
The Annals of Applied Statistics
2013, Vol. 7, No. 4, 1898–1916
DOI: 10.1214/13-AOAS671
© Institute of Mathematical Statistics, 2013

AN ALGORITHM FOR DECIDING THE NUMBER OF CLUSTERS
AND VALIDATION USING SIMULATED DATA WITH

APPLICATION TO EXPLORING CROP POPULATION STRUCTURE

BY MARK A. NEWELL1,∗, DIANNE COOK2,†, HEIKE HOFMANN2,†

AND JEAN-LUC JANNINK‡

The Samuel Roberts Noble Foundation∗, Iowa State University†

and Cornell University‡

A first step in exploring population structure in crop plants and other or-
ganisms is to define the number of subpopulations that exist for a given data
set. The genetic marker data sets being generated have become increasingly
large over time and commonly are of the high-dimension, low sample size
(HDLSS) situation. An algorithm for deciding the number of clusters is pro-
posed, and is validated on simulated data sets varying in both the level of
structure and the number of clusters covering the range of variation observed
empirically. The algorithm was then tested on six empirical data sets across
three small grain species. The algorithm uses bootstrapping, three methods of
clustering, and defines the optimum number of clusters based on a common
criterion, the Hubert’s gamma statistic. Validation on simulated sets coupled
with testing on empirical sets suggests that the algorithm can be used for a
wide variety of genetic data sets.

1. Introduction. In the field of plant breeding, a breeder often wants to clus-
ter available genetic lines, characterized by a set of markers, to organize the lines
based on attributes of the population such as structure and linkage disequilibrium
[Newell et al. (2011)]. They may also want to cluster growing environments based
on yield data of various lines to define a target set of environments best suited to
the line [Cooper and DeLacy (1994)]. Clustering algorithms, where individuals or
cases are assigned to groups based on their similarity, is used. In many fields of
science where large amounts of data are being generated, clustering similar cases
or variables is often useful to organize the data. As in plant breeding, cluster anal-
ysis is often used to answer specific questions. Whether the research question is
largely exploratory or inferential, cluster analysis can contribute useful insight into
the structure hiding in a data set. Due to the underlying variation that is generally
unknown without genetic information, a major obstacle to cluster analyses is es-
timating the number of clusters, which for genetic data might be considered to be
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subpopulations. In fact, although current clustering methods, such as k-means and
hierarchical, are quite useful, they do little to address the practical question of how
many clusters exist [Fraley and Raftery (2003)]. Milligan and Cooper (1985) tested
various procedures for determining the number of clusters using classical hierar-
chical methods, however, the simulated data was small and nonoverlapping, and
therefore not practical for genetic data. The methods for estimating the number of
clusters for k-means clustering has been reviewed and include algorithmic, graphi-
cal and formulaic approaches [Steinley (2006)]. Having insight into the number of
clusters present for a genetic marker data set can aid in understanding population
structure.

Model-based clustering provides some help on choosing the number of clus-
ters by calculating some criterion based on the population distribution as-
sumptions. The most widely used model-based clustering approach used in ge-
netic studies is implemented in the computer software STRUCTURE [Pritchard,
Stephens and Donnelly (2000)]. It decides the number of clusters by comparing
variance-penalized log-likelihoods. STRUCTURE has been cited in many research
manuscripts. Vähä et al. (2007) applied four separate rounds of STRUCTURE to
Atlantic salmon (Salmo solar) genetic marker data and found that, although it
seemed to work well in clustering the genetic structure appropriately, the compu-
tational time was intolerably long. Hamblin et al. (2010) applied the STRUCTURE
model-based clustering to a large barley (Hordeum vulgare L.) data set consisting
of 1816 individuals and 1416 variables (markers), wherein convergence did not
occur after very lengthy runs, finally requiring the use of another algorithm. In
addition to computational issues, STRUCTURE makes genetic assumptions that
are rarely met in breeding populations: (1) marker loci are unlinked and in linkage
equilibrium with one another within populations, and (2) Hardy–Weinberg equi-
librium within populations. The first of these assumptions can be simply avoided
by selection of markers that are unlinked and in linkage equilibrium. In contrast,
the second assumption is rarely the case for plant breeding populations in which
selection plays a major role in population development. An important result of
these assumptions is that allele frequencies across loci must be relatively similar,
which is rarely the case for genetic data.

For plant breeding, as in many other fields of science, the increasing availability
of data also results in high-dimensional data sets that can be difficult computation-
ally to cluster. The data that this paper uses is binary data, presence or absence of a
genetic marker, for each unique line. There are commonly lots of missing values.
High-dimensionality issues related to cluster analyses were originally described by
Bellman (1961) as an exponential growth of hypervolume as a function of dimen-
sion. Clarifying this for clustering, Murtagh (2009) determined that in very high-
dimensional space there is a simplification of structure, demonstrating that the
distances within clusters become tighter, while between cluster distance expands,
with an increase in dimensionality. Though the research presented by Murtagh
(2009) makes a convincing argument to utilize all dimensions in high-dimensional
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data sets, this is often not done due to the computational burden. In addition, ge-
netic data often times includes a high frequency of nuisance variables that do not
contribute to the structure of the data. In order to overcome these possible issues, it
may be appropriate to implement cluster analyses on low-dimensional projections
such as the principal components (PCs) for some methods [Fraley and Raftery
(2002)]. Hall, Marron and Neeman (2005) found that low-dimensional projections
of such data sets, where the number of dimensions d → ∞ while the number of
observations n is fixed, tend to lie at vertices of a regular simplex, in agreement
with Murtagh (2009) and Ahn et al. (2007). (Note that the supplementary material
for this paper [Newell et al. (2013)] contains video of higher-dimensional views
of plant breeding data that also support the claim that this simplified structure is
present in these genetic data sets.)

HDLSS data can pose a challenge when applying principal component analysis
(PCA) because the covariance matrix is not of full rank. This leads to a strong in-
consistency in the lower eigenvectors, in which case the added variation obscures
the underlying structure of the covariance matrix [Jung and Marron (2009)]. The
first few eigenvectors are consistent if there is a large difference in size of the
eigenvalues between these and the rest. Classic studies of dimension reduction and
cluster analysis [e.g., Chang (1983)] caution against using PCA before clustering.
The reason is that PCA is finding directions of maximum variance in the data,
which does not always correspond to differences between clusters. This is well
known and explored further in several other papers, although it is still mistakenly
done. Projection pursuit, particularly with the holes index [Cook, Buja and Cabrera
(1993), Steinley, Brusco and Henson (2012)], is a better approach for reducing di-
mension before clustering. Ideally, clustering is done without reducing the dimen-
sion, but some clustering methods that do not work well for high-dimensional data,
such as model-based clustering that depends on estimating variance–covariance
matrices, require a dimension reduction step.

Advances in technology enable simulation of genetic data sets with known clus-
ter classifications. This application allows better testing and evaluation of new al-
gorithms on data sets with known properties. Comparisons can also be made be-
tween simulated and empirical data sets to gain insight into empirical data sets. The
computer software GENOME [Liang, Zöllner and Abecasis (2007)], a coalescent-
based whole genome simulator, offers just this by simulating sequences backward
in time. Simulation of genetic sequences is conditional on chosen parameters in-
cluding, but not limited to, population size, recombination rate and rates of migra-
tion between subpopulations. The software is particularly fast so it has the ability
to generate a large number of data sets in a relatively short period of time. Most
importantly, setting the available parameters enables the user to simulate data sets
similar to empirical sets with respect to the number of clusters and the level of
structure present. Milligan and Cooper (1985) evaluated different methods for de-
termining the number of clusters, however, the simulated data was very limited
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in the number of observations, number of dimensions and, most importantly for
genetic data, the lack of any cluster overlap.

The clustering methods that are currently available result in distinctive out-
comes that are often compared by the researcher on some criterion and chosen
accordingly. An approach that implements the array of clustering methods avail-
able and chooses the method that minimizes or maximizes a common criterion
would be a useful approach that could capitalize on the positives associated with
specific methods. This paper describes such an approach, that identifies the num-
ber of clusters for genetic marker data that incorporates model-based, k-means and
hierarchical methods, and uses bootstrapping and cluster criterion to help decide
the number of clusters. The algorithm is validated using GENOME simulated data
and assessed on six empirical data sets. Outcomes of the research include evalu-
ation of an algorithm to define the number of clusters using simulated data sets
similar to our empirical sets, comparison of simulated data sets to empirical data
sets, and development of graphical diagnostics to aid in the determination of the
number of clusters. We expect that these contributions might be more generally
applied to HDLSS data.

The paper is organized as follows. Section 2 describes the algorithm for choos-
ing clusters. Section 3 describes the simulated and empirical data sets used to
validate the algorithm. Section 4 describes the results. Supplementary material
[Newell et al. (2013)] contains (1) the data sets, (2) R code for the analysis and (3)
videos of the data sets, and resulting clusters, shown in more than two dimensions
to better see the differences between clusters.

2. Algorithm for choosing the number of clusters. The algorithm to deter-
mine the number of clusters has four steps: bootstrap sampling, clustering, calcula-
tion of a cluster validity statistic, and the computation of a permutation test for sig-
nificance. Hubert’s gamma statistic [Halkidi, Batistakis and Vazirgiannis (2001)],
available in the R package fpc [Hennig (2011)], is the cluster validity statistic
of choice, chosen heuristically from many criteria within the algorithm including
the average distances within and between clusters and their ratio, the within clus-
ters sum of squares, the Dunn index and entropy. Additionally, it is on a standard
scale which makes comparison between methods simpler and calculation across
clustering methods trivial. For consistency, matrices are denoted in bold typeface
with the subscript representing the number of rows and columns, respectively. Let
Xn×p (n rows and p columns) be the data set to be clustered. In the genetic marker
data, rows contain the lines and columns the marker information. For the empirical
sets, missing data was imputed using the mean marker frequency for that marker,
which is common practice for genetic data. In addition, the steps are graphically
displayed using a n = 150 by p = 100 simulated data set using STRUCTURE
composed of three clusters of equal size with a migration rate of 0.00001. The
cluster structure is displayed using the first two principal components, which for
this data is shown in Figure 1(left). The user sets a maximal number of clusters,
kmax, based on prior knowledge of a maximum. The steps are then as follows:
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FIG. 1. (Left) principal component one (PC1) versus PC2 with percent of the variation explained in
parentheses for the example data set used to show the steps of the proposed method. (Right) Hubert’s
gamma values at each cluster number for the three methods of clustering on the example simulated
data set generated to have three clusters. Thick lines represent significant (p < 0.01) increases in
Hubert’s gamma for pair-wise cluster numbers.

1. Bootstrapping: a number of bootstrap samples, b, are drawn at random from
the rows of X with replacement. The resulting matrix is denoted as X∗i

n×p for
i = 1, . . . , b.

2. Cluster analysis: three methods of cluster analysis are implemented for
1,2, . . . , kmax clusters including model-based, hierarchical and k-means clus-
tering.
(a) Model-based (mclust) cluster analysis, available in the R package mclust

[Fraley and Raftery (2011)], is applied to principal components Yn×1,
Yn×2, Yn×3, . . . ,Yn×kmax where the number of clusters is set to k. Thus,
the number of principal components is equal to the number of clusters. The
principal components were used only for the mclust method.

(b) Hierarchical (hclust) clustering is applied to the Manhattan distance matrix
Dn×n and cut at k clusters. The Manhattan distance was preferred to Eu-
clidean distance, as it represents the absolute distance between lines based
on their binary marker data.

(c) k-means (kmeans) clustering is applied to the bootstrap sample X∗i
n×p with

the number of clusters set to k.
3. Cluster validity: for each 1,2, . . . , kmax clusters, Hubert’s gamma is calcu-

lated for model-based, hierarchical and k-means clustering on the Manhat-
tan distance matrix. This results in three Hubert’s gamma statistics at each of
1,2, . . . , kmax number of clusters.

4. Permutation test: a paired permutation t-test is computed for each consecu-
tive number of clusters across bootstrap samples for each method of clustering,
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meaning between clusters 2:3, 3:4, . . . , and k − 1:kmax. A linear model is ap-
plied to each pair with Hubert’s gamma as the response and the cluster number
as the explanatory variable.

5. Choosing the number of clusters: the clustering method resulting in the highest
Hubert’s gamma is used. The algorithm returns the lowest number of clusters
for which Hubert’s gamma is significantly greater than the number below it,
but not for the number above it. Results for the example data set are shown in
Figure 1(right), with bold lines representing significant increases in Hubert’s
gamma between consecutive cluster pairs. For the example data set, all clus-
tering methods would return three clusters; hierarchical clustering yielded the
highest Hubert’s gamma, so it would be used.

3. Data.

3.1. Simulated. In order to validate the proposed method, data sets were sim-
ulated with varying numbers of clusters and degree of separation between clusters.
The coalescent whole genome simulator GENOME was used for all simulations
and was chosen because it was able to simulate data sets covering the spectrum of
variation in our empirical sets. The simulated sets ranged in the number of clusters
including 1, 2, 3, 4, 5, 6, 9 and 12 clusters. The level of separation between clus-
ters was specified by adjusting the migration rate per generation per individual,
levels for this parameter were 0.00005, 0.0001 and 0.00015. High levels of migra-
tion resulted in less separated clusters, while low levels of migration resulted in
more separated clusters. The number of clusters and migration rate were arranged
as a factorial such that 100 simulations were tested at each cluster—migration rate
combination. All simulated sets included 200 observations and 400 markers, with
each cluster having equal numbers of observations. Because the number of ob-
servations per simulation was fixed at 200, as the number of clusters increased,
the number of observations per cluster decreased. The simulated data sets were
HDLSS, which is generally the case for genetic data sets. In order to gauge the
variation in the simulated sets, Figure 2 shows the first two principal components
for one random sample of each cluster—migration rate combination. Visually, the
simulated sets cover a wide spectrum of variability with respect to the number of
clusters and, most notably, the level of separation.

3.2. Empirical. Six empirical data sets were used from three small grain
crops, including three oat (Avena sativa L.), two barley and one wheat (Triticum
aestivum L.) data set. The first oat data set, referred to as newell2010, is a collection
that includes varieties, breeding lines and landraces of worldwide origin originally
used for analysis of population structure and linkage disequilibrium [Newell et al.
(2011)]. The newell2010 data set has 1205 observations and 402 Diversity array
technology (DArT) markers, which are binary, with 5.1% missing data. The sec-
ond oat data set, referred to as tinker2009, is also a set of varieties, breeding lines
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FIG. 2. PC1 versus PC2 for a randomly selected simulated data set for each cluster—migration
rate combination. Note that as the migration rate increases, clusters are generally more overlapped.
With more clusters, the first two PCs are insufficient to capture the separation of clusters, but it can
still be seen that the clusters are further apart with a lower migration rate.

and varieties of global origin that was used by Tinker et al. (2009) in the initial
DArT development work. The tinker2009 data set consists of 198 observations and
1958 DArT markers with 21.6% missing data. The third oat data set, referred to
as asoro2011, consists of 446 North American elite lines scored for 1005 DArT
markers with 5.8% missing data [Asoro et al. (2013)]. We note that there is some
overlap between the newell2010 data set with both the tinker2009 and asoro2011
data sets. This is because the newell2010 data set combined data sets from indepen-
dently assembled collections. Although some observations are duplicated from the
two sets in newell2010, all three data sets have different combinations of marker
data, thus they will cluster quite differently.

The first barley data set, referred to as hamblin2010, was originally used to
explore population structure and linkage disequilibrium [Hamblin et al. (2010)].
This set is the largest used in this study and consists of 1816 observations from
ten barley coordinated agricultural project (CAP) participating breeding programs
throughout the US and scored for 1416 single nucleotide polymorphisms (SNPs),
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with only 0.2% missing data. Unlike the oat data sets, hamblin2010 has strong pop-
ulation structure, thus enabling testing of a wide variety of cluster separation in the
empirical sets. The second barley data set, referred to as zhang2009, was originally
used to assess barley population structure and linkage disequilibrium [Zhang et al.
(2009)]. The data set is comprised of 169 lines consisting of mainly Canadian cul-
tivars and breeding lines scored on 971 DArT markers. The zhang2009 data set
has about 2.6% missing data. The last empirical data set, referred to as chao2010,
is a wheat data set also originally used to explore population structure and linkage
disequilibrium [Chao et al. (2010)]. The data set consists of 849 SNPs scored on
478 spring and winter wheat cultivars from 17 breeding programs across the US
and Mexico. The chao2010 data set contains 0.9% missing data.

Taken together, the empirical data sets used in this study cover a wide range
of variation with respect to the level of separation between clusters. The variation
across empirical data sets can easily be seen from their first two principal com-
ponents (Figure 3). The oat data sets, newell2010, asoro2011 and tinker2009, have
relatively weak structure with less distinct clusters. In contrast, the barley data sets,
hamblin2010 and zhang2009, and wheat data set, chao2010, show relatively strong
structure, and clusters can easily be seen in the principal component plots. These
differences in the level of structure across crops are most likely explained by the
breeding processes implemented for the specific crops. For example, oats include

FIG. 3. The large amount of variation across the empirical sets by visualization of the first two prin-
cipal components with amount of variation explained by each axes in parentheses for (a) newell2010,
(b) asoro2011, (c) tinker2009, (d) hamblin2010, (e) zhang2009, and (f) chao2010.
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TABLE 1
Summary of the six empirical data sets used in this study including the assigned name, source of the

original publication, crop, origins of lines included, types of lines included, the dimensions
designated rows x columns, and the marker type designated as DArT or SNP for Diversity Array

Technology or single nucleotide polymorphism, respectively

Source Line Marker
(name) Crop Origins types Dimensions type

Newell et al. (2011) Oat World Varieties, breeding 1205 × 403 DArT
(newell2010) lines, landraces

Asoro et al. (2013) Oat North Elite cultivars 446 × 1005 DArT
(asoro2011) American

Tinker et al. (2009) Oat World Varieties, breeding 198 × 1958 DArT
(tinker2009) lines, landraces

Hamblin et al. (2010) Barley US Elite cultivars 1816 × 1416 SNP
(hamblin2010) SNP

Zhang et al. (2009) Barley Canada Cultivars, 169 × 971 DArT
(zhang2009) breeding lines

Chao et al. (2010) Wheat US, Mexico Spring/winter 478 × 219 SNP
(chao2010) wheat cultivars

hulled, naked, spring and winter types, but breeding generally occurs across the
major types and for the most part, lines are usually spring, hulled types. In con-
trast, barley includes 2-row, 6-row, spring and winter types in all combinations
in which it is common practice to cross individuals within the same type but not
between types. This leads to the strong structure seen for the first two principal
components relative to the oat data sets. Similarly, the first two principal compo-
nents for the wheat data set separated spring and winter types and further split
spring types into two based on their region of development. This indicates that for
wheat, crossing does not occur between spring and winter types and crossing most
likely does not occur across major regions within the spring types. The principal
component plots also allow comparison of the empirical and simulated sets. Com-
parison of Figures 3 and 4 demonstrate how the low-dimensional projections from
PCA are quite similar between the simulated and empirical sets and, more impor-
tantly, the simulated sets cover the range of possibilities encountered in real data.
A summary of the empirical data sets used in this study is shown in Table 1.

4. Results.

4.1. Simulated data. Results for 100 simulated data sets at each cluster—
migration rate combination are summarized in Table 2. The mean estimated num-
ber of clusters at the lowest migration rate was within 0.09 of the true number
of clusters across all combinations, excluding the case when one cluster was sim-
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FIG. 4. Bar graph showing the resulting number of clusters implementing the proposed algorithm
for 100 simulations at each cluster—migration rate combination. The numbers at the top and right
of each facet represent the migration rate and the true number of clusters simulated, respectively.

ulated. Hclust was the preferred method of clustering, followed by kmeans and
mclust which were chosen based on the algorithm in 69%, 28% and 3% of the
simulations. As expected for the largest migration rate, the mean estimated num-
ber of clusters deviated the most from the true simulated number of clusters across
all combinations. Overall, the proportion of times the algorithm chose the correct
number of clusters ranged from 0.16 when 12 clusters were simulated at the largest
migration rate and 0.98 when six and 12 clusters were simulated at the lowest mi-
gration rate. In general, the proportion of times the algorithm chose the correct
number of clusters decreased as the migration rate was increased. This was ex-
pected given the fact that as the migration rate is increased, the clusters become less
distinct with more overlapping. These results are also shown in Figure 4 at each
cluster—migration rate combination. Because the true classifications are known,
a comparison between the true and estimated Hubert’s gamma across bootstrap
samples can be made. Across all simulations the true and estimated values of the
Hubert’s gamma statistic decreased as the migration rate was increased. Likewise,
in all cases the estimated Hubert’s gamma was larger than the true value; this trend
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TABLE 2
Summary of results for the simulated data sets including the true number of clusters and migration
rate simulated, mean estimated number of clusters, true Hubert’s gamma, Hubert’s gamma, and the

proportion of times the correct number of clusters was chosen

True Migration Mean True Hubert’s Hubert’s Proportion
no rate est no Gamma Gamma correct

1 0.00005 6.09 1.00 0.48 –
0.00010 5.37 1.00 0.47 –
0.00015 5.79 1.00 0.48 –

2 0.00005 2.09 0.69 0.73 0.92
0.00010 2.47 0.49 0.55 0.69
0.00015 3.46 0.36 0.48 0.38

3 0.00005 3.00 0.77 0.79 0.90
0.00010 3.17 0.58 0.61 0.82
0.00015 3.50 0.46 0.52 0.56

4 0.00005 4.00 0.78 0.79 0.97
0.00010 4.12 0.59 0.62 0.81
0.00015 4.49 0.46 0.51 0.48

5 0.00005 4.99 0.76 0.78 0.96
0.00010 5.09 0.59 0.63 0.84
0.00015 5.40 0.47 0.51 0.41

6 0.00005 6.02 0.75 0.77 0.98
0.00010 6.04 0.58 0.62 0.87
0.00015 6.34 0.46 0.51 0.48

9 0.00005 8.97 0.72 0.75 0.95
0.00010 9.06 0.55 0.59 0.87
0.00015 8.53 0.43 0.46 0.51

12 0.00005 11.97 0.68 0.71 0.98
0.00010 11.36 0.51 0.55 0.65
0.00015 9.20 0.41 0.43 0.16

can also be seen in the mean estimated number of clusters where this tends to
overestimate the true number of clusters.

Like other methods of clustering, the algorithm does not directly have the abil-
ity to detect the case when no structure exists, as is the case when one cluster
is simulated. The predicted number of clusters when one cluster was simulated
covered the range of possible values with no definitive result across simulations
(Figure 4). For this reason, it is important to have a diagnostic to determine when
this is in fact the case. The shape of the Hubert’s gamma statistic relative to the
number of clusters can distinguish the case when no structure is present. Figure 5
shows the shape of the Hubert’s gamma statistic for the three methods of cluster-
ing when one, two and six clusters were simulated at the lowest migration rate
for each simulation. As depicted, when one cluster is simulated the shape of the
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FIG. 5. Diagnostic plot of Hubert’s gamma for varying numbers of clusters to distinguish between
the case when either one or two clusters are present, illustrated on simulated data. One, two and six
cluster results are shown in the rows, and cluster method, hierarchical, k-means and model-based
clustering methods in the columns. Of most importance is the different pattern between 1 and 2
clusters: in the case of just one cluster, Hubert’s gamma increases from 0.2, but in the case of two
clusters there is a gradual decline in Hubert’s gamma from 0.7 with increasing number of clusters.
For six clusters, a distinctive peak occurs at 6.

Hubert’s gamma increases and levels off for hclust and kmeans with no decrease
in Hubert’s gamma; this occurs in the opposite direction in the case when two
clusters were simulated. Likewise, for the case when six clusters were simulated,
the Hubert’s gamma increased to a peak followed by a decrease. Although these
shapes can help distinguish the case when one or two clusters are present, this can
become quite difficult when the migration rate is increased due to the fact that the
peak becomes less profound as the clusters become less distinct. In addition to this
diagnostic plot, the Hubert’s gamma is positively correlated with the proportion of
times the correct number of clusters was chosen with a value of 0.84 (Table 2).
Therefore, a low Hubert’s gamma statistic for a data set gives an indication into
the confidence that the correct number of clusters was called. Thus far, the results
have been presented as if no prior information is known. For genetic data sets this
is rarely the case and can also be exploited in choosing the final number of clusters.

4.2. Empirical data. The empirical data sets imposed more variability with
respect to the degree of separation between clusters, number of lines per cluster
and the number of markers per data set. Table 3 summarizes the algorithm results
for the empirical sets used in this study for 50, 100 and 200 bootstrap samples.
Results presented throughout will be for 200 bootstrap samples unless otherwise
stated. The final numbers of clusters for the six data sets ranged from one to six and
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TABLE 3
Summary of results for the six empirical data sets in this study including the final number of

clusters, method and Hubert’s gamma shown in parentheses for 50, 100 and 200 bootstrap samples,
and previous results

No of clusters, method (Hubert’s Gamma)
Previous
results

Previous
methodData set 50 100 200

newell2010 4, kmeans 4, kmeans 5, kmeans 6 (0.438) mclust
(0.481) (0.481) (0.526) on PCA

asoro2011 3, kmeans 4, kmeans 5, kmeans 3 (0.434) kmeans
(0.434) (0.424) (0.431)

tinker2009 1, – 1, – 1, – None PCA and
(1) (1) (1) specified hclust

hamblin2010 6, hclust 6, hclust 6, hclust 7 (0.590) STRUCTURE
(0.816) (0.816) (0.816)

zhang2009 2, kmeans 2, kmeans 2, kmeans 2 (0.774) PCA, prior
(0.786) (0.786) (0.786) knowledge

chao2010 3, kmeans 4, hclust 4, hclust 9 (–) STRUCTURE
(0.581) (0.579) (0.579)

are also represented as the number of clusters versus the Hubert’s gamma statis-
tic in Figure 6. This plot is the diagnostic plot presented in the simulation results.
As shown, the starting value for the Hubert’s gamma statistic at two clusters cov-
ered a wide range across the three clustering methods. zhang2009 has a unique

FIG. 6. Number of clusters versus the Hubert’s gamma statistic for the six empirical sets in the
study for 200 bootstrap samples. Colors refer to the three clustering methods and bold lines represent
significant increase of Hubert’s gamma for each consecutive cluster pair at p < 0.01.
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shape that is characteristic of the case when two clusters are present. Newell2010,
hamblin2010 and chao2010 all have distinct peaks for all methods of clustering,
indicating that greater than one cluster is present. Asoro2011 shows an increase in
Hubert’s gamma for kmeans until about seven clusters, at which time it decreases,
also indicating that there is greater than one cluster. In contrast, tinker2009 is the
only data set that is characteristic of the situation in which only one cluster exists.
If greater than one cluster was true, the algorithm would identify six clusters using
hclust. Due to the fact that the Hubert’s gamma using hclust does not show a peak
but a continuous increase, it is concluded that tinker2009 has only one cluster.

In order to assess the appropriate number of bootstrap samples required for the
empirical sets, the algorithm was applied using 50, 100 and 200 bootstrap samples
(Table 3). Results for two of the data sets, hamblin2010 and zhang2009, did not
change beyond 50 bootstrap samples, indicating that this was sufficient for these
data sets. The results for chao2010 did not change beyond 100 boostrap samples,
in which case this would be sufficient for this data set. Newell2010 required 200
bootstrap samples to reach equilibrium with respect to the number of clusters; data
is not shown for 300. The results for asoro2011 are unusual in the sense that the
number of clusters is still changing up to 200 bootstrap samples. The algorithm
was further tested for this data set using 300 and 400 bootstrap samples, where
the number of clusters identified was six and five, respectively. This outcome can
be justified by the nature of the data set, where the lines included are all North
American elite oats with a narrow genetic base. For a data set such as this it would
be concluded that the true number of clusters would be in the range of five to six;
in this case any prior information about the data set would be helpful in a final
decision. Interestingly, the number of bootstrap samples required is negatively re-
lated to the Hubert’s gamma statistic for all of the data sets. Asoro2011 requires
the most bootstrap samples and has the lowest Hubert’s gamma, and hamblin2010
and zhang2009 require the fewest number of bootstrap samples and have the high-
est Hubert’s gamma statistics. Application of the results of the Hubert’s gamma
statistics at 50 bootstrap samples can be used as an indicator for the number of
bootstrap samples required for a particular data set. For example, data sets with a
Hubert’s gamma in the range of 0.786 to 0.816 only require 50 bootstrap samples,
those in the range of 0.581 require 100, those in the range of 0.481 require 200,
and less than 0.434 require greater than 200 bootstrap samples, although, with a
sample size of only six, application to a greater number of empirical sets would be
required to solidify this claim. In summary, data sets resulting in larger Hubert’s
gamma statistics require less bootstrap samples and, from the simulation results,
are more likely to determine the correct number of clusters.

Previous results for the six empirical sets are shown in Table 3 along with
the method used for each result. As expected, the number of clusters determined
by the proposed algorithm differs in most cases from previous results given the
varying selection criteria across methods. The previous method implemented for
newell2010 identified six clusters using model-based cluster analysis implemented
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on the first five principal components. In that study, the number of clusters was
based largely on visual representation of principal components, thus, it was largely
user defined. In contrast, the proposed algorithm defined five clusters using k-
means clustering. Asoro et al. (2013) identified three clusters for the asoro2011
data set, but also indicated that this number was chosen based on the research ob-
jectives for that study; six clusters were initially identified. Previous results for
tinker2009 did not necessarily identify a certain set number of clusters but used
clustering more as a general guide to study the diversity of lines. The lines used
in Tinker et al. (2009) were initially chosen to represent the diversity of oat on a
worldwide scale; this can be seen in the first two PCs where lines tend to spread
from a point resembling a bull’s-eye (Figure 3). The algorithm identified only one
cluster for this data set, which does conform to how the data was initially cho-
sen. Similar results were found for the hamblin2010 data set by implementation
of the proposed algorithm and STRUCTURE [Hamblin et al. (2010)], where six
and seven clusters were identified, respectively. Results presented by Zhang et al.
(2009) were the same for the proposed algorithm, with identification of two clus-
ters. Last, the results for the chao2010 were largely different, with four and nine
clusters identified for this algorithm and Chao et al. (2010), respectively. The four
clusters identified by the algorithm respond to the group of winter and spring lines
split into three groups. Overall, the proposed algorithm identifies a similar number
of clusters to previous methods but is different considering the criterion for which
the number of clusters is chosen.

In order to gain insight into where the empirical sets fall with respect to the sim-
ulated sets, Hubert’s gamma statistics for each are shown simultaneously in Fig-
ure 7. The variation in the true Hubert’s gamma for the simulated data sets at each

FIG. 7. True Hubert’s gamma values for all simulated data sets colored by migration rate overlaid
with empirically determined Hubert’s gamma values for the empirical data sets. This plot gives
some suggestions for the migration rate observed with the empirical data: low for zhang2009 and
hamblin2010, high for asoro2011 and newell2010, and medium for chao2010.



DECIDING THE NUMBER OF CLUSTERS 1913

cluster—migration rate combination covers a range of about 0.8, in which case a
lower migration rate has a higher Hubert’s gamma. Zhang2009 and hamblin2010
fall within the range of the lowest migration rate at two and six clusters, respec-
tively. Chao2010 falls within the range of the middle migration rate, 0.0001, with
four clusters. Newell2010 and Asoro2011 fall within the range of the largest migra-
tion rate of 0.00015, both at five clusters. Both the Newell2010 and Asoro2011 data
sets, in addition to falling within the range of the largest migration rate, also have
the smallest Hubert’s gamma statistics. Last, tinker2009, having only one cluster,
has a Hubert’s gamma statistic of one. These comparisons can provide some infor-
mation into the confidence of the correct number of clusters for the empirical sets.
Empirical sets that fall within the range of the smallest and largest migration rates
would have relatively more and less confidence, respectively.

5. Conclusion. This paper has proposed an algorithm that provides assistance
in choosing the number of clusters and the clustering algorithm for HDLSS data.
The algorithm uses bootstrap samples to quantify the cluster variation and per-
mutation tests on Hubert’s gamma statistics to test for significance of the cho-
sen number of clusters. Validation of the algorithm on HDLSS data simulated by
GENOME with varying numbers of clusters and level of separation indicates that
the algorithm operates well on data of this sort. As clusters get more overlapped, if
the migration rate is large, the accuracy in estimating the correct number of clusters
declines. For the case when no cluster structure is present in a data set, a diagnostic
plot of the change in Hubert’s gamma across varying numbers of clusters can be
used to indicate the lack of clusters.

The results from this algorithm on six empirical data sets vary slightly from the
reported number of clusters in previous studies, but are not wildly different. The
empirical data sets vary less uniformly than the simulated data sets, which might
be expected. In most cases, the change in Hubert’s gamma across the number of
clusters in the simulated data resulted in significant peaks at the true simulated
number of clusters. The three clustering methods did result in largely different
Hubert’s gamma statistics, with no one method being better than the others on all
data sets, demonstrating the importance of including multiple clustering methods
in the algorithm. However, it should be pointed out that mclust was the preferred
clustering method in only 3% of the simulated data sets and was never the preferred
clustering method in the empirical data sets. Previous research has highly recom-
mended against clustering the principal components [Hubert and Arabie (1985)]
and termed it “tandem clustering.” Although the proposed algorithm does in fact
implement mclust on the principal components, it rarely is actually selected as the
best method.

In agreement with two previous studies [Hall, Marron and Neeman (2005),
Murtagh (2009)], all of the empirical sets, and the simulated data, exhibit a simplex
shape in the first few PCs. The different clusters form the vertices of the simplex.
A comparison of the empirical to simulated sets illustrates that the Hubert’s gamma
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statistics of the empirical sets are within the range of values observed for the sim-
ulated sets. This, along with the visualization of the PCs, supports a conclusion
that the GENOME software is able to adequately simulate data sets that match
well with the empirical sets. By plotting the Hubert’s gamma of the empirical data
sets in comparison to those of the simulated data sets for different migration rates,
a reasonable sense of the migration rate observed by the empirical data sets can be
determined.

Finally, we expect the cluster selection algorithm might be applicable to other
HDLSS data. For other types of problems, where the data is not binary as is for
the genetic data used here, comparison data might be simulated from a Gaussian
mixture distribution for validation purposes.
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