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We congratulate the authors on this well-written and thought-provoking paper.
They address the problem of estimating the probability of a large (and rare) ter-
rorist attack by modeling the tail of the attack size distribution. Recognizing the
importance of incorporating uncertainty, their approach uses bootstrap resampling
to obtain a set of parameter estimates for the tail distribution from which estimates
for the probability of the rare event can be made. The wide range for the estimated
probability of a 9/11-sized attack (90% interval [0.182,0.669]) illustrates the need
to account for uncertainty in such a problem.

The authors also recognize that the choice of tail model can have a large im-
pact on the probability estimates. Using multiple tail models (power law, stretched
exponential and log-normal), they estimate that the probability of a 9/11-sized at-
tack over a 40-year period (or, more specifically, in 13,274 events) ranges from
around 11–35%. We thought it would be interesting to compare the results of
the authors’ analysis with a more classical extreme value analysis [Coles (2001),
de Haan and Ferreira (2006)] using a generalized Pareto distribution (GPD). The
GPD distribution has three parameters: lower bound μ, scale σ and shape ξ . If
Y ∼ GPD(μ,σ, ξ), then Y ’s cumulative density function is

F(y|μ,σ, ξ) = 1 −
(

1 + ξ(y − μ)

σ

)−1/ξ

.(1)

The shape parameter ξ determines the support of Y . If ξ < 0, then Y is bounded to
the interval μ < Y < μ − σ/ξ ; if ξ > 0, then Y is unbounded with support Y > μ.
The shape parameter also determines the tail behavior. If ξ < 0.5, then the density
has light tails and finite mean and variance. Large ξ gives heavy tails. If ξ > 0.5,
the variance in infinite, and if ξ > 1, then the mean is also infinite. If ξ > 0 and
σ = μ · ξ , then the GPD reduces to the (continuous) power-law distribution.

Asymptotic theory suggests that the GPD provides a good approximation for
the tail of a wide range of densities. The typical approach is to select a lower
bound μ based on exploratory analysis, discard the data below μ, and estimate
σ and ξ using maximum likelihood. A crucial step in this analysis is to select an
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appropriate μ (where μ is equivalent to the xmin used in the article). If μ is too
small, then the GPD will not fit the tail distribution and the estimates of σ and ξ

may be biased. On the other hand, if μ is too large, the GPD may fit well, but fewer
observations will be left to estimate σ and ξ and their estimates will suffer from
increased variance.

A standard exploratory plot [Coles (2001)] used to determine the threshold μ

is the mean residual life (MRL) plot.1 Following the authors, we exclude the 9/11
event and assume stationarity and independence. Figure 1 (top left) plots the MRL
for the RAND-MIPT terrorism data.2 If the tail data follow a GPD with a lower
bound of μ, then the MRL plot should be approximately linear for values above μ.
Therefore, the recommendation is to select the smallest μ which gives a linear
MRL plot. The authors’ selected the threshold for the power-law distribution by
using the value that minimizes the Kolmogorov–Smirnov statistic between the em-
pirical and fitted distributions. This approach resulted in a threshold (i.e., xmin) of
around 10. The MRL plot in 1 (top left) suggests that μ = 10 is too small for the
GPD, but μ = 100 is clearly sufficient. Below we compare results for thresholds
in this range.

We fit GPD models, using thresholds spanning 10 to 100, to the original data
(excluding 9/11) and 2000 bootstrap samples. The resulting qq-plots in Figure 1
suggest that the GPD with μ = 10 may overestimate the upper quantiles, while
μ = 50 and μ = 100 appear to provide a better fit. As discussed above, the GPD
reduces to the power law distribution if σ = μ ·ξ . The bootstrap intervals of σ −μ ·
ξ in Table 1 exclude zero, suggesting the additional flexibility of the GPD model
improves fit for these data.

Figure 1 (bottom right) also plots the probability of a 9/11-sized event,

1 − [
p̂ + (1 − p̂)F (y|μ, σ̂ , ξ̂ )

]n
,(2)

where p̂ is the proportion of the events with less than or equal to y deaths, F is
the GPD distribution function, y = 2749 is the number of deaths in 9/11, and
n = 13,274 is the number of deadly terrorism events. For μ = 10, the estimated
probability is around 0.05–0.20, which is similar to the estimate obtained using
the stretched exponential and log-normal methods in the paper. However, the MRL
plot suggests that μ = 10 may be too small, and as μ increases the results change
dramatically. The estimate of the shape parameter ξ decreases from over 0.5 for
μ = 10 to less than zero 0 for μ = 100. Therefore, when only events above 100
are used, the estimated density has a light-tail and the probability of a catastrophic
9/11-sized event decreases to nearly zero.

Compared to the power-law analysis, this GPD analysis reaches a different con-
clusion regarding the likelihood of a 9/11 event. While the authors’ main result is

1The analysis uses the mrlplot and fitgpd functions in the POT package in R. Code is avail-
able at http://www4.stat.ncsu.edu/~reich/Code/.

2http://tuvalu.santafe.edu/~aaronc/rareevents/.
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FIG. 1. Mean residual life plot, qq-plots of the fitted GPD quantiles versus the quantiles of the data,
and the estimated GPD shape and probability of a 9/11-sized event (shaded region gives bootstrap
90% intervals).

TABLE 1
Estimates from the GPD model for several threshold values μ. The 90% bootstrap confidence

intervals are given in the brackets

Threshold (μ) 10 50 100

# in tail 853 102 33
Pr(Y > μ) 0.064 0.008 0.002
ξ 0.56 [0.48, 0.63] 0.34 [0.15, 0.5] −0.03 [−0.45, 0.25]
σ 9.47 [8.69, 10.29] 40.98 [31.96, 53.98] 97.46 [61.54, 152.78]
σ − μ · ξ 3.89 [2.68, 5.25] 23.82 [8.32, 44.01] 100.54 [40.65, 193.23]
prob. of 9/11 0.089 [0.031, 0.183] 0.01 [0, 0.071] 0 [0, 0.002]
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that the likelihood of such a deadly attack is sufficiently large that it cannot be con-
sidered an outlier, the GPD analysis (following a standard procedure) suggests the
opposite. At the crux of the matter, at least for the GPD analysis, is selecting the
threshold that defines an event as “extreme.” Returning to the bias-variance trade-
off discussed above, the conservative way to resolve the conflict between results
for different thresholds is to use a larger threshold to reduce bias at the expense of
adding variance.

Given the apparent importance of selecting the threshold, it may be worth dis-
cussing this issue from a nonstatistical perspective as well. One way to motivate an
extreme values analysis that discards data below a threshold is that the processes
that govern extreme values are different than those that govern the bulk of the
distribution. For example, when analyzing extreme precipitation, the bulk of the
distribution results from typical thunderstorms, whereas (at least in the Southern
US) the extreme events are mostly the result of tropical storms. An analysis which
uses data about thunderstorms to infer about tropical storms is questionable. Re-
turning to the terrorism data, excluding 9/11, between 1968 and 2008 there were
853 (6.4%) events with more than 10 deaths, 102 (0.8%) events with more than 50
deaths, and 33 (0.2%) with more than 100 deaths. Are there really 853 events that
are comparable to 9/11?

While we reach a different conclusion about the probability of a 9/11-sized at-
tack, we do not suggest that the author’s analysis is inappropriate. The results using
a power-law distribution (see Figure 2) are not nearly as sensitive to the choice of
threshold as they are for the GPD. An extreme value analysis is inherently difficult,
and the authors have done a nice job of justifying their analysis using goodness-
of-fit tests, comparing several models and, perhaps most importantly, making their
data and code available. As stated by Davison, Padoan and Ribatet (2012), extrapo-
lating beyond the range of data to estimate probability of extreme events “requires
an act of faith” in the statistical model and “a consequence of the lack of data is
that tail inferences tend to be highly uncertain, and that the uncertainty can increase
sharply as one moves further into the tail.” We hope this GPD analysis contributes
to the discussion about the sensitivity to model uncertainty.

FIG. 2. The estimated (discrete) power-law parameter α and probability of a 9/11-sized event
(shaded region gives bootstrap 90% intervals).
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