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A common problem faced by statistical institutes is that data may be
missing from collected data sets. The typical way to overcome this prob-
lem is to impute the missing data. The problem of imputing missing data
is complicated by the fact that statistical data often have to satisfy certain
edit rules and that values of variables across units sometimes have to sum
up to known totals. For numerical data, edit rules are most often formulated
as linear restrictions on the variables. For example, for data on enterprises
edit rules could be that the profit and costs of an enterprise should sum up to
its turnover and that the turnover should be at least zero. The totals of some
variables across units may already be known from administrative data (e.g.,
turnover from a tax register) or estimated from other sources. Standard im-
putation methods for numerical data as described in the literature generally
do not take such edit rules and totals into account. In this article we describe
algorithms for imputing missing numerical data that take edit restrictions into
account and ensure that sums are calibrated to known totals. These algorithms
are based on a sequential regression approach that uses regression predictions
to impute the variables one by one. To assess the performance of the imputa-
tion methods, a simulation study is carried out as well as an evaluation study
based on a real data set.

1. Introduction. National statistical institutes (NSIs) publish figures on many
aspects of society. To this end, NSIs collect data on persons, households, enter-
prises, public bodies, etc. A major problem arising from the data collection is that
data may be missing. Some units that are selected for data collection cannot be
contacted or may refuse to respond altogether. This is called unit nonresponse.
For many records, that is, the data of individual respondents, data on some of the
items may be missing. Persons may, for instance, refuse to provide information on
their income or on their sexual habits, while at the same time giving answers to
other, less sensitive questions on the questionnaire. Enterprises may not provide
answers to certain questions, because they may consider it too complicated or too
time-consuming to answer these questions. Missing items of otherwise responding
units is called item nonresponse. Whenever we refer to missing data in this article
we will mean item nonresponse, unless indicated otherwise.

Missing data is a well-known problem that has to be faced by basically all insti-
tutes that collect data on persons or enterprises. In the statistical literature ample
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attention is hence paid to missing data. The most common solution to handle miss-
ing data in data sets is imputation, where missing values are estimated and filled
in. An important problem of imputation is to preserve the statistical distribution
of the data set. This is a complicated problem, especially for high-dimensional
data. For more on this aspect of imputation and on imputation in general we re-
fer to Kalton and Kasprzyk (1986), Rubin (1987), Kovar and Whitridge (1995),
Schafer (1997), Little and Rubin (2002), Longford (2005), De Waal, Pannekoek
and Scholtus (2011) and the references therein.

At NSIs the imputation problem is further complicated owing to the existence of
constraints in the form of edit restrictions, or edits for short, that have to be satisfied
by the data. Examples of such edits are that the profit and the costs of an enterprise
have to sum up to its turnover, and that the turnover of an enterprise should be at
least zero. Records that do not satisfy these edits are considered incorrect.

Although some research on general approaches to imputation of numerical data
under edit restrictions has been carried out [see, e.g., Raghunathan, Solenberger
and Van Hoewyk (2002), Tempelman (2007), Holan et al. (2010), Coutinho, De
Waal and Remmerswaal (2011) and Chapter 9 in De Waal, Pannekoek and Schol-
tus (2011)], this is a rather neglected area. The most commonly used approach for
numerical data under edit restrictions is imputation based on a truncated multi-
variate normal model [see, e.g., Geweke (1991), Tempelman (2007) and De Waal,
Pannekoek and Scholtus (2011)]. An obvious drawback of basing imputations on
a posited truncated multivariate normal model is that this can only lead to good
imputations when the data approximately follow such a distribution. Draper and
Winkler (1997) have developed a balancing approach that allows several compo-
nent variables within the same record to add up to a total variable. Drawbacks of
that approach are that variables may be involved in at most one balancing edit (see
Section 2.2 for a definition of balancing edits), and that in their implementation
Draper and Winkler only use so-called ratio imputation with a single predictor.
More advanced imputation methods are not considered. For categorical data un-
der edit restrictions some work has been done by Winkler (2008a, 2008b) and by
Coutinho, De Waal and Shlomo (2013).

A further complication is that numerical data sometimes have to sum up to
known totals. As far as we are aware, the problem of imputing numerical data
subject to edit restrictions within records and population totals across records has
not yet been studied in the literature.

The purpose of the present article is to introduce techniques that can be used to
extend existing imputation methods for numerical data such that the imputed data
will satisfy edits and preserve population totals. The imputation methods studied
are based on a sequential regression approach which means that the variables with
missing values are imputed one after another by using a regression model with
(all) other variables as predictors. Algorithms for (multiple) sequential regression
imputation are known as SRMI (Sequential Regression Multiple Imputation) and
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MICE (Multiple Imputation by Chained equations) and are described by, for exam-
ple, Raghunathan et al. (2001), Van Buuren and Groothuis-Oudshoorn (2011) and
Van Buuren (2012). Sequential regression imputation can be applied in different
ways, depending on what the imputed data are to be used for. The simplest way,
often applied at NSIs, is to use the predicted value directly as the imputation (pre-
dicted mean imputation), which is suitable if interest is in (subgroup) means and
totals. To better preserve the variability in the data, this method can be extended
by adding random residuals to the predicted means.

The focus of this article is on modifications of the different sequential regres-
sion techniques, from different statistical frameworks, that make them applicable
in our setting, that is, by satisfying edits and preserving population constraints.
Depending on one’s goals and statistical framework, a method can then be chosen
that is best suited for the application at hand.

An important issue is variance estimation after imputation. In this article we
will not go into the details of variance estimation, however, except for a discussion
in Section 7.

The problem of imputing missing data while satisfying edits and preserving to-
tals can arise in the context of a survey among a subpopulation of enterprises. Often
large enterprises, for example, enterprises with a number of employees exceeding
a certain threshold value, are automatically included in a survey. As already noted,
some of those enterprises may, however, not provide answers to all questions, and
some may not answer any question at all. Totals of some variables on the sur-
vey corresponding to this subpopulation of enterprises may be known from other
sources, for example, from available register data, or may already have been es-
timated from other sources. NSIs generally aim to publish a single figure for the
same phenomenon. One of the ways to achieve this is to benchmark data to totals
that are known or estimated from other sources. As data of enterprises usually have
to satisfy edits, imputation of such a data set then naturally leads to the problem
we consider in the present article.

In the case of a (nonintegral) sample survey with item nonresponse, benchmark-
ing to totals can either be done by first imputing the missing data and then adjusting
the sampling weights or by retaining the original sampling weights and imputing
so that totals are preserved. Our imputation algorithms are a first step toward the
latter approach. In Section 2 we will elaborate more on this.

Rubin (1976) introduced a classification of missing data mechanisms. He distin-
guishes between Missing Completely At Random (MCAR), Missing At Random
(MAR) and Not Missing At Random (NMAR). Roughly speaking, in the case of
MCAR there is no relation between the missing data pattern, that is, which data
are missing, and the values of the data, either observed or missing. In the case of
MAR there is a relation between the missing data pattern and the values of the ob-
served data, but not between the missing data pattern and the values of the missing
data. Using the values of the observed data, one can then correct for the relation
between the missing data pattern and the values of the observed data since within
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classes of the observed data the missing data mechanism is MCAR again. In the
case of NMAR there is a relation between the missing data pattern and the val-
ues of the missing data. Such a relation cannot be corrected for without positing a
model. Given that the missing data mechanism is either MCAR or MAR, we can
test whether the data are MCAR or MAR. However, there are no statistical tests to
differentiate between MCAR/MAR and NMAR. In practice, the only way to dis-
tinguish MCAR/MAR from NMAR is by logical reasoning. For more on missing
data mechanisms we refer to Little and Rubin (2002), McKnight et al. (2007) and
Schafer (1997).

In this article we assume that the missing data mechanism is MCAR. Our impu-
tation methods can, however, easily be extended to the case of MAR by construct-
ing imputation classes within which the missing data mechanism is MCAR.

Throughout this article we also assume that the missing data can indeed be
imputed in a manner consistent with the edits and the totals. This means we assume
that the data set to be imputed does not contain any remaining errors. Such errors
may have been found by automatic editing [see, e.g., Fellegi and Holt (1976)]
or other editing techniques [see De Waal, Pannekoek and Scholtus (2011) for an
overview].

The remainder of this article is organized as follows. Section 2 introduces the
edit restrictions and sum constraints we consider in this article, and explains the
problem we consider in more detail. Section 3 develops two sequential imputa-
tion algorithms for our problem. Section 4 develops a third imputation algorithm.
This algorithm is an extension of MCMC algorithms used in multiple sequential
regression imputation. It uses a fully imputed data set satisfying edits and totals as
a starting point and aims to improve the statistical quality of the imputations. The
fully imputed data set satisfying edits and totals can, for example, be obtained by
one of the two sequential approaches developed in Section 3. A simulation study
is described in Section 5 and an application on a real data set in Section 6. Finally,
Section 7 concludes with a brief discussion.

2. Constraints on the imputed data. The problem addressed in this article
can be described concisely as the imputation of missing values in an r × n data
matrix with r the number of rows (units) and n the number of columns (variables),
when the imputed data in each row has to satisfy certain linear restrictions (row re-
strictions) and the sums of some of the columns must equal known values (column
or sum constraints). In this section we describe in some detail how this problem
arises in the context of surveys or censuses with missing data, edit rules and known
population totals.

2.1. Known population totals (column constraints). In the usual sample sur-
vey setting, units are selected from a population according to a specified sampling
design. For an equal probability sample of fixed size s from a population of size N ,
all inclusion probabilities are s/N . Estimates of (sub)population totals and other
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parameters of interest are then calculated by using the sampling weights that are
the inverse of the inclusion probabilities. In particular, for the total of a variable xj ,
this weighting estimator is X̂j = ∑s

i
N
s
xij , with xij the value of xj for unit i.

In practice, due to unit nonresponse, data are often only obtained for a subset
of the intended sample units and the (effective) sample size, or the number of re-
sponding units, is r < s. A simple correction for unit nonresponse is to use the
effective sample size r instead of the intended sample size s in this estimator, that
is, by inflating the weights by the inverse of the nonresponse fraction, s/r . If for
some variables the population totals are known, the weights can also be adjusted
such that the estimated totals for these variables equal their known values. Such
weights are said to be “calibrated” on the variables with known totals and are not
equal for all units [see, e.g., Särndal and Lundström (2005)]. The effect of calibra-
tion on the weights is such that if an estimated total is too low, the weights for units
with low values for that variable will decrease, whereas the weights for units with
high values will increase. Note that changing the weights will affect the estimates
for all variables, but this can be motivated by the observation that apparently the
random selection of the sample or unit nonresponse resulted in too many units with
a low value on this particular variable and adjusting the unit weights corrects for
this unbalanced selection of units. For large samples and small unit nonresponse
fractions calibration should have only minor effects on the weights.

The situation with item nonresponse is different from unit nonresponse because
in this case the nonresponse fractions will vary greatly between variables and,
consequently, a simple nonresponse adjustment to the unit level weights is not an
option. The usual approach to deal with item nonresponse is therefore to impute
the missing values so that for the r units a complete data set is obtained. Estima-
tion weights, N/r in the equal probability case, will then be used that only reflect
unit nonresponse. When population totals are known, calibration of these weights
could again be used to ensure that estimates of totals will be equal to the known
values. However, for variables with imputed values, differences between estimated
totals and their known values are now caused not only by an unfavorable realiza-
tion of the random sample selection or selective unit nonresponse, but also by
systematic errors in the imputed values (imputation bias). For large sample sizes
and small unit nonresponse fractions the difference between estimated and known
population totals will be mainly due to imputation bias. In such cases, it is not de-
sirable to adjust the weights by calibration because the adjustments do not correct
for an unbalanced selection of units but for imputation bias in specific variables
and there is no compelling reason to let this adjustment affect the estimates of all
other variables.

In this article we therefore consider to solve the inconsistency problem by ad-
justment of the imputations that contribute to the inconsistent estimates, but leave
the weights unchanged so that the adjustments have no effect on other variables.

For equal weights, the sum constraints on the estimates can be expressed as
X̂j = ∑r

i=1
N
r
xij = X

pop
j , with X

pop
j the known population total. In terms of the
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unweighted sample totals, these constraints imply
∑r

i=1 xij = r
N

X
pop
j = Xj , say.

Although in the application in this article only equal weights are considered,
in general weights will often be unequal and the column constraints would be
weighted sum constraints of the form X̂j = ∑r

i=1 wixij = X
pop
j , with wi the unit

weights.

2.2. Linear edit restrictions (row restrictions). The edit restrictions imply
within record (or row) restrictions on the values of the variables. In this article
we focus on linear edits for numerical data. Linear edits are either linear equations
or linear inequalities. We assume that edit k (k = 1, . . . ,K) can be written in either
of the two following forms:

a1kx1 + · · · + ankxn + bk = 0(1a)

or

a1kx1 + · · · + ankxn + bk ≥ 0.(1b)

Here the ajk and the bk are certain constants, which define the edit.
Edits of type (1a) are referred to as balance edits. An example of such an edit

is

T = P + C,(2)

where T is the turnover of an enterprise, P its profit and C its costs. Edit (2)
expresses that the profit and the costs of an enterprise should sum up to its turnover.
A record not satisfying this edit is obviously incorrect. Edit (2) can be written in
the form (1a) as T − P − C = 0.

Edits of type (1b) are referred to as inequality edits. An example is

T ≥ 0,(3)

expressing that the turnover of an enterprise should be nonnegative. One has to
take care that the edits are defined correctly as otherwise bias might be introduced
by making the data conform to incorrect edit rules.

3. Sequential imputation algorithms satisfying edits and totals. In this
section we present two algorithms for imputing data that satisfy edits and totals.
Both algorithms are sequential approaches based on standard regression imputa-
tion techniques, but with (slight) adjustments to the imputed values such that they
satisfy edits and totals. Below we first explain how a sequential approach can be
used.
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3.1. Using a sequential approach. In order to be able to use a sequen-
tial approach, we apply Fourier–Motzkin elimination ([Duffin (1974), De Waal,
Pannekoek and Scholtus (2011)]. Fourier–Motzkin elimination is a technique
to project a set of linear constraints involving q variables onto a set of linear
constraints involving q − 1 variables. It is guaranteed to terminate after a fi-
nite number of steps. The essence of Fourier–Motzkin elimination is that ev-
ery pair of two constraints, say, L(x1, . . . , xr−1, xr+1, . . . , xq) ≤ xr and xr ≤
U(x1, . . . , xr−1, xr+1, . . . , xq), where xr is the variable to be eliminated and
L(x1, . . . , xr−1, xr+1, . . . , xq) and U(x1, . . . , xr−1, xr+1, . . . , xq) are linear ex-
pressions in the other variables, leads to a constraint L(x1, . . . , xr−1, xr+1, . . . ,

xq) ≤ U(x1, . . . , xr−1, xr+1, . . . , xq) involving these other variables. The main
property of Fourier–Motzkin elimination is that the original set of constraints in-
volving q variables can be satisfied if and only if the corresponding projected set
of constraints involving q − 1 variables can be satisfied. By repeated application
of Fourier–Motzkin elimination, we can derive an admissible interval for one of
the values to be imputed. The main property of Fourier–Motzkin guarantees that if
we impute a value within this admissible interval, the remaining values can be im-
puted in a manner consistent with the constraints, that is, such that all constraints
are satisfied. Fourier–Motzkin elimination is closely related to the Fellegi–Holt
method [see Fellegi and Holt (1976)] for automatically detecting errors in a data
set. A major difference is that in their article Fellegi and Holt focus on categorical
data instead of numerical data. Moreover, in our article Fourier–Motzkin is only
used to impute the data in a manner consistent with the edits, not to find any errors
in the data.

We now illustrate how we apply Fourier–Motzkin elimination. Say we want to
impute a variable xj . We consider the records in which the value of variable xj

is missing. In order to impute a missing field xij in record i, we first fill in the
observed and previously imputed values (if any) for the other variables in record
i into the edits. This leads to a reduced set of edits involving only the remaining
variables to be imputed in record i.

Next, we eliminate all equations from this reduced set of edits. That is, we
sequentially select any equation and one of the variables x (x �= xj ) involved in the
selected equation. We then express x in terms of the other variables in the selected
equation and substitute this expression for x into the other edits in which x is
involved. In this way we obtain a set of edits involving only inequality restrictions
for the remaining variables. Once we have obtained imputation values for variables
involved in the set of inequalities, we find values for the variables that were used
to eliminate the equations by means of back-substitution.

From the set of inequality restrictions we eliminate any remaining variables ex-
cept xij itself by means of Fourier–Motzkin elimination. Using Fourier–Motzkin
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TABLE 1
Illustration of a data set

x11 x12 x13
x21 x22 x23
...

...
...

xr1 xr2 xr3

X1 X2 X3

elimination guarantees that the eliminated variables can later be imputed them-
selves such that all edits become satisfied.

After Fourier–Motzkin elimination the restrictions for xij can be expressed as
interval constraints:

lij ≤ xij ≤ uij ,(4)

where lij may be −∞ and uij may be ∞.
We have such an interval constraint (4) for each record i in which the

value of variable xj is missing. Now, the problem for variable xj is to fill
in the missing values with imputations, such that the sum constraint for vari-
able xj and the interval constraints (4) are satisfied. For this we will use one
of our sequential imputation algorithms (see below). As an alternative to using
these sequential imputation algorithms for benchmarking to sum constraints, one
could consider using (a generalized version of) the approach of Kim and Hong
(2012).

When used for automatic detection of errors, Fourier–Motzkin elimination
and the related Fellegi–Holt approach can be very time-consuming to apply.
As argued in Coutinho, De Waal and Remmerswaal (2011) and Coutinho,
De Waal and Shlomo (2013), this is much less so for the case of imputa-
tion.

EXAMPLE 1. To illustrate how a sequential approach can be used, we consider
a case where we have r records with only three variables as shown in Table 1.

These columns contain missing values that require imputation. Suppose that the
data have to satisfy the following edit restrictions:

xi1 + xi2 = xi3,(5)

xi1 ≥ xi2,(6)

xi3 ≥ 3xi2,(7)

xij ≥ 0 (j = 1,2,3).(8)
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In addition, suppose that the following population total restrictions have to be sat-
isfied:

r∑
i=1

xij = Xj (j = 1,2,3).(9)

We select a variable to be imputed, say, x3. Suppose that the observed value of
variable x1 in record i equals 10 and the values of variables x2 and x3 are missing
for that record. The reduced set of edits for record i is then given by

10 + xi2 = xi3,(10)

10 ≥ xi2,(11)

xi3 ≥ 3xi2,(12)

xij ≥ 0 (j = 2,3).(13)

We eliminate xi2 by substituting the expression xi2 = xi3 − 10 into the other
edits (11) to (13). We obtain the following set of inequalities for xi3:

xi3 ≥ 3(xi3 − 10),(14)

xi3 − 10 ≥ 0.(15)

Once we have obtained an imputation value for xi3, we can obtain a value for xi2
satisfying all edits by filling in the imputation value for xi3 into (10).

In this case there are no remaining variables except xi3 itself, so Fourier–
Motzkin elimination is not needed anymore. Inequality (14) is obviously equiv-
alent to xi3 ≤ 15 and (15) to xi3 ≥ 10, so the admissible interval for x3 for record i

is given by 10 ≤ xi3 ≤ 15. After we have obtained interval constraints for x3 for
each record in which the value of x3 is missing, we impute values for x3 in all these
records by means of one of our sequential imputation algorithms (see below).

3.2. Adjusted predicted mean imputation. In the previous subsection we ex-
plained how a sequential approach can be used. Now we are ready to describe our
imputation algorithms. The idea of the first algorithm is to obtain predicted mean
imputations that satisfy the sum constraint and then adjust these imputations such
that they also satisfy the interval constraints. To illustrate this idea, we use a simple
regression model with one predictor but generalization to regression models with
multiple predictors is straightforward.

3.2.1. Standard regression imputation. Suppose that we want to impute a tar-
get column xt , that is, the column vector with (possibly missing) values xit (i =
1, . . . , r) using as a predictor a column xp . The standard regression imputation
approach is based on the model

xt = β01 + βxp + ε,(16)
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where 1 is the vector of appropriate length with ones in every entry and ε is a
vector with random residuals.

We assume that the predictor is either completely observed or already imputed,
so there are no missing values in the predictor (anymore). There are of course
missing values in xt and to estimate the model, we can only use the records for
which both xt and xp are observed. The data matrix for estimation consists of the
columns xt.obs,xp.obs, where obs denotes the records with xt observed (and mis
will denote the opposite). Under the assumption of MAR, we can use ordinary
least squares (OLS) estimators of the parameters, β̂0 and β̂ , to obtain predictions
for the missing values in xt :

x̂t.mis = β̂01 + β̂xp.mis,

where xp.mis contains the xp-values for the records with xt missing and x̂t.mis are
the predictions for the missing xt -values in those records. The imputed column x̃t

consists of the observed values and the predicted values filled in for the missing
values x̃t = (xT

t.obs, x̂T
t.mis)

T , where the superscript T denotes the transpose.
These imputed values will generally not satisfy the sum constraint, but a slightly

modified regression approach can ensure that they do and will be described next.

3.2.2. Extending the standard regression imputation to satisfy the sum-
constraint. To describe the extended regression model, we consider the follow-
ing model for the target variable that differentiates between observed and missing
values:

(
xt.obs
xt.mis

)
=

(
1 0 xp.obs
0 1 xp.mis

)⎛
⎝β0

β1
β

⎞
⎠ +

(
εobs
εmis

)
.(17)

Apart from a coefficient β for the predictor xp , the model consists of two sep-
arate constants (coefficients β0 and β1), one for the observed values in the target
variable and one for the missing ones. This model cannot be estimated because
xt.mis is missing. However, the total of these missing values is known because we
have assumed that the total of the target variable Xt is known and, hence, the total
of the missing values is Xt.mis = Xt − ∑

i xt.obs.i . For the data that we actually
observe, the model is (by summing over the, say, m units with missing values in
the target variable)

(
xt.obs
Xt.mis

)
=

(
1 0 xp.obs
0 m Xp.mis

)⎛
⎝β0

β1
β

⎞
⎠ +

(
εobs

0

)
or

(18)
y = Zβ + ε say,

with Xp.mis = ∑
i xp.mis.i . Notice the zero residual in the equation corresponding to

Xt.mis, reflecting the requirement that the predicted value of the sum Xt.mis should
equal the known observed value.
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If the parameter vector β in (18) is estimated by applying OLS to the data
y and Z, the estimator β̂ will solve the normal equations ZT (y − ŷ) = 0, with
components corresponding to the columns of Z,

1T (xt.obs − x̂t.obs) = 0,(19a)

m(Xt.mis − X̂t.mis) = 0,(19b)

xT
p.obs(xt.obs − x̂t.obs) + Xp.mis(Xt.mis − X̂t.mis) = 0.(19c)

From (19b) we obtain X̂t.mis = Xt.mis, which shows that the sum of the esti-
mated predictions indeed equals its known value. Furthermore, by substituting this
result in (19c), we obtain xT

p.obs(xt.obs − x̂t.obs) = 0. Thus, (19a) and (19c) do not
involve the totals Xt.mis and Xp.mis and are equal to the normal equations for the
standard regression model (16), fitted on the data xt.obs,xp.obs. Consequently, the
parameter estimates corresponding to (19a) and (19c), β̂0 and β̂ , are equal to the
parameter estimates obtained for the standard model. The parameter estimate β̂1
adds to this model a constant for the predicted missing values such that the sum
constraint is satisfied. Using the estimates β̂1 and β̂ , the missing values are imputed
by the predicted values according to (17):

x̂t.mis = β̂11 + β̂xp.mis.

In the case of unequal weights, the regression method described above must be
modified to take these weights into account. First, to obtain a (design) consistent
estimator of β , weighted least squares should be applied with weights equal to
the design or calibration weights wi (see Section 2.1). Second, the summation
over the units with missing values that lead to (18) will now be replaced by a
weighted summation which leads to redefining the following quantities: Xt.mis =∑

i wixt.mis.i = X
pop
t −∑

i wixt.obs.i , with m the sum of the weights of the missing
units rather than the number of missing units and Xp.mis = ∑

i wixp.mis.i . With
these modifications, parameters β̂1 and β̂ obtained from WLS estimation of the
model (18) can be used for imputation as before but now resulting in imputations
that satisfy the weighted sum constraint.

3.2.3. Adjusting regression imputations to satisfy interval constraints. Since
the interval constraints have not been considered in obtaining the predicted values,
it can be expected that a number of these predictions are not within their admissible
intervals. One way to remedy this situation is to calculate adjusted predicted values
defined by

x̂adj
t.mis = x̂t.mis + at ,

with at a vector with adjustments to be added to the predictions such that
the adjusted predictions satisfy both the sum constraint (which is equivalent to
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∑
i at,i = 0) and the interval constraints, and the adjustments are as small as pos-

sible. One way to find such a vector at is to solve the quadratic programming
problem

minimize aT
t at subject to 1T at = 0 and lt ≤ x̂t.mis + at ≤ ut ,

with lt a vector with the lower bounds and ut a vector containing the upper
bounds. For cases with unequal weights, as discussed in Sections 2.1 and 3.2.2,
the weighted sum of the adjustments should be zero, leading to the constraint
wT at = 0 instead of 1T at = 0, with w the vector with weights for the units with
missing values.

A simple algorithm for solving convex optimization problems with interval con-
straints is described by Censor and Lent (1981). In our case their iterative approach
results in an algorithm that is very easy to implement. To describe this algorithm,
we first decompose the adjustments at,i as at,i = bt,i − b̄t . The bt,i will be deter-
mined such that the interval constraints are satisfied and b̄t is the mean of the bt,i .
Subtracting b̄t from the bt,i ensures that the at,i sum to zero. The algorithm now
proceeds as follows. Initialize bt,i = 0 and b̄t and then calculate new values for
bt,i and update b̄t according to the following iterative scheme (with j the iteration
counter):

1. For each i, find the smallest (in absolute value) possible value for b
(j)
t,i such

that the interval constraint lt,i ≤ x̂t.mis,i + b
(j)
t,i − b̄

(j−1)
t ≤ ut,i is satisfied.

2. Set b̄
(j)
t equal to the mean of b

(j)
t,i − b̄

(j−1)
t .

When these two steps are iterated until convergence, that is, until the change in
the b

(j)
t,i becomes negligible, the resulting a

(j)
t,i = b

(j)
t,i − b̄

(j−1)
t solve the quadratic

programming problem defined above.
We will refer to this method as BPMA (Benchmarked Predictive Mean impu-

tation with Adjustments to imputations so they satisfy interval constraints). We
will also evaluate this method without benchmarking to totals. We will refer to
that method as UPMA (Unbenchmarked Predictive Mean imputation with Adjust-
ments to imputations so they satisfy interval constraints).

3.3. Regression imputation with random residuals. It is well known that, in
general, predictive mean imputations show less variability than the true values
that they are replacing. In order to better preserve the variance of the true data,
random residuals can be added to the predicted means. The adjusted predictive
mean imputations considered in the previous section will also be hampered by this
drawback because these adjustments are intended to be as close as possible to the
predicted means and not to reflect the variance of the original data.

In order to better preserve the variance of the true data, we start with the pre-
dicted values x̂t.mis obtained from (17) that already satisfy the sum constraint, and
our purpose is to add random residuals to these predicted means such that the dis-
tribution of the data is better preserved and, in addition, both the interval and sum
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constraints are satisfied. These residuals serve the same purpose (satisfying the
constraints) as the adjustments at,i but, in contrast to the at,i , they are not as close
as possible to the predicted means and are intended to reflect the true variability
around these predicted means.

A simple way to obtain residuals is to draw each of the m residuals by Accep-
tance/Rejection (AR) sampling [see, e.g., Robert and Casella (1999) for more on
AR sampling] from a normal distribution with mean zero and variance equal to the
residual variance of the regression model, that is, by repeatedly drawing from this
normal distribution until a residual is drawn that satisfies the interval constraint.

The residuals obtained by this AR sampling may not sum to zero so that the im-
puted values do not satisfy the sum constraint. We may then adjust these residuals,
as little as possible, such that they sum to zero and the interval constraints remain
satisfied by applying the iterative method described in Section 3.2.3. We will refer
to this method as BPMR (Benchmarked Predictive Mean imputation with random
Residuals).

Note that in all imputation methods described in Section 3 (BPMA, UPMA and
BPMR) one can use the imputed values as predictors. In our simulation study and
evaluation study described in Sections 5 and 6 we have passed through the vari-
ables in need of imputation multiple times in order to preserve correlations as well
as possible.

4. MCMC approach. The final imputation algorithm we describe is based
on a Monte Carlo Markov Chain [MCMC; see, e.g., Robert and Casella (1999)
and Liu (2001) for more on MCMC in general] approach to which we will refer
as MCMC. This MCMC approach is an extended version of similar approaches
by Raghunathan et al. (2001), Rubin (2003), Tempelman [(2007); Chapter 6]
and Van Buuren and Groothuis-Oudshoorn (2011). Raghunathan et al. (2001) and
Rubin (2003) do not take edits or totals into account in their MCMC approaches,
while Van Buuren and Groothuis-Oudshoorn (2011) take only some simple edits,
such as univariate range checks, into account and again no benchmarking to totals.
The MCMC approach of Tempelman (2007) does take edits into account, but not
totals.

Our approach starts with a fully imputed data set consistent with the edits and
known totals, for instance, obtained by means of the imputation methods BPMA
or BPMR described in Sections 3.2 and 3.3. Subsequently, we try to improve the
imputed values so they preserve the statistical distribution of the data better. Our
algorithm, which is similar to so-called data swapping for categorical data [see
Dalenius and Reis (1982)], is sketched below.

As mentioned, we start with a pre-imputed data set D consistent with the edits
and known totals. We randomly select two records s and t from D with at least
one common variable xj with missing values in both records. The imputed values
in records s and t are treated as unknowns. Next, we construct the set of edits
and sum constraints that have to hold for these unknowns. We obtain the edits
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for the unknowns in records s and t by filling in the observed values in these
records into the edits. The sum constraints are obtained by noting that the imputed
values of a certain variable in records s and t should equal the known total for this
variable minus the observed values (if any) in records s and t and the values of
the (observed and imputed) values in the other records. We will re-impute xsj and
later derive the value of xtj in the record t by subtracting the value of xsj from the
known sum for these two values. In this process, the values of the other imputed
variables in records s and t may, in principle, be changed too.

We determine an admissible interval for xsj by eliminating all unknowns except
xsj from the set of edits and sum constraints for the unknowns in records s and t by
means of Fourier–Motzkin elimination. We draw a value for xsj from a posterior
predictive distribution implied by a linear regression model under an uninforma-
tive prior, conditional on the fact that this value has to lie inside its admissible
interval. In our implementation of the algorithm we calculate new values for the
regression parameters for each pair of records. For different variables xj , different
linear regression models, and hence different posterior predictive distributions, are
used.

If necessary for satisfying the edits and sum constraints for the unknowns in
records s and t , we apply back-substitution, using the new imputed value for xsj ,
the sum constraints and the equations among the edits for the unknowns, to adjust
the values of the other imputed values in records s and t . If imputed values in
records s and t do not have to be adjusted, we retain the current values. Finally,
we update data set D with the modified imputed values. If the distribution of the
imputed values has converged, we terminate the algorithm. Otherwise, we again
select two records with a common variable with missing values in both records
and repeat the procedure.

Note that “convergence” is a difficult concept, as we are referring to the conver-
gence of a statistical distribution. We refer to Robert and Casella (1999) and Liu
(2001) for more on convergence of MCMC processes. Also note that the algorithm
may not converge. In fact, convergence may not even be possible, as the existence
of a multivariate distribution that is compatible with the various univariate pos-
terior predictive distributions is not guaranteed. This is a well-known theoretical
drawback of such an MCMC approach. Rubin (2003) refers to this phenomenon
as “incompatible MCMC.” In practice, one usually observes the distribution of the
imputed data set over a large number of iterations and monitors whether the ob-
served distribution appears to converge. We have applied this pragmatic approach
as well.

An important reason why we use a posterior predictive distribution implied by
a linear regression model under an uninformative prior is that this, in principle,
allows us to extend our approach to multiple imputation. The extension to multiple
imputation is not studied in the present article, however.
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TABLE 2
Situation for records s and t

x1 x2 x3 x4 x5

s 10 15 ? ? ?
t ? 30 25 ? ?

Total for s and t 25 45 45 65 180

EXAMPLE 2. We illustrate some aspects of our MCMC approach by means of
a simple example. Let us assume that there are five variables xj (j = 1, . . . ,5) and
six edits given by

x1 + x2 + x3 + x4 = x5,(20)

xj ≥ 0 (j = 1, . . . ,5).(21)

Let us also assume that the values of x1 have to sum up to 10,000, of x2 to 12,000,
of x3 to 8000, of x4 to 32,000, and of x5 to 62,000.

We start with a fully imputed data set D. We select two records with at least
one common variable—variable x5 in our example—with missing values in two
records: a record s where the values of variables x1 and x2 were observed, say,
xs1 = 10 and xs2 = 15, and the values of variables x3, x4 and x5 were missing, and
a record t where the values of variables x2 and x3 were observed, say, xt2 = 30 and
xt3 = 25, and the values of variables x1, x4 and x5 were missing. Let us assume
that the imputed values for records s and t in data set D are given by xs3 = 20,
xs4 = 30, xs5 = 75, xt1 = 15, xt4 = 35 and xt5 = 105. As D is consistent with
the edits and known totals, the sum of the imputed and observed values in the
other records hence must equal 9975 for variable x1, 11,955 for variable x2, 7955
for variable x3, 31,935 for variable x4 and 61,820 for variable x5. The situation for
records s and t is summarized in Table 2, where a “?” means that the corresponding
value has been imputed and may be re-imputed.

We fill in the observed values in both records into the edits and obtain 25 +
xs3 + xs4 = xs5, and xsj ≥ 0 (j = 3,4,5) for record s, and 55 + xt1 + xt4 = xt5

and xtj ≥ 0 (j = 1,4,5) for record t . The sum constraints for the unknowns in
records s and t are given by xt1 = 15, xs3 = 20, xs4 + xt4 = 65, xs5 + xt5 = 180.

We eliminate all unknowns except xs5 from the above set of constraints. We
obtain the interval 45 ≤ xs5 ≤ 110. We draw a value for xs5 from a posterior pre-
dictive distribution implied by a linear regression model under an uninformative
prior, conditional on the fact that 45 ≤ xs5 ≤ 110, say, we draw the value 100 for
xs5. Finally, we use back-substitution to obtain adjusted imputed values: xs4 = 55,
xt4 = 10 and xt5 = 80.
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We update data set D with the adjusted imputed values and check whether the
distribution has converged. If so, we terminate the algorithm. Otherwise, we repeat
the procedure.

5. Simulation study. A simulation study was carried out emulating the 2005
Israel Income Survey used in the evaluation study as presented in Section 6. For
this design, although stratified sampling was employed, every individual had the
same inclusion probability. Therefore, the results from the simulation study can
be viewed as arising from a single stratum. We generated variables x1, x2 and a
predictor P from a normal distribution using linear transformations to ensure a
reasonably realistic degree of correlation between them. The simulated population
data set included 100,000 records. The means for x1 and x2 in the population are
3902 and 991 and standard deviations 636 and 401, respectively. The correlation
between x1 and x2 is 0.87, between x1 and P 0.66 and between x2 and P 0.57.
Edit constraints (5) to (8) and sum constraint (9) are all preserved on the simu-
lated population data set, where P is variable x3 in (5) to (9). Out of the 100,000
records in the population data set, 20,000 (20%) records were randomly selected
and their x1 variable blanked out. Half of those selected records also had their x2
variable blanked out. An additional 10% of the remaining records were randomly
selected and their x2 variable blanked out. This represents a MCAR nonresponse
mechanism.

The simulation study is based on drawing 1:20 random samples from the popu-
lation, that is, the sample size is n = 5000, and the imputation procedures applied
are as outlined in Sections 3 and 4:

• UPMA—unbenchmarked simple predictive mean imputation (Section 3.2.1)
with adjustments to imputations so they satisfy interval constraints (Sec-
tion 3.2.3). In this method the only stochastic effects are from the estimation
of the parameters in model (17).

• BPMA—benchmarked predictive mean imputation (Section 3.2.2) with adjust-
ments to imputations so they satisfy interval constraints (Section 3.2.3). Again,
in this method the only stochastic effects are from the estimation of the param-
eters in model (17).

• BPMR—benchmarked predictive mean imputation (Section 3.2.2) with random
residuals (Section 3.3). In this method there is an extra stochastic effect in com-
parison to UPMA and BPMA due to the addition of random residuals.

• MCMC—the approach described in Section 4. The data set with BPMA was
used as the pre-imputed data set for our MCMC approach. In this method there
are extra stochastic effects in comparison to UPMA and BPMA due to selecting
pairs of records and drawing new values for some of the fields in those records.

We repeated the sampling 300 times in order to investigate the impact of the
imputation procedures on the sample distribution. We also computed the average
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across the samples of some commonly used evaluation metrics for comparing im-
putation procedures [Chambers (2003), Pannekoek and De Waal (2005)]. These
include the following:

• dL1 measure: dL1 =
∑

i∈M wi |x̂i−x∗
i |∑

i∈M wi
, where x̂i is the imputed value in record i

and x∗
i is the original value of the variable, M denotes the set of m records with

imputed values for variable x and wi is the raising weight for record i.
• K–S Kolmogorov–Smirnov test statistic to compare the empirical distribution

of the original values to the empirical distribution of the imputed values,
K–S = maxj (|Fx∗(tj ) − Fx̂(tj )|), where the {tj } values are the 2m jointly or-
dered original and imputed values of x, and Fx∗ and Fx̂ denote the empirical
distributions of the original and imputed values, respectively.

• The percent difference between the standard deviation (STD) of x1 and x2 in the
sample data with imputations to the standard deviation of the original sample
data:

100
(STDimp − STDorig)

STDorig
.

For all methods, the variable x1 was first regressed on the predictor P , and x2
was first regressed on the predictor P and x1. In our study, we use the imputation
methods UPMA, BPMA and BPMR in an iterative way, as mentioned at the end
of Section 3. That is, after all variables have been imputed once, the following
rounds of the procedure uses, for each variable to be re-imputed, all other vari-
ables as predictors. Thus, after the first round x1 is regressed on P and x2, and x2
is regressed on P and x1. The regression model for the MCMC method is based on
the sequential regression model of Raghunathan et al. (2001) and drawing values
from the corresponding predictive distributions. Table 3 examines the impact of
the imputation on the sample distribution by comparing the original mean, stan-
dard deviation and correlations in the population data set with the average mean,
Monte Carlo standard deviation and correlations obtained from the 300 samples.

TABLE 3
Average mean and standard deviation of x 1 and x 2 from 300 samples

x1 x2 Correlations

Method Mean Standard deviation Mean Standard deviation x1, x2 x1, P x2, P

Original 3902 635 991 400 0.87 0.66 0.57
UPMA 3901 599 991 382 0.86 0.70 0.60
BPMA 3902 599 991 382 0.86 0.70 0.60
BPMR 3902 637 991 393 0.79 0.66 0.58
MCMC 3902 692 991 416 0.76 0.60 0.54
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TABLE 4
Average evaluation metrics for the imputation methods from 300 samples

x1 x2

UPMA BPMA BPMR MCMC UPMA BPMA BPMR MCMC

Distance dL1 382 382 535 640 206 206 270 380
Kolmogorov–

Smirnov K–S 0.116 0.113 0.030 0.075 0.145 0.146 0.098 0.089
% difference

of STD −5.7% −5.7% 0.2% 9.0% −4.5% −4.6% −1.7% 4.0%

Table 4 contains the average of the evaluation metrics used to assess the imputa-
tion methods across the 300 samples. Note that UPMA and BPMA are deterministic
imputations and BPMR and MCMC stochastic ones.

The results in Table 3 show that since all the methods, except UPMA, bench-
mark to known totals, there is no bias for these methods introduced into the im-
puted data. As expected with mean imputation, the variance for the deterministic
methods UPMA and BPMA is reduced. While both methods preserve the edit con-
straints across the individual records, the BPMA approach benchmarks the total.
Out of the stochastic methods, BPMR based on random residuals preserves the
variance with only a slight decrease in the correlation between x1 and x2. The
MCMC algorithm, however, increases the variance and has more of a decrease in
the correlation structure of the variables.

The results in Table 4 show the similarities between the methods UPMA and
BPMA with respect to the evaluation metrics. Both methods show lower distance
dL1 and larger relative differences to the standard deviation of the mean com-
pared to the stochastic methods BPMR and MCMC as expected with determin-
istic mean imputation. In addition, the Kolmogorov–Smirnov (K–S) statistics are
larger for the deterministic methods than the stochastic methods. Comparing the
two stochastic methods BPMR and MCMC, the results in Table 4 show that the
distance dL1 and the relative difference of the standard deviation of the mean are
higher for the MCMC approach for both variables x1 and x2. The MCMC approach
also has a higher K–S statistic compared to the BPMR method for x1 but slightly
lower for x2.

Our general conclusion from the simulation study is that, based on the preserva-
tion of totals (and edit constraints), preservation of standard deviations and preser-
vation of other distributional properties, we consider BPMR to be the most promis-
ing method. This will be tested further on a real data set in Section 6.
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6. Evaluation study.

6.1. Evaluation data set. We use a real data set from the 2005 Israel Income
Survey. The file for the evaluation study contains 11,907 individuals aged 15 and
over that responded to all the questions in the questionnaire of the 2005 Israel
Income Survey and, in addition, earned more than 1000 Israel Shekels (IS) for
their monthly gross income. We focus on three variables from the Income Survey:
the gross income from earnings (gross), the net income from earnings (net) and
the difference between them (tax). As above, we consider the following edits for
each record i:

neti + taxi = grossi ,

neti ≥ taxi ,

grossi ≥ 3 × taxi ,

grossi ≥ 0, neti ≥ 0, taxi ≥ 0.

Item nonresponse was introduced randomly to the income variables in order to
simulate a typical data set: 20% of the records (2382 records) were selected ran-
domly and their net income variable blanked out. Half of those selected records
(1191 records) also had their tax variable blanked out. An additional 10% (1191
records) were selected randomly from the data set and their tax variable deleted.
We assume that the totals of each of the income variables, including tax, are known.

6.2. Evaluation results. The predictors that were chosen for the predictive
mean imputation based on regression modeling (UPMA, BPMA and BPMR) were
the following: 14 categories of economic branch, 10 categories of occupation, 10
categories of age group, and sex. For each category a dummy variable was created.

In order to ensure the normality of the income variables, a log transformation
was carried out. This meant we had to change the algorithm described in Sec-
tion 3.2.2 slightly since the sum of the log transformed variables which will equal
the known log totals will not necessarily mean that the sum of the original vari-
ables will equal the known original totals. We used a correction factor to replace
the constant term of the regression to constrain the sum of the untransformed,
original variables to the original totals. We denote z = log x, where the logarithm
is taken component-wise, that is, z = (log(x1), . . . , log(xr)), where r is the num-
ber of records. From (17), ẑt.mis = β̂11+ β̂zp.mis and, therefore, x̂t.mis = exp(β̂1)×
exp(β̂zp.mis), where exp(β̂zp.mis) is again taken component-wise. Summing across
the missing values gives X̂t.mis = ∑

i x̂t.mis,i = exp(β̂1)
∑

i exp(β̂zp.mis,i). The cor-

rection replaces the constant factor exp(β̂1) with X̂t.mis∑
i exp(β̂zp.mis,i )

.

Table 5 contains the results of the evaluation measures as described in Section 5.
From the results of Table 5, the BPMA approach and the stochastic approaches

BPMR and MCMC all preserve the totals in the data, as they should. The results on
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TABLE 5
Results of evaluation measures for the imputation methods in the evaluation study

Net income variable Tax variable

Evaluation measures UPMA BPMA BPMR MCMC UPMA BPMA BPMR MCMC

Distance dL1 2040.4 2132.6 2695.9 2664.2 980.6 821.7 818.6 1154.4
Kolmogorov–

Smirnov K–S 0.098 0.149 0.049 0.086 0.433 0.323 0.184 0.155
% difference

to STD −41.1% −37.6% −11.9% −19.4% −3.2% −4.7% −3.2% 3.5%

the dL1 measure are mixed, with the net income variable doing slightly worse for
both stochastic approaches but the tax variable showing improvement compared
to the BPMR approach. The distribution is preserved better for the stochastic ap-
proaches as reflected in the K–S statistic and the percent difference in the standard
deviation of the mean. The measures when benchmarking the totals (BPMA) ap-
pear to be mixed compared to not benchmarking (UPMA) depending on the vari-
able.

It is more difficult to draw general conclusions for the real data set than it was
for the simulated data set, since the results for the real data set are not univocal
across variables. However, based on the fact that the stochastic methods preserve
totals (and edit constraints) and preserve standard deviations and other distribu-
tional properties better than UPMA and BPMA, we consider BPMR and MCMC
the most promising methods.

7. Discussion. In this article we have proposed three imputation methods for
numerical data that satisfy edit restrictions and preserve totals. Two of the devel-
oped methods are stochastic, aiming to better preserve the variation in the imputed
data.

In this article we have not examined variance estimation after imputation. In
general, there are three approaches to variance estimation with imputed data [see
Haziza (2009), and Chapter 7 in De Waal, Pannekoek and Scholtus (2011)]:

• The analytical approach. In the analytic approach explicit formulas are derived
for variance estimation after imputation. These formulas can be seen as adding
a correction term to standard variance formulas to take the fact that imputation
is used into account. Such formulas have been derived for standard regression
imputation without constraints [see, e.g., Fay (1991), Särndal (1992), Deville
and Särndal (1994), Rao and Sitter (1995), Shao and Steel (1999) and Beaumont
(2005)]. For our situation, where data have to satisfy edits and population totals,
analytic variance formulas have still to be developed.
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• The resampling approach. Methods, such as the jackknife, bootstrap and bal-
anced repeated replication, have been used often for variance estimation in com-
plex surveys with imputed data [see, e.g., Wolter (1985), Rao and Shao (1992),
Shao and Sitter (1996) and Shao (2002)]. This approach is more general than
the analytical approach, because the same procedure can be used largely irre-
spective of the imputation and estimation procedure that is used. Such methods
could be very well applied to the methods considered in this article.

• Multiple imputation. Multiple imputation was originated by Rubin (1978, 1987).
In this framework, a number of imputations (typically 5) are obtained for each
missing value and, consequently, multiple estimates of the target parameters are
obtained. Simple formulas exist that combine the multiple estimates to a single
one and, most importantly, employ the variance between the estimates to obtain
an estimator for the variance of the combined parameter estimate. The MCMC
method fits in the framework of multiple imputation, and variance estimation
according to Rubin’s formulas for multiply imputed data would be a natural
approach for this method.

A debate about the advantages and disadvantages of the different approaches
for variance estimation after imputation and their applicability for different pur-
poses was published in 1996 in the Journal of the American Statistical Association
[Rubin (1996), Fay (1996), Rao (1996)].

The methods introduced in this article can also be used for mass imputation of
numerical data. In Houbiers (2004) a statistical database for social data was con-
structed using so-called repeated weighting based on regression estimators. While
benchmarking totals (either based on registers or weighted survey estimates), the
method does not preserve edit constraints. The methods in this article provide an
alternative to repeated weighting which can benchmark totals, preserve edit con-
straints and preserve correlation structures in the data. Initial work in the area of
mass imputation for a numerical data set having the above properties using the
methods proposed in the present article is described in Shlomo, De Waal and Pan-
nekoek (2009).

From a production point of view of a statistical office, our methods are suf-
ficiently fast and appear to produce data of sufficiently high quality. A practical
point of concern is the complexity of our methods. The MCMC method, for ex-
ample, is easy to program but may be problematic in the day-to-day routine of
producing timely statistical data, because “convergence” of the method is not easy
to verify. For the other methods, UPMA, BPMA and BPMR, this is less of a prob-
lem, as these methods can easily be implemented in a standard software package.
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