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Abstract. We get stationary solutions of a free stochastic partial differential equation. As an application, we prove equality of
non-microstate and microstate free entropy dimensions under a Lipschitz like condition on conjugate variables, assuming also the
von Neumann algebra Rω embeddable. This includes an N -tuple of q-Gaussian random variables e.g. for |q|N ≤ 0.13.

Résumé. Nous construisons des solutions stationnaires de certaines équations différentielles stochastiques libres à coefficients
opérateurs non-bornés. Comme application, nous montrons l’égalité des dimensions entropiques libres microcanonique et non-
microcanonique sous l’hypothèse d’une variable conjuguée Lipschitz pour les générateurs X1, . . . ,XN d’un espace de probabilité
non-commutatif inscriptible dans une ultrapuissance Rω du facteur hyperfini. Cette hypothèse de variable conjuguée Lipschitz
inclut le cas de N variables aléatories q-Gaussiennes pour de petits q par exemple |q|N ≤ 0.13.
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Introduction

In a fundamental series of papers, Voiculescu introduced analogs of entropy and Fisher information in the context of
free probability theory. A first microstate free entropy χ(X1, . . . ,Xn) is defined as a normalized limit of the volume
of sets of microstate i.e. matricial approximations (in moments) of the n-tuple of self-adjoints Xi living in a (tracial)
W ∗-probability space M . Starting from a definition of a free Fisher information [43], Voiculescu also defined a non-
microstate free entropy χ∗(X1, . . . ,Xn), known by the fundamental work [2] to be greater than the previous microstate
entropy, and believed to be equal (at least modulo Connes’ embedding conjecture). For more details, we refer the
reader to the survey [45] for a list of properties as well as applications of free entropies in the theory of von Neumann
algebras.

Moreover in case of infinite entropy, two other invariants the microstate and non-microstate free entropy dimensions
(respectively written δ0(X1, . . . ,Xn) and δ∗(X1, . . . ,Xn)) have been introduced to generalize results known for finite
entropy. Surprisingly, Connes and Shlyakhtenko found in [10] a relation between those entropy dimensions and the
first L2-Betti numbers they defined for finite von Neumann algebras. For instance, for (real and imaginary parts of)
generators of finitely generated groups, δ∗ has been proved in [27] to be equal to β

(2)
1 (Γ )− β

(2)
0 (Γ )+ 1 (cf. e.g. [25]

for L2-Betti numbers of groups).
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In [39], Dimitri Shlyakhtenko obtained lower bounds on microstate free entropy dimension (motivated by the goal
of trying to prove equality with non-microstate free entropy dimension), in studying the following free stochastic
differential equation:

X
(i)
t = X

(i)
0 − 1

2

∫ t

0
ξ (i)s ds + S

(i)
t ,

where ξ
(i)
s is the ith conjugate variable of X(i)

s ’s in the sense of [43], S(i)
t a free Brownian motion free with respect

to X
(i)
0 . Let us recall that for (M = W ∗(X1, . . . ,XN), τ ), if X1, . . . ,XN are algebraically free, the ith partial free

difference quotient ∂i :L2(M) → L2(M) ⊗ L2(M) is the unique derivation densely defined (on non-commutative
polynomials) such that ∂j (Xi) = 1i=j1 ⊗ 1. Then the ith conjugate variable is defined by ∂∗

i (1 ⊗ 1) ∈ L2(M) if it
exists. In [39], this equation was solved in order to get stationary solutions for analytic conjugate variable, and thus
this paper proved that in case of analytic conjugate variable if moreover W ∗(X1, . . . ,XN) is Rω embeddable, then
δ0(X1, . . . ,XN) = δ∗(X1, . . . ,XN) = N . Of course, if we believe in the previous general equality, this should be
proved in much more general cases, e.g. for L2 conjugate variable, i.e. finite Fisher information. The goal of this
paper is to prove this equality in an intermediate case, under a Lipschitz like condition on conjugate variables. Let us
emphasize our definition does not involve operator Lipschitz functions and is relative to M , but it is nothing but the
usual notion of being a Lipschitz function of X (for instance applied by functional calculus) in the one variable case
(this is a Sobolev like definition of lipschitzness in the one variable case):

Definition 1. (M = W ∗(X1, . . . ,XN), τ ) is said to satisfy a Lipschitz conjugate variable condition if the partial free
difference quotients ∂i are defined and if the conjugate variables ∂∗

i 1 ⊗ 1 exist in L2(M) (for all i) and moreover
are in the domain of the closure ∂ of (∂1, . . . , ∂N) with ∂j ∂

∗
i 1 ⊗ 1 ∈ M ⊗Mop ⊂ L2(M ⊗Mop) � L2(M ⊗M) (von

Neumann tensor product, Mop the opposite algebra).

Let us state a precise result, the main byproduct of our work in this respect (cf. Corollary 25) is the following:

Theorem. Consider (M = W ∗(X1, . . . ,XN), τ ) a Rω-embeddable finite von Neumann algebra satisfying a Lipschitz
conjugate variable condition. Then the microstate entropy dimension δ0(X1, . . . ,XN) = N .

We show in Section 4.3 that q-Gaussian variables (introduced in [7]) are a non-trivial instance of non-commutative
variables having Lipschitz conjugate variables for small q (e.g. |q|N ≤ 0.13) thus improving a computation in [39] and
proving that δ0 does not only converge to N for small q but is identically equal to N and thus equal to δ∗(X1, . . . ,XN).
One could actually prove with our techniques δ0(X1, . . . ,XN) = N is still valid on a slightly larger range of q’s, i.e.
as soon as |q|N < 1 and |q|√N ≤ 0.13, we will detail this elsewhere.

Let us come back to our stochastic differential equation setting. By lack of a theory of “non-commutative Lipschitz
functions,” we will rather solve a dual stochastic partial differential equation with the right stationarity property to get
this result.

To explain the equation we solve, let us note that if we call Φs(X) = Xs the automorphism we hope being able to
build solving the above equation, then Ito formula implies e.g. for any non-commutative polynomials P :

Φt

(
P(X0)

) = Φ0
(
P(X0)

)− 1

2

∫ t

0
Φs

(
�
(
P(X0)

))
ds +

∫ t

0
Φs ⊗Φs

(
δ
(
P(X0)

))
#dSs.

We refer the reader to the main text for reminders about free stochastic integration. Here δ = (δ1, . . . , δn) is the free
difference quotient, � = δ∗δ. This is also the equation the author solved in a more recent paper [12] in a much more
general context but with more limited applications to microstate free entropy dimensions, because of a lack of control
on the von Neumann algebra in which we build the process in this new approach.

Here we will thus rather solve the following dual equation:

Xt = X0 − 1

2

∫ t

0
�(Xs)ds +

∫ t

0
δ(Xs)#dSs, (1)
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where δ will be an appropriate extension of the free difference quotient by zero on the free Brownian motion and a
corresponding � = δ∗δ. It is well known in quantum stochastic integration over symmetric Fock space that solving
right Hudson–Parthasarathy equations instead of left HP equations enables to solve equations in a mild sense (see e.g.
[18]) as in the classical stochastic differential equation case (see e.g. [13]). It is in order to use those techniques we
considered this equation rather than the previous one.

Before describing the content of this paper, let us explain the relation of our work with classical stochastic partial
differential equations. There are basically three main approaches to analysing SPDEs: the “martingale (or martingale
measure) approach” (cf. [47]), the “semigroup (or mild solution) approach” (cf. [13]) and the “variational approach”
(cf. [35]). We will mainly refer to the above monographs instead of the original enormously rich literature. Beyond
those mainstream approaches, one should also mention Krylov’s Lp-theory [22] and Kostelenez’s methods [21] using
limits of particle systems, and also an old approach for more concrete SPDEs using SDEs in nuclear spaces and
distributions (e.g. [41]). Here we will adapt to the free SDE context a part of the semigroup approach using variational
techniques. To compare with our work, we thus insist here on those two approaches.

To fix ideas a general SPDE considered in the classical literature is often of the form:

dXt(ξ) = A
(
t,Xt (ξ),DξXt (ξ),D

2
ξXt (ξ)

)
dt +B

(
t,Xt (ξ),DξXt (ξ)

)
dWt.

Since this will be our main interest, we will mainly focus on the linear time independent case where A is thus a second
order differential operator, B a first order one, let say valued in Hilbert–Schmidt operators from the noise space Y (let
say Wt is a standard (with covariance id) cylindrical Brownian motion on a Hilbert space Y ) to the space H where
Xt lives. The linear case was also motivated in the early theory by filtering problems giving rise to linear equations
suitable for the variational approach.

Both approaches share the common features of considering SPDEs as SDEs valued in infinite dimensional spaces
(usually Hilbert spaces of Sobolev types), using PDE techniques often in an abstract functional analytic setting.

Let us describe first the variational approach, originating from [23,30,31] (we refer to [35], and the recent introduc-
tory [34] in the coercive case). Usually, solutions are built here by a Galerkin scheme, in first projecting the equation
to finite dimensional sub-Hilbert spaces. After this transformation, the equation is an ordinary SDE solved by usual
techniques. At this level, estimates (for this approximation) are proved, enabling to take a (weak) limit. The equation
is first solved in a weak sense, avoiding to require Xt ∈ D(A). The standard assumption is the so called coercivity
condition (also called superparabolic case in [35] when considered for concrete differential operators).

This is roughly written:

2〈x,Ax〉 + ∥∥B(x)∥∥2
HS + δ‖x‖2

U ≤ K‖x‖2
H ,

where U is another Hilbert space such that U ⊂ D(B) continuously (often if A is time independent self-adjoint,
−A positive, U = D((−A)1/2), for instance, to fix ideas). Having δ > 0 then enables to get a bound on ‖Xt‖H and
say

∫ t

0 ‖Xs‖2
U ds giving sufficiently many regularity to get a weak limit, so that B(Xt) makes sense, and to solve

the equation weakly (i.e. after taking scalar products with y ∈ D((−A)1/2) for instance in the self-adjoint case).
Unfortunately, the case we are interested in is not coercive, it only satisfies the dissipative condition where δ = 0
above (sometimes called degenerate parabolic case). This equation is enough to guaranty a bound on ‖Xt‖H but
nothing more. In this case, the usual method (for instance used in [35], Chapter 4, in a concrete differential operator
setting), is to replace B by (1 − ε)B (or A by (1 + ε)A) to get a coercive equation and get the bound on ‖Xt‖U
necessary to get a weak limit by another technique. In the coercive case, there are also standard ways of getting
regularity results (for instance, we assume a dissipative inequality under an overall (−A)1/2 for instance again in the
self-adjoint positive case, i.e. −2〈Ax,Ax〉+‖(−A)1/2B(x)‖2

HS ≤ K‖(−A)1/2x‖2
H , and not surprisingly deduce from

this a bound on ‖(−A)1/2Xt‖H , the equation being ideal to apply Gronwall’s lemma and get a bound in that way).
One thus uses these standard ways of getting regularity via a priori estimates for the approximating equation to get a
weak limit.

The semigroup approach uses the semigroup φt generated by A and rewrites the equation after “variation of con-
stants,” and thus looks for a so-called mild solution, i.e. a solution of:

Xt = φt (X0)+
∫ t

0
φt−s

(
B(Xs)dWs

)
.
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Then the goal is to use regularization properties of this semigroup to solve this equation. For instance, to solve
non-linear equations with only continuous coefficients for B , one can use compactness of the semigroup and use
compactness arguments (and get a stochastically weak solution, i.e. not adapted to the filtration of the Brownian
motion. Note we use in this paper only the word weak in its PDE sense as in [13]). In more standard assumptions,
the semigroup is only assumed analytic, or with generator a variational or a self-adjoint operator. We will be mainly
interested in the semigroup approach under the same assumptions as in the variational approach. Indeed, in our free
SDE setting, it is not quite clear what kind of Galerkin’s method could make us recover an ordinary free SDE setting.
Moreover as we will see, we will use extensively really weak notions of being a mild solution we will call ultramild
as a crucial tool to get results under really weak assumptions. Anyways, the interest of the semigroup approach for us
lies in the fact it replaces Galerkin’s method by a fixed point argument (for contractions) under the same coercivity
assumption. Then, we can again prove a priori estimates to extend this to the degenerate parabolic case we will be
interested in (since only this case can give stationary solutions in our examples).

Let us now finally describe the content of this article. In Section 1, we solve a really general stochastic partial
differential equation (formally of the form (1)) with much less restrictive assumptions on δ, �. We find natural
assumptions to get two kinds of solutions we will call mild and ultramild solutions, this second really weak sense
of getting a solution has never been considered, to the best of our knowledge, in previously quoted contexts. These
conditions are natural analogs of the dissipativity condition above (in case of ultramild solutions) and the dissipativity
condition under (−A)1/2 (to get regularity conditions and for us mild solutions). We have also to include in these
conditions general compatibility assumptions trivially checked in our main example.

In Section 2, we prove that we can check our assumptions to get mild solutions in the free difference quotient case
with a Lipschitz conjugate variable type assumption as explained above. The crucial issue here is to prove non-trivial
domain properties of δ, � which are usually checked classically using general regularity results of PDEs not available
in our non-commutative context. One of the crucial tools here is an easy boundedness criteria for 1 ⊗ τ ◦ δ found by
the author in [11] (cf. Lemma 18 infra. coming from [11], Lemma 10).

In Section 3, we prove that as soon as we stick to our case of main interest of a derivation and the corresponding
divergence form operator, it suffices to check ‖Xt‖2 = ‖X0‖2 in order to prove any ultramild solution to be stationary,
as we want in order to get lower bounds on microstate free entropy dimension. Especially, this is always true if we
can get a mild solution, and this is really likely why ultramild solutions were never considered before. If we don’t get
an isometric map, solving those equations is not such useful.

In Section 4, we explain our main application about computation of microstate free entropy dimension under
Lipschitz conjugate variable assumption. In Section 4.3, as we said above, we explain the concrete example of q-
Gaussian variables, after several general preliminaries gathered in Section 4.2. Here the proof of Lipschitz conjugate
variable relies heavily on Bożejko’s analog of Haagerup’s Inequalities [5]. We will consider elsewhere how one could
use a non-coassociative derivation to compute microstate free entropy dimension of q-Gaussian variables in a slightly
less small range of q’s. Of course it is possible that a better understanding of combinatorial properties of those
examples may give more extended ranges of q’s with the same free SDE techniques. Finally, in Section 4.4, we
explain how hard it is to get stationary solutions in an example of derivations on group von Neumann algebras coming
from group cocycles valued in the left regular representation, case also considered in [39]. Here coassociativity like
assumptions are not available to get “easily” mild solutions, this is why we were motivated in being able to get
solutions in a really general sense like ultramild solutions under somehow an automatically verified assumption.
Indeed, in such a concrete example one can easily find a necessary and sufficient condition for getting ‖Xt‖2 = ‖X0‖2.
However, it is expressed in terms of conservativity of a classical Markov process, well known to be hard to check. This
is not such surprising since unitarity properties of left Hudson–Parthasarathy equations are also expressed in terms
of conservativity of quantum Markov processes (see e.g. the survey [17]). Of course, the occurrence of a classical
process is only explained by our special example on groups, anyone interested in such a criteria for more general
processes may be able to generalize this to a general case using conservativity of an appropriate quantum Markov
process. However since any useful (easy to check) sufficient condition for proving this conservativity is not really
available (even in HP case) beyond conditions really similar to those of our Section 2 to get mild solutions (cf. [8]),
we don’t enter in this general question here. Let us conclude with two remarks. Having in mind those similarities
with questions of unitarity of solutions of Hudson–Parthasarathy equations, we can wonder whether a duality theory
analogous to (Journe) duality of left and right HP equations could be developed in our context. In the other direction,
one may wonder whether an ultramild like definition of a solution may be useful for right HP equations (e.g. in order
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to solve them under weaker conditions expressed in terms of conservativity assumptions similar to left HP equations)
or whether the new approach of [12] could be translated in the context of left HP equations.

1. A general stochastic differential equation with unbounded coefficients

Let M0 be a W ∗-probability space (with separable predual), S(i)
t (i ∈ N) a family of free Brownian motions. Consider

M = M0 � W
∗(S(i)

t ) the free product of W ∗-probability spaces (so that S(i)
t are free with M0 inside M) and consider

finally the natural filtration Ms = M0 � W
∗(S(i)

t , t ≤ s). As a side remark, note we always use scalar products linear
in the second variable.

In this part, we will be interested in the following equation:

Xt = X0 − 1

2

∫ t

0
�(Xs)ds +

∫ t

0
δ(Xs)#dSs, (2)

where � :L2(M) → L2(M) and δ :L2(M) → L2(M)⊗L2(M)
⊕

N are closed densely defined operators and keeping
invariant for t ∈ [0, T ] L2(Mt) (resp. sending it to L2(Mt ⊗Mt)

⊕
N and with the analog property for its adjoint. By

convention we say a closed densely defined unbounded operator keep invariant a subspace or send a closed subspace
S into another one S′ if its restriction to the intersection D∩S of its domain D with S is valued in S′ and the restricted
operator is again a closed densely defined unbounded operator. See Section 1.3 for a definition of Stochastic integral).
The sense in which we will solve this equation will be made precise in the 3 following sections: the first will deal with
some miscellaneous results about stochastic integration in our context, the second will introduce stochastic convolu-
tion, the key tool to define mild solutions and the third one will prove in the free Brownian case some well-known (in
the classical Brownian motion case) relations between mild and strong solutions, and introduce ultramild solutions
(the three kinds of solutions we will be interested in getting). Let us right now state the two class of assumptions we
will need to get mild (resp. ultramild) solutions in the last subsection of this section.2 We also consider given another
operator δ̃ satisfying the assumptions for δ, i.e. δ̃ :L2(M) → L2(M) ⊗ L2(M)

⊕
N are closed densely defined oper-

ators keeping invariant the corresponding filtrations. (This will be useful for further applications in the q-Gaussian
variable case. We will consider them elsewhere.)

We fix a few notation before stating the assumption. We will write (for t > s) U#(St − Ss) = ∑∞
i=0 U

(i)#(S(i)
t −

S
(i)
s ) the Hilbert space isomorphism between the infinite direct sum of coarse correspondences (L2(Ms) ⊗

L2(Ms))
⊕

N and a corresponding subspace of L2(Mt), where U(i)#(S(i)
t − S

(i)
s ) is the linear isomorphism ex-

tending a ⊗ b#(S(i)
t − S

(i)
s ) = a(S

(i)
t − S

(i)
s )b, for a, b, c ∈ Ms . Likewise, for 3-fold tensor products, we write

(a ⊗ b ⊗ c)#1(S
(i)
t − S

(i)
s ) = a(S

(i)
t − S

(i)
s )b ⊗ c, (a ⊗ b ⊗ c)#2(S

(i)
t − S

(i)
s ) = a ⊗ b(S

(i)
t − S

(i)
s )c and their corre-

sponding L2 extensions. On a direct sum, we write Diag(Ai) the operator acting diagonally, e.g. Diag(Ai)(b1 ⊕b2) =
A1b1 ⊕A2b2.

We will first use an assumption Γ0(ω) to get really weak forms of solutions, we will call ultramild.

Γ0(ω)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) � is a positive self-adjoint operator, ηα = α
α+�

.

(b.1) D
(
�1/2

) ⊂ D(δ),

(c.1) for any x ∈ D
(
�1/2

)
we have: −∥∥�1/2x

∥∥2
2 + ∥∥δ(x)∥∥2

2 ≤ ω‖x‖2
2.

(d.1) There exists a closed densely defined positive operator

�⊗ =: Diag
(
�⊗

i

)
:
(
L2(M)⊗L2(M)

)⊕N → (
L2(M)⊗L2(M)

)⊕N

(acting diagonally with respect to the direct sum and keeping invariant,
for any t , L2(Mt ⊗Mt)

⊕
N and) such that ∀U ∈ L2(Ms)⊗L2(Ms)∩D

(
�⊗

i

)
:

U#
(
S
(i)
t − S

(i)
s

) ∈ D(�) and �
(
U#

(
S
(i)
t − S

(i)
s

)) = �⊗
i (U)#

(
S
(i)
t − S

(i)
s

)
.

(d.2) Moreover δ
(
U#

(
S
(i)
t − S

(i)
s

))
is orthogonal to L2(Ms ⊗Ms)

⊕
N.

2Note we will always write A ◦ B the closure of the composition of two closed operators if possible, and the usual composition if they are not
closed, without risk of confusion. Sometimes we will even write AB for the same object.
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We will use a variant Γ0u(ω) with an extra Assumption e added to get an extra uniqueness, technically provided by
checking our solution will be also what we will call an ultraweak solution. For convenience, we write ((L2(M0)) ⊗
(L2(M0) � C)⊗n−1 ⊗ (L2(M0))) = Vn. We also consider an orthonormal basis (en)n∈N of L2(W ∗(S(i)

t , t > 0, i ∈
N)) � C such that for all i, ei ∈ W ∗(S(j)

t , t > 0, j ∈ N). We also write for any a1, . . . , an+1 ∈ M0 with τ(ai) = 0,
(i �= 1, n+1) (a1 ⊗· · ·⊗an+1)#(ei1 ⊗· · ·⊗ein) = a1ei1a2 · · ·aneinan+1, and likewise U#(ei1 ⊗· · ·⊗ein) the isometric
extension to U ∈ (L2(M0))⊗ (L2(M0)�C)⊗n−1 ⊗ (L2(M0)).

Finally, we consider En = Span{α0(S
(k1)
v1 − S

(k1)
u1 ) · · · (S(kn)

vn − S
(kn)
un )αn|αi ∈ M0, ki ∈ N, [u1, v1] × · · · × [un, vn] ⊂

R
n+ −Dn}, where Dn is the full diagonal (the set of n-tuples having at least one pair of equal coordinates). We write

Ēn the closure of En in L2(M).

Γ0u(ω)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ0(ω)

(e.1) D(�)⊗alg D(�) ⊂ D
(
δ∗).

(e.2) ∀n ∈N
∗ ∃�⊗(n+1) :Vn → Vn closed densely defined positive operator

such that ∀(i1, . . . , in) ∈N
n, ∀U ∈ D

(
�⊗(n+1)

)
:

U#(ei1 ⊗ · · · ⊗ ein) ∈ D(�)

and �
(
U#(ei1 ⊗ · · · ⊗ ein)

) = �⊗(n+1)(U)#(ei1 ⊗ · · · ⊗ ein).
(e.3) En ∩D(δ) ⊂ Ēn dense and δ

(
En ∩D(δ)

)
orthogonal to

⊕
p+q<n(Ep ⊗ Eq)

⊕
N.

(e.4) ∃D = SpanD ⊂ L2(M0)�C a dense subspace such that:
(D ⊕C)⊗ D⊗(n−1) ⊗ (D ⊕C) ⊂ D

(
�⊗(n+1)

)
.

The main assumption (useful to get mild solutions) will be called Γ1(ω,C) (and Γ1u(ω,C) if we add Γ0u(ω)):

Γ1(ω,C)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ0(ω)

(b.2) D(δ ◦�) ⊂ D(δ).
(c.2) For any x ∈ D

(
�1/2

)
:

−∥∥�η
1/2
α x

∥∥2
2 +Re

〈
δ
(
�ηα(x)

)
, δ(x)

〉 ≤ ω
∥∥�1/2η

1/2
α x

∥∥2
2.

(d.3) D
(
�1/2

) ⊂ D(δ̃),D
(
�1/2

)
a core for δ̃,D(δ̃ ◦�) ⊂ D(δ̃)

∀U ∈ L2(Ms ⊗Ms)∩D
(
�⊗

i

)
, δ̃

(
U#

(
S
(i)
t − S

(i)
s

))
orthogonal to

L2(Ms ⊗Ms)
⊕

N and we assume we have a closed densely defined

δ̃⊗ := δ̃⊗1 ⊕ δ̃⊗2, δ̃⊗i :
(
L2

(
M⊗2

))⊕N → (
L2

(
M⊗3

))⊕N
2

δ̃⊗i
(
(xj )j

) =: (δ̃⊗i
l,j (xj )

)
(l,j)

, δ̃⊗i
l,j :

(
L2(M)⊗2

) → (
L2(M)⊗3

)
(keeping invariant, for any t , the filtration induced by Mt and) such that
∀U ∈ L2(Ms)⊗L2(Ms): U#

(
S
(j)
t − S

(j)
s

) ∈ D(δ̃l) if U ∈ D
(
δ̃⊗1
l,j ⊕ δ̃⊗2

l,j

)
and δ̃l

(
U#

(
S
(j)
t − S

(j)
s

)) = ∑2
i=1 δ̃

⊗i
l,j (U)#i

(
S
(j)
t − S

(j)
s

)
.

(d.4) D
(
�⊗1/2

) ⊂ D
(
δ̃⊗)

,D
(
�⊗1/2

)
a core for δ̃⊗.

(f.1) D(δ̃ ◦�) ⊂ D
(
�⊗ ◦ δ̃).

(f.2) There exists a bounded operator H on L2(M ⊗M)
⊕

N

keeping invariant for any s, L2(Ms ⊗Ms)
⊕

N with ‖H‖ ≤ C1/2 (C ≥ 1)
such that for any x ∈ D(δ̃ ◦�):
�⊗ ◦ δ̃(x)− δ̃ ◦�(x) = H

(
δ̃(x)

)
.

(g) D(δ̃) = D(δ) =: D̃ , ∀x ∈ D̃ , C−1/2
∥∥δ̃(x)∥∥2 ≤ ∥∥δ(x)∥∥2 ≤ C

∥∥δ̃(x)∥∥2,

thus D(δ̃ ◦�) = D(δ ◦�).
(h) D(�) ⊂ D

(
�⊗1/2 ◦ δ̃ ⊕ δ̃ ⊕ δ̃⊗δ

)
and for x ∈ D(�):∥∥δ̃⊗δ(x)

∥∥2
2 ≤ ∥∥�⊗1/2 ◦ δ̃(x)∥∥2

2 +C
∥∥δ̃(x)∥∥2

2.

We will write φt the semigroup exponentiating −1/2� and φ⊗
t the semigroup associated to −1/2�⊗.

In most cases we will be interested in the case δ̃ = δ in which case assumptions g,h will be automatic (using a
variant of c.1 for tensor variants for the inequality in h and f for the domain assumption in h).
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In the applications we have in mind, the strong assumption is f , the other ones being automatically verified and
just important in this general setting.

1.1. General ideas and strategy

With those notation fixed and before entering into technical details, let us explain the intuition behind our results (in
the case δ̃ = δ, the general case is a slight extension following an idea of [8]). In our general setting here, the proofs
will follow closely the classical case, and therefore the intuition is basically the same, namely, since we want to solve
SDEs with unbounded coefficients, with � a kind of divergence form operator (as we will consider in the next part)
the corresponding semigroup is regularizing, and we want to use this. That’s why we introduce mild solutions. As
explained by various equivalences in Section 2.1.3, the difference with strong solutions is only related to the domain
in which we want to build the solution, we only require being in the domain of �1/2 (or even δ) for mild solutions,
and as soon as it is in the domain of �, a mild solution is a strong solution, the converse being always true. The idea
behind ultramild solutions is slightly trickier. Let us explain it in saying φ⊗

t−s ◦ δ may have a much huger domain again
than �1/2 and we want to use this regularization effect to have solutions with almost no conditions. Indeed, condition
f above will be really hard to check even with strong conditions (Section 2.2), that’s why we want to have solutions
in a sense as general as possible. We can also say that the current section somehow takes natural analogs of classical
assumptions in the non-commutative case and check we can work with them.

It is maybe also useful to have several ideas in mind, and first how those conditions will appear in a really natural
way in the proof. To get an estimate on ‖Xt‖2

2, or ‖�1/2(Xt )‖2
2 (first on an approximation of the solution, in the spirit

of moving from a degenerate parabolic case to a superparabolic case), the common idea is to differentiate, and try to
apply Gronwall’s lemma. Conditions c.1 (called dissipativity in the classical case) and f.2 above correspond exactly
to what we want, in order to apply this lemma respectively in those cases. The second idea is that if we replace δ by
(1 − ε)δ the equation is much easier to solve, it is of superparabolic type (instead of degenerate parabolic type, said
otherwise this gives a kind of coercivity, see [35] for a presentation of this point in a more concrete setting but more
clearly than in [13]). First, in this case, there will be a Picard iteration argument to solve it, second we win something
in terms of domains, assumption c is enough to bound ‖�1/2(Xε

t )‖2
2, assumption f to get a bound on ‖�(Xε

t )‖2
2

(those bounds diverging in ε, of course). Anyways this will enable us to have respectively mild or strong solutions of
an approximating equation converging to a solution of our equation, even if the solution without ε will be only a mild
or ultramild solution (note that in the case δ �= δ̃ we will lose the strong solution property but keep mild solutions,
hopefully we don’t use this improvement in terms of getting a strong solution). Somehow, to get later in Section 3.3
stationarity of the equation, this will be much more crucial to have an approximation by a mild solution than an
ultramild solution, since Ito formula, already tricky to apply for mild solutions, seems to be completely unusable for
ultramild solutions. Moreover there is the general idea that if you get a bound on ‖�1/2(Xε

t )‖2
2 (uniform in ε), you

can get a Cauchy condition in ‖ · ‖2 norm and thus norm convergence, but however in general we will work only with
weak convergence. Finally, we will also show in Section 1.4 that mild solutions are also weak solutions, in a usual
duality sense of weak solutions, however, we don’t have an analog for ultramild solutions. Thus we will also introduce
a notion of ultraweak solution, mainly to get uniqueness results in applying Laplace transform techniques, our general
result will be “there exists a unique ultraweak solution which is also an ultramild solution,” and limit of mild solutions
of approximating equations.

Before starting, we sum up the content of the next sections. In Section 1.2, we give miscellaneous definitions and
results moving almost commutation properties of our assumptions to stochastic integrals. In Section 1.3, we prove
an integration by parts formula for a stochastic convolution we introduce. We avoid proving a free variant of the
usually used stochastic Fubini theorem in using ad hoc proofs in our really special case. In Section 1.4 we introduce
our different kinds of solutions and prove relations between them (explained above). Section 1.5 contains our general
theorem.

Let us prove right now an easy consequence of our main assumptions. Note we often use the bound ‖�ηα‖ ≤ 2α
coming from �ηα = α(1 − ηα).
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Lemma 2. Assume Γ1(ω,C). Then, there exists for any α ∈ (0,∞) bounded operators Hα from the graph of �1/2:
G(�1/2) ⊂ L2(M)⊕2 to L2(M ⊗M)

⊕
N sending, for s, L2(Ms)

⊕2 to L2(Ms ⊗Ms)
⊕

N with ‖Hα‖ ≤ max(1,
√
ω)C

such that for any x ∈ D(�1/2) (if we write ηα = α
α+�

and the analog η⊗
α = α

α+�⊗ ):

�⊗η⊗
α ◦ δ̃(x)− δ̃ ◦�ηα(x) =Hα

(
x ⊕�1/2(x)

)
.

Moreover, for each x ∈ D(�1/2), Hα(x ⊕�1/2(x)) converges in L2 to H(δ̃(x)) when α → ∞.
Finally, there is also a bounded H̃α :L2(M) → L2(M⊗M)

⊕
N, with ‖H̃α‖ ≤ C

α

√
ω + 2α and the same invariance

of filtration properties, such that for any x ∈ D(δ̃):

δ̃ηα(x)− η⊗
α δ̃(x) = H̃α(x).

Proof. Let H be given by assumption f.2. Let us define Hα . For x ∈ D(�1/2), ηα(x) ∈ D(�3/2) ⊂ D(δ̃ ◦ �), thus
applying the equation for H in f.2, we get:

η⊗
α �

⊗ ◦ δ̃ηα(x)− η⊗
α δ̃ ◦�ηα(x) = η⊗

α H
(
δ̃ηα(x)

)
.

Thus multiplying by 1
α

and using α(1 − ηα) = �ηα , we get:

δ̃ηα(x)− η⊗
α δ̃(x) = 1

α
η⊗
α H

(
δ̃ηα(x)

)
.

Especially, defining H̃α = 1
α
η⊗
α Hδ̃ηα , we get the last statement since (by assumptions f.2, g, c.1) ‖H̃α‖ ≤

C1/2

α
‖δ̃ηα‖ ≤ C

α

√
ω + 2α and moreover, by d.3, D(�1/2) is a core for δ̃.

Moreover we also deduce:

�⊗η⊗
α δ̃(x) = − 1

α
�⊗η⊗

α H
(
δ̃ηα(x)

)+ δ̃�ηα(x)+H
(
δ̃ηα(x)

)
,

thus equivalently

�⊗η⊗
α δ̃(x)− δ̃�ηα(x) = η⊗

α H
(
δ̃ηα(x)

)
.

This suggests Hα(x ⊕�1/2(x)) = η⊗
α H(δ̃ηα(x)). In that way, the equation is verified, the stability properties come

from the assumptions and using properties f.2, g, c.1 again, we get:

∥∥Hα

(
x ⊕�1/2(x)

)∥∥2
2 ≤ C

∥∥δ̃ηα(x)∥∥2
2 ≤ C2(∥∥�1/2(x)

∥∥2
2 +ω‖x‖2

2

)
.

Thus we get the bound on ‖Hα‖, and∥∥Hα

(
x ⊕�1/2(x)

)−H
(
δ̃(x)

)∥∥
2 ≤ ∥∥η⊗

α H
(
δ̃(ηα − 1)(x)

)∥∥
2 + ∥∥(η⊗

α − 1
)
H
(
δ̃(x)

)∥∥
2

≤ C1/2
∥∥δ̃(ηα − 1)(x)

∥∥
2 + ∥∥(η⊗

α − 1
)
H
(
δ̃(x)

)∥∥
2,

and the right hand side goes to zero using again assumption c.1. �

1.2. Stochastic integration in presence of δ and �

Following [3], except for the value in L2(M ⊗ M)
⊕

N instead of L2(M ⊗ M) of bi-processes, we write Ba
2 ([0, T ])

the completion of the space of simple bi-processes on [0, T ], adapted with respect to the algebraic direct sum (Mt ⊗
Mt)

⊕
N, in the following norm:

‖U‖Ba
2 ([0,T ]) =

(∫ T

0
‖Us‖2

L2(τ⊗τ)⊕N ds

)1/2

.
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We may also write later Ba
2 instead of Ba

2 ([0, T ]) when T is clear from the context and similarly for variants later.
Let us remark that this space can also be seen as a subspace of L2([0, T ],L2(τ ⊗τ)

⊕
N) (defined, say, in Bochner’s

sense) and we will always see it as such a subspace.
Then, recall that the map U �→ ∫ T

0 Us#dSs = ∑∞
j=0

∫ T

0 U
(j)
s #dS(j)

s is an isometric linear extension from Ba
2 ([0, T ])

to L2(M, τ) of the usual map, sending, for a, b ∈ Ms , a ⊗ b1[s,t) seen in the ith component of the direct sum to

a(S
(i)
t − S

(i)
s )b. Thus, we can remark for further use that weak convergence in L2(τ ) of a sequence of stochastic

integrals
∫ T

0 Un
s #dSs is equivalent to weak convergence of its integrand Un

s in L2([0, T ],L2(τ ⊗ τ)
⊕

N).

Analogously, one can consider Ba(⊗3)
2 ([0, T ]) for processes adapted to the filtration (Mt ⊗ Mt ⊗ Mt)

⊕
({1,2}×N

2).

We define
∫ T

0 Us# dSs ∈ L2(M ⊗M)
⊕

N in extending the definition for a, b, c ∈ Ms , Uu = a ⊗ b ⊗ c1[s,t)(u) seen in

the 1, j, ith component of the direct sum
∫ T

0 a ⊗ b ⊗ c1[s,t)(u)#dSu = a(S
(i)
t − S

(i)
s )b ⊗ c in the j th component, and

when seen in the 2, j, ith component
∫ T

0 a ⊗ b ⊗ c1[s,t)(u)#dSu = a ⊗ b(S
(i)
t − S

(i)
s )c in the j th component.

We will write Ba
2,δ◦�β ([0, T ]) (for β ∈ {0,1/2,1}, resp. Ba

2,�β ([0, T ]) for β ∈ {1/2,1,3/2}) the completion with

respect to the following norms of what we will call δ ◦ �β -simple adapted processes (resp. �β -simple adapted pro-
cesses), i.e. processes of the form X = ∑M

j=1 Xj1[tj ,tj+1) with Xj ∈ D(�β)∩⋂2β
b=0 D(δ ◦�b/2) (resp. Xj ∈ D(�β)):

‖X‖Ba

2,δ◦�β
=

(∫ T

0

2β∑
b=0

∥∥δ ◦�b/2Xs

∥∥2
L2(τ⊗τ)

⊕
N +

2β∑
b=0

∥∥�b/2Xs

∥∥2
L2(τ )

ds

)1/2

(
resp. ‖X‖Ba

2,�β
=

(∫ T

0

2β∑
b=0

∥∥�b/2Xs

∥∥2
L2(τ )

ds

)1/2)
.

Of course, using g, one gets the same spaces if we replace δ by δ̃. Assuming Γ0(ω) (especially condi-
tion b), we have clearly continuous embeddings Ba

2,δ◦�β ([0, T ]) → L2
a([0, T ],L2(M)) (space of adapted processes),

Ba
2,�β ([0, T ]) → L2

a([0, T ],L2(M)), for β ′ ≤ β,β,β ′ ∈ {0,1/2,1}, Ba
2,δ◦�β ([0, T ]) → Ba

2,δ◦�β′ ([0, T ]) and for

β ′ ≤ β,β,β ′ ∈ {1/2,1}, Ba
2,δ◦�β ([0, T ]) → Ba

2,�β′ Ba
2,�β+1/2([0, T ]) → Ba

2,δ◦�β ([0, T ]) for β ∈ {0,1/2} (using as-

sumption c).
From the assumptions on δ and �, we remark that we can see for any Xs ∈ Ba

2,δ◦�β ([0, T ]), δ ◦ �βXs as an

element of Ba
2 . Finally, let us note that if B bounded operator on L2(Ms ⊗ Ms)

⊕
N, keeping invariant, for any t ,

L2(Mt ⊗Mt)
⊕

N, and if Us ∈ Ba
2 ([0, T ]), then B(Us) ∈ Ba

2 ([0, T ]).
The following lemma is the goal of these definitions:

Lemma 3. Assume Γ1(ω,C) for (i) and Γ0(ω) for (ii) and (iii).

(i) Let Xs ∈ Ba
2,�1/2([0, T ]) then we have ηα(Xs) ∈ Ba

2,δ◦�([0, T ]), �⊗η⊗
α δ̃(Xs),Hα(Xs ⊕�1/2(Xs)) ∈ Ba

2 ([0, T ])
and for t ≤ T :

∫ t

0
�⊗η⊗

α δ̃(Xs)#dSs =
∫ t

0
δ̃ ◦�(

ηα(Xs)
)
#dSs +

∫ t

0
Hα

(
Xs ⊕�1/2(Xs)

)
#dSs.

If Xs ∈ Ba
2,�3/2([0, T ]), then δ̃⊗δ(Xs) = (δ̃⊗k

i,j δj (Xs))k,i,j ∈ Ba(⊗3)
2 ([0, T ]), ∫ t

0 δ(Xs)#dSs ∈ D(δ̃) and we have
the equation:

δ̃

∫ t

0
δ(Xs)#dSs =

∫ t

0
δ̃⊗δ(Xs)#dSs.

(ii) Likewise, for any Us ∈ Ba
2 ([0, T ]) and t, α,β > 0, i ∈ {1/2,1}: η⊗i

α (Us),φ
⊗
t (Us) ∈ Ba

2 ([0, T ]), �⊗η⊗1/2
α ×

η
⊗1/2
β (Us),�

⊗φ⊗
t (Us) ∈ Ba

2 ([0, T ]) (and assuming d.3, d.4, g we have also, δ̃⊗η⊗i
α (Us) = (δ̃⊗k

i,j η
⊗i
α (U

j
s ))k,i,j ∈
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Ba(⊗3)
2 ([0, T ])), and we have for τ ≤ T :

ηiα

(∫ τ

0
Us#dSs

)
=

∫ τ

0
η⊗i
α (Us)#dSs, �η1/2

α η
1/2
β

(∫ τ

0
Us#dSs

)
=

∫ τ

0
�⊗η⊗1/2

α η
⊗1/2
β (Us)#dSs,

φt

(∫ τ

0
Us#dSs

)
=

∫ τ

0
φ⊗
t (Us)#dSs, �φt

(∫ τ

0
Us#dSs

)
=

∫ τ

0
�⊗φ⊗

t (Us)#dSs,

δ̃ηiα

(∫ τ

0
Us#dSs

)
=

∫ τ

0
δ̃⊗η⊗i

α (Us)#dSs if d.3, d.4, g also hold.

Finally, for any W ∈ L2(Mt ⊗Mt)
⊕N, any V = (

∫ τ

t
Us#dSs), t ≤ τ , with V ∈ D(δ), 〈W,δ(V )〉 = 0.

(iii) For Us ∈ Ba
2 ([0, T ]), ∫ T

0 Us#dSs ∈ D(�1/2) if and only if Us ∈ D(�⊗1/2) for almost every s and∫ T

0 ds‖�⊗1/2Us‖2
2 < ∞. In this case �1/2

∫ T

0 Us#dSs = ∫ T

0 �⊗1/2(Us)#dSs . If d.3, d.4, g also hold, then

for any Us with δ̃⊗(Us) ∈ Ba(⊗3)
2 ([0, T ]) (e.g. for Us = δ(Xs), for Xs ∈ Ba

2,�([0, T ]) if h holds), we have∫ T

0 Us#dSs ∈ D(δ̃) and δ̃
∫ T

0 Us#dSs = ∫ T

0 δ̃⊗(Us)#dSs .

Proof. First of all, the statements about η⊗i
α (Us),φ

⊗
t (Us) ∈ Ba

2 ([0, T ]), �⊗η⊗1/2
α η

⊗1/2
β (Us),�

⊗φ⊗
t (Us) ∈ Ba

2 ([0, T ])
and �⊗η⊗

α δ̃(Xs) ∈ Ba
2 follow from the remark before the lemma, since e.g. ‖�⊗η⊗

α ‖ ≤ 2α. Assuming d.3, d.4, g, the

same is true for δ̃⊗η⊗i
α (Us) ∈ Ba(⊗3)

2 ([0, T ]).
If Xs is a �1/2-simple process. By linearity, we can suppose Xs = x1[t1,t2)(s), with x ∈ D(�1/2) ∩ L2(Mt1). In

that case, we have clearly ηα(Xs) ∈ D(δ̃ ◦ �) (using assumption d.3) and the equality stated is nothing but the one
of Lemma 2. In the general case Xs ∈ Ba

2,�1/2([0, T ]), take by density Xn
s �1/2-simple processes converging to Xs in

Ba
2,�1/2([0, T ]). Then, since δ ◦�βηα(X

n
s ) = δ ◦ αβ(id−ηα)

βη
1−β
α (Xn

s ) (and using assumption c.1),

2∑
b=0

∥∥δ ◦�b/2ηα
(
Xn

s −Xm
s

)∥∥2
2 ≤ (

1 + 2α + (2α)2)(∥∥�1/2(Xn
s −Xm

s

)∥∥2
2 +ω

∥∥Xn
s −Xm

s

∥∥2
2

)
.

Likewise

2∑
b=0

∥∥�b/2ηα
(
Xn

s −Xm
s

)∥∥2
2 ≤ (

1 + 2α + (2α)2)∥∥Xn
s −Xm

s

∥∥2
2.

As a consequence, (ηα(Xn
s )) converges in Ba

2,δ◦�([0, T ]), and by the embedding in Ba
2,�1/2([0, T ]), it converges to

ηα(Xs) which is thus in Ba
2,δ◦�. Now, �⊗η⊗

α δ̃(Xs), δ̃(�ηαXs) ∈ Ba
2 ([0, T ]). Therefore, applying the equation of

Lemma 2, Hα(Xs ⊕ �1/2(Xs)) ∈ Ba
2 ([0, T ]) and we have our equality after taking the isometric map of stochastic

integration. The second statement of (i) is proved in a similar way using d.3 for the equation, g, h, f.1, c.1 for
boundedness results. For (ii), the boundedness has already been discussed, and this explains the definition of the right
hand sides of the equations. The equalities are clear for simple processes (easy consequences of assumptions d , and a

for the semigroup. Note for η1/2
α one can use η

1/2
α = ∫ ∞

0 π−1 t−1/2

1+t
ηα(1+t)/t dt from [33], Lemma 2.2), this concludes

by density.
For the last statement of (ii) about orthogonality, since δηα(V ) → δ(V ), we can assume by the beginning of (ii)

(putting ηα in the stochastic integral), Us ∈ D(�⊗). Again, it suffices to prove the simple process case, and this
reduces to assumption d.2.

Finally, for the equivalence of (iii), note that the two first equalities of (ii) give ‖�1/2ηα(
∫ T

0 Us#dSs)‖2
2 =∫ T

0 ‖�⊗1/2η⊗
α (Us)‖2

2 ds. From this, letting α → ∞, the direct implication follows from monotone convergence the-
orem with �1/2ηα = ηα�

1/2 and the reverse implication using also �1/2 is a closed operator. Let us check first for
any U ∈ Ba

2 ([0, T ]), �1/2ηα(
∫ T

0 Us#dSs) = ∫ T

0 �⊗1/2η⊗
α Us#dSs . Again it suffices to check it on simple processes,



1414 Y. Dabrowski

on which this comes from �1/2 = ∫ ∞
0 π−1t−1/2(id−ηt )dt (cf. e.g. [36] or [20]). Now, the stated result comes from

α → ∞, the statement for δ̃ is analogous. �

1.3. A definition of free stochastic convolution

In this subsection, we assume Γ0(ω). We want to give sense to the following kind of integral, for Us ∈ Ba
2 :∫ t

0 φt−s(Us#dSs). We will define it by

∫ t

0
φt−s(Us#dSs) =

∫ t

0
φ⊗
t−s(Us)#dSs,

and we want to verify the usual properties of stochastic convolution.
For this, we have to verify that φ⊗

t−s(Us)1[0,t](s) ∈ Ba
2 ([0, t]), and since φ⊗

t−s is a contraction, it is sufficient to show
this for Us a simple process, and thus even for U1[u,v)(s), U ∈ L2(Mu ⊗ Mu). But consider ui,n = u + i(v − u)/n,
then Un = ∑n−1

i=0 φt−ui,n (U)1[ui,n,ui+1,n) is easily shown to converge in L2([0, t],L2(M⊗M)) to φ⊗
t−s(U) using strong

continuity of φ⊗, this concludes the preliminaries for the definition.
Let us define a variant of the spaces of the previous subsection useful to define a really weak form of solutions we

will call in the next subsection: “ultramild” solutions. We will write Ba
2,φδ([0, T ]) for the completion with respect to

the following norm of δ-simple adapted processes, i.e. recall this means processes of the form X = ∑M
j=1 Xj1[tj ,tj+1)

with Xj ∈ D(δ):

‖X‖Ba
2,φδ

=
(∫ T

0

[∫ t

0

∥∥φ⊗
t−sδ(Xs)

∥∥2
L2(τ⊗τ)

⊕
N ds + ‖Xt‖2

L2(τ )

]
dt

)1/2

.

We have clearly a continuous embedding Ba
2,δ([0, T ]) → Ba

2,φδ([0, T ]) using Section 1.2 and the above remark
defining stochastic convolution (the first space being clearly dense in the second by definition). We get thus a map
γ :Ba

2,δ([0, T ]) → L2
a([0, T ],L2(M)) such that γ (X)t = ∫ t

0 φt−s(δ(Xs)#dSs) and clearly ‖γ (X)‖L2
a([0,T ],L2(M)) ≤

‖X‖Ba
2,φδ

so that γ extends to a continuous map (also called) γ :Ba
2,φδ([0, T ]) → L2

a([0, T ],L2(M)).

We also want to show that t �→ 〈∫ t

0 Us#dSs, ζ 〉 is of bounded variation so that we can define something like∫ t

0 〈Us#dSs, ζ 〉 (with the same value) and see 〈Us#dSs, ζ 〉 as a measure on R+. But since stochastic integration is
an isometric map onto its image we can project ζ on this space thus write its projection

∫ t

0 Vs#dSs , and the result is a
consequence of the isometry property.

Finally, we want to define for ζ(·) ∈ C1([0, T ],L2(M)):
∫ t

0 〈Us#dSs, ζ(s)〉 and show a relation with stochastic
convolution in a special case. For this, first note that the family of functions of the form ϕ(·)ζ0, for ϕ(·) ∈ C1([0, T ],C)
and ζ0 ∈ L2(M) linearly spans a dense subset of C1([0, T ],L2(M)), thus consider also first ζ(·) in this linear span.
Consider also Ut = ∫ t

0 Us#dSs .
Define

∫ t

0 〈Us#dSs,ϕ(s)ζ0〉 = 〈∫ t

0 ϕ(s)Us#dSs, ζ0〉 using the previous paragraph, and consider as in this paragraph
the projection of ζ0 on the space of stochastic integrals

∫ t

0 Vs#dSs . Then compute using integration by parts:

∫ t

0

〈
Us#dSs,ϕ(s)ζ0

〉 = ∫ t

0
ϕ(s)〈Us,Vs〉ds = ϕ(t)

∫ t

0
〈Us,Vs〉ds −

∫ t

0
ϕ′(s)〈Us , ζ0〉ds

= 〈
Ut , ζ(t)

〉− ∫ t

0

〈
Us , ζ

′(s)
〉
ds,

which extends by linearity on the above mentioned linear span.
But now, we get the bound:∣∣∣∣

∫ t

0

〈
Us#dSs,ϕ(s)ζ0

〉∣∣∣∣ ≤ ‖Ut‖2

(∥∥ζ(t)∥∥2 + t sup
s

∥∥ζ ′(s)
∥∥

2

)
,



A free stochastic partial differential equation 1415

using ‖Ut‖2 is increasing with t . We can thus extend our linear map by continuity to ζ(·) ∈ C1([0, T ],L2(M)) and
we have also the equality:

∫ t

0

〈
Us#dSs, ζ(s)

〉 = 〈
Ut , ζ(t)

〉− ∫ t

0

〈
Us , ζ

′(s)
〉
ds. (3)

Consider finally ζ(s) = φt−s(ζ ), with ζ ∈ D(�), writing as before
∫ ∞

0 Vs#dSs the projection of ζ on the space of
stochastic integrals. Using this last equality, we get:

∫ t

0

〈
Us#dSs,φt−s(ζ )

〉

= 〈Ut , ζ 〉 −
∫ t

0

〈
1

2
�φt−s(Us), ζ

〉
ds = 〈Ut , ζ 〉 −

∫ t

0

∫ s

0

〈
1

2
�⊗φ⊗

t−s(Uu),Vu

〉
duds

=
∫ t

0
〈Us,Vs〉ds −

∫ t

0

〈∫ t

u

1

2
�⊗φ⊗

t−s(Uu)ds,Vu

〉
du

=
∫ t

0
〈Us,Vs〉ds −

∫ t

0

〈
Uu − φ⊗

t−u(Uu),Vu

〉
du =

〈∫ t

0
φt−s(Us#dSs), ζ

〉
.

In the first line we used our identity since φt−s(ζ ) ∈ C1([0, T ],L2(M)) for ζ ∈ D(�) and then Lemma 3(ii).
Line 3 is only a computation, first with the differential equation, second, with the definition of stochastic convolu-

tion after simplification.
In line 2, we have to justify application of Fubini theorem. Note that ζ = ηα(z) (since by Hille–Yosida theory

Range(ηα) = D(�), see e.g. (1.3) in the proof of Chapter 1, Proposition 1.5 in [26]), if the projection of z is written∫ T

0 Ws#dSs , then Vs = η⊗
α (Ws) a.e. by Lemma 3(ii). Thus Vs is a.e. in D(�⊗). We can now use Cauchy–Schwarz

inequality:

∫ t

0
ds

∫ s

0
du

∣∣∣∣
〈

1

2
�⊗φ⊗

t−s(Uu),Vu

〉∣∣∣∣ ≤
∫ t

0
ds

(∫ s

0
du

∥∥∥∥1

2
φ⊗
t−s(Uu)

∥∥∥∥
2

2

)1/2(∫ s

0
du

∥∥�⊗Vu

∥∥2
2

)1/2

≤ t

(∫ t

0
du‖Uu‖2

2

)1/2∥∥�(ζ)
∥∥

2 < ∞.

Starting from the second line above, applying Fubini to go upwards after a change of variable t − s = s′ − u, we
also obtain:〈∫ t

0
φt−s(Us#dSs), ζ

〉
=

∫ t

0
〈Us,Vs〉ds −

∫ t

0

〈∫ t

u

1

2
�⊗φ⊗

s−u(Uu)ds,Vu

〉
du

= 〈Ut , ζ 〉 −
∫ t

0

〈
1

2
�

∫ s

0
φs−u(Uu#dSu), ζ

〉
ds.

Proposition 4 (Integration by parts for stochastic convolution). For ζ ∈ D(�), U ∈ Ba
2 ([0, t]), we have:

∫ t

0
φt−s(Us#dSs) =

∫ t

0
Us#dSs −�

∫ t

0
ds

1

2
φt−s

(∫ s

0
Uv#dSv

)

=
∫ t

0
Us#dSs − 1

2
�

∫ t

0
ds

∫ s

0
φs−u(Uu#dSu),

∫ t

0

〈
Us#dSs,φt−s(ζ )

〉 = 〈∫ t

0
φt−s(Us#dSs), ζ

〉
.
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Note the following useful formula we will use often later:

∥∥φt (x)∥∥2
2 = ‖x‖2

2 −
∫ t

0

∥∥�1/2φs(x)
∥∥2

2 ds. (4)

Proposition 5. For Y ∈ Ba
2,δ([0, T ]), define γ (Y )t = ∫ t

0 φt−s(δ(Ys))#dSs), then γ (Y )t ∈ D(�1/2) for a.e. t ≤ T and
morever:∫ T

0

∥∥�1/2γ (Y )t
∥∥2

2 dt = −∥∥γ (Y )T ∥∥2
2 +

∫ T

0
dt
∥∥δ(Yt )∥∥2

2. (5)

Moreover, assume Γ1(ω,C) for any B among δ̃, �1/2, α,α′ > 0, then:

∥∥Bη1/2
α η

1/2
α′

(
γ (Y )T

)∥∥2
2 =

∥∥∥∥Bη1/2
α η

1/2
α′

∫ T

0
δ(Ys)#dSs

∥∥∥∥
2

2

−
∫ T

0
dt�〈

B�η1/2
α η

1/2
α′ γ (Y )t ,Bη1/2

α η
1/2
α′ γ (Y )t

〉
. (6)

Proof. By Fubini–Tonneli Theorem and the remark before the proposition, we deduce∫ T

0
dt

∫ t

0
ds
∥∥�⊗1/2φ⊗

t−s

(
δ(Ys)

)∥∥2
2 =

∫ T

0
ds
∥∥(δ(Ys))∥∥2

2 − ∥∥φ⊗
T−s

(
δ(Ys)

)∥∥2
2.

Thus Lemma 3(iii) concludes to the first statement. Since Bηα is a bounded operator, and from the first statement and
Γ1(ω,C)g, c.1 for the last term, all the terms in (6) are continuous on Ba

2,δ([0, T ]). As a consequence, it suffices to
prove it for simple processes of even Y = X1[s,t), X ∈ D(δ).

From Lemma 3 (and with an obvious notation B⊗), this reduces the statement to∫ T

s

du
∥∥B⊗η⊗1/2

α η
⊗1/2
α′ φ⊗

T−uδ(X)
∥∥2

2

= ∥∥B⊗η⊗1/2
α η

⊗1/2
α′

(
δ(X)

)∥∥2
2(T − s)

−
∫ T

s

dv�
∫ v

s

du
〈
B⊗�⊗η⊗1/2

α η
⊗1/2
α′ φ⊗

v−uδ(X),B⊗η⊗1/2
α η

⊗1/2
α′ φ⊗

v−uδ(X)
〉
.

But this is obvious after applying Fubini on the last integral and integrating along v (using ‖�⊗1/2φ⊗
v−u‖ ≤ cst√

v−u

and d.4 in the δ̃ case to bound it by the corresponding �1/2 case). �

1.4. Useful links between mild solutions and strong solutions

In this part, we will also work under assumption Γ0(ω). Let us define four kinds of solutions.

Definition 6. We will call a strong solution an element Xt ∈ Ba
2,� satisfying (2). A mild solution will be an Xt ∈ Ba

2,δ
satisfying:

Xt = φt (X0)+
∫ t

0
φt−s

(
δ(Xs)#dSs

)
. (7)

We call ultramild solutions, solutions of (7) in Ba
2,φδ . We call a weak solution an Xt ∈ Ba

2,δ such that, for any ζ ∈ D(�):

〈Xt, ζ 〉 = 〈X0, ζ 〉 − 1

2

∫ t

0

〈
Xs,�(ζ )

〉
ds +

∫ t

0

〈
δ(Xs)#dSs, ζ

〉
.
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We will first recall analogs of usual results (in classical SPDE theory) concerning the link between strong solutions
and mild solutions. We mainly follow here the proofs (for a classical Brownian motion and a classical SPDE) of [13],
Chapter 6.

Proposition 7. A strong solution of (2) (in Ba
2,�) is also a mild solution (even a solution of (7) in Ba

2,�1/2 ).

Proof. First, note that for any ζ(·) ∈ C1([0, T ];D(�)), and any t ∈ [0, T ], we have:

〈
Xt, ζ(t)

〉 = 〈
X0, ζ(0)

〉+ ∫ t

0

〈
Xs,−1

2
�
(
ζ(s)

)+ ζ ′(s)
〉

ds +
∫ t

0

〈
δ(Xs)#dSs, ζ(s)

〉
.

(To prove this, use (3) to compute the stochastic part and use an integration by parts to get the other term.)
Finally, consider ζ(s) = φt−s(ζ ), which is in C1([0, T ];D(�)), if say ζ ∈ D(�2). The terms inside the usual

integral cancel out and you get:

〈Xt, ζ 〉 = 〈
X0, φt (ζ )

〉+ ∫ t

0

〈
δ(Xs)#dSs,φt−s(ζ )

〉
.

In as much as you can take any ζ ∈ D(�2) and D(�2) is dense (even a core for � by a standard result Theorem 3.24,
p. 275 in Chapter V of Kato’s book [20]), you get the result (using Proposition 4). �

Proposition 8. A mild solution Xt is always a weak solution, and if it is also in Ba
2,�, then it is in fact a strong

solution.

Proof. Once we have proved that our mild solution is in fact a weak solution, we are in fact done, since under
our assumption �(Xs) is (Lebesgue-almost surely) well defined and in L2([0, T ],L2(M)), showing that the wanted
equation (2) under 〈·, ζ 〉, which concludes by density.

To show that we have the desired weak solution, we will merely use that the solution is in Ba
2,δ , as required for a

mild solution. Consider thus ζ ∈ D(�2)

−1

2

∫ t

0

〈
Xs,�(ζ )

〉
ds

= −1

2

∫ t

0

〈
X0, φs

(
�(ζ)

)〉
ds − 1

2

∫ t

0
ds

∫ s

0

〈
δ(Xu)#dSu,φs−u

(
�(ζ)

)〉

= −1

2

〈
X0,

∫ t

0
φs

(
�(ζ)

)
ds

〉
+

(〈∫ t

0
φt−s

(
δ(Xs)#dSs

)
, ζ

〉
−

〈∫ t

0
δ(Xs)#dSs, ζ

〉)

=
〈
φt (X0)+

∫ t

0
φt−s

(
δ(Xs)#dSs

)
, ζ

〉
− 〈X0, ζ 〉 −

∫ t

0

〈
δ(Xs)#dSs, ζ

〉

= 〈Xt, ζ 〉 − 〈X0, ζ 〉 −
∫ t

0

〈
δ(Xs)#dSs, ζ

〉
.

The first line has been justified in Proposition 4 applied to the definition of mild solutions. The last line, clearly
concluding to what we wanted to prove, uses nothing but again the definition of a mild solution. Of course the third
line uses again the differential equation for φ. The second line reduces to the second equation in Proposition 4. �

Finally, to get uniqueness results assuming only really weak conditions, we want to introduce a notion of ultraweak
solution for which uniqueness will be easy to prove so that we will build unique ultraweak solutions which are also
ultramild solutions. We thus assume Γ0u(ω). This also needs some results on chaotic decomposition very similar to
those of Section 5.3 in [3] but not only for the free Fock space F(H) with H = L2(R+) but also for H = L2(R+)⊕N

and moreover with an initial condition space L2(M0) i.e. we want to see a multiple stochastic integral variant of
L2(M) = L2(M0 �SC(H)) � L2(M0) � F (H). Since this requires a little bit of notation with nothing new, we merely
state the results after introduction of notation.
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For f ∈ L2(Rn+ × Nn,L2(M0)
n+1), we want to define a multiple stochastic integral I (f ) = ∫

f (t1, . . . ,

tn)#dSt1 · · ·dStn . Of course, we extend it linearly and isometrically as in [3] after defining it on appropriate mul-
tiple of characteristic function f = 1Aδk1,...,knα0 ⊗ · · · ⊗ αn, αi ∈ M0, δk1,...,kn the function on N

n taking non-zero
value 1 only on the indicated support, A= [u1, v1]×· · ·×[un, vn] with A⊂R

n+ −Dn (Dn the usual full diagonal e.g.
Definition 5.3.1 of [3]). We will call later step function any linear combination of such f ’s with maybe α0 ⊗ · · · ⊗ αn
replaced by U ∈ L2(M0)

⊗(n+1). We thus define:

I (f ) := α0
(
S(k1)
v1

− S(k1)
u1

)
α1 · · · (S(kn)

vn
− S(kn)

un

)
αn.

Recall I (f ) ∈ En according to the notation before assumption Γ0u(ω).
Then, we can write f = ∑∞

n=0 fn ∈ L2(M0) � F (H) so that I (f ) = ∑∞
i=0 I (fn) define an isometric map

I :L2(M0) � F (H) → L2(M) determined by I (f )Ω = f (Ω the usual cyclic empty vector in Fock space), as in
Proposition 5.3.2 of [3]. Recall PΓ is the projection on adapted bi-processes. It is defined (as Γ ) in Proposition 5.3.12
in [3] before free Bismut–Clark–Ocone formula. Note that this formula is also valid mutatis mutandis in our context,
recall it involves ∇s the gradient operator from Definition 5.1.1 in [3]. For instance in the really elementary case of
Y ∈ En ∩L2(Ms), it gives:

Y = EM0(Y )+
∫ s

0
(PΓ ∇uY )#dSu.

Consider a step function f = 1Aδk1,...,knα0 ⊗ · · · ⊗ αn as above such that

α0 ⊗ · · · ⊗ αn =
∑

{j0<···<jk}⊂[[0,n]]
Jj0,...,jk (Uj0,...,jk ),

the sum running over (maybe empty) subsets of [[0, n]], with

1⊗1{j0 �=0} ⊗Uj0,...,jk ⊗ 1⊗1{jk �=n} ∈ D
(
�⊗(k+1+1{j0 �=0}+1{jk �=n}))

⊂ L2(M0)
⊗1{j0 �=0} ⊗ (

L2(M0)�C
)⊗(k+1) ⊗L2(M0)

⊗1{jk �=n}

(with the notation L2(M0)
⊗0 = C, 1⊗0 the unit in this C) and, for J = {j0 < · · · < jk} Jj0,...,jk = JJ the unique

isometric linear map L2(M0)
⊗k+1 → L2(M0)

⊗n+1 extended from Jj0,...,jk (a0 ⊗· · ·⊗ak) = 1⊗j0 ⊗a0 ⊗1⊗(j1−j0−1)⊗
a1 · · · ⊗ ak ⊗ 1⊗(n−jk). We will later write Dn the space of linear combinations of such α0 ⊗ · · · ⊗ αn’s. Since the
images of JJ∪{0,n} for different J ∪{0, n} are orthogonal, there is obviously a closed densely defined positive operator
�⊗[n] on the closure of Dn in L2(M0)

⊗(n+1) defined on Dn by

�⊗[n](α0 ⊗ · · · ⊗ αn)

=
∑

J={j0<···<jk}⊂[[0,n]]
JJ∪{0,n}

(
�⊗(k+1+1{j0 �=0}+1{jk �=n})(1⊗1{j0 �=0} ⊗Uj0,...,jk ⊗ 1⊗1{jk �=n})).

Note that by assumption e.4 D(�⊗[n]) ⊃ (D ⊕C)⊗n+1, this explains �⊗[n] densely defined. Note also that the formula
�(I (f )) = I (�⊗[n](f )) proved bellow first in case f ∈ Dn explains why �⊗[n] is positive on Dn.

Lemma 9. Assume Γ0u(ω). For any step function f ∈ L2(Rn+ × N
n) ⊗alg D(�⊗[n]) as above I (f ) ∈ D(�) and

�(I (f )) = I (�⊗[n](f )). Moreover, if f ∈ L2(Rn+ ×N
n)⊗alg Dn, PΓ ∇sI (f ) ∈ D(δ∗) and δ∗PΓ ∇sI (f ) ∈ Span{hk ∈

Ek, k ≤ n− 1}.

Proof. It suffices to consider f ∈ L2(Rn+ × N
n) ⊗alg Dn step function, e.g. I (f ) := α0(S

(k1)
v1 − S

(k1)
u1 ) · · · (S(kn)

vn −
S
(kn)
un )αn as before. Now for any J = {j0, . . . , jk} ⊂ [[0, n]] we can write

(
S(k1)
v1

− S(k1)
u1

) · · · (S(kj0 )
vj0

− S
(kj0 )
uj0

)⊗ (
S
(kj0+1)
vj0+1 − S

(kj0+1)

uj0+1

) · · · (S(kj1 )
vj1

− S
(kj1 )
uj1

)⊗ · · · (S(kn)
vn

− S(kn)
un

)
=

∑
i1,...,ik∈N,i0,ik+1∈N∪{−1}

λ
(J )
i0,...,ik+1

(f )ei0 ⊗ · · · ⊗ eik+1
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with by convention e−1 = 1 occurring only if j0 = 0 and/or jk = n and in these cases the only non-vanishing λi is
respectively for i with i0 = −1 (ik+1 = −1). (Note that if J empty we have k = −1 and no tensor product.) This uses

only the orthonormal basis introduced before Γ0(ω) since any (S
(kji+1)
vji+1 −S

(kji+1)
uji+1 ) · · · (S(kji+1 )

vji+1
−S

(kji+1 )

uji+1
) is orthogonal

to C when not 1.
Especially, if we write ei = (ei0 ⊗ ei1 · · · ⊗ eik+1),

I (f ) =
∑

J={j0,...,jk}⊂[[0,n]]

∑
i1,...,ik∈N,i0,ik+1∈N∪{−1}

λ
(J )
i0,...,ik+1

(f )(1 ⊗Uj0,...,jk ⊗ 1)#ei,

so that using assumption e.2, writing λ
(J )
i (f ) = λ

(J )
i0,...,ik+1

(f ), N− =N∪ {−1}, one gets:

�
(
I (f )

) =
∑

J⊂[[0,n]]

∑
i∈N−×Nk×N−

λ
(J )
i (f )

(
1⊗1{j0=0} ⊗ (

�⊗(k+1+1{j0 �=0}+1{jk �=n})(1⊗1{j0 �=0}

⊗Uj0,...,jk ⊗ 1⊗1{jk �=n}))⊗ 1⊗1{jk=n})#ei
=

∑
J⊂[[0,n]]

I
((
JJ∪{0,n}

(
�⊗(k+1+1{j0 �=0}+1{jk �=n})(1⊗1{j0 �=0} ⊗Uj0,...,jk ⊗ 1⊗1{jk �=n}))))

= I
(
�⊗[n](f )

)
.

Recall (PΓ ∇sI (f ))ki = 1(ui ,vi ](s)(α0(S
(k1)
v1 −S

(k1)
u1 ) · · ·αi−1 ⊗αi · · · (S(kn)

vn −S
(kn)
u1 )αn, where vi is the hugest of all

vk’s ((PΓ ∇sI (f ))j = 0 if j �= ki ). As before, one gets PΓ ∇sI (f ) = I ⊗ I (f1,s ⊗ f2,s) ∈ D(�) ⊗alg D(�) so that
assumption e.1 concludes to the domain statement. Note that PΓ ∇sI (f ) ∈ (Ei−1 ⊗ En−i )

⊕N, and thus by assumption
e.3 is orthogonal to δ(I (gp)) for any p ≥ n if gp ∈ L2(Rn+ ×N

n)⊗alg D(�⊗[p]). Thus δ∗PΓ ∇sI (f ) is orthogonal to
all such I (gp), and by density for all hp ∈ Ep,p ≥ n. This gives the last statement. �

We can now define:

Definition 10. An ultraweak solution (of (2)) is an L2-weakly continuous adapted process Xt in L2
a,loc(R+,L2(M))

such that, for some C and ω, ‖Xt‖2 ≤ Ceωt and for all finite sums g = ∑
n gn, gn ∈ L2(Rn+ × N

n) ⊗alg Dn step
functions as above, then a.e. in t ∈R+:

〈
I (g),Xt

〉 = 〈
I (g),X0

〉− 1

2

∫ t

0
ds
〈
�I (g),Xs

〉+ ∫ t

0
ds
〈
δ∗PΓ ∇sI (g),Xs

〉
.

Note that a weak solution satisfying ‖Xt‖2 ≤ Ceωt is an ultraweak solution. Indeed from the free Bismut–Clark–
Ocone formula and the previous lemma for domain issues, one gets:〈

I (g),

∫ t

0
δ(Xs)#dSs

〉
=

〈∫ t

0

(
PΓ ∇uI (g)

)
#dSu,

∫ t

0
δ(Xs)#dSs

〉
=

∫ t

0
ds
〈
δ∗PΓ ∇sI (g),Xs

〉
.

1.5. Mild and ultramild solutions

Here is the main theorem in the general setting.

Theorem 11.

(i) Let us assume Γ0u(ω) and that X0 ∈ L2(M0), then Eq. (2) has a unique ultraweak solution. This solution is also
an ultramild solution Xt and we have, for every T and a.e. in t:

‖Xt‖2
2 ≤ eωt‖X0‖2

2,

‖X‖2
Ba

2,φδ([0,T ]) ≤ ‖X0‖2
22

eωT − 1

ω

(
or 2T ‖X0‖2

2 if ω = 0
)
.
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Furthermore, if we write Xε
s a solution for δ replaced by (1 − ε)δ (ε ∈ (0,1]), then Xε

s is a unique mild solution
of this variant equation, i.e. a solution of (7ε) in Ba

2,�1/2 , and the solution built above Xt is, for every T , a weak

limit (ε → 0) in Ba
2,φδ([0, T ]) and strong limit in C0([0, T ], (L2(M),σ (L2(M),L2(M)))) of the solutions Xε

t .

Finally, if we assume X0 ∈ D(�⊗1/2δ)∩D(�)∩L2(M0) then the solution satisfies a.e.:

∥∥Xt −X0 − δ(X0)#St
∥∥2

2

≤ t2

4

∥∥�(X0)
∥∥2

2 + (
eωt − 1

)‖X0‖2
2

+ t2

2

(∥∥�⊗1/2(δ(X0)
)∥∥2

2 + π

4

(∥∥�(X0)
∥∥2

2 +ω
∥∥�1/2(X0)

∥∥2
2

)1/2∥∥�⊗1/2(δ(X0)
)∥∥

2

)

+ t sup
s∈[0,t]

(∥∥�1/2(φsX0)
∥∥2

2 − ∥∥δ(φsX0)
∥∥2

2

)+ t2ω/4
∥∥�1/2(X0)

∥∥2
2.

(ii) Let us assume Γ1u(ω,C) and that X0 ∈ D(�1/2)∩L2(M0), then Eq. (2) has a unique mild solution Xt . Moreover,
we have the following inequalities a.e.:

‖Xt‖2
2 ≤ eωt‖X0‖2

2,∥∥δ̃(Xt )
∥∥2

2 ≤ ∥∥δ̃(X0)
∥∥2

2e(6+2ω)C4t .

If we write Xε
s a solution for δ replaced by (1 − ε)δ (ε ∈ (0,1]), then, if δ = δ̃, Xε

s is a strong solution, i.e. a
solution of (7ε) in Ba

2,�([0, T ]), for every T , and otherwise, if δ �= δ̃ a mild solution by (i). Furthermore, Xt is,

for every T , the weak limit (ε → 0) in Ba
2,δ([0, T ]) and strong limit in B([0, T ],L2(M)) (the space of bounded

functions with uniform convergence) of the solution Xε
t .

Proof. Let us sketch the plan of the proof. Step 0 proves uniqueness of ultraweak solutions, which is a useful prelimi-
nary. We will first find unique mild (resp strong in case (ii)) solutions after replacing δ by (1 − ε)δ with ε > 0 [step 1].
Then, we will prove that when ε → 0 we can get some weak convergence to an ultramild (resp a mild, in case (ii))
solution of (7), mainly by showing several inequalities like the ones stated in the theorem [step 2 for part (i), step 3
for part (ii)].
Step 0: Uniqueness of ultraweak solutions in case (i).

We have to show that an ultraweak solution with X0 = 0 vanishes. The proof is in the spirit of Theorem 5.6 in
[17] in the symmetric Fock space context. For gn as in Definition 10, we prove by induction on n 〈I (gn),Xs〉 = 0.
By density this gives the same for a step function gn ∈ L2(Rn+ × N

n) ⊗alg D(�⊗[n]). The induction hypothesis (and
Lemma 9) or only the definition of ∇s at initialization, gives the last integral in the definition of ultraweak solution
vanishes, so that for a step function g = gn ∈ L2(Rn+ ×N

n)⊗alg D(�⊗[n]):

〈
I (g),Xt

〉 = −1

2

∫ t

0
ds
〈
�I (g),Xs

〉
.

Since ‖Xt‖2 ≤ C exp(ωt), we can consider the Laplace transform for λ > ω so that we get:

λ

∫ ∞

0
dt exp(−λt)

〈
I (g),Xt

〉 = −λ

2

∫ ∞

0
dt exp(−λt)

∫ t

0
ds
〈
�I (g),Xs

〉

= −λ

2

∫ ∞

0
ds
〈
�I (g),Xs

〉 ∫ ∞

s

dt exp(−λt)

= −1

2

∫ ∞

0
dt exp(−λt)

〈
�I (g),Xt

〉
.
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Thus
∫ ∞

0 dt exp(−λt)〈(λ+�/2)I (g),Xt 〉 = 0 but (using Lemma 9)

I
((
λ+�⊗[n]/2

)−1
(g)

) = (λ+�/2)−1I (g),

thus applying the result above to gλ = (λ+�⊗[n]/2)−1(g) gives∫ ∞

0
dt exp(−λt)

〈
I (g),Xt

〉 = 0.

The result of the next inductive step (〈I (g),Xt 〉 = 0) follows from uniqueness of Laplace transform. Now by density
of the functions of the form I (

∑
gn) (as in definition of ultraweak solutions) we get Xt = 0.

Step 1: Assume Γ0(ω). For any ε ∈ (0,1] and X0 = Xε
0 ∈ L2(M0) there exists a unique mild solution (even in

Ba
2,�1/2([0, T ]) for any T) to Xε

t = φt (X0)+ (1 − ε)γ (Xε)t .

Assume now Γ1(ω,C) and δ = δ̃. For any ε ∈ (0,1] and X0 = Xε
0 ∈ D(�1/2)∩L2(M0) there exists a unique strong

solution (i.e. in Ba
2,�([0, T ]) for any T) to Xε

t = φt (X0)+ (1 − ε)γ (Xε)t .
For each statement we can be content with proving for a small T > 0 to be fixed later. Then, using the fact that

Γ0,Γ1 are translation invariant in time, if we consider the same problem starting at kT , this gives the same result on
any [0, T ].

The first statement is easy and a consequence of (5) in Proposition 5. If Y ∈ Ba
2,�1/2([0, T ]), define an element at

least in L2(Mt)∩D(�1/2) (for a.e. t ∈ (0, T ], by Proposition 5 and since Ba
2,�1/2([0, T ]) ↪→ Ba

2,δ([0, T ])):

Γ (Y )t = φt (X0)+ (1 − ε)

∫ t

0
φt−s

(
δ(Ys)#dSs

)
.

First of all, Γ (Y ) is in Ba
2,�1/2 for Y in this space. Indeed, first φt (X0) is in this space, as a limit (coming from (4))

of φt (ηα(X0)), continuous function in C0([0, T ],D(�1/2)) ↪→ Ba
2,�1/2([0, T ]) (a usual �1/2-simple-process approx-

imation giving this). Second, since, if Yn is a �1/2-simple process converging to Y , γ (Yn) converge to γ (Y ) (a priori
in L2([0, T ],D(�1/2)) from Proposition 5 (5)), it suffices to note γ (Yn) is itself in Ba

2,�1/2([0, T ]).
Finally it suffices to check Γ is a contraction (after moving to an equivalent norm) on Ba

2,�1/2([0, T ]). Indeed note
from Proposition 5 and the definition:

∫ T

0
ds
∥∥�1/2(Γ (Y )s − Γ (Z)s

)∥∥2
2 ≤ (1 − ε)2

∫ T

0
ds
∥∥δ(Y −Z)s

∥∥2
2,

(8)∫ T

0
ds
∥∥Γ (Y )s − Γ (Z)s

∥∥2
2 ≤ (1 − ε)2T

∫ T

0
ds
∥∥δ(Y −Z)s

∥∥2
2.

Thus, fix 0 < T < ε/(2 max(1,ω)), so that one can take K = ε/2T to get (1 − ε +KT )max(1,ω) < (1 − ε/2)K
and define the equivalent norm on Ba

2,�1/2 :

‖Y‖2
Ba

2,�1/2 ,K
=

∫ T

0
ds
∥∥�1/2(Y )s

∥∥2
2 +K‖Ys‖2

2.

We deduce from Γ0(ω) c.1 and the previous inequalities that

∥∥Γ (Y )− Γ (Z)
∥∥2
Ba

2,�1/2 ,K

≤ (
(1 − ε)2 +KT

)∫ T

0
ds
(∥∥�1/2(Y −Z)s

∥∥2
2 + max(1,ω)

∥∥(Y −Z)s
∥∥2

2

)
≤ (1 − ε/2)‖Y −Z‖2

Ba

2,�1/2 ,K
.
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This concludes to the first statement.
For the second statement, we want to show Γ is a contraction on Ba

2,�([0, T ]) after taking an equivalent norm
again. We thus now take Y ∈ Ba

2,�([0, T ]).
We can apply Proposition 5 (6) to get:

∫ T

0
dt
∥∥�η1/2

α η
1/2
α′ γ (Y )t

∥∥2
2 = −∥∥�1/2η1/2

α η
1/2
α′

(
γ (Y )T

)∥∥2
2 +

∫ T

0
dt
∥∥�⊗1/2η⊗1/2

α η
⊗1/2
α′

(
δ(Yt )

)∥∥2
2

≤
〈
�ηα

∫ T

0
δ(Yt )#dSt ,

∫ T

0
δ(Yt )#dSt

〉
,

where we have used in the second line Lemma 3(ii) and contractivity of η1/2
α′ . But now (in the case we assume Γ1 and

δ = δ̃), we can use Lemma 3(i) and then Γ1 c.2 and the bound in Lemma 2 for Hα to get:

〈
�ηα

∫ T

0
δ(Yt )#dSt ,

∫ T

0
δ(Yt )#dSt

〉

=
〈∫ T

0
δ ◦�(

ηα(Ys)
)
#dSs +

∫ T

0
Hα

(
Ys ⊕�1/2(Ys)

)
#dSs,

∫ T

0
δ(Yt )#dSt

〉

≤
∫ T

0

∥∥�(Yt )
∥∥2

2 dt + (
max(1,ω)C +ω

)∫ T

0
‖Yt‖2

2 + ∥∥�1/2(Yt )
∥∥2

2 dt.

But better, we can write ‖�η
1/2
α η

1/2
α′ γ (Y )t‖2

2 = 〈�ηα(�)1/2η
1/2
α′ γ (Y )t , (�)1/2η

1/2
α′ γ (Y )t 〉 to show that this in-

creases to ‖�η
1/2
α′ γ (Y )t‖2

2 in α and then to ‖�γ (Y )t‖2
2 in α′, with the inequality bellow and as a consequence (recall

C ≥ 1) γ (Y )t ∈ D(�) a.e. and we got:

∫ T

0
dt
∥∥�γ (Y )t

∥∥2
2 ≤

∫ T

0

∥∥�(Yt )
∥∥2

2 dt + 2 max(1,ω)C
∫ T

0
‖Yt‖2

2 + ∥∥�1/2(Yt )
∥∥2

2 dt. (9)

Time has gone to choose T small enough and introduce the equivalent norm on Ba
2,�([0, T ]) for which Γ will be

a contraction under the assumptions of (ii).
First choose T such that T ω < 1 − (1 − ε)2 so that T ω < 1

(1−ε)2 − 1. Second, let L >
2C max(1,ω)(1+T )

1−(1−ε)2−ωT
> 0, and

K = Lω + 2C max(1,ω) > 0 thus:

L > Lη := L(1 − ε)2 + (
2C max(1,ω)(1 + T )+ωTL

)
(1 − ε)2

= L(1 − ε)2 + (
2C max(1,ω)+ TK

)
(1 − ε)2.

We get also:

K >Kη′ := (1 − ε)2K(1 + T ω) = (1 − ε)2(Lω + 2C max(1,ω)+KTω
)
.

Finally, define the clearly equivalent norm: ‖X‖2
L,K,T = ∫ T

0 (L‖�1/2(Xs)‖2
L2(τ )

+K‖Xs‖2
L2(τ )

+‖�(Xs)‖2
L2(τ )

)ds.
We get, using (8) and (9) in the first line, and then assumption c.1 in the second line:

(1 − ε)2
∥∥γ (Y )∥∥2

L,K,T

≤ (1 − ε)2
∫ T

0

∥∥�(Yt )
∥∥2

2 dt

+ (1 − ε)22C max(1,ω)
∫ T

0

∥∥�1/2(Yt )
∥∥2

2 + ‖Yt‖2
2 dt + (L+KT )(1 − ε)2

∫ T

0

∥∥δ(Yt )∥∥2
2 dt
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≤ (1 − ε)2
∫ T

0

∥∥�(Yt )
∥∥2

2 dt +Lη

∫ T

0

∥∥�1/2(Yt )
∥∥2

2 dt +Kη′
∫ T

0
‖Yt‖2

2 dt

≤ max
(
(1 − ε)2, η, η′)‖Y‖2

L,K,T .

First of all, this shows that Γ (Y ) is indeed in Ba
2,� for Y in this space: first, since φt (X0) is in this space as before

and second, since, if Yn is a �-simple process converging to Y , γ (Yn) converge to γ (Y ) (a priori in L2([0, T ],D(�)),
and γ (Yn) is itself in Ba

2,�.
Then, we can say that Γ is a contraction on Ba

2,�([0, T ]) equipped of the norm ‖ · ‖L,K,T , this concludes.
Step 2: Conclusion of the proof of (i).

Applying orthogonality (via Lemma 3(iii)) and equation (5) to (1 − ε)γ (Xε)t = Xε
t − φt (X0), we know that for

any T :∫ T

0
dt
∥∥�1/2Xε

t

∥∥2
2 =

∫ T

0
dt
∥∥�1/2φt (X0)

∥∥2
2 − (1 − ε)2

∥∥(γ (Xε
)
T

)∥∥2
2 + (1 − ε)2

∫ T

0
dt
∥∥(δ(Xε

t

))∥∥2
2. (10)

Using Eq. (4) and orthogonality and then assumption c.1 we deduce:

(1 − ε)2
∥∥γ (Xε

)
t

∥∥2
2 ≤ ‖X0‖2

2 − ∥∥φt (X0)
∥∥2

2 +ω

∫ t

0

∥∥Xε
s

∥∥2
2 ds,

∥∥Xε
t

∥∥2
2 = ∥∥Xε

0

∥∥2
2 + (1 − ε)2

∥∥∥∥
∫ t

0
δ
(
Xε

s

)
#dSs

∥∥∥∥
2

2
−

∫ t

0

∥∥�1/2(Xε
s

)∥∥2
2 ds ≤ ∥∥Xε

0

∥∥2
2 +ω

∫ t

0

∥∥Xε
s

∥∥2
2 ds.

Note this second inequality works for ε = 0 as soon as we have a solution in this case. We can use Gronwall’s lemma
on this second inequality. It proves the first inequality of the theorem (for Xε instead of X). Combining this with the
first inequality, we get, after integration, the second inequality in part (i), showing that Xε is bounded in Ba

2,φδ .

∥∥Xε
∥∥
Ba

2,φδ
=

(∫ T

0

∫ t

0

∥∥φ⊗
t−sδ(Xs)

∥∥2
L2(τ⊗τ)

⊕
N ds + ‖Xt‖2

L2(τ )
dt

)1/2

≤ 1

(1 − ε)

(∫ T

0

(
‖X0‖2

L2(τ )
+ω

∫ t

0
dseωs‖X0‖2

L2(τ )

)
+ eωt‖X0‖2

L2(τ )
dt

)1/2

≤ 1

(1 − ε)

(∫ T

0
2eωt‖X0‖2

L2(τ )
dt

)1/2

.

Modulo extraction, we get a *-weak limit in Ba
2,φδ([0, T ]) by compactness. As a consequence, since γ is a linear

continuous map as recalled in the part on stochastic convolution, γ (Xε) (or at least the image of the previous ex-
traction) converges in L2([0, T ],L2(M)) weakly. Since φt (X0) is a constant in this space we can take the limit and
verify the equation in this space, thus a.e., we especially get an ultramild solution. Since we deduce any such *-weak
limit point is also an ultraweak solution (since Xε is a mild thus weak thus ultraweak solution of the ε variant) we get
*-weak convergence from uniqueness proved in step 0.

Moreover, taking ξ ∈ L2(M), with, say, the projection of ξ on the space of stochastic integrals given by
∫ T

0 ηs#dSs ,
let us prove that 〈ξ,Xε

t 〉 is an equicontinuous and uniformly bounded family (for ε ∈ (0,1]) on [0,T]. From what we
obtained above, only equicontinuity need to be proved, but (for t ≤ τ ) we have (using the equation for Xε

τ and
Cauchy–Schwarz):〈

ξ,Xε
τ −Xε

t

〉 ≤ ‖ξ‖2
∥∥φτ−t (X0)−X0

∥∥
2

+ (1 − ε)

∫ τ

t

ds
〈
ηs,φ

⊗
τ−s

(
δ
(
Xε

s

))〉+ (1 − ε)

∫ t

0
ds
〈
φ⊗
τ−t ηs − ηs,φ

⊗
t−s

(
δ
(
Xε

s

))〉

≤ ‖ξ‖2
∥∥φτ−t (X0)−X0

∥∥
2 +

(∫ τ

t

ds‖ηs‖2
2

)1/2∥∥(1 − ε)γτ
(
Xε

)∥∥
2
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+
(∫ t

0

∥∥φ⊗
τ−t ηs − ηs

∥∥2
2

)1/2∥∥(1 − ε)γt
(
Xε

)∥∥
2

≤ ‖ξ‖2
∥∥φτ−t (X0)−X0

∥∥
2 + eωτ/2‖X0‖2

((∫ τ

t

ds‖ηs‖2
2

)1/2

+ ‖φτ−t ξ − ξ‖2

)
.

This concludes using strong continuity of φt (and using Heine–Cantor Theorem). As a consequence, using Arzela–
Ascoli Theorem (and separability assumption on L2(M)), we get via diagonal extraction, Xt is weakly continuous,
and limit of a subsequence of Xε

t in C0([0, T ], (L2(M),σ (L2(M),L2(M)))). As a consequence, this easily enables
us to pass to the limit ε → 0 in the first inequality of the theorem. From this we get also that any limit point is an
ultraweak solution, so that from uniqueness we get the stated limit without extraction.

We now establish the supplementary inequality.
First by orthogonality and assumption d.2 of Γ0(ω), we have:

∥∥Xε
T −X0 − (1 − ε)δ(X0)#ST

∥∥2
2

= ∥∥φT (X0)−X0
∥∥2

2 + (1 − ε)2
∫ T

0
dt
∥∥φ⊗

T−t δ
(
φt (X0)

)− δ(X0)
∥∥2

2 + (1 − ε)4
∥∥γ ◦ γ (Xε

)
T

∥∥2
2.

Morover, the same kind of orthogonality and relations (5) and (4) imply that:

(1 − ε)4
∥∥γ ◦ γ (Xε

)
T

∥∥2
2

=
∫ T

0
dt
(
(1 − ε)2

∥∥δ(Xε
t

)∥∥2
2 − ∥∥�1/2(Xε

t

)∥∥2
2

)

+
∫ T

0
dt
(∥∥�1/2(φt (X0)

)∥∥2
2 − (1 − ε)2

∥∥δ(φt (X0)
)∥∥2

2

)+ (1 − ε)2
∥∥�1/2(γ (φ·(X0)

)
t

)∥∥2
2

≤ (
eωT − 1

)‖X0‖2
2 + T sup

[0,T ]
(∥∥�1/2(φtX0)

∥∥2
2 − (1 − ε)2

∥∥δ(φtX0)
∥∥2

2

)

+ (1 − ε)2
∫ T

0
dt
∥∥δ(φt (X0)

)∥∥2
2 − ∥∥φ⊗

T−t δ
(
φt (X0)

)∥∥2
2,

where we used, in the inequality, the first inequality of our theorem.
Our first line is in our estimate (once added a (1 − ε) where needed for our ε variant). It only remains to get the

other terms by several elementary computations, only involving X0.

∫ T

0
dt
∥∥φ⊗

T−t δ
(
φt (X0)

)− δ(X0)
∥∥2

2 + ∥∥δ(φt (X0)
)∥∥2

2 − ∥∥φ⊗
T−t δ

(
φt (X0)

)∥∥2
2

=
∫ T

0
dt
∥∥δ(φtX0 −X0)

∥∥2
2 + 2�

∫ T

0
dt
〈
δ(X0)− φ⊗

T−t δ(X0), δ(X0)
〉

+ 2�
∫ T

0
dt
〈(
φ⊗
T−t − id

)
δ(X0), δ

(
X0 − φt (X0)

)〉

≤
∫ T

0
dt
∥∥�1/2(φtX0 −X0)

∥∥2
2 + T 2ω/4

∥∥�1/2(X0)
∥∥2

2

+
∫ T

0
dt (T − t)

∥∥�⊗1/2(δ(X0)
)∥∥2

2

+
∫ T

0
dt
√
t (T − t)

(∥∥�(X0)
∥∥2

2 +ω
∥∥�1/2(X0)

∥∥2
2

)1/2∥∥�⊗1/2(δ(X0)
)∥∥

2
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=
∫ T

0
dt
∥∥�1/2(φtX0 −X0)

∥∥2
2 + T 2ω/4

∥∥�1/2(X0)
∥∥2

2

+ T 2

2

(∥∥�⊗1/2(δ(X0)
)∥∥2

2 + π

4

(∥∥�(X0)
∥∥2

2 +ω
∥∥�1/2(X0)

∥∥2
2

)1/2∥∥�⊗1/2(δ(X0)
)∥∥

2

)
.

The inequality comes from Γ0(ω)c.1 and several uses of the spectral theorem applied in the form 〈(id−φt )
ix, x〉 ≤

〈 t2�x,x〉 (i = 1 or 2).
Finally, it remains to compute the last integral using the spectral theorem for �:

∫ T

0
dt
∥∥�1/2(φt (X0)−X0

)∥∥2
2 = 4

∥∥φT/2(X0)
∥∥2

2 − 3‖X0‖2 − ∥∥φT (X0)
∥∥2

2 + T
∥∥�1/2(X0)

∥∥2
2

= 2
〈
(φT − id+T�/2)(X0),X0

〉− ∥∥φT (X0)−X0
∥∥2

2

≤ T 2

4

∥∥�(X0)
∥∥2

2 − ∥∥φT (X0)−X0
∥∥2

2.

Putting everything together this concludes to:

∥∥Xε
t −X0 − (1 − ε)δ(X0)#St

∥∥2
2

≤ t2

4

∥∥�(X0)
∥∥2

2 + (
eωt − 1

)‖X0‖2
2 + (

1 − (1 − ε)2)∥∥φt (X0)−X0
∥∥2

2

+ t2

2

(∥∥�⊗1/2(δ(X0)
)∥∥2

2 + π

4

(∥∥�(X0)
∥∥2

2 +ω
∥∥�1/2(X0)

∥∥2
2

)1/2∥∥�⊗1/2(δ(X0)
)∥∥

2

)

+ t sup
[0,t]

(∥∥�1/2(φsX0)
∥∥2

2 − (1 − ε)2
∥∥δ(φsX0)

∥∥2
2

)+ t2ω/4
∥∥�1/2(X0)

∥∥2
2.

We easily obtain the limit case ε = 0 using the limit in C0([0, T ], (L2(M),σ (L2(M),L2(M)))).
Step 3: Under the assumptions of (ii), with Ba

2,δ depending on our fixed T > 0, and for X0 ∈ D(�), there exists a

unique mild solution Xt of (2) which is the weak limit in Ba
2,δ and strong limit in B([0, T ],L2(M)) of the solution Xε

t

of step one. Moreover, this solution satisfies the two first inequalities of (ii) in the theorem.
Consider ε > 0 like in step 1. In case δ �= δ̃, we don’t know Xε

t ∈ D(�), since we have only a mild solution, we
have to circumvent this trouble for computational purposes.

Applying the first part of step 1 with δ replaced by η⊗
β δ, we get a solution X

ε,β
t in Ba

2,�1/2 and since by Proposition 5

(5) and the argument in step one, γ (Xε,β
t ) ∈ Ba

2,�1/2 we deduce ηβγ (X
ε,β
t ) ∈ Ba

2,�3/2 . As a consequence, if X0 ∈ D(�)

we get as in step 1, Xε,β
t ∈ Ba

2,�3/2 .

We can now compute for our solution X
ε,β
t . We can apply Proposition 5 (6) in case B = δ̃, α = α′ = β and the

variant of (4) valid for x = X0 ∈ D(�1/2): ‖δ̃φt (x)‖2
2 = ‖δ̃x‖2

2 − ∫ t

0 �〈δ̃�φs(x), δ̃φs(x)〉ds. Using also orthogonality
from Lemma 3 but for δ̃, we get:

∥∥δ̃(Xε,β
t

)∥∥2
2 = ∥∥δ̃(Xε

0

)∥∥2
2 + (1 − ε)2

∥∥∥∥δ̃ηβ
∫ t

0
δ
(
Xε,β

s

)
#dSs

∥∥∥∥
2

2
−

∫ t

0
�〈

δ̃�Xε,β
s , δ̃Xε,β

s

〉
ds.

We have thus shown:∥∥δ̃(Xε,β
t

)∥∥2
2 = ∥∥δ̃(Xε

0

)∥∥2
2

+ (1 − ε)2
∥∥∥∥(η⊗

β δ̃ + H̃β

)∫ t

0
δ
(
Xε,β

s

)
#dSs

∥∥∥∥
2

2
−

∫ t

0
�〈

�⊗ ◦ δ̃(Xε,β
s

)−H
(
δ̃
(
Xε,β

s

))
, δ̃Xε,β

s

〉
ds.
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We used the identities of assumption f.2 and of Lemma 2 about δ̃� and δ̃ηβ justified since almost surely in s X
ε,β
s ∈

D(�3/2) and because via Lemma 3(i) we know
∫ t

0 δ(X
ε,β
s )#dSs ∈ D(δ̃). We deduce:

∥∥δ̃(Xε,β
t

)∥∥2
2

≤ ∥∥δ̃(Xε
0

)∥∥2
2 + (1 − ε)2

∫ t

0

∥∥δ̃⊗δ
(
Xε,β

s

)∥∥2
2 ds + 2�

〈
δ̃ηβ

∫ t

0
δ
(
Xε,β

s

)
#dSs, H̃β

∫ t

0
δ
(
Xε,β

s

)
#dSs

〉

−
∫ t

0
�〈

�⊗ ◦ δ̃(Xε,β
s

)−H
(
δ̃
(
Xε,β

s

))
, δ̃Xε,β

s

〉
ds

≤ ∥∥δ̃(Xε
0

)∥∥2
2 +

∫ t

0
2C

∥∥δ̃(Xε,β
s

)∥∥2
2 ds + 2�

〈
δ̃ηβ

∫ t

0
δ
(
Xε,β

s

)
#dSs, H̃β

∫ t

0
δ
(
Xε,β

s

)
#dSs

〉

≤ ∥∥δ̃(Xε
0

)∥∥2
2 +

∫ t

0

(
2C + 2

C4

β
(ω + 2β)

)∥∥δ̃(Xε,β
s

)∥∥2
2 ds.

In the first line, we used ηβ contractive after computing the first scalar product. In the second line, we used assumption
h to cancel one term and the bound ‖H‖ ≤ C. In the last line, we used assumption g, the bound on H̃β from Lemma 2
and ‖δ̃ηβ‖ ≤ C

√
ω + 2β already used there.

Applying Gronwall’s lemma, we got (for β ≥ 1):

∥∥δ̃(Xε,β
t

)∥∥2
2 ≤ ∥∥δ̃(Xε,β

0

)∥∥2
2e(6+2ω)C4t .

As a consequence, we get a weak limit point Xε,∞
t in Ba

2,δ . Let us show such a limit point is a solution of (2ε) in
Ba

2,δ . This gives by uniqueness X
ε,∞
t = Xε

t , and the fact that the weak limit point is a limit. Of course, it suffices to

show the equation weakly, the only non-trivial limit is the stochastic integral, but since δX
ε,β
t is bounded it is easy to

remove ηβ on the other side of the scalar product, and then to use weak convergence of Xε,β
t in Ba

2,δ . We also get a

corresponding inequality a.e. for the limit by seeing the inequality weakly in L2([0, T ]).
As is usual, if we are able to prove bounds in D(δ), we can also deduce ‖ · ‖2 Cauchy property. Using (5) after

using the SDE and the common initial conditions, we also get (for 0 < ε,η < 1):

∥∥Xε
t −X

η
t

∥∥2
2 = ∥∥γ ((1 − ε)Xε

t − (1 − η)X
η
t

)∥∥2
2

= −
∫ t

0

∥∥�1/2γ
(
(1 − ε)Xε

s − (1 − η)Xη
s

)∥∥2
2 ds +

∫ t

0

∥∥δ((1 − ε)Xε
s − (1 − η)Xη

s

)∥∥2
2 ds

≤ −
∫ t

0

∥∥�1/2(Xε
s −Xη

s

)∥∥2
2 ds +

∫ t

0

∥∥δ(Xε
s −Xη

s

)∥∥2
2

+ 12 max(ε, η)max
(∥∥δ(Xε

s

)∥∥
2,
∥∥δ(Xη

s

)∥∥
2

)2 ds.

In the last line, we used an elementary bound on the second integral expanding the scalar products with (1 − ε)Xε
s −

(1 − η)X
η
s = (Xε

s − X
η
s ) + (ηX

η
s − εXε

s ) and again the SDE with same initial condition on the first integral. Using
assumption c.1, g and our bound on ‖δ(Xε

s )‖2, one gets:

∥∥Xε
t −X

η
t

∥∥2
2 ≤

∫ t

0
ω
∥∥(Xε

s −Xη
s

)∥∥2
2 + 12 max(ε, η)C2

∥∥δ̃(Xε,β

0

)∥∥2
2e(6+2ω)C4s ds

≤ 12 max(ε, η)C2
∥∥δ̃(Xε,β

0

)∥∥2
2

e(6+2ω)C4t+ωt

(6 + 2ω)C4
.

As noted at the beginning of step 2, we know any (mild) solution of the case ε = 0, if it exists satisfies: ‖Xt‖2
2 ≤

eωt‖X0‖2
2, giving especially uniqueness.
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We have thus obtained strong convergence on Xε
t in B([0, T ],L2(M)) by Cauchy property. We have also bounded-

ness of Xε
t in Ba

2,δ , which gives by weak compactness a limit up to extraction when ε → 0. Once we will have proved
that any such limit point is a mild solution with ε = 0, uniqueness (of the solution thus of the limit point) will get that
in fact Xε

t weakly converges in Ba
2,δ to the newly found solution Xt . Since we have already noticed weak continuity

of Stochastic convolution, we are in fact done for proving that any limit point is a mild solution.
Finally, we conclude the proof of the part (ii) of our theorem, by considering ηα(X0) as initial condition of a

solution Xt,α , in case we have only X0 ∈ D(�1/2) (and not anymore D(�)) and letting go α → ∞. With the same
weak limit arguments, we show that Xt,α converges weakly in Ba

2,δ to Xt . Moreover, note for further use that we

have also strong convergence of Xt,α to Xt in B([0, T ],L2(M)) by the following inequality (proved as above for the
Cauchy property, except we don’t have the same initial conditions anymore, but, however, more cancellations):

‖Xt,α −Xt,β‖2
2 = ∥∥φt (X0,α −X0,β)

∥∥2
2 + ∥∥γ (Xt,α −Xt,β)

∥∥2
2

= ∥∥φt (X0,α −X0,β)
∥∥2

2 −
∫ t

0

∥∥�1/2γ (Xs,α −Xs,β)
∥∥2

2 ds +
∫ t

0

∥∥δ(Xs,α −Xs,β)
∥∥2

2 ds

≤ ‖X0,α −X0,β‖2
2 −

∫ t

0

∥∥�1/2(Xs,α −Xs,β)
∥∥2

2 − ∥∥�1/2φs(X0,α −X0,β)
∥∥2

2 ds

+
∫ t

0

∥∥�1/2(Xs,α −Xs,β))
∥∥2

2 +ω‖Xs,α −Xs,β‖2
2 ds

≤ eωt
(∥∥ηα(X0)− ηβ(X0)

∥∥2
2 + T

∥∥ηα(�1/2X0
)− ηβ

(
�1/2X0

)∥∥2
2

)
. �

2. Our main example: Derivation-generator of a Dirichlet form

As explained in the Introduction, our main case of interest will be when δ is a derivation and � = δ∗δ the correspond-
ing generator of a Dirichlet form. Note that in that case it is well known (cf e.g. [9]) φt and ηα are completely positive
contractions on M .

2.1. Preliminaries and notation around zero extensions of a derivation on free Brownian motions

2.1.1. Setting and extension
Recall M = W ∗(M0;S(j)

s ,0 ≤ s ≤ ∞,0 ≤ j ≤ N) (we will consider only here the case of finitely many derivations
and thus free Brownian motions) and Mt = W ∗(M0;S(j)

s ,0 ≤ s ≤ t,0 ≤ j ≤ N).
Let us assume we are given ∂ :D(∂) → HS(M0)

N � (L2(M0)⊗L2(M0))
N �1⊗O (L2(M0)⊗L2(M

op
0 ))N a deriva-

tion valued in a direct sum of Hilbert–Schmidt operators over L2(M0). As usual the identification of L2(M0)⊗L2(M0)

with Hilbert–Schmidt operators sends a ⊗ b to the finite rank operator x �→ aτ(bx). As real bimodules, they are con-
sidered with bimodule structure induced by a(b⊗ c)d = ab⊗ cd , and real structure J (a ⊗ b) = b∗ ⊗ a∗ correspond-
ing to adjointness of Hilbert–Schmidt operators. We will emphasize the isomorphism 1 ⊗O with L2(M0)⊗L2(M

op
0 )

(coming from traciality) with corresponding bimodule structure when necessary (it is induced by the identity map for
a, b ∈ M (1 ⊗O)(a ⊗ b) = a ⊗ b with b seen in Mop).

We write Zj = (0, . . . ,0,1⊗1,0, . . . ,0) in HS(M0)
N the non-zero term lying on the j th component. We also write

∂j for the j th component in HS(M0)
N (and we will use freely later this kind of notation). For U ∈ L2(M)⊗L2(Mop),

K ∈ M ⊗Mop, we write consistently with our previous notation U#K the map induced by multiplication in M ⊗Mop.
If U ∈ L2(M) ⊗ L2(M), we write in this way the map induced by the previous isomorphism: (1 ⊗ O)(U#K) :=
((1 ⊗O)(U))#K .

Domains of closures will be considered in this L2 setting, D(∂) ⊂ M0 is a weakly dense *-subalgebra. We will
really soon impose conditions making ∂ closable as an unbounded operator from L2(M0, τ ) → HS(M0)

N , and real
(i.e. we have the relation ∂(x)∗ = ∂(x∗) with the adjoint of Hilbert–Schmidt operators in each component and as a
consequence 〈∂(x), y∂(z)〉 = 〈∂(z∗)y∗, ∂(x∗)〉, ∀x, y, z ∈ D(∂)). After extending it to a closed derivation δ̄ on M we
will be interested in the corresponding generator of a Dirichlet form � = δ∗δ̄. This part will find realistic assumptions
on ∂ to get Γ1u(ω,C) and thus to be able to apply our general theory.
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Suppose also that Jj := ∂∗(Zj ) ∈ L2(M0) is well defined for all j ∈ [1,N ]. We have a well-known lemma (iden-
tical to Proposition 4.1 in [43] which is valid for any real derivation of the kind considered above, as pointed out after
Proposition 6.2 in [44]):

Lemma 12. Consider ∂ real densely defined derivation with Jj := ∂∗(Zj ) ∈ L2(M0), then (D(∂) ⊗alg D(∂))N is
contained in D(∂∗) (as a consequence assumption e.1 is satisfied) and:

∂∗
j (a ⊗ b) := ∂∗(aZjb) = aJj b − (1 ⊗ τ)

[
∂j (a)

]
b − a(τ ⊗ 1)

[
∂j (b)

]
.

Moreover (see e.g. [11], Remark 7, using mainly [14]), ∂̄|M0∩D(∂̄) defines a derivation (noted ∂∞ on the ∗-algebra

M0 ∩ D(∂̄)), closed as an unbounded operator M0 → HS(M0)
N . Finally (see e.g. Proposition 6 in [11]), for any

Z ∈ D(∂̄)∩M0, there exists a sequence Zn ∈ D(∂) with ‖Zn‖ ≤ ‖Z‖, ‖Zn −Z‖2,‖∂(Zn)− ∂̄(Z)‖2 → 0.

Consider also D(δ) = D(∂) ∗C〈S(j)
s ,0 ≤ j ≤ N,0 ≤ s ≤ ∞〉 ⊂ M , the algebra generated by S

(j)
s and D(∂) (thus

D(δ) is a weakly dense *-subalgebra of M). Define δ :D(δ) → HS(L2(M))N the unique derivation such that δ(x) =
∂(x) if x ∈ D(∂) and δ(S

(j)
t ) = 0 for all t . Then, clearly Jj = δ∗(Zj ) ∈ L2(M0) ⊂ L2(M) (see e.g. [37], Example 2.4),

and using the lemma above, δ is also closable (since δ∗ is densely defined). δ is thus a closable real derivation, like ∂ ,
satisfying e.1. We may sometimes write δ∞ :M ∩D(δ̄) → HS(L2(M))N the analog derivation defined in the previous
lemma (when we want to emphasize the domain). We will write � = δ∗δ̄ the associated generator of a completely
Dirichlet form, φt the semigroup generated by −1/2�, ηα = α

α+�
the “resolvent map” associated, as before. As we

already pointed out, ηα and φt induce completely positive contractions on M .
We thus only assumed in this section Assumption 0:

Assumption 0. (a) ∂ :D(∂) → HS(M0)
N real derivation D(∂) ⊂ M0 weakly dense *-subalgebra.

(b) Jj := ∂∗(Zj ) ∈ L2(M0) is well defined for all j ∈ [1,N ], and δ is an extension by 0 on free Brownian motions:

δ(x) = ∂(x) if x ∈ D(∂) and δ(S
(j)
t ) = 0 for all t .

This subsection will mainly develop general consequences of this Assumption 0, giving at the end Γ0u.

2.1.2. Useful L1-closures
Here we assume Assumption 0.

We will also define following [32], Section 1.4, an analog of �, �1 :M → L1(M, τ) (there noted Ψ ), by

D
(
�1) = {

x ∈ D(δ̄)∩M|y �→ 〈
δ̄(x), δ̄(y)

〉
extends to a normal linear functional on M

}
. (11)

�1(x) is defined as the adjoint of the Radon–Nikodym derivative of the preceding linear functional y �→ 〈δ̄(x), δ̄(y)〉,
i.e. 〈�1(x), y〉 := τ(�1(x)∗y) = 〈δ̄(x), δ̄(y)〉 (note the anti-linear duality bracket consistent with scalar products).

Likewise, we can define δ∗1 : (L2(M)⊗L2(M))N → L1(M, τ), by

D
(
δ∗1) = {

U ∈ (
L2(M)⊗L2(M)

)N |y �→ 〈
U, δ̄(y)

〉
extends to a normal linear functional on M

}
.

δ∗1(U) is defined as the adjoint of the Radon–Nikodym derivative of the preceding linear functional y �→ 〈U, δ̄(y)〉. By
the very definition, we see that for any x ∈ D(�1), δ̄(x) ∈ D(δ∗1) and �1(x) = δ∗1δ̄(x). Moreover, we see obviously
that δ∗1 is a closed densely defined operator (using D(δ∗) ⊂ D(δ∗1) and δ̄|M⊗D(δ̄) is a densely defined formal adjoint).
Note the following elementary lemma, using mainly the fact that δ∞ is a derivation:

Lemma 13. D(�1) is a ∗-subalgebra of M containing D(�)∩M , and for any x, y ∈ D(�1):

�1(xy) = �1(x)y + x�1(y)− 2
N∑
i=1

m ◦ (
1 ⊗ (τ ◦m)⊗ 1

)(
δ̄i (x)⊗ δ̄i (y)

)
,
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where m denote the multiplication map L2(M) ⊗̂L2(M) → L1(M). Finally, for any x, y ∈ D(�1): 〈�1(x), y〉 =
〈x,�1(y)〉.

Proof. Take x, y ∈ D(�1), z ∈ M ∩D(δ), thus〈
δ(xy), δ(z)

〉 = 〈
δ(x)y, δ(z)

〉+ 〈
xδ(y), δ(z)

〉
= 〈

δ(x), δ(z)y∗〉+ 〈
δ(y), x∗δ(z)

〉
= 〈

δ(x), δ
(
zy∗)〉+ 〈

δ(y), δ
(
x∗z

)〉− 〈
δ(x), zδ

(
y∗)〉− 〈

δ(y), δ
(
x∗)z〉

= 〈
�1(x)y, z

〉+ 〈
x�1(y), z)

〉− 〈
δ(y)z∗, δ

(
x∗)〉− 〈

δ(y), δ
(
x∗)z〉

= 〈
�1(x)y, z

〉+ 〈
x�1(y), z)

〉− 2
∑
i

Tr
(
δi(y)

∗ ◦ δi(x)∗z
)

= 〈
�1(x)y, z

〉+ 〈
x�1(y), z)

〉− 2τ

(
zm

(∑
i

δi(x) ◦ δi(y)
)∗)

.

In the fourth line, we used the definition of �1 and the fact δ is a real derivation. We used at the next to last line the
identification of L2 ⊗L2 with Hilbert–Schmidt operators and the Trace on trace class, and the relation δi(x)

∗ = δi(x
∗)

with the adjoint of Hilbert–Schmidt operators coming from the fact we have a real derivation. At the last line, we used
the multiplication map to L1(M), induced by m(a ⊗ b) = ab.

This proves the domain property and the equation. �

We will also need an extension �1 :L2(M) → L1(M). But the last equality of the previous lemma especially
shows that �|D(�)∩M :M → L2(M) is a (σ -weakly) densely defined formal adjoint of �1 :L2(M) → L1(M), thus

this operator is closable. And moreover, for any x ∈ D(�)∩M,y ∈ D(�1), 〈�(x), y〉 = 〈x,�1(y)〉.
Note the following elementary lemma, using M ∩D(�) is a core for � (thanks to stability of M by φt ):

Lemma 14. For any x, y ∈ D(�) with either x or y in M , then xy ∈ D(�1):

�1(xy) = �(x)y + x�(y)− 2
N∑
i=1

m ◦ (1 ⊗ τ ◦m⊗ 1)
(
δ̄i (x)⊗ δ̄i (y)

)
,

where m denotes the multiplication map L2(M) ⊗̂L2(M) → L1(M).

2.1.3. Lemmas about the extension
Here again we only assume 0.

We can consider (δ⊗ 1)⊕ (1 ⊗ δ) :L2(M)⊗L2(M) → (L2(M)⊗L2(M)⊗L2(M))2N (later abbreviated δ⊗ 1 ⊕
1 ⊗ δ or δ⊗), which is easily seen to be densely defined on D(δ) ⊗alg D(δ), and closable (with an explicit densely
defined adjoint coming from Lemma 12 in case of assumption 0). We will write �⊗ := (δ ⊗ 1 ⊕ 1 ⊗ δ)∗(δ ⊗ 1 ⊕ 1 ⊗
δ) = �⊗ 1 + 1 ⊗�, which is thus a densely defined closed self-adjoint positive operator. It can be seen, as stated
above, to be equal to the closure of �⊗ 1 + 1 ⊗� (defined on D(�)⊗alg D(�), using the stability of this space by
φt ⊗ φt , or rather more the regularization effect, implying this is a core of the previous closed operator).

Likewise, we define �⊗(n+1) on D(�)⊗alg(n+1) ∩ Vn (with the notation before Γ0u), i.e. for ai ∈ D(�)∩L2(M0),
by

�⊗(n+1)(a0 ⊗ · · · ⊗ an) =
n∑

i=0

a0 ⊗ · · · ⊗ ai−1 ⊗�(ai)⊗ ai+1 ⊗ · · · ⊗ an.

It clearly extends to a positive densely defined self-adjoint operator on Vn. Assumption e.4 is obvious with D =
D(�)�C.
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Recall ·#(Si
t − Si

s)/
√
t − s :L2(Ms) ⊗ L2(Ms) → L2(M) is the standard isometric map extending (a ⊗ b)#(Si

t −
Si
s) = a(Si

t −Si
s)b. Likewise, we define #j extending (a⊗b⊗c)#1(S

i
t −Si

s) = a(Si
t −Si

s)b⊗c and (a⊗b⊗c)#2(S
i
t −

Si
s) = a ⊗ b(Si

t − Si
s)c, a, b, c ∈ Ms .

Corollary 15. For any U ∈ D(�⊗)∩L2(Ms)⊗L2(Ms), then U#(Si
t − Si

s) ∈ D(�) (t ≥ s) and:

�
(
U#

(
Si
t − Si

s

)) = �⊗(U)#
(
Si
t − Si

s

)
.

Moreover, for any U ∈ L2(Ms)⊗L2(Ms), U#(Si
t −Si

s) ∈ D(δ̄) if and only if U ∈ D(δ ⊗ 1 ⊕ 1 ⊗ δ), and we also have

δ̄
(
U#

(
Si
t − Si

s

)) = δ ⊗ 1(U)#2
(
Si
t − Si

s

)+ 1 ⊗ δ(U)#1
(
Si
t − Si

s

)
.

As a consequence, such an element is orthogonal to any L2(M0 ⊗ M0) (as claimed in assumption d.2). Finally,
assumptions e.2, e.4 are verified by �⊗(n+1), and e.3 by δ.

Proof. Consider U ∈ (D(�)∩Ms)⊗alg (D(�)∩Ms), and by linearity even U = a ⊗ b, then by Lemma 13, we have
U#(Si

t − Si
s) ∈ D(�) and the formula comes from the formula there (applied twice and using freeness to cancel the

other terms). The density remark before the proof and the isometric map ·#(Si
t − Si

s)/
√
t − s : L2(Ms)⊗L2(Ms) →

L2(M) conclude the general case. Assumption e.2 follows similarly.
The second property comes from δ a derivation starting with the case U ∈ D(δ)⊗alg D(δ)∩Ms ⊗Ms , and using δ

closed for the if part and in order to extend the formula. The only if part uses δ is defined first on D(∂)∗C〈S(j)
s ,0 ≤ j ≤

N,0 ≤ s ≤ ∞〉, and the fact we can take the approximation of U#(Si
t −Si

s) in the image of Ms ⊗alg Ms by ·#(Si
t −Si

s)

(using freeness and the derivation property on the free product above to get the projection of a first approximation on
the set above is dominated for the norm of δ by the first one). Assumption e.3 is also checked using the derivation
property (the density statement is obvious). On E ′

n = En ∩ (D(∂) ∗C〈S(j)
s ,0 ≤ j ≤ N,0 ≤ s ≤ ∞〉), we can apply the

derivation property to show δ(E ′
n) ⊂ ⊕

p+q=n Ep ⊗ Eq (closure in L2), implying the orthogonality statement. �

2.1.4. Summary of results under Assumption 0
We summarize the easy results obtained at this stage:

Lemma 16. With this assumption 0, δ̄ and � satisfy the stability of filtration properties and Γ0u(ω = 0) and also b.2,
c.2 (i.e. assumptions a, b, c, e and d.1, d.2 of Γ1u(ω = 0,C), and also d.3, d.4 in case δ = δ̃).

2.2. Sufficient conditions for the main assumption

2.2.1. Statement of result
Let us sum up right now the assumptions we will use and our result. We consider here an exact coassociativity
assumption even if an almost coassociativity (considered in a previous preprint version of this paper) would be enough.
This will limit the applications of this section essentially to free difference quotients. We will also consider the case
δ = δ̃ and consider elsewhere the case where we need and use two derivations.

Assumption 1. (a) ∂ :D(∂) → (D(∂)⊗alg D(∂))N ⊂ (L2(M0)⊗L2(M
op
0 ))N is coassociative i.e. ∀i, j ∀x ∈ D(∂):

(∂j ⊗ 1) ◦ ∂i(x)− (1 ⊗ ∂i) ◦ ∂j (x) = 0.

(a′) ∂ satisfy Assumption 0 and ∂∗
j 1 ⊗ 1 ∈ M0.

Moreover, we suppose that (b) ∂∗
j 1 ⊗ 1 ∈ D(∂) and

(1 ⊗O) ∂̄i ∂
∗
j 1 ⊗ 1 ∈ M0 ⊗M

op
0 .

Theorem 17. Under Assumption 1, δ̄ and � satisfy the stability of filtration properties and assumption Γ1u(ω = 0,C)

for some finite constant C in the context δ = δ̃.
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2.2.2. Boundedness for (1 ⊗ τ) ◦ δk under Assumption 1
We first recall Lemma 10 in [11], which is stated there for the free difference quotient, but the coassociative case is
identical. We can and will also extend it elsewhere to an almost coassociative case.

Lemma 18. Assume Assumption 1. Let Z ∈ M ∩D(δ̄), then the following inequality holds:∥∥(1 ⊗ τ)
(
δ̄i (Z)

)∥∥
2 ≤ ‖Z‖2

[(
2
∥∥δ∗

i (1 ⊗ 1)
∥∥)+ (∥∥δ∗

i (1 ⊗ 1)
∥∥2 + ∥∥δiδ∗

i (1 ⊗ 1)
∥∥
M ⊗Mop

)1/2]
.

As a consequence, (1 ⊗ τ) ◦ δ̄i extends as a bounded map L2(M, τ) → L2(M, τ).

2.2.3. Almost commutation of δ and � on an extended domain
We are now ready to solve our main domain issues (to get f ) in the next:

Lemma 19. Assume Assumption 1.

(i) For any x ∈ D(δ) we have x ∈ D(�j ), δi(x) ∈ D(�j ⊗ 1 + 1 ⊗�j), x ∈ D(�3/2) and:

δi�j (x) = (1 ⊗�j +�j ⊗ 1)δi(x)+ δj (x)#
(
(1 ⊗O) ∂̄i ∂

∗
j (1 ⊗ 1)

)
.

(ii) If x ∈ D(δ̄) (resp. x ∈ D(�)) then so is 1 ⊗ τ(δ̄i(x)).
(iii) D(�3/2) ⊂ D(�⊗ 1 + 1 ⊗� ◦ δ̄) and moreover we have for any x ∈ D(�3/2)

δ̄i�(x) = �⊗δ̄i (x)+
N∑
j=1

δ̄j (x)#
(
(1 ⊗O) ∂̄i ∂

∗
j (1 ⊗ 1)

)
.

Proof. (i) Consider x ∈ D(δ), by Assumption 1 δ(x) ∈ (D(δ)⊗alg D(δ))N ⊂ (M ⊗alg M)N (the extension from ∂ to
δ is easy), thus using Lemma 12, δj (x) ∈ D(δ∗

j ), i.e. x ∈ D(�j ) for all j and

�j(x) = δj (x)#δ
∗
j (1 ⊗ 1)−m ◦ (1 ⊗ τ ⊗ 1) ◦ [δj ⊗ 1] ◦ δj (x)−m ◦ (1 ⊗ τ ⊗ 1) ◦ [1 ⊗ δj ] ◦ δj (x).

Recall δ∗
j (1⊗1) = ∂∗

j 1⊗1 ∈ D(δ), and for any j, k (δj ⊗1)δk(x) ∈ D(δ)⊗algD(δ)⊗algD(δ) so that one gets �j(x) ∈
D(δi) (and also the statement δi(x) ∈ D(�j ⊗ 1) using again Lemma 12) and applying the derivation property for δi ,
we get (recall the notation for # before Lemma 12 and #i similar to the one used before Corollary 15, (a⊗b⊗c)#2d =
a ⊗ bdc, (a ⊗ b ⊗ c)#1d = adb ⊗ c):

δi�j (x) = (
(δi ⊗ 1)δj (x)

)
#2δ

∗
j (1 ⊗ 1)+ (

(1 ⊗ δi)δj (x)
)
#1δ

∗
j (1 ⊗ 1)

+ δj (x)#
(
(1 ⊗O)∂i ∂

∗
j (1 ⊗ 1)

)
− (

1 ⊗m ◦ (1 ⊗ τ ⊗ 1)
) ◦ [δi ⊗ 1 ⊗ 1] ◦ [δj ⊗ 1] ◦ δj (x)

− (
m ◦ (1 ⊗ τ ⊗ 1)⊗ 1

) ◦ [1 ⊗ 1 ⊗ δi] ◦ [δj ⊗ 1] ◦ δj (x)
− (

1 ⊗m ◦ (1 ⊗ τ ⊗ 1)
) ◦ [δi ⊗ 1 ⊗ 1] ◦ [1 ⊗ δj ] ◦ δj (x)

− (
m ◦ (1 ⊗ τ ⊗ 1)⊗ 1

) ◦ [1 ⊗ 1 ⊗ δi] ◦ [1 ⊗ δj ] ◦ δj (x).
Now, one can easily extend coassociativity to δ (the coassociator (δj ⊗ 1) ◦ δi − (1 ⊗ δi) ◦ δj being a derivation,

coassociativity is checked on generators). Thus one can rewrite:

−(
(δi ⊗ 1)δj (x)

)
#2δ

∗
j (1 ⊗ 1) = −(

(1 ⊗ δj )δi(x)
)
#2δ

∗
j (1 ⊗ 1),(

1 ⊗m ◦ (1 ⊗ τ ⊗ 1)
) ◦ [δi ⊗ 1 ⊗ 1] ◦ [δj ⊗ 1] ◦ δj (x)

= (
1 ⊗ [

m ◦ (1 ⊗ τ ⊗ 1) ◦ [δj ⊗ 1] ◦ δj
]) ◦ δi(x),(

1 ⊗m ◦ (1 ⊗ τ ⊗ 1)
) ◦ [δi ⊗ 1 ⊗ 1] ◦ [1 ⊗ δj ] ◦ δj (x)

= (
1 ⊗ [

m ◦ (1 ⊗ τ ⊗ 1) ◦ [1 ⊗ δj ] ◦ δj
]) ◦ δi(x),
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and similar results for other lines in our previous sum. Using the formula in Lemma 12, the three previous lines sum
up to −(1 ⊗�j) ◦ δi(x). Doing the same for the other lines, we thus proved the expected formula.

(ii) Let x ∈ D(δ̄) and take xn ∈ D(δ) converging to x in D(δ̄). We can compute (using coassociativity again):

δ̄j (1 ⊗ τ)
(
δ̄i (xn)

) = (
1 ⊗ [

(1 ⊗ τ)(δ̄i )
])(

δ̄j (xn)
)
.

By the boundedness result of Lemma 18, the right hand side converges and this gives the result since δ̄ is closed.
For the second statement, consider the equation of (i) applied via scalar product to U ∈ (D(δ̄) ∩M)⊗alg (D(δ̄) ∩

M): 〈
�j(xn), δ

∗
i (U)

〉 = 〈
(1 ⊗�j +�j ⊗ 1)δi(xn),U

〉+ 〈
δj (xn)#

(
(1 ⊗O) ∂̄i ∂

∗
j (1 ⊗ 1)

)
,U

〉
(12)

with U = V ⊗ 1,V ∈ D(δ), xn above (with x ∈ D(�)). Note that using Lemma 12, Assumption 1 and our first result
in (ii), δ∗

i (V ⊗ 1) ∈ D(δ̄) with δ̄j δ
∗
i (V ⊗ 1) = δj (V )δ∗

i 1 ⊗ 1 + V δ̄j δ
∗
i (1 ⊗ 1) − δj1 ⊗ τδi(V ) ∈ L2(M ⊗ M). Thus

〈�j(xn), δ
∗
i U〉 = 〈δj (xn), δj δ∗

i (V ⊗ 1)〉. Note also that 〈1 ⊗ τδi(xn),�V 〉 = 〈δ(1 ⊗ τδi(xn)), δ(V )〉 converges to the
analog with x by what we have just proved. Since the resulting terms in (12) are bounded with respect to ‖δ(xn)‖2,
we can get the equation at the limit xn → x.

We thus got:

〈
(1 ⊗ τδi)�(x),V

〉 = 〈
δ
(
1 ⊗ τδi(x)

)
, δ(V )

〉+ N∑
j=1

〈
δ̄j (x)#

(
(1 ⊗O) ∂̄i ∂

∗
j (1 ⊗ 1)

)
,V ⊗ 1

〉
.

Now we can extend this from V ∈ D(δ) to V ∈ D(δ̄) and thus we obtain our result by definition of �.
(iii) Consider again this time the variant of Eq. (12) with U ∈ (M ∩ D(�)) ⊗alg (M ∩ D(�)), and x ∈ D(δ).

Everything reduces to U = a ⊗ b. Using Lemma 12, we have δ∗
i (U) = aδ∗

i (1 ⊗ 1)b− (1 ⊗ τ)δi(a)b− a(τ ⊗ 1)δi(b).
But now, a, b ∈ M ∩D(�), (1⊗ τ)δi(a), (τ ⊗1)δi(b) ∈ D(�) by (ii) thus Lemma 14 proves −(1⊗ τ)δi(a)b−a(τ ⊗
1)δi(b) ∈ D(�1). Then, let us write, for any U ∈ (M ∩D(�))⊗alg (M ∩D(�)) (with the notation (a ⊗ b)#c = acb),

δ∗
i (U) = U#δ∗

i (1 ⊗ 1)−V with V ∈ D(�1). We can now rewrite our equation (using δ̄i is a derivation on M ∩D(δ̄i)

to see U#δ∗
i (1 ⊗ 1) ∈ D(δ̄i)):

N∑
j=1

〈
δj (x), δ̄j

(
U#δ∗

i (1 ⊗ 1)
)〉− 〈

δ̄j (x)#
(
(1 ⊗O) ∂̄i ∂

∗
j (1 ⊗ 1)

)
,U

〉

= 〈
x,�1(V )

〉+ 〈
δ̄i (x), [1 ⊗�+�⊗ 1](U)

〉
.

Now, once again using the second part of Lemma 12, we get this for any x ∈ D(�3/2) ∩ M ⊂ D(δ̄) ∩ M . Using
the remark before Lemma 14, we can rewrite 〈x,�1(V )〉 = 〈�(x),V 〉, and thus, finally coming back to our original
notation:

〈
δ̄i�(x),U

〉 = 〈
δ̄i (x), [1 ⊗�+�⊗ 1](U)

〉+ N∑
j=1

〈
δ̄j (x)#

(
(1 ⊗O) ∂̄i ∂

∗
j (1 ⊗ 1)

)
,U

〉
.

Finally, (using stability by φt ⊗ φt ) it is easily seen that (M ∩D(�))⊗alg (M ∩D(�)) is a core for �⊗ 1 + 1 ⊗�,
and thus we can take U in the domain of that operator and finally, since this operator is closed, we get our result. The
extension from x ∈ D(�3/2)∩M to x ∈ D(�3/2) is easy. �

2.2.4. Proof of Theorem 17
Using Lemma 16, it only remains to check assumption f,h. Lemma 19(iii) proves f.1 and f.2 with H :L2(M ⊗
M)N → L2(M ⊗ M)N given by (H(C))i = ∑N

j=1 Cj#((1 ⊗ O) ∂̄i ∂
∗
j (1 ⊗ 1)) so that ‖H‖ ≤ ‖((1 ⊗ O) ∂̄i ∂

∗
j (1 ⊗

1))(i,j)‖MN(M⊗Mop).
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It remains to check h. Consider x ∈ D(�) then ηα(x) ∈ D(�3/2), thus we can apply Lemma 19(iii) to get:〈
�
(
ηα(x)

)
,�

(
ηα(x)

)〉
=

N∑
i=1

〈
δ̄i�

(
ηα(x)

)
, δ̄i

(
ηα(x)

)〉

=
N∑
i=1

〈
�⊗δ̄i

(
ηα(x)

)
, δ̄i

(
ηα(x)

)〉+ 〈
H
(
δ̄
(
ηα(x)

))
i
, δ̄i

(
ηα(x)

)〉

=
N∑

i,j=1

〈
δj ⊗ 1 ⊕ 1 ⊗ δj δ̄i

(
ηα(x)

)
, δj ⊗ 1 ⊕ 1 ⊗ δj δ̄i

(
ηα(x)

)〉+ N∑
i=1

〈
H
(
δ̄
(
ηα(x)

))
i
, δ̄i

(
ηα(x)

)〉
.

Since we assume x ∈ D(�), the left hand side and the second term in the right hand side converge when α → ∞
showing that x ∈ D(δ ⊗ 1 ⊕ 1 ⊗ δ ◦ δ̄) as expected. Now, the inequality stated in h is a tensor variant of the one stated
in c and already checked.

3. Complementary properties of our main example

3.1. An Ito formula for resolvent operators under weak assumptions

Let us consider an integral of the form:

Xt = X0 +
∫ t

0
Ks ds +

∫ t

0
Us#dSs,

where X0 ∈ M0 = W , s �→ Ks weakly measurable with Ks ∈ L1(Ms),
∫ T

0 ‖Ks‖1 ds < ∞ ∀T > 0 and U ∈ Ba
2 . We

also assume Ks = K∗
s , Us = U∗

s (in this section we use the involution induced by HS(M), i.e. (a ⊗ b)∗ = b∗ ⊗ a∗),
X0 = X∗

0 so that Xt = X∗
t .

We would like to find a formula for (z + Xt)
−1, z ∈ C,�z > 0, to compute the Cauchy-transform of Xt with this

unbounded Xt ∈ L1(Mt). If we supposed Ks ∈ Ms , Us ∈ Ba∞ Proposition 4.3.4 of [3] would conclude (see this article
for the notation, the case with N free Brownian motions as in our case is similar to their case, especially we write in
this section also # for multiplication in M ⊗Mop ⊗M without confusion with the previous notation for multiplication
in M ⊗ Mop) since f (x) = 1

z+x
= ∫

R
eixyμ(dy) with μ(dy) = −i1[0,∞)eizy dy (which satisfy I2(f ) < ∞, and thus

their results apply).
But we are not in such a bad position because all the terms of their expression in the Ito formula for (z + Xt)

−1

make sense, this almost only requires applying a standard density argument left to the reader.

Proposition 20. With the previous assumptions we have:

(z+Xt)
−1

= (z+X0)
−1 −

∫ t

0

[
(z+Xs)

−1 ⊗ (z+Xs)
−1]#Us#dSs

−
∫ t

0

[
(z+Xs)

−1 ⊗ (z+Xs)
−1]#Ks ds

+
N∑
i=1

∫ t

0
m ◦ (1 ⊗ τ ⊗ 1)

((
1 ⊗U(i)

s

)
#
(
(z+Xs)

−1 ⊗ (z+Xs)
−1 ⊗ (z+Xs)

−1)#(U(i)
s ⊗ 1

))
ds.

The two next lemmas are also left to the reader.
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Lemma 21. Let

Xt = X0 +
∫ t

0
Ks ds +

∫ t

0
Us#dSs,

where X0 ∈ M0, s �→ Ks weakly measurable with Ks ∈ L1([0, T ],L1(Ms)), and U ∈ Ba
2 . We also assume Xt ∈ M (in

a bounded way in t ). Let say ‖Xt‖ < 1.
Then, there exists Xn

t = X0 +∫ t

0 Kn
s ds+∫ t

0 U
n
s #dSs with s �→ Kn

s weakly measurable with Kn
s ∈ L∞([0, T ])⊗Ms ,

Kn converging to K in L1([0, T ],L1(Ms)), and Un ∈ Ba∞, Un converging to U in Ba
2 . Moreover, we have ‖Xn

t ‖ ≤ 1.

The following variant of the Ito product formula (Proposition 4.3.2 in [3]) is now obvious:

Lemma 22. Let

Xt = X0 +
∫ t

0
Ks ds +

∫ t

0
Us#dSs,

Yt = Y0 +
∫ t

0
Ls ds +

∫ t

0
Vs#dSs,

where X0, Y0 ∈ M0, s �→ Ks , s �→ Ls weakly measurable with Ks,Ls ∈ L1([0, T ],L1(Ms)), and U,V ∈ Ba
2 . We also

assume Xt,Yt ∈ M (in a bounded way in t ).
Then, for any t ≤ T :

XtYt = X0Y0 +
∫ t

0
(XsLs +KsYs)ds +

∫ t

0
m ◦ (

1 ⊗ (τ ◦m)⊗ 1
)
(Us ⊗ Vs)ds

+
∫ t

0
(XsVs +UsYs)#dSs.

3.2. Boundedness

In this subsection, we are interested in the example of part 2. Under Assumption 0, we write Xt ∈ Ba

2,φδ̄
,Xε

t ∈ Ba
2,�1/2

the solutions given by Theorem 11(i) and Lemma 16. We moreover consider an initial condition X0 ∈ M0 ∩D(δ̄).

Proposition 23. With those assumptions, for any complex number z with �z > 0, 1
z+Xε

s
is in Ba

2,�1/2 and

(
z+Xε

t

)−1

= φt
((
z+Xε

0

)−1)+ (1 − ε)

∫ t

0
φt−s

(
δ̄
((
z+Xε

s

)−1)#dSs
)

+ (
(1 − ε)2 − 1

) N∑
i=1

∫ t

0
φt−s

(
m ◦ (1 ⊗ τ ⊗ 1)

((
z+Xε

s

)−1
δ̄i
(
Xε

s

)(
z+Xε

s

)−1
δ̄i
(
Xε

s

)(
z+Xε

s

)−1))ds.

As a consequence, if we assume moreover ‖Xt‖2 = ‖X0‖2 (a.e. t, this is the case e.g. for a mild solution given by
Theorem 11(ii)) then Xt ∈ M for all t (recall we supposed X0 ∈ M) and we also have ‖Xt‖ ≤ ‖X0‖ (actually equal
a.e.), and likewise for any ε > 0, Xε

t ∈ M . Finally, if ‖Xt‖2 = ‖X0‖2 a.e. in t, then ‖Xt −Xε
t ‖2 → 0 a.e. in t.

Proof. Let ε > 0. Since we have a mild solution at ε level, by Theorem 11 and since a mild solution is a weak solution
as seen in Proposition 8, we get by self-adjointness of � for characterizing its domain that

∫ t

0 Xε
s ds ∈ D(�) and:

Xε
t = X0 − 1

2
�

∫ t

0
Xε

s ds + (1 − ε)

∫ t

0
δ
(
Xε

s

)
#dSs.
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Thus, applying a resolvent, using Lemma 3(ii), we deduce for any α > 0:

ηα
(
Xε

t

) = ηα(X0)− 1

2

∫ t

0
�ηα

(
Xε

s

)
ds + (1 − ε)

∫ t

0
η⊗
α δ

(
Xε

s

)
#dSs,

where X0 ∈ M0, s �→ Ks = − 1
2�ηα(X

ε
s ) weakly measurable with Ks ∈ L2(Ms),

∫ T

0 ‖Ks‖2
2 ds < ∞ ∀T > 0 (all this

using the definition of Ba
2,�1/2 ) and Us = η⊗

α δ(X
ε
s ) ∈ Ba

2 . Recall that ηα(X0) ∈ M0 by the general Dirichlet form theory
implying ηα is a completely positive contraction on M . We are in position to apply Proposition 20, thus we have:

(
z+ ηα

(
Xε

t

))−1

= (
z+ ηα

(
Xε

0

))−1

− (1 − ε)

∫ t

0

[(
z+ ηα

(
Xε

s

))−1 ⊗ (
z+ ηα

(
Xε

s

))−1]#η⊗
α δ̄

(
Xε

s

)
#dSs

+ 1

2

∫ t

0

[(
z+ ηα

(
Xε

s

))−1 ⊗ (
z+ ηα

(
Xε

s

))−1]#�ηα
(
Xε

s

)
ds

+ (1 − ε)2
N∑
i=1

∫ t

0
dsm ◦ (1 ⊗ τ ⊗ 1)

((
z+ ηα

(
Xε

s

))−1

× η⊗
α δ̄i

(
Xε

s

)(
z+ ηα

(
Xε

s

))−1
η⊗
α δ̄i

(
Xε

s

)(
z+ ηα

(
Xε

s

))−1)
.

But, note that for any x ∈ D(δ̄), (z+x)−1 ∈ D(δ̄), and δ̄((z+x)−1) = −(z+x)−1δ̄(x)(z+x)−1. Indeed, we check
this easily on D(δ) ⊂ M by Leibniz rule, and taking xn ∈ D(δ) converging to x in D(δ̄), a usual formula on resolvent
operators (z + xn)

−1 − (z + x)−1 = (z + xn)
−1(x − xn)(z + x)−1 gives convergence of (z + xn)

−1 to (z + x)−1 in
L2(M), and thus of δ̄((z+xn)

−1) in L1(M ⊗M) to (z+x)−1δ̄(x)(z+x)−1. A fortiori, we have weak convergence in
L2(M ⊗M). Since a convex set in L2(M)⊕L2(M ⊗M) is closed if and only if it is weakly closed by Hahn–Banach
theorem, we get (z+ x)−1 ∈ D(δ̄) and the result.

Analogously, we have for any x ∈ D(�), (z+ x)−1 ∈ D(�1) (cf. the paragraph before Lemma 13 for a definition)
and moreover:

−�1((z+ x)−1) = (z+ x)−1�(x)(z+ x)−1

+ 2
N∑
i=1

m ◦ (1 ⊗ τ ⊗ 1)
(
1 ⊗ δ̄i (x)#(z+ x)−1 ⊗ (z+ x)−1 ⊗ (z+ x)−1#δ̄i (x)⊗ 1

)
.

Let us write Rt,z,α,ε = (z+ ηα(X
ε
t ))

−1. Thus, we have obtained, if we apply this formula to our previous equation
in making appear terms by emphasizing “commutators” of η⊗

α and δ. We also write Ys,z,α,ε,i := (Rs,z,α,ε(η
⊗
α δ̄i(X

ε
s )−

δ̄iηα(X
ε
s ))Rs,z,α,ε :

Rt,z,α,ε = R0,z,α,ε + (1 − ε)

∫ t

0

(
δ̄(Rs,z,α,ε)− Ys,z,α,ε

)
#dSs − 1

2

∫ t

0
�1((z+ ηα

(
Xε

s

))−1)
ds

+
N∑
i=1

∫ t

0
m ◦ (1 ⊗ τ ⊗ 1)

(
Ys,z,α,ε,iη

⊗
α δ̄i

(
Xε

s

)
Rs,z,α,ε +Rs,z,α,εδ̄iηα

(
Xε

s

)
Ys,z,α,ε,i

)
ds

+ (
(1 − ε)2 − 1

) N∑
i=1

∫ t

0
m ◦ (1 ⊗ τ ⊗ 1)

(
Rs,z,α,εη

⊗
α δ̄i

(
Xε

s

)
Rs,z,α,εη

⊗
α δ̄i

(
Xε

s

)
Rs,z,α,ε

)
ds.



1436 Y. Dabrowski

As in the proof of Proposition 7 showing that a strong solution is a mild solution, but take here ζ ∈ D(�) ∩M in
the proof, we have:

Rt,z,α,ε = φt (R0,z,α,ε)+ (1 − ε)

∫ t

0
φ⊗
t−s

(
δ̄(Rs,z,α,ε)− Ys,z,α,ε

)
#dSs

+
N∑
i=1

∫ t

0
φt−s

(
m ◦ (1 ⊗ τ ⊗ 1)

(
Ys,z,α,ε,iη

⊗
α δ̄i

(
Xε

s

)
Rs,z,α,ε

)+Rs,z,α,εδ̄iηα
(
Xε

s

)
Ys,z,α,ε,i

)
ds

+ (
(1 − ε)2 − 1

) N∑
i=1

∫ t

0
φt−sm ◦ (1 ⊗ τ ⊗ 1)

(
Rs,z,α,εη

⊗
α δ̄i

(
Xε

s

)
Rs,z,α,εη

⊗
α δ̄i

(
Xε

s

)
Rs,z,α,ε

)
ds.

We now want to make α tend to ∞. The three terms with Y tend to zero by dominated convergence theorem
(domination modulo constant by ‖δ̄(Xε

s )‖2
2 since Xε ∈ Ba

2,�1/2 ). In the last line we can remove η⊗
α in the same way

and we get weak convergence in L1 to the expected limit (of course we have to use φ bounded on M). Clearly, the
two resolvent operators in the first line converge in L2 and the same kind of reasoning already made shows that
δ̄((z+ηα(X

ε
s ))

−1) weakly converges in L2 to δ̄((z+Xε
s )

−1).3 A dominated convergence theorem concludes as above
for the corresponding stochastic integral. At the end, we have got weak convergence in L1 of all terms so that:(

z+Xε
t

)−1 = φt
((
z+Xε

0

)−1)
+ (1 − ε)

∫ t

0
φt−s

(
δ̄
((
z+Xε

s

)−1)
#dSs

)+ (
(1 − ε)2 − 1

)

×
N∑
i=1

∫ t

0
dsφt−s

(
m ◦ (1 ⊗ τ ⊗ 1)

((
z+Xε

s

)−1
δ̄i
(
Xε

s

)(
z+Xε

s

)−1
δ̄i
(
Xε

s

)(
z+Xε

s

)−1))
.

We now want to make ε tend to 0, after taking the trace, to get the second statement. Note that in our context of
Section 2 where ‖δ(x)‖2 = ‖�1/2(x)‖2, (5) gives:

(
1 − (1 − ε)2)∫ t

0

∥∥δ̄(Xε
s

)∥∥2
2 ds = ‖X0‖2

2 − ∥∥Xε
t

∥∥2
2.

Incidentally, this proves the statement that ‖X0‖2
2 = ‖Xt‖2

2 in case (ii) of Theorem 11 since we proved there conver-
gence of Xt in L2 and boundedness of ‖δ̄(Xε

s )‖2.
But (modulo extraction) the weak limit defining Xt gives ‖Xt‖2 ≤ lim inf‖Xε

t ‖2 and thus

lim sup
ε→0

(
1 − (1 − ε)2)∫ t

0

∥∥δ̄(Xε
s

)∥∥2
2 ds ≤ ‖X0‖2

2 − ‖Xt‖2
2. (13)

And the last term is almost everywhere 0 under our assumption. As a consequence, since we already know Xε
t

converges to Xt weakly in L2 by Theorem 11(i), we deduce the stated ‖ · ‖2 convergence of Xε
t to Xt on the a.e. set

where ‖Xt‖2 = ‖X0‖2. Moreover, the trace of the second line of the equality of Proposition 23 is bounded up to the
cube of an inverse of �(z) by this quantity, and thus we get almost everywhere (in t independent of z) equality of the
Cauchy transforms of X0 and Xt , giving a.e. boundedness (and equality of von Neumann algebra norms). Now we
can use the weak continuity proved in Theorem 11 to extend boundedness everywhere.

Second, to prove that Xε
t ∈ M , consider S(i,J )

t 1 ≤ i ≤ N , J ∈ {a, b} a family of free Brownian motions, on which

we extend δ by 0. We can always write S
(i)
s = (1 − ε)S

(i,a)
s +√

1 − (1 − ε)2S
(i,b)
s .

3Remark that this second term is already known to exists; by boundedness in L2 of the convergent δηα(X
ε
s ), we get that (z +

ηα(X
ε
s ))

−1δ(ηα(X
ε
s ))(z + ηα(X

ε
s ))

−1 is close in ‖ · ‖1 of (z + Xε
s )

−1δ(ηα(X
ε
s ))(z + Xε

s )
−1, and finally, with convergence in L2 of (z +

Xε
s )

−1δηα(X
ε
s )(z+Xε

s )
−1 to (z+Xε

s )
−1δ(Xε

s )(z+Xε
s )

−1; we have thus obtained the convergence in L1, using that the two terms are known to
be in L2 and the sequence bounded in this space, you get the result.
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We have thus

Xt = φt (X0)+ (1 − ε)

∫ t

0
φt−s

(
δ(Xs)#dS(a)

s

)+
√

1 − (1 − ε)2

∫ t

0
φt−s

(
δ(Xs)#dS(b)

s

)
.

We want to prove that, if we apply Ea , the conditional expectation on the von Neumann algebra M(a) generated
by M0 and S

(a)
s , we get:

Ea(Xt ) = φt (X0)+ (1 − ε)

∫ t

0
φt−s

(
δ
(
Ea(Xs)

)
#dS(a)

s

)
,

which says nothing but by changing Ss in S
(a)
s , Ea(Xt ) is an instance of (the unique solution) Xε

t . As a consequence,
this gives the stated boundedness.

Since Ea(
∫ t

0 φt−s(δ(
1

z+Xs
)#dS(b)

s )) = 0 is a consequence of freeness between {S(a)
s } and {S(b)

s }, we just have to

show several commutations of Ea with several operations, more precisely: Eaφt = φtEa , Ea(·#(S(a)
t − S

(a)
s )) =

(Ea ⊗Ea(·))#(S(a)
t − S

(a)
s ) on L2(Ms) and Ea ⊗Ea ◦ δ̄ = δ̄ ◦ Ea . With that and obvious lemmas about stochastic

integrals, we will have what we want. The first equation is nothing but an instance of the preservation (contained in
the preliminaries of Section 2.1 with this new case of zero extension) by � of M(a) (and characterization of conditional
expectation). The second is proved in using also the characterization of conditional expectation once noted that we can
use instead of someone in L2(M(a)), someone in L2(M

(a)
s ⊗ M

(a)
s )#(S(a)

t − S
(a)
s ) by orthogonality. The third one is

verified by using the fact that δ∗ :L2(M(a) ⊗M(a)) → L2(M(a)) (and characterization of conditional expectation). �

3.3. Stationarity

Proposition 24. Let us call Φt :X0 ∈ M0 ∩D(δ̄) �→ Xt ∈ Mt the previous ultramild solution of Theorem 11(i) assum-
ing ‖Xt‖2 = ‖X0‖2 a.e. for all X0 ∈ M0 ∩D(δ̄). Then, Φt(X0Y0) = Φt(X0)Φt (Y0) if X0, Y0 ∈ D(δ̄)∩M0.

Proof. Since Φt(X
∗) = Φt(X)∗, Φt(1) = 1 and τ is faithful, D(δ̄) ∩M0 a *-algebra, it suffices to prove that for any

X0, Y0,Z0, T0 ∈ D(δ̄) ∩M0 τ(Φt (X0)Φt (Y0)Φt (Z0)Φt (T0)) = τ(X0Y0Z0T0). For notational convenience, we prove
only the case Z0 = T0 = 1 (even if this case is also a direct consequence of the assumed isometry by polarization), the
general similar case being left to the reader.

Let also Φε
t :X0 ∈ M0 ∩D(δ̄) �→ Xε

t ∈ Mt .
Apply Ito’s formula (assumptions of Lemma 22) to ηα(X

ε
t ), and ηα(Y

ε
t ) (using the result of Proposition 23 they

are valued in M):

ηα
(
Xε

t

)
ηα

(
Y ε
t

) = ηα
(
Xε

0

)
ηα

(
Y ε

0

)+ (1 − ε)

∫ t

0
η⊗
α

(
δ̄
(
Xε

s

))
ηα

(
Y ε
s

)+ ηα
(
Xε

s

)
η⊗
α

(
δ̄
(
Y ε
s

))
#dSs

− 1

2

∫ t

0
ηα

(
Xε

s

)
�ηα

(
Y ε
s

)+�ηα
(
Xε

s

)
ηα

(
Y ε
s

)
ds

+ (1 − ε)2
N∑
i=1

∫ t

0
m ◦ (

1 ⊗ (τ ◦m)⊗ 1
)(
η⊗
α

(
δ̄i
(
Xε

s

))⊗ η⊗
α

(
δ̄i
(
Y ε
s

)))
ds.

We can now use Lemma 13 to get:

ηα
(
Xε

t

)
ηα

(
Y ε
t

) = ηα
(
Xε

0

)
ηα

(
Y ε

0

)
+ (1 − ε)

∫ t

0
δ̄
(
ηα

(
Xε

s

)
ηα

(
Y ε
s

))
#dSs − 1

2

∫ t

0
�1(ηα(Xε

t

)
ηα

(
Y ε
t

))
ds

+ (
(1 − ε)2 − 1

) N∑
i=1

∫ t

0
m ◦ (

1 ⊗ (τ ◦m)⊗ 1
)(
δ̄i
(
ηα

(
Xε

s

))⊗ δ̄i
(
ηα

(
Y ε
s

)))
ds



1438 Y. Dabrowski

+ (1 − ε)

∫ t

0

[(
η⊗
α

(
δ̄
(
Xε

s

))− δ̄
(
ηα

(
Xε

s

)))
ηα

(
Y ε
s

)+ ηα
(
Xε

s

)(
η⊗
α

(
δ̄
(
Y ε
s

))− δ̄
(
ηα

(
Y ε
s

)))]
#dSs

+ (1 − ε)2
N∑
i=1

∫ t

0
m ◦ (

1 ⊗ (τ ◦m)⊗ 1
)((

η⊗
α

(
δ̄i
(
Xε

s

))− δ̄i
(
ηα

(
Xε

s

)))⊗ η⊗
α

(
δ̄i
(
Y ε
s

)))
ds

+ (1 − ε)2
N∑
i=1

∫ t

0
m ◦ (

1 ⊗ (τ ◦m)⊗ 1
)(
δ̄i
(
ηα

(
Xε

s

)))⊗ (
η⊗
α

(
δ̄i
(
Y ε
s

))− δ̄i
(
ηα

(
Y ε
s

)))
)ds.

Using once again the trick of Proposition 7 to pass to something which looks like a mild solution, then we can
take the limit α → ∞ as in Proposition 23 and finally we get (using that Φε

t (X0Y0) is a mild solution since X0Y0 ∈
D(δ̄)∩M):

Φε
t (X0)Φ

ε
t (Y0)−Φε

t (X0Y0)

= (1 − ε)

∫ t

0
φt−s

(
δ̄
(
Φε

s (X0)Φ
ε
s (Y0)−Φε

s (X0Y0)
)
#dSs

)

+ (
(1 − ε)2 − 1

) N∑
i=1

∫ t

0
φt−s

(
m ◦ (

1 ⊗ (τ ◦m)⊗ 1
)(
δ̄i
(
Φε

s (X0)
)⊗ δ̄i

(
Φε

s (Y0)
)))

ds.

Since Φε
t (X0) converges in ‖ · ‖2-norm to Φt(X0) (a.e.) by the last statement of Proposition 23, we can show that,

after taking the trace, this equation converges to the relation τ(Φt (X0)Φt (Y0)) = τ(X0Y0), using also the fact that the
last term goes to zero via (13) as in Proposition 23. �

4. Applications

4.1. Free difference quotient

Corollary 25. Assume Assumption 1 and X1, . . . ,Xn ∈ D(�) ∩ M0. Then, for any t ≥ 0, there exists an embedding
Φt :M0 = W ∗(X1, . . . ,Xn) → M0 ∗L(F(∞)) and S1, . . . , SN ∈ L(F(∞)) a free (0,1)-semicircular family (depend-
ing on t), free from M0 and such that:

∥∥∥∥∥Φt(Xj )−Xj − √
t

N∑
i=1

∂̄i (Xj )#Si

∥∥∥∥∥
2

≤ cj t,

for a fixed constant

c2
j = 1

4

∥∥�(Xj )
∥∥2

2 + 1

2

(∥∥�⊗1/2(δ(Xj )
)∥∥2

2 + π

4

∥∥�(Xj )
∥∥

2‖
∥∥�⊗1/2(δ(Xj )

)∥∥
2

)
.

Moreover, Φt(Xj ) ∈ W ∗(X1, . . . ,Xn,S1, . . . , SN , {S′
j }∞j=0) where {S′

j }∞j=0 is a free semicircular family free with
{X1, . . . ,Xn,S1, . . . , SN }.

As a consequence, if we define c2 = ∑
c2
j , we have the following inequality for the Wasserstein–Biane–Voiculescu

distance ([4]):

dW (μX1,...,Xn,μX1+
√
tδ(X1)#S,...,Xn+√

tδ(Xn)#S) ≤ ct.

As another consequence, using [39], Theorem 16, any Rω-embeddable von Neumann algebra generated by
X1, . . . ,Xn with Lipschitz conjugate variable have δ0(X1, . . . ,Xn) = n.
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Remark 26. This result is analogous to Proposition 2 in [39] and to an inequality in [4]. But the latter is for the
free difference quotient for n = 1 with only finite Fisher information. And the former deals with any derivation, for a
general n, assuming ∂(Xj ) and ∂∗ ∂(Xj ) can be written in terms of non-commutative power series. Compared to these
results, our result can be applied for a general n but for coassociative (or even as we will see elsewhere also “almost
coassociative”) derivations, and for the free difference quotient with only the assumption Lipschitz conjugate variable
(i.e. ∂̄ ∂∗

j 1 ⊗ 1 ∈ (M ⊗Mop)n, which corresponds to Lipschitz conjugate variable in the n = 1 case, cf. also [48] for a
more general justification of this terminology). Note also that, in this case, the constant is expressed in terms of free
Fisher information Φ∗(X1, . . . ,Xn) = ∑

i ‖�(Xi)‖2
2, it becomes the expected c = Φ∗(X1, . . . ,Xn))

1/2/2, so that for
instance if X1, . . . ,Xn is such that the associated Orstein–Ühlenbeck process Yi(t) = e−t/2Xi + (1−e−t )1/2Si satisfy
X1(t), . . . ,Xn(t) have Lipschitz conjugate variable (in the above sense for all t > 0, which is by no means a trivial
assumption) then the argument of [4], variant of [29], gives the corresponding free Talagrand transportation cost
inequality:

dW
(
(X1, . . . ,XN), (S1, . . . , SN)

)

≤ √
2

(
χ∗(S1, . . . , Sn)− χ∗(X1, . . . ,Xn)− n

2
+ 1

2

N∑
i=1

τ
(
X2

i

))1/2

.

We prove in [12] this result in full generality using another way of solving stochastic differential equations.
We give a concrete non-trivial example of Lipschitz conjugate variable in Section 4.3.

Sketch of proof. For the reader’s convenience, we outline how this follows from the beginning of the paper. Using
Assumption 1, Theorem 17 gives the conditions to apply Theorem 11(ii) with ω = 0. Then Φt(X) = Xt is given
by the mild solution of the SDE from (ii) and the stated inequality is the one coming from (i) in Theorem 11 (the
inequality on Wasserstein distance is then an obvious consequence, note that δ(X0) ∈ D((�⊗ 1 + 1 ⊗�)1/2) follows
from Lemma 19(iii) as in the proof of Assumption 1 h). The fact that Φt gives a ∗-homomorphism comes from
Proposition 24. Since it preserves the trace by the SDE it satisfies, we can extend it at the von Neumann algebraic level.
(Si , S′

j are produced from the free Brownian motion of the SDE.) Assumption 1 is true in case of Lipschitz conjugate
variable as follows. First, the free difference quotient being coassociative, (a) is true in choosing non-commutative
polynomials as D(∂). (a′) is true because having Lipschitz conjugate variables imply the conjugate variables are in M

(using e.g. the equality (1) in [11]). (b) is valid directly by Lipschitz conjugate variable assumption.
As stated, the equality on microstate free entropy dimension then comes from [39], Theorem 16. �

4.2. Preliminaries and relations of three natural derivations on q-Gaussian factors

Our goal is to study three derivations on q-Gaussian factors: the free difference quotient, the commutator with right
creation operators and the one giving the number operator as generator of the associated Dirichlet form. Especially,
we want to find values of q’s for which they can be seen as closed derivations with value in the coarse correspondence,
with the same domain and equivalent norms.

We will use this preliminaries to apply our results in the next subsection and give an interesting example of Lips-
chitz conjugate variables.

4.2.1. Preliminaries on q-Gaussian factors
We recall the construction of q-Gaussian variables given by Bożejko and Speicher in [7].

Let N < ∞ be an integer, H =R
N , HC =C

N its complexification, and −1 < q < 1. Consider the vector space

Falg(H) =CΩ ⊕
⊕
n≥1

H⊗n
C

(algebraic direct sum and tensor products). This vector space is endowed with a positive definite inner product given
by

〈ξ1 ⊗ · · · ⊗ ξn, ζ1 ⊗ · · · ⊗ ζm〉q = δn=m

∑
π∈Sn

qi(π)
n∏

j=1

〈ξj , ζπ(j))〉 = δn=m

〈
ξ1 ⊗ · · · ⊗ ξn,P

(n)
q ζ1 ⊗ · · · ⊗ ζn

〉
0,
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where i(π) = #{(i, j) : i < j and π(i) > π(j)}, and P
(n)
q = ∑

π∈Sn q
i(π)π where π acts via π−1(ζ1 ⊗ · · · ⊗ ζn) =

ζπ(1) ⊗ · · · ⊗ ζπ(n). Denote by Fq(H) the completion of Falg(H) with respect to this inner product.
For h ∈ H, define �(h) :Fq(H) → Fq(H) by extending continuously the map

�(h)h1 ⊗ · · · ⊗ hn = h⊗ h1 ⊗ · · · ⊗ hn,

�(h)Ω = h.

The adjoint is given by

�∗(h)h1 ⊗ · · · ⊗ hn =
n∑

k=1

qk−1〈hk,h〉h1 ⊗ · · · ⊗ ĥk ⊗ · · · ⊗ hn,

�∗(h)Ω = 0,

where ·̂ denotes omission. ω(h) = �(h) + �∗(h) are q-Gaussian variables. Γq(H) is the von Neumann algebra gen-
erated by ω(h) h ∈ H, acting as bounded operators on Fq(H). We use on it the faithful trace τq(X) = 〈XΩ,Ω〉.
It is well-known that L2(Γq(H), τq) � Fq(H). For ξ ∈ Falg(H) we write ψ(ξ) the element in Γq(H) such that
ψ(ξ)Ω = ξ , associated to this identification (since it is easy to see that Falg(H) ⊂ Fq(H) is identified with a sub-
space of Γq(H) ⊂ L2(Γq(H), τq) corresponding to polynomials in ω(h)’s).

Consider also r(h) given by

r(h)h1 ⊗ · · · ⊗ hn = h1 ⊗ · · · ⊗ hn ⊗ h,

r(h)Ω = h.

Finally, let Pn :Fq(H) → Fq(H) be the orthogonal projection onto tensors of rank n. Let Ξq = ∑
n≥0 q

nPn. It is obvi-
ous that Ξq is an Hilbert–Schmidt operator as soon as q2N < 1. We also introduce a natural finite rank approximation

Ξ
Q
q = ∑Q

n=0 q
nPn.

4.2.2. Three natural derivations on q-Gaussian factors
Fix an orthonormal basis {hi}Ni=1 ⊂R

N and let Xi = ω(hi). Thus Γq(H) = W ∗(X1, . . . ,XN), N = dimHR. We may
also write for i = (i1, . . . , in) ∈ N

n ψi = ψ(hi1 ⊗ · · · ⊗ hin). Finally, for a von Neumann algebra M , Mop will be as
usual the opposite algebra. Later, I will consider M = Γq(H).

The following lemma is proven in [37] (and stated exactly in that way in [39], Lemma 10, cf. also [38], Theorem 1).

Lemma 27 ([37]). For j = 1, . . . ,N , q2N < 1, let ∂(q)j :C〈X1, . . . ,XN 〉 → HS be the derivation given by ∂
(q)
j (Xi) =

δi=jΞq = [Xi, r(hj )] = [r(hj )∗,Xi]. Let ∂ :C〈X1, . . . ,XN 〉 → HSN be given by ∂(q) = ∂
(q)

1 ⊕ · · · ⊕ ∂
(q)
N and regard

∂ as an unbounded operator densely defined on L2(Γq(H)). Then:

(i) ∂(q) is closable.
(ii) If we denote by Zj the vector 0 ⊕ · · · ⊕ PΩ ⊕ · · · ⊕ 0 ∈ HSN (non-zero entry in j th place, PΩ is the orthogonal

projection onto CΩ ∈ Fq(H)), then Zj is in the domain of ∂∗ and ∂(q)∗(Zj ) = hj .

(iii) 1 ⊗ τ(∂
(q)
j (X)) = ∂

(q)
j (X)Ω = r(hj )

∗(X.Ω) (in the first equality we identify isometrically HS with L2(Γq(H)⊗
Γq(H)op) as usual via a ⊗ b with the rank one operator aτ(b.))

Let us recall the following crucial result of Bożejko ([5]) giving an Haagerup like inequality for q-Gaussian vari-
ables.

Theorem 28 (Haagerup–Bożejko Inequality [5]). If C−1
q = ∏∞

m=1(1 − qm) then for any ξ ∈ H⊗n ⊂ Falg(H):

∥∥ψ(ξ)
∥∥
L2(Γq(H),τq )

≤ ∥∥ψ(ξ)
∥∥
Γq(H)

≤ C
3/2
|q| (n+ 1)

∥∥ψ(ξ)
∥∥
L2(Γq(H),τq )

.
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Moreover, for any η ∈ H⊗n ⊗H⊗m ⊂ Falg(H)⊗alg Falg(H) (ε either op or nothing)∥∥ψ ⊗ψ(η)
∥∥
Γq(H)⊗Γq(H)ε

≤ C3|q|(n+ 1)(m+ 1)
∥∥ψ ⊗ψ(η)

∥∥
L2(Γq(H)⊗Γq(H)op,τq⊗τq )

.

A short proof of the first part can be found in [28] (basically a variant of [5] without writing the computations), the
argument obviously giving the second part too. Alternatively, as pointed out by our referee, we can apply to ui = ψ

(and a variant with right multiplication in the case ε = op) the following fact. If ui :Hi → B(Ki) are bounded maps
from Hilbert spaces to bounded maps on a Hilbert space (nothing but trilinear forms on Hilbert spaces), then their
tensor product u1 ⊗ u2 is bounded from H1 ⊗H2 to B(K1 ⊗K2) with ‖u1 ⊗ u2‖ ≤ ‖u1‖‖u2‖.

From now on, ψ may not be written explicitly, no more than identifications between L2(Γq(H) ⊗ Γq(H)op) and
Hilbert–Schmidt operators (following Section 2, but here the adjoint being the one coming from Γq(H)⊗Γq(H)op if
not specified explicitly).

As a consequence, for any ξ ∈ ⊕
p≤nH⊗p of component ξp , we also have by Cauchy–Schwarz:

∥∥ψ(ξ)
∥∥
Γq(H)

≤ C
3/2
|q|

∑
(p + 1)

∥∥ψ(ξp)
∥∥
L2(Γq(H),τq )

≤ C
3/2
|q| (n+ 1)3/2

(∑∥∥ψ(ξp)
∥∥2
L2(Γq(H),τq )

)1/2

= C
3/2
|q| (n+ 1)3/2

∥∥ψ(ξ)
∥∥
L2(Γq(H),τq )

. (14)

Likewise, for any η ∈ ⊕
p+q≤nH⊗p ⊗H⊗q , we also have:

∥∥ψ(η)
∥∥
Γq(H)⊗Γq(H)op ≤ C3|q|(n+ 1)3

∥∥ψ(η)
∥∥
L2(Γq(H)⊗Γq(H)op,τq⊗τq )

. (15)

In order to state the next result, let us fix several notation about tensor products (similar to those of [42], Sec-
tion 3.1). M is a given finite II1 factor with faithful normal trace τ . M ⊗̂Mop is the projective tensor product
of M with its opposite algebra, with the corresponding ∗-Banach algebra structure. Let α :M ⊗̂Mop → B(M)

be the contractive homomorphism given by α(a ⊗ b) = LaRb , where La and Rb are respectively the left and
right multiplication operators by a and b. We will denote LR(M) the algebra α(M ⊗̂Mop). It is easily seen that
‖α(x)m‖p ≤ ‖x‖M ⊗̂Mop‖m‖p , for 1 ≤ p ≤ ∞ so that LR(M) acts in a bounded way on Lp(M,τ) (the comple-
tion of M with respect to ‖x‖p = τ(|x|p)1/p). Consistently with our previous notation, we will write x#m any of
those actions (and several others we are about to discuss). For p = 2, this gives a map β : LR(M) → C∗(M,M ′)
where M , and M ′ are with respect to the standard form of M on L2(M). Further, we have a ∗-homomorphism
γ :C∗(M,M ′) → M ⊗Mop with value in the von Neumann algebra tensor product given by the general C∗ tensor
product theory. We will of course see M ⊗Mop as a II1 factor with canonical trace τ ⊗ τ . Finally, we will write # any
“side multiplication” when defined. For instance, a ⊗ b#a′ ⊗ b′#a′′ ⊗ b′′ = aa′a′′ ⊗ b′′b′b so that # may be in this
case multiplication in M ⊗Mop, or any of its induced actions on L2(M ⊗ Mop). More generally, for i ∈ [1,p − 1],
ai, bj ∈ M , we write

(a1 ⊗ a2 ⊗ · · · ⊗ ap)#i (b1 ⊗ · · · ⊗ bn) = a1 ⊗ · · · ⊗ aib1 ⊗ b2 ⊗ · · · ⊗ bnai+1 ⊗ · · · ⊗ ap

(if p = 2,#1 = #), and likewise the corresponding extension for instance M ⊗ i ⊗̂M ⊗p−i × M ⊗n → M ⊗n+p−2 (or
any analogues containing Mop the multiplication being then consistently defined to get what expected above in M

as if there where everywhere M , for instance if a ⊗ a′, c ⊗ c′ ∈ M ⊗ Mop, b ⊗ b′ ⊗ b′′ ∈ (M ⊗ M) ⊗̂Mop we have
(a ⊗ a′)#((b ⊗ b′ ⊗ b′′)#2(c ⊗ c′)) = ((a ⊗ a′)#(b ⊗ b′ ⊗ b′′))#2(c ⊗ c′) = (ab ⊗ b′c ⊗ c′b′′a′) ∈ M ⊗ M ⊗ Mop

(all multiplications written in M , if we were more consistent with Mop we would have written a′b′′c′). However, we
won’t use this notation if c ⊗ c′ is thought of in M ⊗ M , but everything would be the same if also b ⊗ b′ ⊗ b′′ ∈
(M ⊗Mop) ⊗̂Mop except for the value in this space in M ⊗Mop ⊗Mop).

We will often use the following assumption and give an easy sufficient condition deduced from Bożejko inequality
in the next corollary.

Assumption Iq . q
√
N < 1 and Ξq is invertible in M ⊗Mop.
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Even if we will scarcely use it, for R > 1 and a non-commutative power series (of radius of convergence larger
than R with value in a tensor product) F(Y1, . . . , Yn) = ∑

ai1,...,in,pYi1 · · ·Yip ⊗ Yip+1 · · ·Yin we write the usual norm
‖F‖R = ∑ |ai1,...,in,p|Rn. We will use the same notation with less or more tensors in the space of value.

Corollary 29. When the right hand side in the inequalities bellow is finite, Ξq comes from an element in M ⊗̂Mop,
and respectively M ⊗Mop via ιγβα or ι :M ⊗Mop → L2(M ⊗Mop) and with an obvious notation:

‖Ξq − 1 ⊗ 1‖M ⊗̂Mop ≤ (C|q|)3
[

4|q|N
1 − |q|N + 5(|q|N)2

(1 − |q|N)2
+ 2(|q|N)3

(1 − |q|N)3

]
=: ν(q,N),

‖Ξq − 1 ⊗ 1‖M ⊗Mop ≤ (C|q|)3
[

4|q|√N

1 − |q|√N
+ 5(|q|√N)2

(1 − |q|√N)2
+ 2(|q|√N)3

(1 − |q|√N)3

]
=: ρ(q,N).

Especially (N ≥ 2) if q is such that ν(q,N) < 1, e.g. for |q|N ≤ 0.13, then Ξq is invertible in M ⊗̂Mop (resp. if q is

such that ρ(q,N) < 1 e.g. when |q|√N ≤ 0.13 then Iq holds). Moreover, if q
√
N < 1, ‖ΞQ

q −Ξq‖M ⊗Mop →Q→∞ 0

and Ξq ∈ C∗(X1 ⊗ 1,1 ⊗X1, . . . ,1 ⊗XN) ⊂ M ⊗Mop is positive so that Ξ1/2
q is well defined.

Moreover, if ε > 0 and ((3 + ε)2N + 2)|q| < 1 there exists a non-commutative power series Ξq(Y1, . . . , YN) with
radius of convergence greater than R = (1 + ε/2) 2

1−|q| > ‖Xi‖ such that Ξq(X1, . . . ,XN) = Ξq , and

‖Ξq − 1 ⊗ 1‖R ≤ (3 + ε)2N |q|
1 − (2 + (3 + ε)2N)|q| =: π(q,N),

and likewise,

max

(
N∑
i=1

∥∥∂i ⊗ 1(Ξq)
∥∥
R
,

N∑
i=1

∥∥1 ⊗ ∂i(Ξq)
∥∥
R

)
≤ (3 + ε)2N |q|(1 − 2|q|)

(1 − (2 + (3 + ε)2N)|q|)2
.

Proof. Since Pn can be seen as a finite rank operator written as
∑

ξ ξ ⊗ ξ∗ with the usual identification (the

sum running over an orthonormal basis of H⊗n), the previous theorem gives: ‖Pn‖M ⊗̂Mop ≤ ∑
ξ ‖ξ‖2 ≤ C3|q|(n +

1)2 ∑
ξ ‖ξ‖2

2 = C3|q|(n+ 1)2Nn. The inequality follows from a standard computation.
Likewise

‖Ξq − 1 ⊗ 1‖M ⊗Mop ≤
∑
n≥1

qn
∥∥∥∥∑

ξ

ξ ⊗ ξ∗
∥∥∥∥

≤ C3|q|
∑
n≥1

qn(n+ 1)2
∥∥∥∥∑

ξ

ξ ⊗ ξ∗
∥∥∥∥

2
= C3|q|

∑
n≥1

qn(n+ 1)2Nn/2.

Let us call f (|q|N) = ν(q,N)/(C|q|)3. To get f (|q|N) < C−3
|q| , it suffices to have f (|q|N) < (1+|q|)3 ∏∞

m=1(1−
|q|m)3/(1 + |q|m)3 = (1 + |q|)3(

∑
n∈Z(−1)n|q|n2

)3, and again keeping only the smallest order it suffices to have
f (|q|N) < (1 − |q| − 2|q|2)3 and solving numerically f (|q|N) < (1 − |q|N/2 − |q|2N2/2)3 (sufficient since N ≥ 2)
one gets |q|N < 0.1386 . . . .

For the last statement, we only improve an estimate in [39]. We write pi the polynomials giving, by evaluation
on X1, . . . ,XN , the orthonormalization of ψi defined in Lemma 13 in [39]. More specifically, we consider Γn the
Gramm matrix of q-scalar products in the space of tensors of length n given (for |j | = |l| = n) by: (Γn)(j,l) =
〈ψj1,...,jn ,ψl1,...,ln〉q . This is an Nn × Nn matrix known to be positive and invertible (with real coefficients), and we

consider B = Γ
−1/2
n . Note that by definition Γn is given by the image of the element of P (n)

q = ∑
π∈Sn q

i(π)π in the

algebra of the symmetric group Sn by the obvious representation πq,N,n of Sn on (the formal basis of the C
Nn

) ξl and

it is known from [16] and [49] a formula for P (n)−1
q given by the inductive relation P

(n)
q = πn−1,n(P

(n−1)
q )Mn, πn−1,n

the usual embedding of Sn−1 in Sn with image leaving 1 invariant and Mn = ∑n
k=1 q

k−1(1 → k) (with the notation
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(k → l) the cycle sending k+ i to k+ i + 1 for 0 ≤ i ≤ l − k− 1 and sending l to k) via M−1
n = ∏1

j=n−1(1 − qj (1 →
j +1))

∏0
j=n−2(1−qn−j (2 → n−j))−1. We will use it through B2 = πq,N,n(P

(n)−1
q ). We also write ψj (Y1, . . . , YN)

the non-commutative polynomial defined inductively by (ψε = 1 for the empty word ε):

ψi1,...,in = Yi1ψi2,...,in −
∑
j≥2

qj−2δi1=ij ψi2,...,îj ,...,in
. (16)

As in the proof of Proposition 2.7 in [6], we use the following identity for ψi = ψi(X1, . . . ,XN) for ψi introduced
before.

Then, by definition, pi(Y1, . . . , YN) = ∑
j,|j |=n Bi,jψj (Y1, . . . , YN) so that (as checked in Lemma 13 in [39])

{pi(X1, . . . ,XN)Ω}|i|=n is obviously an orthonormal basis of H⊗n.
Ξq(Y1, . . . , YN) = ∑

n q
n
∑

i pi(Y1, . . . , YN) ⊗ p∗
i (Y1, . . . , YN) will be the power series we are looking for, once

proved an estimate on its norm. It suffices to bound (using symmetry of the matrix B):∥∥∥∥∑
i

pi(Y1, . . . , YN)⊗ p∗
i (Y1, . . . , YN)

∥∥∥∥
R

=
∥∥∥∥∑
i,j ,l

Bi,jψj (Y1, . . . , YN)⊗Bi,lψ
∗
l (Y1, . . . , YN)

∥∥∥∥
R

≤
∑
l

∥∥∥∥∑
j

B2
l,jψj (Y1, . . . , YN)

∥∥∥∥
R

‖ψ∗
l (Y1, . . . , YN)‖R.

Now using the expression for B2 expanded from the inverse coming from the action of the symmetric group
algebra, it involves only ‖ψσ(j)(Y1, . . . , YN)‖R and from the bound in [16], Lemma 4.1, one gets

∥∥∥∥∑
j

B2
l,jψj (Y1, . . . , YN)

∥∥∥∥
R

≤
((

1 − |q|) ∞∏
k=1

1 + |q|k
1 − |q|k

)n

sup
σ∈Sn

∥∥ψσ(j)(Y1, . . . , YN)
∥∥
R
.

Finally, using (16), if we call Cn = supi1,...,in ‖ψi1,...,in‖R , then Cn ≤ RCn−1 + Cn−2/(1 − |q|), thus Cn ≤ (R +
1

1−|q| )
n. Likewise, if Dn = supi1,...,in

∑
i ‖∂iψi1,...,in (Y1, . . . , YN)‖R then Dn ≤ Cn−1 +RDn−1 +Dn−2/(1−|q|) thus

one checks by induction: Dn ≤ n(R + 1
1−|q| )

n−1.
Finally, we proved:

∥∥∥∥∑
i

pi(Y1, . . . , YN)⊗ p∗
i (Y1, . . . , YN)

∥∥∥∥
R

≤
((

1 − |q|) ∞∏
k=1

1 + |q|k
1 − |q|k

)n(
R + 1

1 − |q|
)2n

Nn

≤
(
(1 − |q|)2

1 − 2|q|
)n(

(3 + ε)

1 − |q|
)2n

Nn.

The last rough estimate is as above, in this proof, for the estimate on f (|q|N) and detailed in Lemma 13 in [39], and
it concludes. Likewise, we have:

∑
j

∥∥∥∥∑
i

∂jpi(Y1, . . . , YN)⊗ p∗
i (Y1, . . . , YN)

∥∥∥∥
R

≤ n

(
(1 − |q|)2

1 − 2|q|
)n(

(3 + ε)

1 − |q|
)2n

Nn.

Note that positivity comes from the identification of
∑

n q
nPn = Γq(q id) with the second quantization. �

As a consequence, for q such that Iq holds (e.g. ρ(q,N) < 1), if ∂j is the j th free difference quotient with

respect to X1, . . . ,XN we have ∂j = ∂
(q)
j #Ξ−1

q since ∂j (Xi) = 1i=jΞq#Ξ−1
q = δi=j1 ⊗ 1. Recall # in this context is

multiplication in M ⊗Mop.
Finally, we want to introduce a derivation giving the number operator as generator of the corresponding Dirichlet

form. We define first the ∂̂
(q)
j := ∂k#Xk′

q valued in Γq(H⊕H) where Xk′
q is the q-Gaussian variable corresponding to
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the second copy of the eigenvector hk in the second term of the direct sum. Said otherwise this is the only derivation
sending Xk

q to Xk′
q . This derivation is defined for any q . We also want to compare this derivation to another derivation

valued in the coarse correspondence. For q such that q
√
N < 1, we can define ∂̃

(q)
j := ∂j#Ξ1/2

q .

Proposition 30. For any ξ ∈ H⊗n, η ∈ H⊗m, any q ∈ (−1,1), ψ(ξ) ∈ D(∂̂
(q)
k ) and we have:

∑
k

〈
∂̂
(q)
k

(
ψ(ξ)

)
, ∂̂

(q)
k

(
ψ(η)

)〉
q

= n〈ξ, η〉q .

As a consequence, ∂̂ (q) = (∂̂
(q)

1 , . . . , ∂̂
(q)
n ) is a closable derivation, with ∂̂ (q)∗∂̂ (q) = �̃ the number operator satisfying

�̃(ξ) = nξ , ξ ∈ H⊗n.
Moreover if q

√
N < 1, for any polynomial P,Q,R,S ∈ C〈X1, . . . ,Xn〉,〈

R∂̂
(q)
k (P ), S∂̂

(q)
k (Q)

〉 = 〈
R∂̃

(q)
k (P ), S∂̃

(q)
k (Q)

〉
.

Thus, one can see ∂̂
(q)
k as valued in a bimodule included in the coarse correspondence.

Finally, if Iq holds, ∂̃ (q)k , ∂(q)k , and ∂k are all closable and their closures share the same domain, with, for any x in
their common domain:∥∥∂(q)k (x)

∥∥
2 ≤ ∥∥Ξ1/2

q

∥∥
M ⊗Mop

∥∥∂̃ (q)k (x)
∥∥

2 ≤ ∥∥Ξ1/2
q

∥∥2
M ⊗Mop

∥∥∂k(x)∥∥2,∥∥∂k(x)∥∥2 ≤ ∥∥Ξ−1/2
q

∥∥
M ⊗Mop

∥∥∂̃ (q)k (x)
∥∥

2 ≤ ∥∥Ξ−1/2
q

∥∥2
M ⊗Mop

∥∥∂(q)k (x)
∥∥

2.

Proof. The domain property stated is obvious since ψ(ξ) is a non-commutative polynomial in X1, . . . ,XN . Moreover,
by linearity, we need to check the first equality only for ψ(ξ) = ψj1,...,jn and ψ(η) = ψl1,...,lp .

As in the proof of Proposition 2.7 in [6], we use the following identity:

ψi1,...,in = Xi1ψi2,...,in −
∑
j≥2

qj−2δi1=ij ψi2,...,îj ,...,in
.

Applying ∂k , we find:

∂k(ψi1,...,in ) = 1i1=k ⊗ψi2,...,in +Xi1∂k(ψi2,...,in )−
∑
j≥2

qj−2δi1=ij ∂k(ψi2,...,îj ,...,in
).

As a consequence, we deduce by an immediate induction:

∂k(ψi1,...,in )#X
k′
q =

∑
j

1ij=kψi1,...,i
′
j ,...,in

(where the prime indicates we have to consider the ij of the second copy of H).
We can thus compute (using the definition of the scalar product in the second and fourth lines, and removing

properly summations and Kronecker functions 1a=b in the third and fifth lines):∑
k

〈
∂̂
(q)
k (ψj1,...,jn), ∂̂

(q)
k (ψl1,...,lm)

〉
q

=
∑
k

∑
i,ι

1ji=k=lι〈ψj1,...,j
′
i ,...,jn

,ψl1,...,l
′
ι ,...,lm

〉q

= 1n=m

∑
k

∑
i,ι

1ji=k=lι

∑
π∈Sn

qi(π)1π(i)=ι

n∏
p=1

1jp=lπ(p)

= 1n=m

∑
k

∑
i

1ji=k

∑
π∈Sn

qi(π)
n∏

p=1

1jp=lπ(p)
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= 1n=m

∑
k

∑
i

1ji=k〈ψj1,...,jn ,ψl1,...,lm〉q

= n〈ψj1,...,jn ,ψl1,...,lm〉q .
We now assume q

√
N < 1. To explain the second equality, note that we can rewrite (since Ξq self-adjoint) 〈a ⊗

b#Ξ1/2
q , a′ ⊗ b′#Ξ1/2

q 〉 = 〈a ⊗ b, a′ ⊗ b′#Ξq〉 and then:

〈
a ⊗ b, a′ ⊗ b′#Ξq

〉 = ∑
n

qn
∑
ξ

τ
(
a∗a′ξ

)
τ
(
ξ∗b′b∗) =

∑
n

qnτ
(
a∗a′Pn

(
b′b∗)) = τ

(
a∗a′Γq(q id)

(
b′b∗)),

where Γq(q id) is the second quantization. Then, our claim follows for instance from Theorem 3.2 in [15] which
implies τ(a∗a′Γq(q id)(b′b∗)) = 〈a ⊗ b#X′

k, a
′ ⊗ b′#X′

k〉 (Theorem 3.2 is a variant of Ito formula, one can apply it
after identifying the first copy of H with Span{√n1[k/2n,(k+1)/2n), k = 1, . . . , n} in L2([0,1]) and the second with
Span{√n1[k/2n,(k+1)/2n), k = n+ 1, . . . ,2n}).

The last inequalities in the proposition on non-commutative polynomials follow from Corollary 29 and Assump-
tion Iq . It implies closability since ∂(q) is closable (by Lemmas 12 and 27) and the result extended to the closures. �

Remark 31. Even if we won’t use significantly later the analytic bound we got in Corollary 29, it is worth noting it
can enable us using our last derivation ∂̃ (q) to prove complete metric approximation property for Γq(H) with small q ,
or (reprove) absence of non-trivial projections for the corresponding C∗-algebras following the lines of [19]. Indeed,
first note that using the analytic expansion Ξ

1/2
q (Y1, . . . , YN) = 1 ⊗ 1 +∑∞

k=1

(1/2
k

)
(Ξq(Y1, . . . , YN)− 1 ⊗ 1)k so that

we get a Lipschitz bound∥∥Ξ1/2
q (Y1, . . . , YN)−Ξ

1/2
q (Z1, . . . ,ZN)

∥∥
≤

∞∑
k=1

∣∣∣∣
(

1/2
k

)∣∣∣∣k‖Ξq − 1 ⊗ 1‖k−1
R

∑
i

(∥∥∂i ⊗ 1(Ξq)
∥∥
R

+ ∥∥1 ⊗ ∂i(Ξq)
∥∥
R

)‖Xi −Zi‖

≤ 1

2
√

1 − ‖(Ξq − 1 ⊗ 1)‖R
sup
i

(‖Xi −Zi‖
)
2

(3 + ε)2N |q|(1 − 2|q|)
(1 − (2 + (3 + ε)2N)|q|)2

≤ 1√
1 − (2 + 2(3 + ε)2N)|q| sup

i

(‖Xi −Zi‖
) (3 + ε)2N |q|(1 − 2|q|)
(1 − (2 + (3 + ε)2N)|q|)3/2

≤ κ sup
i

(‖Xi −Zi‖
)
,

the last inequality being true for κ < 1/2 if (3+ ε)2N |q|(1−2|q|) ≤ (3+ ε)2N |q| < (1−2(2+2(3+ ε)2N)|q|)/2 ≤
(1 − (2 + 2(3 + ε)2N)|q|)2/2, i.e. e.g. for (4 + 6(3 + ε)2N)|q| < 1.

As in [19], one can consider the solutions (given by Picard iteration) Xi,t = Xi − 1
2

∫ t

0 dsXi,s + ∫ t

0 Ξ
1/2
q (X1,s , . . . ,

XN,s)#dSi
s , Yi,t = 0 − 1

2

∫ t

0 dsYi,s + ∫ t

0 Ξ
1/2
q (Y1,s , . . . , YN,s)#dSi

s . From [39] or [12] (and the above Proposition 30),
Xi,t is stationary so that αt (Xi) = Xi,t (i = 1, . . . ,N ) defines a trace preserving homomorphism. By variation of
constants, one gets:

(Xi,t − Yi,t ) = Xi − 1

2

∫ t

0
ds(Xi,s − Yi,s)+

∫ t

0

(
Ξ

1/2
q (X1,s , . . . ,XN,s)−Ξ

1/2
q (Y1,s , . . . , YN,s)

)
#dSi

s

= e−1/2tXi +
∫ t

0
e−1/2(t−s)

(
Ξ

1/2
q (X1,s , . . . ,XN,s)−Ξ

1/2
q (Y1,s , . . . , YN,s)

)
#dSi

s .

And from our inequality above and Biane–Speicher’s L∞ version of Burkholder–Gundy inequality, we deduce:

sup
i

‖Xi,t − Yi,t‖ ≤ e−t/2 sup
i

‖Xi‖ +
(∫ t

0
dse−(t−s)κ2 sup

i

‖Xi,s − Yi,s‖2
)1/2
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so that from Gronwall’s lemma (in line 2 after using a trivial bound on squares and κ < 1/2):

sup
i

‖Xi,t − Yi,t‖2 ≤ 2e−t sup
i

‖Xi‖2 + 1/2

(∫ t

0
dse−(t−s) sup

i

‖Xi,s − Yi,s‖2
)

≤ 2e−t/2 sup
i

‖Xi‖2 → 0.

Thus, since Yi,s ∈ C∗(Si
t ) we got the property of Corollary 4.1 in [19] and by the reasoning of Theorem 4.2 there,

C∗(X1, . . . ,XN) has no non-trivial projections (remember this applies when (4 + 6(3 + ε)2N)|q| < 1). Likewise, by
the reasoning of Theorem 4.3 in [19] we get complete metric approximation property in the way they get Haagerup
property. This last result has been recently extended by Stephen Avsec [1] to all q ∈ (−1,1). Of course, in the smaller
range of q we consider we have almost inclusion in L(F∞) too.

4.2.3. Regularity for Ξq

Let us write ∂
(k,j)
i = 1⊗(k−1) ⊗ ∂i ⊗ 1⊗(j) :L2(M)⊗(k+j) → L2(M)⊗(k+j+1) and the corresponding L2 closure ∂

(k,j)
i .

We start by noting the following consequence of Proposition 30:

Lemma 32. If Iq holds and for ξ ∈ H⊗n, for D any among ∂
(kp,p−kp)
mp

◦ · · · ◦ ∂
(k1,1−k1)
m1 p ∈ [1, n], kl ∈ [1, l],ml ∈

[1,N ], l = 1, . . . , p, ‖D(ξ)‖2
2 ≤ (n‖Ξ−1

q ‖M ⊗Mop)p‖ξ‖2
2.

Lemma 33. Assume Iq and |q|N < 1, then ‖∂k ⊗ 1Ξq‖(M ⊗Mop) ⊗̂M < ∞. Likewise, with U,V any among ∂j , ∂(q)i ,

we have U ⊗V (Ξq) ∈ (M ⊗Mop) ⊗̂ (Mop ⊗M), U ⊗V (Ξq) ∈ (Mop ⊗M) ⊗̂ (M ⊗Mop), (U ⊗1⊗1)(V ⊗1)(Ξq) ∈
(M ⊗Mop ⊗M) ⊗̂Mop, (1 ⊗ 1 ⊗U)(1 ⊗ V )(Ξq) ∈ M ⊗̂ (Mop ⊗M ⊗Mop).

Proof. We compute (the first inequality bellow is obvious from Lemma 29, the second equality comes from Proposi-
tion 30):

∥∥∂k(pi)
∥∥2
L2(M,τq )⊗L2(M,τq )

≤ ∥∥Ξ−1/2
q

∥∥2〈
∂k(pi)#Ξq, ∂k(pi)

〉 = ∥∥Ξ−1/2
q

∥∥2|i|.

Now, one can use Theorem 28 and (15) in the second line and our previous inequality in the third to conclude to the
first result.

‖∂k ⊗ 1Ξq‖(M ⊗Mop) ⊗̂M ≤
∑
n

qn
∑
|i|=n

∥∥∂k(pi)
∥∥
M ⊗Mop‖pi‖M

≤ C
9/2
|q|

∑
n

|q|n
∑
|i|=n

(n+ 1)4‖pi‖2
∥∥∂k(pi)

∥∥
L2(M ⊗M)

≤ C
9/2
|q|

∑
n

|q|n(n+ 1)4
∥∥Ξ−1/2

q

∥∥n1/2Nn.

As stated, as soon as ‖Ξ−1/2
q ‖ < ∞ and |q|N < 1, this sum is finite. The proof of ∂j ⊗ ∂

(q)
i (Ξq) ∈ (M ⊗Mop) ⊗̂

(Mop ⊗M) is really similar. For the last statement, we need likewise a bound e.g. on ‖∂j ⊗ 1 ∂(q)i (pj )‖M ⊗Mop ⊗M ≤
‖∂j ⊗1(Ξq)‖(M ⊗Mop) ⊗̂M‖∂i(pj )‖M ⊗M +‖Ξq‖Mop ⊗M‖∂j ⊗1 ∂i(pj )‖M ⊗Mop ⊗M coming from the previous lemma
(with a 3 tensor product variant of Bożejko inequality and Lemma 30). �

4.3. An example of Lipschitz conjugate variable: q-Gaussian families for small q

We now want to play with the three previous derivations to get regularity results for conjugate variables.
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Theorem 34. Assume ρ(q,N) < 1 as defined in Corollary 29 (e.g. |q|√N ≤ 0.13) and |q|N < 1 then q-Gaussian
variables have finite free Fisher information Φ∗(X1, . . . ,XN) < ∞ (and actually the conjugate variable is in the
domain of the L2-closure of the free difference quotient).

Furthermore assume also condition ν(q,N) < 1 in Corollary 29 (e.g. |q|N ≤ 0.13), in that case the conjugate
variables are in Γq(H) and X1, . . . ,XN have even Lipschitz conjugate variables. As a consequence, under condition
ν(q,N) < 1 we have δ0(X1, . . . ,XN) = N .

Finally, if we assume π(q,N) < 1, then there exists a non-commutative power series ξj of radius R = (1 +
ε/2) 2

1−|q| > ‖Xi‖ such that ξj (X1, . . . ,XN) are the conjugate variables of X1, . . . ,XN . Moreover, there exits a

self-ajoint potential V which is also a non-commutative power series of radius R such that its cyclic gradient is
DiV = ξi .

Remark 35. In [39], Shlyakhtenko proved δ0(X1, . . . ,XN) → N when q → 0, we can prove this value is identically

equal to N on a small neighborhood of 0. Actually, he proved δ0(X1, . . . ,XN) ≥ N(1− q2N

1−q2N
) for |q| < (4N3 +2)−1.

Here the improvement in terms of value of δ0 mainly comes from using a better derivation in that respect (the free
difference quotient). The improvement in terms of values of q comes from the fact we only need a Lipschitz condition
instead of a analyticity condition on the conjugate variable. However, in considering like us the free difference quotient
and with a better estimate of the domain of analyticity, one would also get a range of order |q| < 1/CN in inverse of
the number of generators (with a huger C than ours, cf. Remark 31). Note finally that Corollary 2.11 in [37] implies
δ∗(X1, . . . ,XN) = N as soon as Iq holds, thus e.g. assuming only ρ(q,N) < 1.

Proof of Theorem 34. Let M = Γq(H).
Step 1: Finite Fisher Information under |q|N < 1 and ρ(q,N) < 1.

Recall the notation introduced before (and in) Corollary 29 so that ιγβα is the natural map from M ⊗̂Mop to
L2(M ⊗Mop) (we may use later implicitly).

Claim. ιγβα(M ⊗̂Mop) ⊂ D(∂
(q)∗
j ) and for any a, b ∈ M

∂
(q)∗
j (a ⊗ b) = aXjb − r(hj )

∗(a)b − a
(
l(hj )

∗(b)
)
.

Proof. As reminded in Lemma 27, 1 ⊗ τ ∂
(q)
j = r(hj )

∗. Moreover, since ∂
(q)
j is a real derivation for any x ∈ D(∂

(q)
j ),

we have 1 ⊗ τ ∂
(q)
j (x∗) = (τ ⊗ 1(∂(q)j (x))∗. Thus if J denotes the antilinear isometry extending J (x) = x∗ to L2(M),

we have τ ⊗ 1 ∂(q)j = J1 ⊗ τ ∂
(q)
j J = J r(hj )

∗J = l(hj )
∗. The last equality follows from formulas for annihilation

operators and Jψi1,...,in = ψin,...,i1 .

From Lemma 12 and ∂
(q)∗
j (1⊗1) = Xj , one deduces for a, b ∈ D(∂

(q)
j )∩M , ∂(q)∗j (a⊗b) = aXjb− r(hj )

∗(a)b−
a(l(hj )

∗(b)), so that

∥∥∂(q)∗j (a ⊗ b)
∥∥

2 ≤ ‖a‖‖b‖‖Xj‖ + ∥∥r(hj )∥∥B(L2(M))
‖a‖2‖b‖ + ∥∥l(hj )∥∥B(L2(M))

‖b‖2‖a‖
≤ 4‖a‖‖b‖/√1 − |q|.

Now for any a, b ∈ M , if ηα = α(α + ∂(q)∗ ∂(q))−1 the completely positive (thus contractive on M) resolvent
associated to the generator of the corresponding Dirichlet form, we have for any x ∈ M,ηα(x) ∈ D(∂

(q)
j ) ∩ M and

‖ηα(x) − x‖2 → 0 when α → ∞. Since ‖∂(q)∗j (ηα(a) ⊗ ηα(b))‖2 ≤ 4‖a‖‖b‖/√1 − |q| we have weak convergence

in L2 up to extraction and as ηα(a)⊗ηα(b) → a⊗b ∈ L2(M ⊗M), we get a⊗b in the domain of the closed operator
∂
(q)∗
j with the formula and inequality above remaining true. This concludes. �

Note that assuming ν(q,N) < 1, one thus deduces Ξ−1
q ∈ D(∂

(q)∗
j ) with the formula:

∂
(q)∗
j

(
Ξ−1

q

) = Ξ−1
q #Xj −m

(
r(hj )

∗ ⊗ 1 + 1 ⊗ l(hj )
∗)(Ξ−1

q

)
.
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Since (Ξq)
∗ = Ξq ∈ M ⊗Mop, we have thus shown our first result about finite Fisher information in this

case.
First recall {hi}Ni=1 ⊂R

N is an orthonormal basis. We write for i = (i1, . . . , in) ∈ Nn ψi = ψ(hi1 ⊗ · · · ⊗ hin). We
define the length |i| = n.

We now want to prove finite Fisher information under the less restrictive condition ρ(q,N) < 1, |q|N < 1. We
need to show Ξ−1

q ∈ D(∂
(q)∗
i ) and we only know from Lemma 33: Ξq ∈ M ⊗̂Mop, ∂k ⊗1Ξq ∈ (M ⊗Mop) ⊗̂M , (1⊗

∂k)Ξq ∈ Mop ⊗̂ (M ⊗Mop), (1⊗∂
(q)
i )Ξq ∈ M ⊗M ⊗Mop, (∂(q)i ⊗1)Ξq ∈ M ⊗Mop ⊗Mop, Ξ−1

q ∈ M ⊗Mop, (∂j ⊗
∂
(q)
i )(Ξq) ∈ (M ⊗Mop) ⊗̂ (Mop ⊗M), (∂(q)i ⊗ ∂j )(Ξq) ∈ (Mop ⊗M) ⊗̂ (M ⊗Mop), ((∂j ⊗ 1 ⊗ 1∂(q)i ) ⊗ 1)(Ξq) ∈
(M ⊗Mop ⊗M) ⊗̂Mop, (1⊗ ((1⊗1⊗∂j )∂

(q)
i ))(Ξq) ∈ M ⊗̂ (Mop ⊗M ⊗Mop) (the norms of those quantities bellow

are always taken in those spaces if not otherwise specified).
Let us call Un = ∑n

i=0(−1)i(Ξq −1⊗1)i (power in M ⊗̂Mop) so that we know Un → Ξ−1
q in L2, Un ∈ M ⊗̂Mop

and by our first claim Un ∈ D(∂
(q)∗
i ). Since ∂

(q)∗
i is closed it suffices to show ∂

(q)∗
i (Un) bounded in L2 to get a

weak limit up to extraction and Ξ−1
q ∈ D(∂

(q)∗
i ) and to get also Ξ−1

q ∈ D(∂j ∂
(q)∗
i ), it suffices to bound ∂j ∂

(q)∗
i (Un)

(since such a bound gives also a bound on ‖∂(q)∗i (Un)‖2
2 = 〈∂(q)i ∂

(q)∗
i (Un),Un〉, we only sketch the proof of both at

once).
This is mainly a computation using Un is almost an inverse and thus will behave almost as inverse when computing

derivatives coming from application of ∂ . The second key point will be that, apart from a bunch of terms we can
gather in something of the form ∂

(q)∗
i (Un), the ∂j will enable us to use only a bound on terms coming from Un in von

Neumann norm. Recall notation #i was introduced before Corollary 29. We get (after using our formula for ∂(q)∗i , we
mainly use derivation property of ∂j and changes of summation):

∂j ∂
(q)∗
i (Un) = ∂j

(
Un#Xi −m ◦ (1 ⊗ τ ⊗ 1)

(
∂
(q)
i ⊗ 1(Un)+ 1 ⊗ ∂

(q)
i (Un)

))
,

∂j (Un#Xi) = 1i=jUn +
n∑

i=1

(−1)i
i−1∑
k=0

(Ξq − 1 ⊗ 1)k#
(
∂j ⊗ 1(Ξq)#2

(
(Ξq − 1 ⊗ 1)i−k−1#Xi

))

+
n∑

i=1

(−1)i
i−1∑
k=0

(Ξq − 1 ⊗ 1)k#
(
1 ⊗ ∂j (Ξq)#1

(
(Ξq − 1 ⊗ 1)i−k−1#Xi

))

= 1i=jUn −
n−1∑
k=0

(−1)k(Ξq − 1 ⊗ 1)k#
(
∂j ⊗ 1(Ξq)#2(Un−k−1#Xi)

+ 1 ⊗ ∂j (Ξq)#1(Un−k−1#Xi)
)
,

∂j
(
m ◦ (1 ⊗ τ ⊗ 1)

(
∂
(q)
i ⊗ 1(Un)

))
= −∂jm ◦ 1 ⊗ τ ⊗ 1

[
n−1∑
k=0

(−1)k(Ξq − 1 ⊗ 1)k#
(
∂
(q)
i ⊗ 1(Ξq)#2(Un−k−1)

)]

= −
n−1∑
k=0

(−1)k × {(
1 ⊗ (m ◦ 1 ⊗ τ ⊗ 1)

)[(
∂j ⊗ 1(Ξq − 1 ⊗ 1)k

)
#2
(
∂
(q)
i ⊗ 1(Ξq)#2(Un−k−1)

)]

+ (
(m ◦ 1 ⊗ τ ⊗ 1)⊗ 1

)[
(1 ⊗ ∂j (Ξq − 1 ⊗ 1)k#1

(
∂
(q)
i ⊗ 1(Ξq)#2(Un−k−1)

)]
+ (

(m ◦ 1 ⊗ τ ⊗ 1)⊗ 1
)
(Ξq − 1 ⊗ 1)k#

(
∂
(q)
i ⊗ 1(Ξq)#2

(
1 ⊗ ∂j (Un−k−1)

))
+ (Ξq − 1 ⊗ 1)k#

[(
1 ⊗ (m ◦ 1 ⊗ τ ⊗ 1)

)(
∂j ⊗ 1 ⊗ 1 ∂(q)i ⊗ 1(Ξq)#3Un−k−1

)]
+ (Ξq − 1 ⊗ 1)k#

[(
(m ◦ 1 ⊗ τ ⊗ 1)⊗ 1

)(
∂
(q)
i ⊗ ∂j (Ξq)#2Un−k−1

)]}
.
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Preparing for the reintroduction of ∂(q)∗i (Un−k−1) we rewrite (a part of) the first line in our last right hand side:

n−1∑
k=0

(−1)k
[(
∂j ⊗ 1(Ξq − 1 ⊗ 1)k

)
#2
(
∂
(q)
i ⊗ 1(Ξq)#2(Un−k−1)

)]

=
n−1∑
k=0

(−1)k ×
[
k−1∑
l=0

(Ξq − 1 ⊗ 1)l#
(
∂j ⊗ 1(Ξq)

)
#2(Ξq − 1 ⊗ 1)k−l−1

]
#2
(
∂
(q)
i ⊗ 1(Ξq)#2(Un−k−1)

)

=
n−2∑
l=0

(−1)l(Ξq − 1 ⊗ 1)l#
(
∂j ⊗ 1(Ξq)

)

#2

[
n−1∑

k=l+1

(−1)k−l (Ξq − 1 ⊗ 1)k−l−1#
(
∂
(q)
i ⊗ 1(Ξq)#2(Un−k−1)

)]

=
n−1∑
l=1

(−1)l(Ξq − 1 ⊗ 1)l#
(
∂j ⊗ 1(Ξq)

)
#2
(
∂
(q)
i ⊗ 1(Un−l−1)

)

(in the last line, note that the term with l = n− 1 is zero since ∂
(q)
i ⊗ 1(U0) = 0).

We will now write τ̃ = m ◦ 1 ⊗ τ ⊗ 1. Putting everything together and reintroducing in the last line ∂
(q)∗
i (Un−k−1)

when useful in the right hand side:

∂j ∂
(q)∗
i (Un)

= 1i=jUn +
n−1∑
k=0

(−1)k
{
(Ξq − 1 ⊗ 1)k#(τ̃ ⊗ 1)

(
∂
(q)
i ⊗ 1(Ξq)#2

(
1 ⊗ ∂j (Un−k−1)

))

+ (Ξq − 1 ⊗ 1)k#(1 ⊗ τ̃ )
(
1 ⊗ ∂

(q)
i (Ξq)#1

(
∂j ⊗ 1(Un−k−1)

))
+ (Ξq − 1 ⊗ 1)k#(1 ⊗ τ̃ )

(
∂j ⊗ 1 ⊗ 1∂(q)i ⊗ 1(Ξq)#3Un−k−1 + ∂j ⊗ ∂

(q)
i (Ξq)#2Un−k−1

)
+ (Ξq − 1 ⊗ 1)k#(τ̃ ⊗ 1)

(
1 ⊗ 1 ⊗ ∂j1 ⊗ ∂

(q)
i (Ξq)#1Un−k−1 + ∂

(q)
i ⊗ ∂j (Ξq)#2Un−k−1

)
− (Ξq − 1 ⊗ 1)k#

(
∂j ⊗ 1(Ξq)#2∂

(q)∗
i (Un−k−1)+ 1 ⊗ ∂j (Ξq)#1∂

(q)∗
i (Un−k−1)

)}
.

We can now deduce from this a bound for p ∈ [2,∞] in Lp(M ⊗ Mop) if we know a bound on ‖∂(q)∗i (Uk)‖p .
Under the assumption |q|N < 1 we know this is finite for p = 2, we will use it later in the case p = ∞ under a
stronger assumption (the second line bellow corresponds to the last line of our last equation, the first and third to the
first and second, the fourth and fifth to the third and fourth).

∥∥∂j ∂(q)∗i (Un)
∥∥
p

≤ 1i=j‖Un‖p

+
(

sup
k≤n−1

∥∥∂(q)∗i (Uk)
∥∥
p

)(∥∥∂j ⊗ 1(Ξq)
∥∥+ ∥∥1 ⊗ ∂j (Ξq)

∥∥) n−1∑
k=0

‖Ξq − 1 ⊗ 1‖k
M ⊗Mop

+ (∥∥1 ⊗ ∂
(q)
i (Ξq)

∥∥∥∥∂j ⊗ 1(Ξq)
∥∥+ ∥∥∂(q)i ⊗ 1(Ξq)

∥∥∥∥1 ⊗ ∂j (Ξq)
∥∥)

×
n∑

k=2

k(k − 1)

2

∥∥(Ξq − 1 ⊗ 1)
∥∥k−2
M ⊗Mop
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+ (∥∥∂j ⊗ ∂
(q)
i (Ξq)

∥∥+ ∥∥∂j ⊗ 1 ⊗ 1∂(q)i ⊗ 1(Ξq)
∥∥) n−1∑

k=0

(k + 1)
∥∥(Ξq − 1 ⊗ 1)

∥∥k
M ⊗Mop

+ (∥∥∂(q)i ⊗ ∂j (Ξq)
∥∥+ ∥∥1 ⊗ 1 ⊗ ∂j1 ⊗ ∂

(q)
i (Ξq)

∥∥) n−1∑
k=0

(k + 1)
∥∥(Ξq − 1 ⊗ 1)

∥∥k
M ⊗Mop .

Since ‖(Ξq − 1 ⊗ 1)‖M ⊗Mop < 1 all the sums of the right hand side extended to infinity converge so that we

get constants C, D ‖∂j ∂(q)∗i (Un)‖2 ≤ C + D(supk≤n−1 ‖∂(q)∗i (Uk)‖2) and thus ‖∂(q)∗i (Un)‖2
2 ≤ ‖Ξq‖‖Un‖2(C +

D(supk≤n−1 ‖∂(q)∗i (Uk)‖2)), and a standard bound concludes to finiteness of supk ‖∂(q)∗i (Uk)‖2.
Step 2: Bounded conjugate variable under ν(q,N) < 1.

From the previous step, we know:

∂
(q)∗
i (Un) = Un#Xi +

n−1∑
k=0

(−1)k(Ξq − 1 ⊗ 1)k

#m ◦ (1 ⊗ τ ⊗ 1)
(
∂
(q)
i ⊗ 1(Ξq)#2(Un−k−1)+ 1 ⊗ ∂

(q)
i (Ξq)#1(Un−k−1)

)
.

And thus,

∥∥∂(q)∗i (Un)
∥∥ ≤ ‖Un‖M ⊗̂Mop‖Xi‖ +

n−1∑
k=0

(k + 1)‖Ξq − 1 ⊗ 1‖k
M ⊗̂Mop

× (∥∥∂(q)i ⊗ 1(Ξq)
∥∥
(M ⊗Mop) ⊗̂Mop + ∥∥1 ⊗ ∂

(q)
i (Ξq)

∥∥
M ⊗̂ (M ⊗Mop)

)
≤ ‖Xi‖

∞∑
k=0

‖Ξq − 1 ⊗ 1‖k
M ⊗̂Mop +

∞∑
k=0

(k + 1)‖Ξq − 1 ⊗ 1‖k
M ⊗̂Mop

× (∥∥∂(q)i ⊗ 1(Ξq)
∥∥
(M ⊗Mop) ⊗̂Mop + ∥∥1 ⊗ ∂

(q)
i (Ξq)

∥∥
M ⊗̂ (M ⊗Mop)

)
.

The last inequality gives a finite bound for ν(q,N) < 1 as, then, by Corollary 29, we have ‖Ξq − 1 ⊗ 1‖M ⊗̂Mop < 1.

Since we showed in step 1 ∂
(q)∗
i (Un) → ∂

(q)∗
i (Ξ−1

q ) weakly in L2 up to extraction, this means we have ultraweak

convergence of the same extraction. Thus especially ∂
(q)∗
i (Ξ−1

q ) ∈ M .
Step 3: Lipschitz conjugate variable under ν(q,N) < 1.

Since we now know supk ‖∂(q)∗i (Uk)‖M < ∞ from the second step, the end of the first step gives:

∥∥∂j ∂(q)∗i (Un)
∥∥
M ⊗Mop ≤ C +D

(
sup
k

∥∥∂(q)∗i (Uk)
∥∥
M

)
.

Again since we saw in step one: ∂j ∂
(q)∗
i (Un) → ∂j ∂

(q)∗
i (Ξ−1

q ) weakly in L2 up to extraction, we got

∂j ∂
(q)∗
i (Ξ−1

q ) ∈ M ⊗Mop.
Putting everything together, this concludes the proof of the second part of our theorem (the statement on microstate

free entropy dimension uses the Rω embeddability result of [40] and Corollary 25).
Step 4: Analytic conjugate variable coming from a potential under π(q,N) < 1.

Since by Corollary 29, we have ‖Ξq − 1 ⊗ 1‖R < 1, we have a non-commutative power series Ξ−1
q . If we define

ξi(Y1, . . . , YN) = Ξ−1
q (Y1, . . . , YN)#Yi −m ◦ (

(1 ⊗ τ)∂
(q)an
j ⊗ 1 + 1 ⊗ (τ ⊗ 1)∂(q)an

j

)(
Ξ−1

q (Y1, . . . , YN)
)
,

where ∂
(q)an
j (P (Y )) = ∂jP (Y )#Ξq(Y1, . . . , YN) is the analytic version of ∂(q)j . This is now obviously a power series

with radius of convergence R (τ here is the tracial state of q-Gaussians), we have by the claim in step 1 ξi(X1, . . . ,XN)

is the conjugate variable of q-Gaussian variables X1, . . . ,XN .
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Let us define

V (Y1, . . . , YN) = N−1

(
1

2

N∑
i=1

ξi(Y1, . . . , YN)Yi + Yiξi(Y1, . . . , YN)

)
,

where N is the operator defined on non-commutative power series having each monomial of degree n as eigenvector of
eigenvalue n. Obviously, V is a selfadjoint potential since Yi and ξi(Y ) are self-adjoint. We have to check in the spirit
of [46] that DiV = ξi . Of course this is equivalent to Di(NV ) = (1+N)(DiV ) = (1+N)(ξi) = ξi +∑N

j=1 ∂j (ξi)#Yj .
In order to prove this, using Lemma 37 bellow, it suffices to show we have Di(NV )(X1, . . . ,XN) = ξi(X1, . . . ,XN)+∑N

j=1 ∂j (ξi(X1, . . . ,XN))#Xj .

But by Corollary 5.12 in [44], we have NV(X1, . . . ,XN) = ∑N
i=1 ξi(X1, . . . ,XN)Xi .

Note that the computation at the end of step 1, we know e.g. ∂iξi(X1, . . . ,XN) ∈ L2(M) ⊗̂L2(M). Note that
Diξi(X1, . . . ,XN) = m ◦ flip(∂iξi(X1, . . . ,XN)) is then defined in L1 with flip(a ⊗ b) = b ⊗ a.

Applying cyclic gradients and using the relation

Di(PQ) = flip
(
∂i(P )

)
#Q+ flip

(
∂i(Q)

)
#P,

we thus deduce:

Di

N∑
j=1

ξj (X1, . . . ,XN)Xj =
N∑
j=1

flip(∂i
(
ξj (X1, . . . ,XN)

)
#Xj + ξi(X1, . . . ,XN).

To conclude we just have to recall flip(∂i(ξj (X1, . . . ,XN))) = ∂j (ξi(X1, . . . ,XN)), a priori in L2(M ⊗ M) thus
also in the subspace L2(M) ⊗̂L2(M). This follows by a duality argument in Lemma 36. �

Lemma 36. If X1, . . . ,XN have conjugate variables ξ1, . . . , ξN ∈ L2, then for any a, b ∈ D(∂j )∩M :〈
ξi, ∂

∗
j (a ⊗ b)

〉 = 〈
ξj , ∂

∗
i (b ⊗ a)

〉
.

Proof. The result is shown, by density, for a, b non-commutative polynomials in X1, . . . ,XN , using Lemma 4 and
coassociativity of the free difference quotient:〈

ξi, ∂
∗
j (a ⊗ b)

〉
= τ

(
ξ∗
i aξj b

)− τ
(
ξ∗
i

[
(1 ⊗ τ ∂j )(a)b + a(τ ⊗ 1 ∂j )(b)

])
= 〈

ξj , ∂
∗
i (b ⊗ a)

〉+ τ
(
ξ∗
j

[
(1 ⊗ τ ∂i)(b)a + b(τ ⊗ 1 ∂i)(a)

])
− τ ⊗ τ

(
(∂i ⊗ τ)(∂j )(a)b

)− τ ⊗ τ
(
a
(
(τ ⊗ ∂i) ∂j

)
(b)

)
− τ ⊗ τ

(
(1 ⊗ τ ∂j )(a) ∂i(b)

)− τ ⊗ τ
(
∂i(a)

(
(τ ⊗ 1) ∂j

)
(b)

)
= 〈

ξj , ∂
∗
i (b ⊗ a)

〉+ τ ⊗ τ
([
(∂j ⊗ τ ∂i)(b)a + b

(
(τ ⊗ ∂j ) ∂i

)
(a)

])
+ τ ⊗ τ

([
(1 ⊗ τ ∂i)(b) ∂j (a)+ ∂j (b)

(
(τ ⊗ 1) ∂i

)
(a)

])
− τ

((
τ ⊗ (

(1 ⊗ τ) ∂j
))
(∂i)(a)b

)− τ
(
a
((
(τ ⊗ 1) ∂j

)⊗ τ
)
∂i(b)

)
− τ

(
(1 ⊗ τ) ∂j (a)(1 ⊗ τ) ∂i(b)

)− τ
(
(τ ⊗ 1) ∂i(a)

(
(τ ⊗ 1) ∂j

)
(b)

)
= 〈

ξj , ∂
∗
i (b ⊗ a)

〉
. �

Lemma 37. Assume Φ∗(X1, . . . ,Xn) < ∞ then there is no non-zero non-commutative power series P(X1, . . . ,Xn)

of radius of convergence R > ‖Xi‖ such that P(X1, . . . ,Xn) = 0.

Proof. Since Φ∗(X1, . . . ,Xn) < ∞, the free difference quotient is closable. As a consequence, taking a sequence
of polynomials Pn → P in analytic norm, we have Pn(X1, . . . ,Xn) → 0 in L2 norm. ∂iP (X1, . . . ,Xn) converges to
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∂iP (X1, . . . ,Xn) (since ‖∂iPn − ∂iP‖S → 0 for any S < R), thus by closability ∂iP (X1, . . . ,Xn) = 0. We also get
vanishing of any higher order derivatives by induction.

Taking successive non-commutative derivatives and multiplying, if we assume for contradiction P �= 0 one can
assume P(0, . . . ,0) �= 0. Now for any non-commutative polynomial Q, one has

Q(X1 + Y1, . . . ,Xn + Yn)

=
∞∑
k=0

∑
i1,...,ik∈[1,n]

[(
∂i1 ⊗ 1⊗k−1) ◦ · · · ◦ ∂ik (Q)

]
(X1, . . . ,Xn)#(Yi1 , . . . , Yik ), (17)

where (a0 ⊗ · · · ⊗ ak)#(Yi1 , . . . , Yik ) = a0Yi1a1 · · ·Yikak and the sum over k is finite here.
Let T = maxi (‖Xi‖) < R. Consider cn(P ) the sum of absolute values of coefficients of degree n of P . Then

φP (x) = ∑∞
n=0 cn(P )xn is a commutative power series of radius of convergence at least R and

∑
i1,...,ik∈[1,n] ‖[(∂i1 ⊗

1⊗k−1) ◦ · · · ◦ ∂ik (P )]‖T ≤ 1
k!φ

(k)
P (T ).

Since φP is analytic in the ball of center 0 and radius R, it admits a Taylor power series expansion around T and
as a consequence, the right hand side of (17) makes sense if ‖Yi‖ < R − T . As a consequence approximating P by
polynomials, one gets (17) for P and such Yi ’s. Applying this for Yi = (t − 1)Xi one gets P(tX1, . . . , tXn) = 0 for t
close to 1 and then after iterating for t ∈ [0,1], this contradicts P(0, . . . ,0) �= 0. �

4.4. Group cocycles

Since Assumption 1 is hard to verify in practice, it is interesting to work only under assumption 0, and prove directly
that the ultramild solution of Theorem 11(i) satisfy ‖Xt‖2 = ‖X0‖2 a.e. to get a stationary solution. In this part, we
find a necessary and sufficient condition for derivations coming from group cocycles to get results in the spirit of
Corollary 3 in [39].

Let Γ be a discrete group. To a(n additive left) cocycle c with value in the regular representation c ∈ C1(Γ, �2(Γ ))

we associate a derivation δc :CΓ → �2(Γ ) ⊗ �2(Γ ) = L2(M0 ⊗ M0) (M0 the group von Neumann algebra of Γ )
given by δc(γ ) = B(c(γ ))γ where B :�2(Γ ) → �2(Γ )⊗ �2(Γ ) the isometric map given by B(γ ) = γ ⊗ γ−1. Indeed,
δ(γ1γ2) = B(γ1c(γ2)+ c(γ1))γ1γ2 = γ1B(c(γ2))γ

−1
1 γ1γ2 + δc(γ1)γ2 = γ1δc(γ2)+ δc(γ1)γ2 so that δc is a derivation

with the same bimodule structure used earlier on L2(M0 ⊗ M0). Moreover δc is easily seen to be a real derivation
if c takes values in iR (we will consider only such cocycles). Let us note that 〈δc(γ ),1 ⊗ 1〉 = 0 for any γ so that
we easily deduce that δ∗

c (1 ⊗ 1) = 0 so that δc is always closable. Any δc1, . . . , δcn therefore satisfy assumption 0.

Moreover, as noted e.g. in the proof of Corollary 19 in [39], 〈δcγ, δcγ ′〉 = δ
γ ′
γ ‖c(γ )‖2

2 so that δ∗
c δc(γ ) = ‖c(γ )‖2

2γ .
We now fix c1, . . . , cn such cocycles and write δi the extension to M of δci described at the beginning of Section 2.
We write Xt,X

ε
t the ultramild (resp mild) solution given by Theorem 11 when the initial condition is X0.

We now want to describe a first equivalent formulation of the isometry ‖Xt‖2 = ‖X0‖2. To this end, we want to
give an equation on certain components of the free product L2(M). Let us call N the von Neumann algebra generated
by free Brownian motions, it is well known that M is the orthogonal direct sum of L2(N) and L2(N)γ1(L

2(N) �
C)γ2 · · · (L2(N)�C)γnL

2(N) where γi ’s run over Γ −{1}. Since Xt and Xε
t are orthogonal to L2(N) (since δ∗

i 1⊗1 =
0) we may consider only Xε

t;γ1,...,γn
∈ L2(N) ⊗ (L2(N) � C)n−1 ⊗ L2(N) such that Xε

t;γ1,...,γn
#(γ1 ⊗ · · · ⊗ γn) are

the orthogonal projections on those spaces. We wrote here U#(γ1 ⊗ · · · ⊗ γn) the extension given by freeness of
(a1 ⊗· · ·⊗ an+1)#(γ1 ⊗· · ·⊗ γn) = a1γ1a2 · · ·anγnan+1. We will also write (a1 ⊗· · ·ai ⊗ ai+1 · · ·⊗ an)#i (1 ⊗ (St −
Ss)⊗ 1) = a1 ⊗ · · ·ai ⊗ (St − Ss)⊗ ai+1 · · · ⊗ an, (a1 ⊗ · · ·ai ⊗ ai+1 · · · ⊗ an)#i ((St − Ss)⊗ 1) = a1 ⊗ · · ·ai(St −
Ss) ⊗ ai+1 · · · ⊗ an, (a1 ⊗ · · ·ai ⊗ ai+1 · · · ⊗ an)#i (1 ⊗ (St − Ss)) = a1 ⊗ · · ·ai ⊗ (St − Ss)ai+1 · · · ⊗ an and the
obvious corresponding adapted stochastic integrals. We now have the following:

Proposition 38. Assume X0 = γ , then:

Xε
t;γ1,...,γn

= δn=1δγ1=γ e−(t/2)(
∑N

j=1 ‖cj (γ )‖2
2)1 ⊗ 1

+ (1 − ε)

n∑
i=1

N∑
j=1

∫ t

0
e((s−t)/2)(

∑n
i=1

∑N
j=1 ‖cj (γi )‖2

2)Xε
s;γ1,...,γn
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#i
(〈
γi, cj (γi)

〉
1 ⊗ dS(j)

s + 〈
1, cj (γi)

〉
dS(j)

s ⊗ 1
)

+ (1 − ε)δn�=1

n−1∑
i=1

N∑
j=1

〈
γi, cj (γiγi+1)

〉

×
∫ t

0
e((s−t)/2)(

∑n
i=1

∑N
j=1 ‖cj (γi )‖2

2)Xε
s;γ1,...,γiγi+1,...,γn

#i1 ⊗ dS(j)
s ⊗ 1,

which is non-zero only if γ1 · · ·γn = γ . Moreover this relation with ε = 0 is thus also valid for Xt (by the weak
convergence defining it).

As a consequence, using freeness and the definition of the space where Xε
t;γ1,...,γn

lives (especially the orthogonal
complements to C) we get:

‖Xt;γ1,...,γn‖2
2 = δn=1δγ1=γ e−t (

∑N
j=1 ‖cj (γ )‖2

2)

+
n∑

i=1

N∑
j=1

(∣∣〈γi, cj (γi)〉∣∣2 + ∣∣〈1, cj (γi)〉∣∣2)
∫ t

0
dse(s−t)(

∑n
i=1

∑N
j=1 ‖cj (γi )‖2

2)‖Xs;γ1,...,γn‖2
2

+ δn�=1

n−1∑
i=1

N∑
j=1

∣∣〈γi, cj (γiγi+1)
〉∣∣2 ∫ t

0
dse(s−t)(

∑n
i=1

∑N
j=1 ‖cj (γi )‖2

2)‖Xs;γ1,...,γiγi+1,...,γn‖2
2.

As a consequence, solving the equation by variation of constants, and using the following convenient notation
‖ĉj (γi)‖2

2 = ‖cj (γi)‖2
2 − (|〈γi, cj (γi)〉|2 + |〈1, cj (γi)〉|2), we obtain the following:

Proposition 39. Assume X0 = γ , then

‖Xt;γ1,...,γn‖2
2 = δn=1δγ1=γ e−t (

∑N
j=1 ‖ĉj (γ )‖2

2)

+ δn�=1

n−1∑
i=1

N∑
j=1

∣∣〈γi, cj (γiγi+1)
〉∣∣2 ∫ t

0
dse(s−t)(

∑n
i=1

∑N
j=1 ‖ĉj (γi )‖2

2)
∥∥Xε

s;γ1,...,γiγi+1,...,γn

∥∥2
2.

This equation is nothing but a forward Kolmogorov equation, and the question we ask is whether 1 = ‖γ ‖2
2 =

‖X0‖2
2 = ∑

n

∑
γ1,...,γn

‖Xt;γ1,...,γn‖2
2, i.e. nothing but if the solution of the Kolmogorov equation is conservative. In

order to state a result, let us define a corresponding continuous time Markov chain to give a probabilistic counterpart
to the stationarity of Xt , using usual results on Kolmogorov equations (cf. e.g. [24]).

Notation 40. Given a countable group Γ and additive left cocycles with value in the left regular representa-
tion c1, . . . , cN as above. We write M(Γ ; c1, . . . , cN) the continuous time Markov process defined on the count-
able state space of finite non-trivial sequences valued in Γ : F(Γ ) = (Γ − {1})(<ω) defined by the following
rates R((γ1, . . . , γn)) = ∑n

i=1
∑N

j=1 ‖ĉj (γi)‖2
2, and with transition probabilities non-zero only from (γ1, . . . , γn) to

(γ1, . . . , δi, δ
′
i , . . . , γn) with δiδ

′
i = γi (of course δi, δ

′
i �= 1), given by

P
(
(γ1, . . . , γn),

(
γ1, . . . , δi , δ

′
i , . . . , γn

)) =
∑N

j=1 |〈δi, cj (γi)〉|2
R((γ1, . . . , γn))

.

We can now state the following trivial:

Corollary 41. Let Xt be the ultramild solution given by Theorem 11 with δ = (δ1, . . . , δN ) associated as above
to cocycles (c1, . . . , cN). Then ‖Xt‖2 = ‖X0‖2 (for any X0 ∈ �2(Γ )) for all t ∈ [0, T ) (and as a consequence is
stationary in [0, T ) on M0 = L(Γ )) if and only if M(Γ ; c1, . . . , cN) has almost surely no explosion before T.
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