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ORACLE INEQUALITIES FOR THE LASSO IN THE COX MODEL
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We study the absolute penalized maximum partial likelihood estimator in
sparse, high-dimensional Cox proportional hazards regression models where
the number of time-dependent covariates can be larger than the sample size.
We establish oracle inequalities based on natural extensions of the compati-
bility and cone invertibility factors of the Hessian matrix at the true regression
coefficients. Similar results based on an extension of the restricted eigenvalue
can be also proved by our method. However, the presented oracle inequalities
are sharper since the compatibility and cone invertibility factors are always
greater than the corresponding restricted eigenvalue. In the Cox regression
model, the Hessian matrix is based on time-dependent covariates in censored
risk sets, so that the compatibility and cone invertibility factors, and the re-
stricted eigenvalue as well, are random variables even when they are evalu-
ated for the Hessian at the true regression coefficients. Under mild conditions,
we prove that these quantities are bounded from below by positive constants
for time-dependent covariates, including cases where the number of covari-
ates is of greater order than the sample size. Consequently, the compatibility
and cone invertibility factors can be treated as positive constants in our oracle
inequalities.

1. Introduction. The Cox (1972) proportional hazards model is widely used
in the regression analysis of censored survival data, notably in identifying risk
factors in epidemiological studies and treatment effects in clinical trials when the
outcome variable is time to event. In a traditional biomedical study, the number of
covariates p is usually relatively small as compared with the sample size n. The-
oretical properties of the maximum partial likelihood estimator in the fixed p and
large n setting have been well established. For example, Tsiatis (1981) proved the
asymptotic normality of the maximum partial likelihood estimator. Andersen and
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Gill (1982) formulated the Cox model in the context of the more general counting
process framework and studied the asymptotic properties of the maximum par-
tial likelihood estimator using martingale techniques. These results provide a solid
foundation for the applications of the Cox model in a diverse range of problems
where time to event is the outcome of interest.

In recent years, technological advancement has resulted in the proliferation of
massive high-throughput and high-dimensional genomic data in studies that at-
tempt to find genetic risk factors for disease and clinical outcomes, such as the age
of disease onset or time to death. Finding genetic risk factors for survival is fun-
damental to modern biostatistics, since survival is an important clinical endpoint.
However, in such problems, the standard approach to the Cox model is not applica-
ble, since the number of potential genetic risk factors is typically much larger than
the sample size. In addition, traditional variable selection methods such as subset
selection are not computationally feasible when p � n.

The �1-penalized least squares estimator, or the lasso, was introduced by
Tibshirani (1996). In the wavelet setting, the �1-penalized method was introduced
by Chen, Donoho and Saunders (1998) as basis pursuit. Since then, the lasso has
emerged as a widely used approach to variable selection and estimation in sparse,
high-dimensional statistical problems. It has also been extended to the Cox model
[Tibshirani (1997)]. Gui and Li (2005) implemented the LARS algorithm [Efron
et al. (2004)] to approximate the lasso in the Cox regression model and applied
their method to survival data with microarray gene expression covariates. Their
work demonstrated the effectiveness of the lasso for variable selection in the Cox
model in a p � n setting.

There exists a substantial literature on the lasso and other penalized methods
for survival models with a fixed number of covariates p. Zhang and Lu (2007)
considered an adaptive lasso for the Cox model and showed that, under certain
regularity conditions and with a suitable choice of the penalty parameter, their
method possesses the asymptotic oracle property when the maximum partial like-
lihood estimator is used as the initial estimator. Fan and Li (2002) proposed the
use of the smoothly clipped absolute deviation (SCAD) penalty [Fan (1997), Fan
and Li (2001)] for variable selection and estimation in the Cox model which may
include a frailty term. With a suitable choice of the penalty parameter, they showed
that a local maximizer of the penalized log-partial likelihood has an asymptotic or-
acle property under certain regularity conditions on the Hessian of the log-partial
likelihood and the censoring mechanism.

Extensive efforts have been focused upon the analysis of regularization meth-
ods for variable selection in the p � n setting. In particular, considerable progress
has been made in theoretical understanding of the lasso. However, most results
are developed in the linear regression model. Greenshtein and Ritov (2004) stud-
ied the prediction performance of the lasso in high-dimensional linear regression.
Meinshausen and Bühlmann (2006) showed that, for neighborhood selection in
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the Gaussian graphical model, under a neighborhood stability condition and cer-
tain additional regularity conditions, the lasso is consistent even when p/n → ∞.
Zhao and Yu (2006) formalized the neighborhood stability condition in the con-
text of linear regression as a strong irrepresentable condition on the design ma-
trix. Oracle inequalities for the prediction and estimation error of the lasso was
developed in Bunea, Tsybakov and Wegkamp (2007), Zhang and Huang (2008),
Meinshausen and Yu (2009), Bickel, Ritov and Tsybakov (2009), Zhang (2009)
and Ye and Zhang (2010), among many others.

A number of papers analyzed penalized methods beyond linear regression. Fan
and Peng (2004) established oracle properties for a local solution of concave pe-
nalized estimator in a general setting with n � p → ∞. van de Geer (2008) stud-
ied the lasso in high-dimensional generalized linear models (GLM) and obtained
prediction and �1 estimation error bounds. Negahban et al. (2009) studied penal-
ized M-estimators with a general class of regularizers, including an �2 error bound
for the lasso in GLM under a restricted convexity and other regularity conditions.
Bradic, Fan and Jiang (2011) made significant progress by extending the results
of Fan and Li (2001) to a more general class of penalties in the Cox regression
model with large p under different sets of regularity conditions. Huang and Zhang
(2012) studied weighted absolute penalty and its adaptive, multistage application
in GLM.

In view of the central role of the Cox model in survival analysis, its widespread
applications and the proliferation of p � n data, it is of great interest to under-
stand the properties of the related lasso approach. The main goal of the present
paper is to establish theoretical properties for the lasso in the Cox model when
p � n. Specifically, we extend certain basic inequalities from linear regression to
the case of the Cox regression. We generalize the compatibility and cone invert-
ibility factors from the linear regression model and establish oracle inequalities for
the lasso in the Cox regression model in terms of these factors at the true parameter
value. Moreover, we prove that the compatibility and cone invertibility factors can
be treated as constants under mild regularity conditions.

A main feature of our results is that they are derived under the more general
counting process formulation of the Cox model with potentially a larger number
of time-dependent covariates than the sample size. This formulation is useful be-
cause it “permits a regression analysis of the intensity of a recurrent event allowing
for complicated censoring patterns and time-dependent covariates” [Andersen and
Gill (1982)].

A second main feature of our results is that the regularity conditions on the
counting processes and time-dependent covariates are directly imposed on the
compatibility and cone invertibility factors of the Hessian of the negative log-
partial likelihood evaluated at the true regression coefficients. Under such regu-
larity conditions, the lasso estimator is proven to live in a neighborhood where
the ratio between the estimated and true hazards is uniformly bounded away from
zero and infinity. This allows unbounded and near zero ratios between the true and
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baseline hazards. Our analysis can be also used to prove oracle inequalities based
on the restricted eigenvalue. However, since the compatibility and cone invertibil-
ity factors are greater than the corresponding restricted eigenvalue [van de Geer
and Bühlmann (2009), Ye and Zhang (2010)], the presented results are sharper.

A third main feature of our results is that the compatibility and cone invertibil-
ity factors used, and the smaller corresponding restricted eigenvalue, are proven
to be greater than a fixed positive constant under mild conditions on the count-
ing processes and time-dependent covariates, including cases where p � n. In the
Cox regression model, the Hessian matrix is based on weighted averages of the
cross-products of time-dependent covariates in censored risk sets, so that the com-
patibility and cone invertibility factors and the restricted eigenvalue are random
variables even when they are evaluated for the Hessian at the true regression coef-
ficients. Under mild conditions, we prove that these quantities are bounded from
below by positive constants as certain truncated population versions of them. Thus
the compatibility and cone invertibility factors can be treated as constants in our
oracle inequalities.

The main results of this paper and the analytical methods used for deriving
them are identical to those in its predecessor submitted in November 2011, with
Section 4 as an exception. The difference in Section 4 is that the lower bound
for the compatibility and cone invertibility factors and the restricted eigenvalue is
improved to allow time-dependent covariates.

During the revision process of our paper, we became aware of a number of
papers on hazard regression with censored data. Kong and Nan (2012) took an ap-
proach of van de Geer (2008) to derive prediction and �1 error bounds for the lasso
in the Cox proportional hazards regression under a quite different set of conditions
from us. For example, they required an �1 bound on the regression coefficients to
guarantee a uniformly bounded ratio between hazard functions under considera-
tion. Lemler (2012) considered the joint estimation of the baseline hazard function
and regression coefficients in the Cox model. As a result, Lemler’s (2012) error
bounds for regression coefficients are of greater order than ours when the intrinsic
dimension of the unknown baseline hazard function is of greater order than the
number of nonzero regression coefficients. Gaïffas and Guilloux (2012) consid-
ered a quadratic loss function in place of a negative log-likelihood function in an
additive hazards model. A nice feature of the additive hazards model is that the
quadratic loss actually produces unbiased linear estimation equations so that the
analysis of the lasso is similar to that of linear regression. The oracle inequalities in
these three papers and ours can be all viewed as nonasymptotic. Unlike our paper,
none of these three papers consider time-dependent covariates or constant lower
bounds of the restricted eigenvalue or related key factors for the analysis of the
lasso.

The rest of this paper is organized as follows. In Section 2 we provide basic
notation and model specifications. In Section 3 we develop oracle inequalities for
the lasso in the Cox model. In Section 4 we study the compatibility and cone



1146 J. HUANG ET AL.

invertibility factors and the corresponding restricted eigenvalue of the Hessian of
the log-partial likelihood in the Cox model. In Section 5 we make some additional
remarks. All proofs are provided either right after the statement of the result or
deferred to the Appendix.

2. Cox model with the �1 penalty. Following Andersen and Gill (1982),
consider an n-dimensional counting process N(n)(t) = (N1(t), . . . ,Nn(t)), t ≥ 0,
where Ni(t) counts the number of observed events for the ith individual in the time
interval [0, t]. The sample paths of N1, . . . ,Nn are step functions, zero at t = 0,
with jumps of size +1 only. Furthermore, no two components jump at the same
time. For t ≥ 0, let Ft be the σ -filtration representing all the information avail-
able up to time t . Assume that for {Ft , t ≥ 0}, N(n) has predictable compensator
�(n) = (�1, . . . ,�n) with

d�i(t) = Yi(t) exp
{
Z′

i (t)β
o}d�0(t),(2.1)

where βo is a p-vector of true regression coefficients, �0 is an unknown
baseline cumulative hazard function and, for each i, Yi(t) ∈ {0,1} is a pre-
dictable at risk indicator process that can be constructed from data, and Zi (t) =
(Zi,1(t), . . . ,Zi,p(t))′ is a p-dimensional vector-valued predictable covariate pro-
cess. In this setting the σ -filtration can be the natural Ft = σ {Ni(s), Yi(s),Zi(s);
s ≤ t, i = 1, . . . , n} or a richer one. We are interested in the problem of variable
selection in sparse, high-dimensional settings where p, the number of possible
covariates, is large, but the number of important covariates is relatively small.

2.1. Maximum partial likelihood estimator with �1 penalty. Define logarithm
of the Cox partial likelihood for survival experience at time t ,

C(β; t) =
n∑

i=1

∫ t

0
Z′

i (s)β dNi(s) −
∫ t

0
log

[
n∑

i=1

Yi(s)e
Z′

i (s)β

]
dN̄(s),

where N̄ = ∑n
i=1 Ni . The log-partial likelihood function is

C(β,∞) = lim
t→∞C(β, t).

Let �(β) = −C(β;∞)/n. The maximum partial likelihood estimator is the value
that minimizes �(β).

An approach to variable selection in sparse, high-dimensional settings for the
Cox model is to minimize an �1-penalized negative log-partial likelihood criterion,

L(β;λ) = �(β) + λ|β|1(2.2)

[Tibshirani (1997)], where λ ≥ 0 is a penalty parameter. Henceforth, we use no-
tation |β|q = {∑p

i=1 |βi |q}1/q for 1 ≤ q < ∞, |β|∞ = max1≤i≤p |βi | and |β|0 =
#{j :βj 	= 0}. For a given λ, the �1-penalized maximum partial likelihood estima-
tor, or the lasso estimator hereafter, is defined as

β̂(λ) = arg min
β

L(β;λ).(2.3)
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2.2. The Karush–Kuhn–Tucker conditions. The lasso estimator can be charac-
terized by the Karush–Kuhn–Tucker (KKT) conditions. Since the log-partial likeli-
hood belongs to an exponential family, �(β) must be convex in β and so is L(β;λ).
It follows that a vector β̂ = (β̂1, . . . , β̂p)′ is a solution to (2.3) if and only if the
following KKT conditions hold:{

�̇j (β̂) = −λ sgn(β̂j ), if β̂j 	= 0,∣∣�̇j (β̂)
∣∣ ≤ λ, if β̂j = 0,

(2.4)

where �̇(β) = (�̇1(β), . . . , �̇p(β))′ = ∂�(β)/∂β is the gradient of �(β). The ne-
cessity and sufficiency of (2.4) can be proved by subdifferentiation of the convex
penalized loss (2.2). This does not require strict convexity.

The KKT conditions indicate that the lasso in the Cox regression model may
be analyzed in a similar way to the lasso in linear regression. As can be seen in
the subsequent developments, such analysis can be carried out by proving that
|�̇(βo)|∞ is sufficiently small and the Hessian of �(β) does not vanish for a sparse
β at the true β = βo. The (local) martingales for the counting process will play a
crucial role to ensure that these requirements are satisfied.

2.3. Additional notation. Since the �i are compensators,

Mi(t) = Ni(t) −
∫ t

0
Yi(s) exp

(
Z′

i (s)β
o)d�0(s), 1 ≤ i ≤ n, t ≥ 0,

are (local) martingales with predictable variation/covariation processes

〈Mi,Mi〉(t) =
∫ t

0
Yi(s) exp

(
Z′

i (s)β
o)d�0(s) and 〈Mi,Mj 〉 = 0, i 	= j.

For a vector v, let v⊗0 = 1 ∈ R, v⊗1 = v and v⊗2 = vv′. Define

S(k)(t,β) = 1

n

n∑
i=1

Z⊗k
i (t)Yi(t)e

Z′
i (t)β, k = 0,1,2,

Rn(t,β) = 1

n

n∑
i=1

Yi(t)e
Z′

i (t)β, Z̄n(t,β) = S(1)(t,β)

S(0)(t,β)
,

Vn(t,β) =
n∑

i=1

wni(t,β)
(
Zi (t) − Z̄n(t,β)

)⊗2 = S(2)(t,β)

S(0)(t,β)
− Z̄n(t,β)⊗2,

where wni(t,β) = Yi(t) exp(Z′
i (t)β)/[nS(0)(t,β)]. By differentiation and rear-

rangement of terms, it can be shown as in Andersen and Gill (1982) that the gra-
dient of �(β) is

�̇(β) ≡ ∂�(β)

∂β
= −1

n

n∑
i=1

∫ ∞
0

[
Zi (s) − Z̄n(s,β)

]
dNi(s),(2.5)
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and the Hessian matrix of �(β) is

�̈(β) ≡ ∂2�(β)

∂β ∂β ′ = 1

n

∫ ∞
0

Vn(s,β) dN̄(s).(2.6)

3. Oracle inequalities. In this section, we derive oracle inequalities for the
estimation error of lasso in the Cox regression model. Let βo be the vector of
true regression coefficients, and define O = {j :βo

j 	= 0}, Oc = {j :βo
j = 0} and

do = |O|, where |U | for a set U denotes its cardinality.
Making use of the KKT conditions (2.4), we first develop a basic inequality in-

volving the symmetric Bregman divergence and �1 estimation error in the support
O of βo and its complement. The symmetric Bregman divergence, defined as

Ds(β̂,β) = (β̂ − β)′
(
�̇(β̂) − �̇(β)

)
can be viewed as symmetric, partial Kullback–Leibler distance between the partial
likelihood at β̂ and β . Thus, Ds(β̂,β) can be viewed as a measure of prediction
performance. The basic inequality, given in Lemma 3.1 below, serves as a vehicle
for establishing the desired oracle inequalities.

LEMMA 3.1. Let β̂ be defined as in (2.3), θ̃ = β̂ − βo and z∗ = |�̇(βo)|∞.
Then the following inequalities hold:(

λ − z∗)|θ̃ Oc |1 ≤ Ds(β̂,β) + (
λ − z∗)|θ̃ Oc |1 ≤ (

λ + z∗)|θ̃ O|1,(3.1)

where θ̃ O and θ̃ Oc denote the subvectors of θ̃ of components in O and Oc,
respectively. In particular, for any ξ > 1, |θ̃ Oc |1 ≤ ξ |θ̃ O|1 in the event z∗ ≤
(ξ − 1)/(ξ + 1)λ.

It follows from Lemma 3.1 that in the event z∗ ≤ (ξ − 1)/(ξ + 1)λ, the estima-
tion error θ̃ = β̂ − βo belongs to the cone

C (ξ, O) = {
b ∈ R

p : |bOc |1 ≤ ξ |bO|1}
.(3.2)

In linear regression, the invertibility of the Gram matrix in the same cone, ex-
pressed in terms of restricted eigenvalues and related quantities, has been used to
control the estimation error of the lasso. In what follows, we prove that a direct
extension of the compatibility and cone invertibility factors can be used to control
the estimation error of the lasso in the Cox regression.

For the cone in (3.2) and a given p × p nonnegative-definite matrix �̄, define

κ(ξ, O; �̄) = inf
0	=b∈C (ξ,O)

d
1/2
o (b′�̄b)1/2

|bO|1(3.3)

as the compatibility factor [van de Geer (2007), van de Geer and Bühlmann
(2009)], and

Fq(ξ, O; �̄) = inf
0	=b∈C (ξ,O)

d
1/q
o b′�̄b

|bO|1|b|q(3.4)
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as the weak cone invertibility factor [Ye and Zhang (2010)]. These quantities are
closely related to the restricted eigenvalue [Bickel, Ritov and Tsybakov (2009),
Koltchinskii (2009)],

RE(ξ, O; �̄) = inf
0	=b∈C (ξ,O)

(b′�̄b)1/2

|b|2 .(3.5)

In linear regression, the Hessian of the squared loss |y − Xβ|22/(2n) is taken
as �̄, and the oracle inequalities established in the papers cited in the above para-
graph can be summarized as follows: in the event z∗ = |X′(y − Xβo)/n|∞ ≤
λ(ξ − 1)/(ξ + 1),

∣∣X(
β̂ − βo)∣∣2

2/n ≤ 4(1 + 1/ξ)−2λ2do

κ2(ξ, O;X′X/n)
,

∣∣β̂ − βo
∣∣
1 ≤ 2ξdoλ

κ2(ξ, O;X′X/n)
(3.6)

and

∣∣β̂ − βo
∣∣
2 ≤ 2(1 + 1/ξ)−1d

1/2
o λ

RE2(ξ, O;X′X/n)
,

(3.7) ∣∣β̂ − βo
∣∣
q ≤ 2(1 + 1/ξ)−1d

1/q
o λ

Fq(ξ, O;X′X/n)
, q ≥ 1.

In the Cox regression model, we still take the Hessian of the log-partial likeli-
hood as �̄, in fact the Hessian at the true βo, so that (3.3) and (3.4) become

κ(ξ, O) = κ
(
ξ, O; �̈(

βo)), Fq(ξ, O) = Fq

(
ξ, O; �̈(

βo)).(3.8)

The reason for using these factors is that they yield somewhat sharper oracle in-
equalities than the restricted eigenvalue. It follows from |bO|1 ≤ d

1/2
o |b|2 that

F2(ξ, O) ≥ κ(ξ, O)RE(ξ, O) and κ(ξ, O) ≥ RE(ξ, O). Therefore, the first in-
equality of (3.7) is subsumed by the second with q = 2. Moreover, it is possible to
have κ(ξ, O) � RE(ξ, O) [van de Geer and Bühlmann (2009)], and consequently,
the �2 error bound based on the cone invertibility factor may be of sharper order
that the one based on the restricted eigenvalue.

The following theorem extends (3.6) and (3.7) from the linear regression model
to the proportional hazards regression model with

max
i<i′≤n

sup
0≤t<∞

max
j≤p

∣∣Zi,j (t) − Zi′,j (t)
∣∣ ≤ K.(3.9)

Let ξ > 1, O = {j :βo
j 	= 0}, κ(ξ, O) and Fq(ξ, O) be as in (3.8).

THEOREM 3.1. Let τ = K(ξ +1)doλ/{2κ2(ξ, O)} with a certain K > 0. Sup-
pose condition (3.9) holds and τ ≤ 1/e. Then, in the event |�̇(βo)|∞ ≤ (ξ − 1)/

(ξ + 1)λ,

Ds(β̂,β) ≤ 4eη(1 + 1/ξ)−2λ2do

κ2(ξ, O)
,

∣∣β̂ − βo
∣∣
1 ≤ eη(ξ + 1)doλ

2κ2(ξ, O)
(3.10)
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and

∣∣β̂ − βo
∣∣
q ≤ eη2(1 + 1/ξ)−1d

1/q
o λ

Fq(ξ, O)
, q ≥ 1,(3.11)

where η ≤ 1 is the smaller solution of ηe−η = τ .

Compared with (3.6) and (3.7), the new inequalities (3.10) and (3.11) contain
an extra factor eη ≤ e. This is due to the nonlinearity in the Cox regression score
equation. Aside from this factor, the error bounds for the Cox regression have the
same form as those for linear regression, except for an improvement of a factor of
4ξ/(1 + ξ) ≥ 2 for the �1 oracle inequality.

The theorem assumes condition (3.9), which asserts |Zi (t)− Zi′(t)|∞ ≤ K uni-
formly in {t, i, i′}. This condition is a consequence of the uniform boundedness
of the individual covariates, and is reasonable in most practical situations (e.g.,
single-nucleotide polymorphism data). In the case where the covariates are normal
variables with uniformly bounded variance, the condition holds with K = Kn,p of√

log(np) order.
From an analytical perspective, an important feature of (3.10) and (3.11) is that

the constant factors (3.3) and (3.4) are both defined with the true βo in (3.8). No
condition is imposed on the gradient and Hessian of the log-partial likelihood
for β 	= βo. In other words, the key condition τ < 1/e, expressed in terms of
{K,do,λ} and the compatibility factor κ2(ξ, O) at the true βo, is sufficient to guar-
antee the error bounds in Theorem 3.1. Thus, our results are much simpler to state
and conditions easier to verify than existing ones requiring regularity conditions
in a neighborhood of βo in the Cox regression model. This feature of Theorem 3.1
plays a crucial role in our derivation of lower bounds for κ2(ξ, O) and Fq(ξ, O) for
time-dependent covariates in Section 4. We note that the local martingale structure
is valid only at the true βo.

To prove Theorem 3.1, we develop a sharpened version of an inequality of Hjort
and Pollard (1993). This inequality, given in Lemma 3.2 below, explicitly controls
the symmetric Bregman-divergence and Hessian of the log-partial likelihood in a
neighborhood of β . Based on this relationship, Theorem 3.1 is proved using the
definition of the quantities in (3.8) and the membership of the error β̂ − βo in the
cone C (ξ, O) (3.2). For two symmetric matrices A and B , A ≤ B means B − A is
nonnegative-definite.

LEMMA 3.2. Let �(β) and its Hessian �̈(β) be as in (2.2) and (2.6). Then

e−ηbb′�̈(β)b ≤ Ds(β + b,β) = b′[�̇(β + b) − �̇(β)
] ≤ eηbb′�̈(β)b,(3.12)

where ηb = maxs≥0 maxi,j |b′Zi (s) − b′Zj (s)|. Moreover,

e−2ηb �̈(β) ≤ �̈(β + b) ≤ e2ηb �̈(β).(3.13)
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Under the conditions of Theorem 3.1, the factors e±ηb and e±2ηb in the inequal-
ities in Lemma 3.2 are bounded by positive constants. These factors lead to the
factor eη for η ≤ 1 (and thus eη ≤ e) in the upper bounds in (3.10) and (3.11).

Since the oracle inequalities in Theorem 3.1 are guaranteed to hold only within
the event |�̇(βo)|∞ ≤ (ξ − 1)/(ξ + 1)λ, a probabilistic upper bound is needed for
|�̇(βo)|∞. Lemma 3.3 below provides such a probability bound. Similar inequali-
ties can be found in de la Peña (1999).

LEMMA 3.3. (i) Let fn(t) = n−1 ∑n
i=1

∫ t
0 ai(s){dNi(t) − Yi(s) exp(Z′

i (s)×
βo) d�0(s)} with [−1,1]-valued predictable processes ai(s). Then, for all C0 > 0,

P

{
max
t>0

∣∣fn(t)
∣∣ > C0x,

n∑
i=1

∫ ∞
0

Yi(t) dNi(t) ≤ C2
0n

}
≤ 2e−nx2/2.(3.14)

(ii) Suppose that maxi≤n supt≥0 maxj≤p |Zi,j (t) − Z̄n,j (t,β
o)|∞ ≤ K , where

Z̄n,j (t,β
o) are the components of Z̄n(t,β

o). Let �̇(β) be the gradient in (2.5).
Then, for all C0 > 0,

P

{∣∣�̇(
βo)∣∣∞ > C0Kx,

n∑
i=1

∫ ∞
0

Yi(t) dNi(t) ≤ C2
0n

}
≤ 2pe−nx2/2.(3.15)

In particular, if maxi≤n Ni(1) ≤ 1, then P{|�̇(βo)|∞ > Kx} ≤ 2pe−nx2/2.

The following theorem states an upper bound of the estimation error, which
follows directly from Theorem 3.1 and Lemma 3.3.

THEOREM 3.2. Suppose (3.9) holds and Ni(∞) ≤ 1 for all i ≤ n and t ≥ 0.
Let ξ > 1 and λ = {(ξ + 1)/(ξ − 1)}K√

(2/n) log(2p/ε) with a small ε > 0 (e.g.,
ε = 1%). Let Cκ > 0 satisfying τ = K(ξ + 1) doλ/(2C2

κ ) ≤ 1/e. Let η ≤ 1 be the
smaller solution of ηe−η = τ . Then, for any CF,q > 0,

Ds(β̂,β) ≤ 4eηξ2λ2do

(1 + ξ)2C2
κ

,
∣∣β̂ − βo

∣∣
1 ≤ eη(ξ + 1)doλ

2C2
κ

,

∣∣β̂ − βo
∣∣
q ≤ 2eηξd

1/q
o λ

(ξ + 1)CF,q

all hold with at least probability P{κ(ξ, O) ≥ Cκ,Fq(ξ, O) ≥ CF,q} − ε.

It is noteworthy that this theorem gives an upper bound of the estimation error
for all the �q norms with q ≥ 1. From this theorem, for the �q error |β̂ − βo|q
with q ≥ 1 to be small with high probability, we need to ensure that doλ → 0 as
n → ∞. This requires p = exp(o(n/d2

o )). If do is bounded, then p can be as large
as eo(n).
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Bradic, Fan and Jiang (2011) considered estimation as well as variable selec-
tion and oracle properties for general concave penalties, including the lasso. Their
broader scope seems to have led to more elaborate statements and some key condi-
tions that are more difficult to verify than those of Theorems 3.1 and 3.2, for exam-
ple, their Condition 2(i) on a uniformly small spectrum bound between S(2)(t,β1)

and its population version for a sparse β1 in a neighborhood of βo.

PROOF OF THEOREM 3.2. Let C0 = 1 and x = λ(ξ − 1)/{K(ξ + 1)} =√
(2/n) log(2p/ε) in Lemma 3.3. The probability of the event |�̇(βo)|∞ > (ξ −

1)/(ξ + 1)λ is at most ε. The desired result follows directly from Theorem 3.1.
�

4. Compatibility and invertibility factors and restricted eigenvalues. In
Section 3, the oracle inequalities in Theorems 3.1 and 3.2 are expressed in terms of
the compatibility and weak cone invertibility factors. However, as mentioned in the
Introduction, these quantities are still random variables. This section provides suf-
ficient conditions under which they can be treated as constants. Since these factors
appear in the denominator of error bounds, it suffices to bound them from below.
We also derive a lower bound for the restricted eigenvalue to facilitate further anal-
ysis of the Cox model in high-dimension. We will prove that these quantities are
bounded from below by the population version of their certain truncated versions.

Compared with linear regression, our problem poses two additional difficulties
in the Cox model: (a) time dependence of covariates, and (b) stochastic integration
of the Hessian over random risk sets. Fortunately, the compatibility and weak cone
invertibility factors in Theorems 3.1 and 3.2 involve only the Hessian of the log-
partial likelihood at the true βo, so that a martingale argument can be used.

To simplify the statement of our results, we use φ(ξ, O; �̄) to denote any of the
following quantities:

φ(ξ, O; �̄) = κ2(ξ, O; �̄), Fq(ξ, O; �̄) or RE2(ξ, O; �̄),(4.1)

where κ(ξ, O; �̄), Fq(ξ, O; �̄), and RE(ξ, O; �̄) are as in (3.3), (3.4) and (3.5),
respectively. If we make a claim about φ(ξ, O; �̄), we mean that the claim holds
for any quantity it represents. Let φmin denote the smallest eigenvalue. The follow-
ing lemma provides some key properties of φ(ξ, O; �̄) used in the derivation of
its lower bounds.

LEMMA 4.1. Let κ(ξ, O; �̄), Fq(ξ, O; �̄), RE(ξ, O; �̄) and φ(ξ, O; �̄) be
as in (4.1). Let �̄jk be the elements of �̄ and � be another nonnegative-definite
matrix with elements �jk .

(i) For 1 ≤ q ≤ 2,

min
{
κ2(ξ, O; �̄), (1 + ξ)2/q−1Fq(ξ, O; �̄)

} ≥ RE2(ξ, O; �̄) ≥ φmin(�̄).
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(ii) φ(ξ, O; �̄) ≥ φ(ξ, O;�) − do(ξ + 1)2 max1≤j≤k≤p |�̄jk − �jk|.
(iii) If �̄ ≥ �, then φ(ξ, O; �̄) ≥ φ(ξ, O;�).

PROOF. By the Hölder inequality, |b|q ≤ |b|2/q−1
1 |b|2−2/q

2 for all 1 ≤ q ≤ 2.

Since |b|1 ≤ (1 + ξ)|bO|1 in the cone and |bO|1 ≤ d
1/2
o |b|2, we have

|bO|1|b|q/d1/q
o ≤ (1 + ξ)2/q−1|bO|2/q

1 |b|2−2/q
2 /d1/q

o ≤ (1 + ξ)2/q−1|b|22.
This and |bO|1 ≤ d

1/2
o |b|2 yields part (i) by the definition of the quantities in-

volved. Part (ii) follows from |b′�̄b − b′�b| ≤ |b|21 maxj,k |�̄jk − �jk| and

|b|1 ≤ (ξ + 1)|bO|1 ≤ (ξ + 1)d
1/q
o |b|q . Part (iii) follows immediately from the

definition of the quantities in (4.1). �

It follows from Lemma 4.1(ii) and (iii) that quantities of type φ(ξ, O; �̄) in (4.1)
can be bounded from below in two ways. The first is to bound the matrix �̄ from
below and the second is to approximate �̄ under the supreme norm for its elements.
In the p � n setting, our problem is essentially the rank deficiency of �̄ to begin
with, so that its lower bound is still rank deficient. However, a lower bound of the
random matrix �̄ = �̈(βo), for example, a certain truncated version of it, may have
a smaller variability to allow an approximation by its population version. This
is our basic idea. In fact, our analysis takes advantage of this argument twice to
remove different sources of randomness.

According to our plan described in the previous paragraph, we first choose a
suitable truncation of �̄ = �̈(βo) as a lower bound of the matrix. This is done by
truncating the maximum event time under consideration. It follows from (2.6) that
for t∗ > 0,

�̈
(
βo) ≥ �̈

(
βo; t∗)

where �̈
(
βo; t∗) = n−1

∫ t∗

0
Vn

(
s,βo)dN̄(s).(4.2)

This allows us to remove the randomness from the counting process by replacing
the average counting measure n−1 dN̄(t) by its compensator Rn(s,β

o) d�0(s),
where �0 is the baseline cumulative hazard function. This approximation of
�̈(βo; t∗) can be written as

�̄
(
t∗

) =
∫ t∗

0
Vn

(
s,βo)Rn

(
s,βo)d�0(s).(4.3)

To completely remove the randomness with �̄(t∗), we apply the method again
by truncating the weights eZ′

i (t)β
o

with Rn(s,β
o). For M > 0, define

�̄
(
t∗;M) =

∫ t∗

0
Ĝn(s;M)d�0(s),(4.4)
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where Ĝn(t;M) = n−1 ∑n
i=1{Zi − Z̄n(t;M)}⊗2Yi(t)min{M, exp(Z′

i (t)β
o)} with

Z̄n(t;M) =
∑n

i=1 Zi (t)Yi(t)min{M, exp(Z′
i (t)β

o)}∑n
i=1 Yi(t)min{M, exp(Z′

i (t)β
o)} .

We will prove that the matrix (4.4) is a lower bound of (4.3). Suppose {Yi(t),Zi(t),

t ≥ 0} are i.i.d. stochastic processes from {Y(t),Z(t), t ≥ 0}. The population ver-
sion of (4.4) is then

�
(
t∗;M) = E

∫ t∗

0
Gn(s;M)d�0(s),(4.5)

where Gn(t;M) = n−1 ∑n
i=1{Zi − μ(t;M)}⊗2Yi(t)min{M, exp(Z′

i (t)β
o)} with

μ(t;M) = E[Z(t)Y (t)min{M, exp(Z′βo)}]
E[Y(t)min{M, exp(Z′βo)}] .

The analysis outlined above leads to the following main result of this section.
For ξ ≥ 1 and O ⊂ {1, . . . , p} with |O| = do, let φ(ξ, O; �̄) represent all quantities
of interest given in (4.1), κ(ξ, O) and Fq(ξ, O) be the compatibility and weak
cone invertibility factors in (3.8) with the Hessian �̈(βo) in (2.6) at the true β , and
RE(ξ, O; �̄) be as in (3.5). Let Ln(t) = √

(2/n) log t .

THEOREM 4.1. Suppose {Yi(t),Zi(t), t ≥ 0} are i.i.d. processes from {Y(t),

Z(t), t ≥ 0} with supt P {|Zi (t) − Z(t)|∞ ≤ K} = P {maxi Ni(∞) ≤ 1} = 1. Let
{t∗,M} be positive constants and r∗ = EY(t∗)min{M, exp(Z′(t∗)βo)}. Then,

φ
(
ξ, O; �̈(

βo))
≥ φ

(
ξ, O;�(

t∗;M))
(4.6)

− do(ξ + 1)2K2{
C1Ln

(
p(p + 1)/ε

) + C2t
2
n,p,ε

}
with at least probability 1 − 3ε, where C1 = 1 + �0(t

∗), C2 = (2/r∗)�0(t
∗) and

tn,p,ε is the solution of p(p + 1) exp{−nt2
n,p,ε/(2 + 2tn,p,ε/3)} = ε/2.221. Conse-

quently, for 1 ≤ q ≤ 2,

min
{
κ2(ξ, O), (1 + ξ)2/q−1Fq(ξ, O)

}
≥ RE2(

ξ, O; �̈(
βo))(4.7)

≥ ρ∗ − do(ξ + 1)2K2{
C1Ln

(
p(p + 1)/ε

) + C2t
2
n,p,ε

}
with at least probability 1 − 3ε, where ρ∗ = φmin(�(t∗;M)) with the matrix
in (4.5).

Theorem 4.1 implies that the compatibility and cone invertibility factors and
the restricted eigenvalue can be all treated as constants in high-dimensional Cox
model with time-dependent covariates. We note that C2t

2
n,p,ε is of smaller order
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than Ln(p(p + 1)/ε) so that the lower bounds in (4.6) and (4.7) depend on the
choice of t∗ and M marginally through C1 and ρ∗. If do

√
(logp)/n is sufficiently

small as assumed in Theorem 3.2, the right-hand side of (4.7) can be treated as
ρ∗/2. It is reasonable to treat ρ∗ as a constant since it is the smallest eigenvalue of
a population integrated covariance matrix in (4.5).

In the proof of Theorem 4.1, the martingale exponential inequality in Lemma 3.3
is used to bound the difference between (4.2) and (4.3). The following Bernstein
inequality for V -statistics is used to bound the difference between (4.4) and (4.5).
This inequality can be viewed as an extension of the Hoeffding (1963) inequality
for sums of bounded independent variables and nondegenerate U -statistics.

LEMMA 4.2. Let Xi be a sequence of independent stochastic processes and
fi,j be functions of Xi and Xj with |fi,j | ≤ 1. Suppose fi,j are degenerate in
the sense of E[fi,j |Xi] = E[fi,j |Xj ] = 0 for all i 	= j . Let Vn = ∑n

i=1
∑n

j=1 fi,j .
Then,

P
{±Vn > (nt)2} ≤ 2εn(t)(1 + εn(t))

(1 + ε2
n(t))

2 ≤ 2.221 exp
(
− nt2/2

1 + t/3

)
,

where εn(t) = e−(nt2/2)/(1+t/3).

Our discussion focuses on the quantities in (4.1) for the Hessian matrix �̄ =
�̈(βo) evaluated at the true vector of coefficients. Still, through Lemma 3.2, Theo-
rem 4.1 also provides lower bounds for these quantities at any β not far from the
true βo in terms of the �1 distance. We formally state this result in the following
corollary.

COROLLARY 4.1. Let φ(ξ, O; �̄) represent any quantities in (4.1). Then,

e−2ηbφ
(
ξ, O; �̈(

βo)) ≤ φ
(
ξ, O; �̈(

βo + b
)) ≤ e2ηbφ

(
ξ, O; �̈(

βo)),
where

ηb = sup
s

max
i,j

∣∣b′Zi (s) − b′Zj (s)
∣∣.

Consequently, when |Zi (s) − Zj (s)|∞ ≤ K ,

inf
{
φ

(
ξ, O; �̈(β)

)
:
∣∣β − βo

∣∣
1 ≤ η/(2K)

}
≥ e−ηφ

(
ξ, O; �̈(

βo))
≥ e−η[

ρ∗ − do(ξ + 1)2K2{
C1Ln

(
p(p + 1)/ε

) + C2t
2
n,p,ε

}]
under the conditions of Theorem 4.1.
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It is worthwhile to point out that unlike typical “small ball” analysis based on
Taylor expansion, Corollary 4.1 provides nonasymptotic control of the quantities
in an �1 ball of constant size. Since b′�̄b appears in the numerator of the quantities
represented by φ(ξ, O; �̄), Corollary 4.1 follows immediately from Theorem 4.1
and (3.13). It implies that the Hessian has sufficient invertibility properties in the
analysis of the lasso when the estimator is not far from the true βo in �1 distance.
On the other hand, if the Hessian has sufficient invertibility properties in a ball of
fixed size, nonasymptotic error bounds for the lasso estimator can be established.
This “chicken and egg” problem is directly solved in the proof of Theorem 3.1.

5. Concluding remarks. This paper deals with the Cox proportional hazards
regression model when the number of time-dependent covariates p is potentially
much larger than the sample size n. The �1 penalty is used to regularize the log-
partial likelihood function. Error bounds parallel to those of the lasso in linear
regression are established. In establishing these bounds, we extend the notion of
the restricted eigenvalue and compatibility and cone invertibility factors to the Cox
model. We show that these quantities indeed provide useful error bounds.

An important issue is the choice of the penalty level λ. Theorem 3.2 requires a
λ slightly larger than K

√
(2/n) logp, where K is a uniform upper bound for the

range of individual real covariates. This indicates that the lasso is tuning insensitive
since the theoretical choice does not depend on the unknowns. In practice, cross
validation can be used to fine tune the penalty level λ. Theoretical investigation of
the performance of the lasso with cross-validated λ, an interesting and challenging
problem in and of itself even in the simpler linear regression model, is beyond the
scope of this paper.

General concave penalized estimators in the Cox regression model have been
considered in Bradic, Fan and Jiang (2011) where oracle inequalities and proper-
ties of certain local solutions are considered. Zhang and Zhang (2012) has provided
a unified treatment of global and local solutions for concave penalized least squares
estimators in linear regression. Since this unified treatment relies on an oracle in-
equality for the global solution based on the cone invertibility factor, the results
in this paper point to a possible extension of such a unified treatment of global
and local solutions of general concave regularized methods in the Cox regression
model.

APPENDIX

Here we prove Lemmas 3.1, 3.2, 3.3 and 4.2 and Theorems 3.1 and 4.1.

PROOF OF LEMMA 3.1. Since �(β) is a convex function, Ds(β̂,β) =
θ̃

′{�̇(βo + θ̃) − �̇(βo)} ≥ 0, so that the first inequality holds. Since θ̃j = β̂j for
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j ∈ Oc, (2.4) gives

θ̃
{
�̇
(
βo + θ̃

) − �̇
(
βo)}

= ∑
j∈Oc

θ̃j

(
�̇
(
βo + θ̃

))
j + ∑

j∈O
θ̃j

(
�̇
(
βo + θ̃

))
j + θ̃

′(−�̇
(
βo))

≤ ∑
j∈Oc

β̂j

(−λ sgn(β̂j )
) + ∑

j∈O
|θ̃j |λ + |θ̃ |1z∗

= ∑
j∈Oc

−λ|θ̃j | + |θ̃ O|1λ + z∗|θ̃ O|1 + z∗|θ̃ Oc |1

= (
z∗ − λ

)|θ̃ Oc |1 + (
λ + z∗)|θ̃ O|1.

Thus the second inequality in (3.1) holds. Note that the inequality in the third line
above requires (�̇(βo + θ̃))j = −λ sgn(β̂j ) only in the set Oc ∩ {j : β̂j 	= 0}, since
θ̃j = β̂j − βo

j = 0 when j ∈ Oc and β̂j = 0. �

PROOF OF LEMMA 3.2. We use similar notation as in Hjort and Pollard
(1993). Let ai = ai(s) = b′{Zi (s) − Z̄n(s,β)}, wi = wi(s) = Yi(s) exp[β ′Zi (s)]
and c = c(s) = (maxi ai(s) + mini ai(s))/2. Clearly, maxi |ai − c| ≤ (1/2)ηb. By
the definition of Z̄n(t,β),

b′{Z̄n(s,β + b) − Z̄n(s,β)
}

= ∑
i

b′Zi (s)wie
b′Zi (s)

/∑
i

wie
b′Zi (s) − ∑

i

b′Zi (s)wi

/∑
i

wi

= ∑
i

aiwie
ai

/∑
i

wie
ai − ∑

i

aiwi

/∑
i

wi

= ∑
i,j

wiwjai

(
eai − eaj

)/∑
i,j

wiwje
ai

= ∑
i,j

wiwj (ai − aj )
(
eai−c − eaj−c)/∑

i,j

2wiwje
ai−c

≥ exp
(
−2 max

i
|ai − c|

)∑
i,j

wiwj (ai − aj )
2
/∑

i,j

2wiwj

≥ exp(−ηb)
∑
i

wia
2
i

/∑
i

wi,

where the first inequality comes from (ey − ex)/(y − x) ≥ e−(|y|∨|x|) and, since∑
i wiai = 0, the second one from

∑
i,j wiwj (ai − aj )

2 = 2
∑

i wi

∑
i wia

2
i . Thus,
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since a2
i = b′{Zi (s) − Z̄n(s,β)}⊗2b, (2.6) and (2.5) give

e−ηbb′�̈(β)b = e−ηb

n

∫ ∞
0

n∑
i=1

wia
2
i

(
n∑

i=1

wi

)−1

dN̄(s) ≤ b′{�̇(β + b) − �̇(β)
}
.

This implies the lower bound in (3.12). Similarly, the lower bound in (3.13) follows
from

�̈(β + b) = 1

n

∫ ∞
0

∑
i,j wiwj {Zi (s)Z′

i (s) − Zi (s)Z′
j (s)}eai+aj∑

i,j wiwje
ai+aj

dN̄(s)

= 1

n

∫ ∞
0

∑
i,j wiwj (Zi (s) − Zj (s))

⊗2e(ai−c)+(aj−c)∑
i,j 2wiwje

(ai−c)+(aj−c)
dN̄(s)

and

�̈(β) = 1

n

∫ ∞
0

∑
i,j wiwj (Zi (s) − Zj (s))

⊗2∑
i,j 2wiwj

dN̄(s).

The proof of the upper bounds in (3.12) and (3.13), nearly identical to the proof of
the lower bounds, is omitted. �

PROOF OF LEMMA 3.3. Applying the union bound and changing the scale of
the covariates if necessary, we assume without loss of generality that p = K = 1.
In this case

�̇
(
βo) = 1

n

n∑
i=1

∫ ∞
0

ai(s) dNi(s) = 1

n

n∑
i=1

∫ ∞
0

ai(s) dMi(s),

where ai(t) = Zi1(t)−Z̄n,1(t), i = 1, . . . , n, are predictable and satisfy |ai(t)| ≤ 1.
Thus, (3.15) follows from (3.14).

Let tj be the time of the j th jump of the process
∑n

i=1
∫ ∞

0 Yi(t) dNi(t), j =
1, . . . ,m and t0 = 0. Then, tj are stopping times. For j = 0, . . . ,m, define

Xj =
n∑

i=1

∫ tj

0
ai(s) dNi(s) =

n∑
i=1

∫ tj

0
ai(s) dMi(s).(A.1)

Since Mi(s) are martingales and ai(s) are predictable, {Xj, j = 0,1, . . .} is a mar-
tingale with the difference |Xj −Xj−1| ≤ maxs,i |ai(s)| ≤ 1. Let m be the greatest
integer lower bound of C2

0n. By the martingale version of the Hoeffding (1963)
inequality [Azuma (1967)],

P
(|Xm| > nC0x

) ≤ 2 exp
(−n2C2

0x2/(2m)
) ≤ 2e−nx2/2.

By (A.1), Xm = n�̇(βo) if and only if
∑n

i=1
∫ ∞

0 Yi(t) dNi(t) ≤ m. Thus, the left-

hand side of (3.15) is no greater than P(|Xm| > nC0x) ≤ 2e−nx2/2. �
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PROOF OF LEMMA 4.2. For integers j,m, i1, . . . , im, let #(j ; i1, . . . , im) be
the number of appearances of j in the sequence {i1, . . . , im}. Since fi,j are degen-
erate,

E(±Vn)
m = ∑

1≤i1,...,i2m≤n

(±1)mfi1,i2 · · ·fi2m−1,i2m

≤ ∑
1≤i1,...,i2m≤n

n∏
j=1

I
{
#(j ; i1, . . . , i2m) 	= 1

}
.

This is due to the fact that all terms with exactly one appearance of an index j

have zero expectation and all other terms are bounded by 1. Let E0 be the ex-
pectation under which i1, . . . , i2m are i.i.d. uniform variables in {1, . . . , n} and
kj = #(j ; i1, . . . , i2m). Since (k1, . . . , kn) is multinomial(2m,1/n, . . . ,1/n), the
above inequality can be written as

E(±Vn)
m ≤ n2mE0

n∏
j=1

I {kj 	= 1} = (2m)! ∑
k1+···+kn=2m

n∏
j=1

I {kj 	= 1}
kj ! .

Let f0(x) = ∑∞
m=0 xm/(2m)! = cosh(|x|1/2)I {x ≥ 0} + cos(|x|1/2)I {x < 0} and

λ = t/(1 + t/3). It follows from the above moment inequality that

Ef0
(±λ2Vn

) =
∞∑

m=0

λ2mE(±Vn)
m/(2m)!

≤
∞∑

m=0

λ2m
∑

k1+···+kn=2m

n∏
j=1

I {kj 	= 1}
kj !

≤
∞∑

m=0

λm
∑

k1+···+kn=m

n∏
j=1

I {kj 	= 1}
kj !

=
( ∞∑

k=0

λkI {k 	= 1}/k!
)n

.

Since
∑∞

k=0 λkI {k 	= 1}/k! ≤ 1 + (λ2/2)/(1 − λ/3) = 1 + λt/2, we find
Ef0(±λ2Vn) ≤ enλt/2. Consequently, the monotonicity of f (x) = cosh(x1/2) for
x > 0 and the lower bound f (x) ≥ −1 allow us to apply the Markov inequality as
follows:

P
{±Vn > (nt)2} ≤ P

{
1 + f0

(±λ2Vn

)
> 1 + f0

(
(λnt)2)}

≤ {
1 + f0

(
(nλt)2)}−1

E
{
1 + f0

(±λ2Vn

)}
≤ {

1 + cosh(nλt)
}−1(

1 + enλt/2)
= 2e−nλt/2(

1 + e−nλt/2)
/
(
1 + e−nλt )2

.
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The conclusion follows from 2 max0≤x≤1(1 + x)/(1 + x2)2 ≤ 2.221. �

PROOF OF THEOREM 3.1. Let θ̃ = β̂ − βo 	= 0 and b = θ̃/|θ̃ |1. It follows
from the convexity of �(βo + xb), as a function of x, and Lemma 3.1 that, in the
event |�̇(βo)|∞ ≤ (ξ − 1)/(ξ + 1)λ,

b′{�̇(
βo + xb

) − �̇
(
βo)} + 2λ

ξ + 1
|bOc |1 ≤ 2ξλ

ξ + 1
|bO|1(A.2)

for x ∈ [0, |θ̃ |1] and b ∈ C (ξ, O). Consider all nonnegative x satisfying (A.2). We
need to establish a lower bound for

b′{�̇(
βo + xb

) − �̇
(
βo)} = 1

n

∫ ∞
0

b′{Z̄n

(
s,βo + xb

) − Z̄n

(
s,βo)}dN̄(s).

Since ηxb = max0≤s≤1 maxi,j |xb′Zi (s)− xb′Zj (s)| ≤ Kx|b|1 = Kx, Lemma 3.2
yields

xb′{�̇(
βo + xb

) − �̇
(
βo)} ≥ x2 exp(−ηxb)b′�̈

(
βo)b

(A.3)
≥ x2 exp(−Kx)b′�̈

(
βo)b.

This, combined with (A.2) and the definition of κ(ξ, O), gives

xe−Kxκ2(ξ, O)|bO|21/do ≤ xe−Kxb′�̈
(
βo)b

≤ 2ξλ

ξ + 1
|bO|1 − 2λ

ξ + 1
|bOc |1

= 2λ|bO|1 − 2λ

ξ + 1

≤ λ(ξ + 1)|bO|21/2.

In other words, any x satisfying (A.2) must satisfy

Kx exp(−Kx) ≤ K(ξ + 1)λdo

2κ2(ξ, O)
= τ.(A.4)

Since b′{�̇(βo + xb) − �̇(βo)} is an increasing function of x due to the convexity
of �, the set of all nonnegative x satisfying (A.2) is a closed interval [0, x̃] for some
x̃ > 0. Thus, (A.4) implies Kx̃ ≤ η, the smaller solution of ηe−η = τ . This yields

|θ̃ |1 ≤ x̃ ≤ η

K
= eητ

K
= eη(ξ + 1)λdo

2κ2(ξ, O)

in (3.10). The first part of (3.10) follows from (3.3), (3.8), (3.12) and (3.1), due to

e−ηκ2(ξ, O)|θ̃ O|21/do ≤ e−ηθ̃
′
�̈
(
βo)θ̃ ≤ Ds(β̂,β) ≤ 2ξλ|θ̃ O|1

ξ + 1
.
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Finally, it follows from the definition of Fq(ξ, O), (A.3) and (A.2) that, for
x = |θ̃ |1,

xe−η ≤ xe−Kxb′�̈(βo)b

Fq(ξ, O)(|bO|1/d1/q
o )|b|q

≤ b′{�̇(βo + xb) − �̇(βo)}
Fq(ξ, O)(|bO|1/d1/q

o )|b|q

≤ 2ξλd
1/q
o

(ξ + 1)Fq(ξ, O)|b|q .

This gives the second inequality in (3.11) due to |β̂ − βo|q = |θ̃ |1|b|q . �

PROOF OF THEOREM 4.1. Let

a(s) = (
Vn

(
s,βo))

jk/K
2

=
n∑

i=1

wni

(
t,βo){Zi,j (s) − Z̄n,j (s)

}{
Zi,k(s) − Z̄n,k(s)

}
/K2.

It follows from Lemma 3.3(i) with ai(s) = a(s) and C0 = 1 that

P

{∣∣∣∣
(∫ t∗

0
Vn

(
s,βo)dN̄(s) −

∫ t∗

0
Vn

(
s,βo)Rn

(
s,βo)d�0(s)

)
jk

∣∣∣∣ > K2x

}

≤ 2e−nx2/2.

Thus, P {maxj,k |(�̈(βo; t∗) − �̄(t∗)|j,k ≥ K2Ln(p(p + 1)/ε)} ≤ ε by the union
bound and the respective definitions of �̈(βo; t∗) and �̄(t∗) in (4.2) and (4.3).
Consequently, by (4.2) and Lemma 4.1(iii) and (ii)

P
{
φ

(
ξ, O; �̈(

βo)) ≥ φ
(
ξ, O; �̄(

t∗
)) − do(ξ + 1)2K2Ln

(
p(p + 1)/ε

)}
(A.5)

≥ 1 − ε.

Let us take the sample mean of i-indexed quantities with weights Yi(t)min{M,

exp(Z′
i (t)β

o)}, so that Z̄n(t;M) is the sample mean of Zi (t). Since Vn(t,β
o)Rn(t,

βo) = Ĝn(t;∞),

u′Ĝn(t;∞)u ≥ 1

n

n∑
i=1

[
u′{Zi − Z̄n(t;∞)

}]2
Yi(t)min

{
M, exp

(
Z′

i (t)β
o)}

≥ u′Ĝn(t;M)u.

Thus, by the definition of �̄(t∗;M) in (4.4) and Lemma 4.1(iii),

φ
(
ξ, O; �̄(

t∗
)) ≥ φ

(
ξ, O; �̄(

t∗;M))
.(A.6)

In addition, the relationship between the sample second moment and variance gives

Gn(t;M) = Ĝn(t;M) + {
Z̄n(t;M) − μ(t;M)

}⊗2
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by the definition of Gn(t;M) and Ĝn(t;M), so that (4.4) can be written as

�̄
(
t∗;M) =

∫ t∗

0
Gn(s;M)d�0(s)

(A.7)

−
∫ t∗

0

{
Z̄n(t;M) − μ(t;M)

}⊗2
d�0(s).

We first bound the second term on the right-hand side of (A.7). Define

Rn(t;M) = 1

n

n∑
i=1

Yi(t)min
{
M, exp

(
Z′

i (t)β
o)},

�(t;M) = Rn(t;M)
{
Z̄n(t;M) − μ(t;M)

}
= 1

n

n∑
i=1

Yi(t)min
{
M, exp

(
Z′

i (t)β
o)}{Zi (t) − μ(t;M)

}
.

Since Yi(t) is nonincreasing in t ,

0 ≤
∫ t∗

0

{
Z̄n(t;M) − μ(t;M)

}⊗2
d�0(s) ≤

∫ t∗
0 �⊗2(t;M)d�0(s)

R2
n(t

∗,M)
.(A.8)

Since Rn(t
∗,M) is the average of i.i.d. variables uniformly bounded by M and

ERn(t
∗,M) = r∗, the Hoeffding (1963) inequality gives

P
{
Rn

(
t∗,M

)
< r∗/2

} ≤ e−nr2∗/(8M2).

Since �(t;M) is an average of i.i.d. mean zero vectors,(
n2

∫ t∗

0
�⊗2(t;M)d�0(s)

)
jk

is a degenerate V -statistic for each (j, k). Moreover, since the summands of these
V -statistics are all bounded by K2�0(t

∗), Lemma 4.2 yields

max
1≤j,k≤p

P

{
±

(∫ t∗

0
�⊗2(t;M)d�0(s)

)
jk

> K2�0
(
t∗

)
t2

}

≤ 2.221 exp
(−nt2/2

1 + t/3

)
.

Thus, by (A.7), (A.8), the above two probability bounds and Lemma 4.1(ii),

φ
(
ξ, O; �̄(

t∗;M))
≥ φ

(
ξ, O;

∫ t∗

0
Gn(s;M)d�0(s)

)
(A.9)

− do(ξ + 1)2K2�0
(
t∗

)
t2
n,p,ε/(r∗/2)
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with at least probability 1 − e−nr2∗/(8M2) − ε.
Finally, by (4.5),

∫ t∗
0 Gn(s;M)d�0(s) is an average of i.i.d. matrices with mean

�(t∗;M) and the summands of (
∫ t∗

0 Gn(s;M)d�0(s))jk are uniformly bounded
by K2�0(t

∗), so that the Hoeffding (1963) inequality gives

P

{
max
j,k

∣∣∣∣
(∫ t∗

0
Gn(s;M)d�0(s) − �

(
t∗,M

))
jk

∣∣∣∣ > K2�0
(
t∗

)
t

}

≤ p(p + 1)e−nt2/2.

By (A.5), (A.6), (A.9), the above inequality with t = Ln(p(p + 1)/ε) and Lem-
ma 4.1(ii),

φ
(
ξ, O; �̈(

βo))
≥ φ

(
ξ, O;

∫ t∗

0
Gn(s;M)d�0(s)

)

− do(ξ + 1)2K2{
Ln

(
p(p + 1)/ε

) + (2/r∗)�0
(
t∗

)
t2
n,p,ε

}
≥ φ

(
ξ, O;�(

t∗,M
))

− do(ξ + 1)2K2{(
1 + �0

(
t∗

))
Ln

(
p(p + 1)/ε

) + (2/r∗)�0
(
t∗

)
t2
n,p,ε

}
with at least probability 1 − e−nr2∗/(8M2) − 3ε. Since

φ
(
ξ, O;�(

t∗,M
)) ≥ RE2(

ξ, O;�(
t∗,M

)) ≥ ρ∗
by Lemma 4.1(i) and the definition in (3.5), the conclusion follows. �
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