

NP
{

sup
y

∣∣G(y) − ĜN(y)
∣∣ ≥ 1 − ε1

8C2 − ξ

}

+ lim sup
N

NP
{

sup
y

∣∣F(y) − F̂N(y)
∣∣ ≥ 1 − ε1

8C2 − ξ

}

≤ (1 − θρ)K1(((1 − ε1)/(8C2)) − ξ)

θρ{((1 − ε1)/(8C2)) − ξ}2

+ {1 − θ(1 − ρ)}K0(((1 − ε1)/(8C2)) − ξ)

θ(1 − ρ){((1 − ε1)/(8C2)) − ξ}2 .

Since ξ is arbitrary and both K1(·) and K0(·) are nonincreasing, there exists κ1(ε1)

such that

lim sup
N

NP
[

2N

N − 1

∣∣∣∣∫[−C,C]2

{
ĤH

N (y1, y0) − HH
N (y1, y0)

}
dy1 dy0

∣∣∣∣ ≥ 1 − ε1

]
(23)

≤ C4κ1(ε1).

The bounds (17)–(23) imply that

lim sup
N

NP
(
N

∣∣V̂ H
N − VN

∣∣ ≥ ε
) ≤ C4

( 8∑
i=1

ci

ν2
i

+ κ1(ε1)

)
.

By minimizing the right-hand side over ν1, . . . , ν8 > 0 subject to the constraint
ν1 +· · ·+ν8 = ε1, the sum in the parenthesis can be absorbed into κ1(ε1), yielding
the desired convergence rate for NV̂ H

N . To get the rate for NV̂ L
N , we repeat the

argument used to derive (23). First note that |u − u′| < η and |v − v′| < ζ implies
|max(0, u+v−1)−max(0, u′ +v′ −1)| < η+ζ . This gives the second inequality
below:

P
[

2N

N − 1

∣∣∣∣∫[−C,C]2

{
ĤL

N(y1, y0) − HL
N(y1, y0)

}
dy1 dy0

∣∣∣∣ < ε2 + ε3

]

≥ P
[

sup
y1,y0

∣∣max
{
0, ĜN(y1) + F̂N(y0) − 1

}
− max

{
0,GN(y1) + FN(y0) − 1

}∣∣
<

(N − 1)(ε2 + ε3)

8NC2

]
≥ P

{
sup
y

∣∣G(y) − ĜN(y)
∣∣ <

(N − 1)ε2

8NC2 − o(1),
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sup
y

∣∣F(y) − F̂N(y)
∣∣ <

(N − 1)ε3

8NC2 − o(1)

}

≥ 1 − P
{

sup
y

∣∣G(y) − ĜN(y)
∣∣ ≥ (N − 1)ε2

8NC2 − o(1)

}

− P
{

sup
y

∣∣F(y) − F̂N(y)
∣∣ ≥ (N − 1)ε3

8NC2 − o(1)

}
.

Thus there exist κ2(ε2) and κ3(ε3) such that

lim sup
N

NP
[

2N

N − 1

∣∣∣∣∫[−C,C]2

{
ĤL

N(y1, y0) − HL
N(y1, y0)

}
dy1 dy0

∣∣∣∣ ≥ ε2 + ε3

]
(24) ≤ C4{

κ2(ε2) + κ3(ε3)
}
. �

APPENDIX B: R CODE FOR IMPLEMENTING ESTIMATOR

Here, we present R code for the function sharp.var, which outputs the bound
estimates V̂ H

N (given input upper=TRUE) and V̂ L
N (given input upper=FALSE).

The other inputs are yt (the observed outcomes under treatment), yc (the observed
outcomes under control) and N (the total number of units in the population).

sharp.var <- function(yt,yc,N=length(c(yt,yc)),upper=TRUE) {
m <- length(yt)
n <- m + length(yc)
FPvar <- function(x,N) (N-1)/(N*(length(x)-1))

* sum((x - mean(x))^2)
yt <- sort(yt)
if(upper == TRUE) yc <- sort(yc) else
yc <- sort(yc,decreasing=TRUE)

p_i <- unique(sort(c(seq(0,n-m,1)/(n-m),seq(0,m,1)/m))) -
.Machine$double.eps^.5
p_i[1] <- .Machine$double.eps^.5
yti <- yt[ceiling(p_i*m)]
yci <- yc[ceiling(p_i*(n-m))]
p_i_minus <- c(NA,p_i[1: (length(p_i)-1)])
return(((N-m)/m * FPvar(yt,N) + (N-(n-m))/(n-m) * FPvar(yc,N)
+ 2*sum(((p_i-p_i_minus)*yti*yci)[2:length(p_i)])
- 2*mean(yt)*mean(yc))/(N-1))

}

APPENDIX C: ILLUSTRATIVE UPPER BOUND IMPROVEMENTS

In Table 3, we present illustrations of the improvements in the variance up-
per bounds by varying the marginal distributions of potential outcomes over the
Beta distribution family: the control potential outcomes are assumed to be dis-
tributed according to Beta(α0, β0), and the treatment potential outcomes according
to Beta(α1, β1). Strictly speaking, since finite populations cannot have continuous
marginals, the Beta distributions represent approximations to plausible marginals
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TABLE 3
Illustrative upper bound ratios given Beta distributed potential outcomes

α0 β0 α1 β1 V H
N /V a

N V H
N /V b+

N

1 0.1 0.1 0.1 0.1 1.00 1.00
2 0.1 0.1 0.1 1 0.68 0.79
3 0.1 0.1 0.1 2 0.61 0.81
4 0.1 0.1 1 1 0.92 0.97
5 0.1 0.1 1 2 0.86 0.95
6 0.1 0.1 2 2 0.86 0.96
7 1 1 0.1 0.1 0.92 0.97
8 1 1 0.1 1 0.81 0.84
9 1 1 0.1 2 0.71 0.83

10 1 1 1 1 1.00 1.00
11 1 1 1 2 0.98 0.99
12 1 1 2 2 0.98 1.00
13 2 2 0.1 0.1 0.86 0.96
14 2 2 0.1 1 0.85 0.85
15 2 2 0.1 2 0.76 0.83
16 2 2 1 1 0.98 1.00
17 2 2 1 2 0.99 0.99
18 2 2 2 2 1.00 1.00

when N is large. We report the ratios V H
N /V a

N and V H
N /V b+

N (the limits of V̂ H
N /V̂ a

N

and V̂ H
N /V̂ b+

N ) under different values of (α0, β0, α1, β1) while holding m = n/2
and n = N fixed.

Table 3 presents 18 scenarios, wherein (α0, β0) ∈ {(0.1,0.1), (1,1), (2,2)}, and
α1, β1 ∈ {0.1,1,2}. The results are identical for Beta(α1, β1) and Beta(β1, α1);
thus, we omit redundant results. The ratios were computed via numerical quadra-
ture using the NIntegrate command in Mathematica 7.0.1.0 under the default
settings.

Our results illustrate that when the marginal distributions are identical (i.e.,
cases 1, 10 and 18), all upper bounds are identical, since the Cauchy–Schwarz
and AM-GM inequalities hold exactly. However, as the marginal distributions di-
verge in shape (e.g., cases 3, 9 and 15), our proposed upper bound V H

N materially
outperforms Neyman’s bounds V a

N and V b+
N .
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