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ERROR BOUNDS FOR METROPOLIS–HASTINGS ALGORITHMS
APPLIED TO PERTURBATIONS OF GAUSSIAN MEASURES IN

HIGH DIMENSIONS

BY ANDREAS EBERLE

Universität Bonn

The Metropolis-adjusted Langevin algorithm (MALA) is a Metropolis–
Hastings method for approximate sampling from continuous distributions.
We derive upper bounds for the contraction rate in Kantorovich–Rubinstein–
Wasserstein distance of the MALA chain with semi-implicit Euler proposals
applied to log-concave probability measures that have a density w.r.t. a Gaus-
sian reference measure. For sufficiently “regular” densities, the estimates are
dimension-independent, and they hold for sufficiently small step sizes h that
do not depend on the dimension either. In the limit h ↓ 0, the bounds approach
the known optimal contraction rates for overdamped Langevin diffusions in
a convex potential.

A similar approach also applies to Metropolis–Hastings chains with
Ornstein–Uhlenbeck proposals. In this case, the resulting estimates are still
independent of the dimension but less optimal, reflecting the fact that MALA
is a higher order approximation of the diffusion limit than Metropolis–
Hastings with Ornstein–Uhlenbeck proposals.

1. Introduction. The performance of Metropolis–Hastings (MH) methods
[16, 23, 27] for sampling probability measures on high-dimensional continuous
state spaces has attracted growing attention in recent years. The pioneering works
by Roberts, Gelman and Gilks [28] and Roberts and Rosenthal [29] show in par-
ticular that for product measures πd on R

d , the average acceptance probabilities
for the Random Walk Metropolis algorithm (RWM) and the Metropolis adjusted
Langevin algorithm (MALA) converge to a strictly positive limit as d → ∞ only
if the step sizes h go to zero of order O(d−1), O(d−1/3), respectively. In this case,
a diffusion limit as d → ∞ has been derived, leading to an optimal scaling of the
step sizes maximizing the speed of the limiting diffusion, and an asymptotically
optimal acceptance probability.

Recently, the optimal scaling results for RWM and MALA have been extended
significantly to targets that are not of product form but have a sufficiently regu-
lar density w.r.t. a Gaussian measure; cf. [22, 26]. On the other hand, it has been
pointed out [3, 4, 8, 14] that for corresponding perturbations of Gaussian mea-
sures, the acceptance probability has a strictly positive limit as d → ∞ for small
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step sizes that do not depend on the dimension, provided the random walk or Eu-
ler proposals in RWM and MALA are replaced by Ornstein–Uhlenbeck or semi-
implicit (“preconditioned”) Euler proposals, respectively; cf. also below. Pillai,
Stuart and Thiéry [25] show that in this case, the Metropolis–Hastings algorithm
can be realized directly on an infinite-dimensional Hilbert space arising in the limit
as d → ∞, and the corresponding Markov chain converges weakly to an infinite-
dimensional overdamped Langevin diffusion as h ↓ 0.

Mixing properties and convergence to equilibrium of Langevin diffusions have
been studied intensively [1, 2, 9, 15, 24, 31]. In particular, it is well-known that
contractivity and exponential convergence to equilibrium in Wasserstein distance
can be quantified if the stationary distribution is strictly log-concave [7, 35]; cf.
also [11] for a recent extension to the nonlog-concave case. Because of the diffu-
sion limit results, one might expect that the approximating Metropolis–Hastings
chains have similar convergence properties. However, this heuristics may also be
wrong, since the convergence of the Markov chains to the diffusion is known only
in a weak and nonquantitative sense.

Although there is a huge number of results quantifying the speed of conver-
gence to equilibrium for Markov chains on discrete state spaces (cf. [18, 32] for
an overview), there are relatively few quantitative results on Metropolis–Hastings
chains on R

d when d is large. The most remarkable exception are the well-known
works [10, 17, 19–21] which prove an upper bound for the mixing time that is
polynomial in the dimension for Metropolis chains with ball walk proposals for
uniform measures on convex sets and more general log-concave measures.

Below, we develop an approach to quantify Wasserstein contractivity and con-
vergence to equilibrium in a dimension-independent way for the Metropolis–
Hastings chains with Ornstein–Uhlenbeck and semi-implicit Euler proposals. Our
approach applies in the strictly log-concave case (or, more generally, if the mea-
sure is strictly log-concave on an appropriate ball) and yields bounds for small step
sizes that are very precise. The results for semi-implicit Euler proposals require
less restrictive assumptions than those for Ornstein–Uhlenbeck proposals, reflect-
ing the fact that the corresponding Markov chain is a higher order approximation
of the diffusion.

Our results are closely related and complementary to the recent work [13],
and to the dimension-dependent geometric ergodicity results in [5]. In particular,
in [13], Hairer, Stuart and Vollmer apply related methods to establish exponen-
tial convergence to equilibrium in Wasserstein distance for Metropolis–Hastings
chains with Ornstein–Uhlenbeck proposals in a less quantitative way, but without
assuming log-concavity. In the context of probability measures on function spaces,
the techniques developed here are applied in the PhD Thesis of Gruhlke [12].

We now recall some basic facts on Metropolis–Hastings algorithms and de-
scribe our setup and the main results. Sections 2 and 3 contain basic results on
Wasserstein contractivity of Metropolis–Hastings kernels, and contractivity of the
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proposal kernels. In Sections 4 and 5, we prove bounds quantifying rejection prob-
abilities and the dependence of the rejection event on the current state for Ornstein–
Uhlenbeck and semi-implicit Euler proposals. These bounds, combined with an
upper bound for the exit probability of the corresponding Metropolis–Hastings
chains from a given ball derived in Section 6 are crucial for the proof of the main
results in Section 7.

1.1. Metropolis–Hastings algorithms. Let U :Rd → R be a lower bounded
measurable function such that

Z =
∫
Rd

exp
(−U(x)

)
dx < ∞,

and let μ denote the probability measure on R
d with density proportional to

exp(−U). We use the same letter μ for the measure and its density, that is,

μ(dx) = μ(x)dx = Z−1 exp
(−U(x)

)
dx.(1.1)

Below, we view the measure μ defined by (1.1) as a perturbation of the standard
normal distribution γ d in R

d ; that is, we decompose

U(x) = 1
2 |x|2 + V (x), x ∈ R

d,(1.2)

with a measurable function V :Rd →R, and obtain the representation

μ(dx) = Z̃−1 exp
(−V (x)

)
γ d(dx)(1.3)

with normalization constant Z̃ =Z/(2π)d/2. Here | · | denotes the Euclidean norm.
Note that in R

d , any probability measure with a strictly positive density can
be represented as an absolutely continuous perturbation of γ d as in (1.3). In an
infinite-dimensional limit, however, the density may degenerate. Nevertheless, also
on infinite-dimensional spaces, absolutely continuous perturbations of Gaussian
measures form an important and widely used class of models.

EXAMPLE 1.1 (Transition path sampling). We briefly describe a typical ap-
plication; cf. [14] and [12] for details. Suppose that we are interested in sampling
a trajectory of a diffusion process in R

� conditioned to a given endpoint b at
time t = 1. We assume that the unconditioned diffusion process (Yt ,P) satisfies
a stochastic differential equation of the form

dYt = −∇H(Yt) dt + dBt ,(1.4)

where (Bt ) is an �-dimensional Brownian motion, and H ∈ C2(R�) is bounded
from below. Then, by Girsanov’s theorem and Itô’s formula, a regular version of
the law of the conditioned process satisfying Y0 = a and Y1 = b on the path space
E = {y ∈ C([0,1],R�) :y0 = a, y1 = b} is given by

μ(dy) = C−1 exp
(−V (y)

)
γ (dy),(1.5)
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where γ is the law of the Brownian bridge from a to b,

V (y) = 1

2

∫ 1

0
φ(ys) ds with φ(x) = ∣∣∇H(x)

∣∣2 − �H(x),(1.6)

and C = exp (H(b) − H(a)); cf. [31]. In order to obtain finite-dimensional ap-
proximations of the measure μ on E, we consider the Wiener–Lévy expansion

yt = et +
∞∑

n=0

2n−1∑
k=0

�∑
i=1

xn,k,ie
n,k,i
t , t ∈ [0,1],(1.7)

of a path y ∈ E in terms of the basis functions et = (1 − t)a + tb and e
n,k,i
t =

2−n/2g(2nt − k)ei with g(s) = min(s,1 − s)+. Here the coefficients xn,k,i , n ≥ 0,
0 ≤ k < 2n, 1 ≤ i ≤ �, are real numbers. Recall that truncating the series at n =
m − 1 corresponds to taking the polygonal interpolation of the path y adapted to
the dyadic partition Dm = {k2−m :k = 0,1, . . . ,2m} of the interval [0,1]. Now fix
m ∈ N, let d = (2m − 1)� and let

xd = (
xn,k,i : 0 ≤ n < m,0 ≤ k < 2n,1 ≤ i ≤ l

) ∈R
d

denote the vector consisting of the first d components in the basis expansion of a
path y ∈ E. Then the image of the Brownian bridge measure γ under the projection
πd :E → R

d that maps y to xd is the d-dimensional standard normal distribution
γ d ; for example, cf. [33]. Therefore, a natural finite-dimensional approximation to
the infinite-dimensional sampling problem described above consists in sampling
from the probability measure

μd(dx) = Z̃−1
d exp

(−Vd(x)
)
γ d(dx)(1.8)

on R
d where Z̃d is a normalization constant, and

Vd(x) = 2−m−1

(
1

2
φ(y0) +

2m−1∑
k=1

φ(yk2−m) + 1

2
φ(y1)

)
;(1.9)

with y = e + ∑
n<m

∑
k

∑
i xn,k,ie

n,k,i denoting the polygonal path corresponding
to xd = (xn,k,i) ∈ R

d .

Returning to our general setup, suppose that p(x, dy) = p(x, y) dy is an abso-
lutely continuous transition kernel on R

d with strictly positive densities p(x, y).
Let

α(x, y) = min
(

μ(y)p(y, x)

μ(x)p(x, y)
,1

)
, x, y ∈ R

d .(1.10)

Note that α(x, y) does not depend on Z . The Metropolis–Hastings algorithm with
proposal kernel p is the following Markov chain Monte Carlo method for approx-
imate sampling and Monte Carlo integration w.r.t. μ:
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(1) Choose an initial state X0.
(2) For n := 0,1,2, . . .:

• Sample Yn ∼ p(Xn, dy) and Un ∼ Unif(0,1) independently.
• If Un < α(Xn,Yn), then accept the proposal, and set Xn+1 := Yn, else reject the

proposal and set Xn+1 := Xn.

The algorithm generates a time-homogeneous Markov chain (Xn)n=0,1,2,... with
initial state X0 and transition kernel

q(x, dy) = α(x, y)p(x, y) dy + r(x) · δx(dy).(1.11)

Here

r(x) = 1 − q
(
x,Rd \ {x}) = 1 −

∫
Rd

α(x, y)p(x, y) dy(1.12)

is the average rejection probability for the proposal when the Markov chain is at x.
Note that q(x, dy) restricted to R

d \{x} is again absolutely continuous with density

q(x, y) = α(x, y)p(x, y).

Since

μ(x)q(x, y) = α(x, y)μ(x)p(x, y) = min
(
μ(y)p(y, x),μ(x)p(x, y)

)
is a symmetric function in x and y, the kernel q(x, dy) satisfies the detailed bal-
ance condition

μ(dx)q(x, dy) = μ(dy)q(y, dx).(1.13)

In particular, μ is a stationary distribution for the Metropolis–Hastings chain, and
the chain with initial distribution μ is reversible. Therefore, under appropriate er-
godicity assumptions, the distribution of Xn will converge to μ as n → ∞.

To analyze Metropolis–Hastings algorithms it is convenient to introduce the
function

G(x,y) = log
μ(x)p(x, y)

μ(y)p(y, x)
= U(y) − U(x) + log

p(x, y)

p(y, x)
.(1.14)

For any x, y ∈ R
d ,

α(x, y) = exp
(−G(x,y)+

)
.(1.15)

In particular, for any x, y, x̃, ỹ ∈ R
d ,

1 − α(x, y) ≤ G(x,y)+,(1.16) (
α(x, y) − α(x̃, ỹ)

)+ ≤ (
G(x,y) − G(x̃, ỹ)

)− and(1.17) (
α(x, y) − α(x̃, ỹ)

)− ≤ (
G(x,y) − G(x̃, ỹ)

)+
.(1.18)
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The function G(x,y) defined by (1.14) can also be represented in terms of V :
Indeed, since

log
γ d(x)

γ d(y)
= 1

2

(|y|2 − |x|2)
,

we have

G(x,y) = V (y) − V (x) + log
γ d(x)p(x, y)

γ d(y)p(y, x)
,(1.19)

where γ d(x) = (2π)−d/2 exp(−|x|2/2) denotes the standard normal density in R
d .

1.2. Metropolis–Hastings algorithms with Gaussian proposals. We aim at
proving contractivity of Metropolis–Hastings kernels w.r.t. appropriate
Kantorovich–Rubinstein–Wasserstein distances. For this purpose, we are look-
ing for a proposal kernel that has adequate contractivity properties and sufficiently
small rejection probabilities. The rejection probability is small if the proposal ker-
nel approximately satisfies the detailed balance condition w.r.t. μ.

1.2.1. Ornstein–Uhlenbeck proposals. A straightforward approach would be
to use a proposal density that satisfies the detailed balance condition

γ d(x)p(x, y) = γ d(y)p(y, x) for any x, y ∈ R
d(1.20)

w.r.t. the standard normal distribution. In this case,

G(x,y) = V (y) − V (x).(1.21)

The simplest form of proposal distributions satisfying (1.20) are the transition ker-
nels of AR(1) (discrete Ornstein–Uhlenbeck) processes given by

pOU
h (x, dy) = N

((
1 − h

2

)
x,

(
h − h2

4

)
Id

)
(1.22)

for some constant h ∈ (0,2). If Z is a standard normally distributed R
d -valued

random variable, then the random variables

Y OU
h (x) :=

(
1 − h

2

)
x +

√
h − h2

4
Z, x ∈ R

d,(1.23)

have distributions pOU
h (x, dy). Note that by (1.21), the acceptance probabilities

αOU(x, y) = exp
(−GOU(x, y)+

) = exp
(−(

V (y) − V (x)
)+)

(1.24)

for Ornstein–Uhlenbeck proposals do not depend on h.
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1.2.2. Euler proposals. In continuous time, under appropriate regularity and
growth conditions on V , detailed balance w.r.t. μ is satsfied exactly by the transi-
tion functions of the diffusion process solving the over-damped Langevin stochas-
tic differential equation

dXt = −1
2Xt dt − 1

2∇V (Xt) dt + dBt ,(1.25)

because the generator

L = 1
2� − 1

2x · ∇ − 1
2∇V · ∇ = 1

2(� − ∇U · ∇)

is a self-adjoint operator on an appropriate dense subspace of L2(Rd;μ); cf. [31].
Although we cannot compute and sample from the transition functions exactly, we
can use approximations as proposals in a Metropolis–Hastings algorithm. A cor-
responding MH algorithm where the proposals are obtained from a discretization
scheme for the SDE (1.25) is called a Metropolis-adjusted Langevin algorithm
(MALA); cf. [27, 30].

In this paper, we focus on the MALA scheme with proposal kernel

ph(x, ·) = N

((
1 − h

2

)
x − h

2
∇V (x),

(
h − h2

4

)
· Id

)
(1.26)

for some constant h ∈ (0,2); that is, ph(x, ·) is the distribution of

Yh(x) = x − h

2
∇U(x) +

√
h − h2

4
Z

(1.27)

=
(

1 − h

2

)
x − h

2
∇V (x) +

√
h − h2

4
Z,

where Z ∼ γ d is a standard normal random variable with values in R
d .

Note that if h−h2/4 is replaced by h, then (1.27) is a standard Euler discretiza-
tion step for the SDE (1.25). Replacing h by h−h2/4 ensures that detailed balance
is satisfied exactly for V ≡ 0. Alternatively, (1.27) can be viewed as a semi-implicit
Euler discretization step for (1.25):

REMARK 1.2 (Euler schemes). The explicit Euler discretization of the over-
damped Langevin equation (1.25) with time step size h > 0 is given by

Xn+1 =
(

1 − h

2

)
Xn − h

2
∇V (Xn) + √

hZn+1, n = 0,1,2, . . . ,(1.28)

where Zn,n ∈ N, are i.i.d. random variables with distribution γ d . The process (Xn)

defined by (1.28) is a time-homogeneous Markov chain with transition kernel

pEuler
h (x, ·) = N

((
1 − h

2

)
x − h

2
∇V (x),h · Id

)
.(1.29)



344 A. EBERLE

Even for V ≡ 0, the measure μ is not a stationary distribution for the kernel pEuler
h .

A semi-implicit Euler scheme for (1.25) with time-step size ε > 0 is given by

Xn+1 − Xn = −ε

2
· Xn+1 + Xn

2
− ε

2
∇V (Xn) + √

εZn+1(1.30)

with Zn i.i.d. with distribution γ d ; cf. [14]. Note that the scheme is implicit only
in the linear part of the drift but explicit in ∇V . Solving for Xn+1 in (1.30) and
substituting h = ε/(1 + ε

4) with h ∈ (0,2) yields the equivalent equation

Xn+1 =
(

1 − h

2

)
Xn − h

2
∇V (Xn) +

√
h − h2

4
Zn+1.(1.31)

We call the Metropolis–Hastings algorithm with proposal kernel ph(x, ·) a semi-
implicit MALA scheme with step size h.

PROPOSITION 1.3 (Acceptance probabilities for semi-implicit MALA). Let
V ∈ C1(Rd) and h ∈ (0,2). Then the acceptance probabilities for the Metropolis-
adjusted Langevin algorithm with proposal kernels ph are given by αh(x, y) =
exp(−Gh(x, y)+) with

Gh(x, y)

= V (y) − V (x) − y − x

2
· (∇V (y) + ∇V (x)

)
(1.32)

+ h

8 − 2h

[
(y + x) · (∇V (y) − ∇V (x)

) + ∣∣∇V (y)
∣∣2 − ∣∣∇V (x)

∣∣2]
.

For explicit Euler proposals with step size h > 0, a corresponding representation
holds with

GEuler
h (x, y) = V (y) − V (x) − y − x

2
· (∇V (y) + ∇V (x)

)
(1.33)

+ h

8

[∣∣y + ∇V (y)
∣∣2 − ∣∣x + ∇V (x)

∣∣2]
.

The proof of the proposition is given in Section 4 below.

REMARK 1.4. For explicit Euler proposals, the O(h) correction term in (1.33)
does not vanish for V ≡ 0. More significantly, this term goes to infinity as |y −
x| → ∞, and the variance of y − x w.r.t. the proposal distribution is of order
O(d).
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1.3. Bounds for rejection probabilities. We fix a norm ‖ · ‖− on R
d such that

‖x‖− ≤ |x| for any x ∈ R
d .(1.34)

We assume that V is sufficiently smooth w.r.t. ‖ · ‖− with derivatives growing at
most polynomially:

ASSUMPTION 1.5. The function V is in C4(Rd), and for any n ∈ {1,2,3,4},
there exist finite constants Cn ∈ [0,∞), pn ∈ {0,1,2, . . .} such that∣∣(∂n

ξ1,...,ξn
V

)
(x)

∣∣ ≤ Cn max
(
1,‖x‖−

)pn‖ξ1‖− · · · · · ‖ξn‖−

holds for any x ∈ R
d and ξ1, . . . , ξn ∈R

d .

For discretizations of infinite-dimensional models, ‖ · ‖− will typically be a
finite-dimensional approximation of a norm that is almost surely finite w.r.t. the
limit measure in infinite-dimensions.

EXAMPLE 1.6 (Transition path sampling). Consider the situation of Exam-
ple 1.1, and assume that H is in C6(Rd). Then by (1.9) and (1.6), Vd is C4. For
n ≤ 4 and x, ξ1, . . . , ξn ∈ R

d , the directional derivatives of Vd are given by

∂n
ξ1···ξn

Vd(x) = 2−m−1
2m∑
k=0

wkD
nφ(yk2−m)[η1,k2−m, . . . , ηn,k2−m],(1.35)

where y,η1, . . . , ηn are the polygonal paths in E corresponding to x, ξ1, . . . , ξn,
respectively, wk = 1 for k = 1, . . . ,2m − 1 and w0 = w1 = 1/2. Assuming
‖D4φ(z)‖ = O(|z|r ) for some integer r ≥ 0 as |z| → ∞, we can estimate∣∣∂n

ξ1···ξn
Vd(x)

∣∣ ≤ Cn max
(
1,‖y‖Lq

)pn‖η1‖Lq · · · · · ‖ηn‖Lq ,

where q = r + 4, pn = r + (4 − n), ‖y‖Lq = 2−m ∑2m

k=0 wk|yk|q is a discrete Lq

norm of the polygonal path y and C1, . . . ,C4 are finite constants that do not de-
pend on the dimension d . One could now choose for the minus norm the norm
on R

d corresponding to the discrete Lq norm on polygonal paths. However, it is
more convenient to choose a norm coming from an inner product. To this end, we
consider the norms

‖y‖α =
( ∑

n,k,i

2−2αnx2
n,k,i

)1/2

, y = e + ∑
xn,k,ie

n,k,i ,

on path space E, and the induced norms

‖x‖α =
( ∑

n<m

∑
k,i

2−2αnx2
n,k,i

)1/2

, x ∈ R
d,
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on R
d where d = (2m − 1)�. One can show that for α < 1/2 + 1/q , the Lq norm

can be bounded from above by ‖ · ‖α independently of the dimension; cf. [12].
On the other hand, if α > 1/2, then ‖y‖α < ∞ for γ -almost every path y of
the Brownian bridge. This property will be crucial when restricting to balls w.r.t.
‖ · ‖α . For ‖ · ‖− = ‖ · ‖α with α ∈ (1/2,1/2 + 1/q), both requirements are satis-
fied, and Assumption 1.5 holds with constants that do not depend on the dimen-
sion.

The next proposition yields in particular an upper bound for the average rejec-
tion probability w.r.t. both Ornstein–Uhlenbeck and semi-implicit Euler proposals
at a given position x ∈ R

d ; cf. [6] for an analogue result:

PROPOSITION 1.7 (Upper bounds for MH rejection probabilities). Suppose
that Assumption 1.5 is satisfied and let k ∈ N. Then there exist polynomials
POU

k :R → R+ and Pk :R2 → R+ of degrees p1 + 1, max(p3 + 3,2p2 + 2), re-
spectively, such that for any x ∈ R

d and h ∈ (0,2),

E
[(

1 − αOU(
x,Y OU

h (x)
))k]1/k ≤ POU

k

(‖x‖−
) · h1/2 and

E
[(

1 − αh

(
x,Yh(x)

))k]1/k ≤ Pk

(‖x‖−,
∥∥∇U(x)

∥∥−
) · h3/2.

The result is a consequence of Proposition 1.3. The proof is given in Section 4
below.

REMARK 1.8. (1) The polynomials POU
k and Pk in Proposition 1.7 are ex-

plicit; cf. the proof below. They depend only on the values Cn,pn in Assump-
tion 1.5 for n = 1, n = 2,3, respectively, and on the moments

mn = E
[‖Z‖n−

]
, n ≤ k · (p1 + 1), n ≤ k · max(p3 + 3,2p2 + 2),

respectively,

but they do not depend on the dimension d . For semi-implicit Euler proposals, the
upper bound in Proposition 1.7 is stated in explicit form for the case k = 1 and
p2 = p3 = 0 in (4.6) below.

(2) For explicit Euler proposals, corresponding estimates hold with mn replaced
by m̃n = E[|Z|n]; cf. Remark 4.3 below. Note, however, that m̃n → ∞ as d → ∞.

Our next result is a bound of order O(h1/2), O(h3/2), respectively, for the
average dependence of the acceptance event on the current state w.r.t. Ornstein–
Uhlenbeck and semi-implicit Euler proposals. Let ‖ · ‖+ denote the dual norm of
‖ · ‖− on R

d , that is,

‖ξ‖+ = sup
{
ξ · η|η ∈ R

d with ‖η‖− ≤ 1
}
.
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Note that

‖ξ‖− ≤ |ξ | ≤ ‖ξ‖+ ∀ξ ∈ R
d .

For a function F ∈ C1(Rd),∣∣F(y) − F(x)
∣∣ =

∣∣∣∣∫ 1

0
(y − x) · ∇F

(
(1 − t)x + ty

)
dt

∣∣∣∣
≤ ‖y − x‖− · sup

z∈[x,y]
∥∥∇F(z)

∥∥+,

that is, the plus norm of ∇F determines the Lipschitz constant w.r.t. the minus
norm.

PROPOSITION 1.9 (Dependence of rejection on the current state). Suppose
that Assumption 1.5 is satisfied, and let k ∈ N. Then there exist polynomials
QOU

k :R → R+ and Qk :R2 → R+ of degrees p2 + 1, max(p4 + 3,p3 + p2 +
2,3p2 + 1), respectively, such that for any x, x̃ ∈ R

d and h ∈ (0,2),

E
[∥∥∇xG

OU(
x,Y OU

h (x)
)∥∥k

+
]1/k ≤ QOU

k

(‖x‖−
) · h1/2,(1.36)

E
[∥∥∇xGh

(
x,Yh(x)

)∥∥k
+

]1/k ≤ Qk

(‖x‖−,
∥∥∇U(x)

∥∥−
) · h3/2,(1.37)

E
[∣∣αOU(

x,Y OU
h (x)

) − αOU(
x̃, Y OU

h (x̃)
)∣∣k]1/k

(1.38)
≤ QOU

k

(
max

(‖x‖−,‖x̃‖−
)) · ‖x − x̃‖− · h1/2 and

E
[∣∣αh

(
x,Yh(x)

) − αh

(
x̃, Yh(x̃)

)∣∣k]1/k

(1.39)
≤ Qk

(
max

(‖x‖−,‖x̃‖−
)
, sup
z∈[x,x̃]

∥∥∇U(z)
∥∥−

)
· ‖x − x̃‖− · h3/2,

where [x, x̃] denotes the line segment between x and x̃.

The proof of the proposition is given in Section 5 below.

REMARK 1.10. Again, the polynomials QOU
k and Qk are explicit. They de-

pend only on the values Cn,pn in Assumption 1.5 for n = 1,2, n = 2,3,4,
respectively, and on the moments mn = E[‖Z‖n−] for n ≤ k · (p2 + 1), n ≤
k · max(p4 + 3,p3 + p2 + 2,2p2 + 1), respectively, but they do not depend on
the dimension d . For semi-implicit Euler proposals, the upper bound in Proposi-
tion 1.9 is made explicit for the case k = 1 and p2 = p3 = p4 = 0 in (5.18) below.

For Ornstein–Uhlenbeck proposals, it will be useful to state the bounds in
Propositions 1.7 and 1.9 more explicitly for the case p2 = 0, that is, when the
second derivatives of V are uniformly bounded w.r.t. the minus norm:
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PROPOSITION 1.11. Suppose that Assumption 1.5 is satisfied for n = 1,2
with p2 = 0. Then for any x, x̃ ∈R

d and h ∈ (0,2),

E
[
1 − αOU(

x,Y OU
h (x)

)]
≤ m1

(
C1 + C2‖x‖−

) · h1/2

+ 1
2

(
2m2C2 + C1‖x‖− + C2‖x‖2−

) · h + 1
2m1C2‖x‖− · h3/2,

and

E
[∣∣αOU(

x,Y OU
h (x)

) − αOU(
x̃, Y OU

h (x̃)
)∣∣2]1/2

≤ (
m

1/2
2 C2 · h1/2 + 1

2

(
C1 + 2C2 max

(‖x‖−,‖x̃‖−
)) · h) · ‖x − x̃‖−.

The proof is given in Sections 4 and 5 below. Again, corresponding bounds also
hold for Lk norms for k �= 1,2.

1.4. Wasserstein contractivity. The bounds in Propositions 1.7, 1.9 and 1.11
can be applied to study contractivity properties of Metropolis–Hastings transition
kernels. Recall that the Kantorovich–Rubinstein or L1-Wasserstein distance of two
probability measures μ and ν on the Borel σ -algebra B(Rd) w.r.t. a given metric d

on R
d is defined by

W(μ, ν) = inf
η∈�(μ,ν)

∫
d(x, x̃)η(dx dx̃),

where �(μ,ν) consists of all couplings η of μ and ν, that is, all probability mea-
sures η on R

d × R
d with marginals μ and ν; cf., for example, [34]. Recall that a

coupling of μ and ν can be realized by random variables W and W̃ defined on a
joint probability space such that W ∼ μ and W̃ ∼ ν.

In order to derive upper bounds for the distances W(μqh, νqh), and, more gen-
erally, W(μqn

h, νqn
h), n ∈ N, we define a coupling of the MALA transition proba-

bilities qh(x, ·), x ∈ R
d , by setting

Wh(x) :=
{

Yh(x), if U ≤ αh

(
x,Yh(x)

)
,

x, if U > αh

(
x,Yh(x)

)
.

Here Yh(x), x ∈ R
d , is the basic coupling of the proposal distributions ph(x, ·)

defined by (1.27) with Z ∼ γ d , and the random variable U is uniformly distributed
in (0,1) and independent of Z.

Correspondingly, we define a coupling of the Metropolis–Hastings transition
kernels qOU

h based on Ornstein–Uhlenbeck proposals by setting

WOU
h (x) :=

{
Y OU

h (x), if U ≤ αOU(
x,Y OU

h (x)
)
,

x, if U > αOU(
x,Y OU

h (x)
)
.
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Let

B−
R := {

x ∈R
d :‖x‖− < R

}
denote the centered ball of radius R w.r.t. ‖ · ‖−. As a consequence of Propo-
sition 1.11 above, we obtain the following upper bound for the Kantorovich–
Rubinstein–Wasserstein distance of qOU

h (x, ·) and qOU
h (x̃, ·) w.r.t. the metric

d(x, x̃) = ‖x − x̃‖−:

THEOREM 1.12 (Contractivity of MH transitions based on OU proposals).
Suppose that Assumption 1.5 is satisfied for n = 1,2 with p2 = 0. Then for any
h ∈ (0,2), R ∈ (0,∞), and x, x̃ ∈ B−

R ,

E
[∥∥WOU

h (x) − WOU
h (x̃)

∥∥−
] ≤ cOU

h (R) · ‖x − x̃‖−,

where

cOU
h (R) = 1 − 1

2h + m2C2h + A(1 + R)
(
1 + h1/2R

)
h3/2

with an explicit constant A that only depends on the values m1,m2,C1 and C2.

The proof is given in Section 7 below.
Theorem 1.12 shows that Wasserstein contractivity holds on the ball B−

R pro-
vided 2m2C2 < 1 and h is chosen sufficiently small depending on R [with h1/2 =
O(R−1)]. In this case, the contraction constant cOU

h (R) depends on the dimension
only through the values of the constants C1,C2,m1 and m2. On the other hand,
the following one-dimensional example shows that for m2C2 > 1, the acceptance-
rejection step may destroy the contraction properties of the OU proposals:

EXAMPLE 1.13. Suppose that d = 1 and ‖ · ‖− = | · |. If V (x) = bx2/2
with a constant b ∈ (−1/2,1/2), then by Theorem 1.12, Wasserstein contractivity
holds for the Metropolis–Hastings chain with Ornstein–Uhlenbeck proposals on
the interval (−R,R) provided h is chosen sufficiently small. On the other hand, if
V (x) = bx2/2 for |x| ≤ 1 with a constant b < −1, then the logarithmic density

U(x) = V (x) + x2/2 = (b + 1) · x2/2

is strictly concave for |x| ≤ 1, and it can be easily seen that Wasserstein contractiv-
ity on (−1,1) does not hold for the MH chain with OU proposals if h is sufficiently
small.

A disadvantage of the result for Ornstein–Uhlenbeck proposals stated above
is that not only a lower bound on the second derivative of V is required (this
would be a fairly natural condition as the example indicates), but also an upper
bound of the same size. For semi-implicit Euler proposals, we can derive a better
result that requires only a strictly positive lower bound on the second derivative of
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U(x) = V (x)+|x|2/2 and Assumption 1.5 with arbitrary constants to be satisfied.
For this purpose we assume that

‖ · ‖− = 〈·, ·〉1/2

for an inner product 〈·, ·〉 on R
d , and we make the following assumption on U :

ASSUMPTION 1.14. There exists a strictly positive constant K ∈ (0,1] such
that 〈

η,∇2U(x) · η〉 ≥ K〈η,η〉 for any x,η ∈ R
d .(1.40)

Of course, Assumption 1.14 is still restrictive, and it will often be satisfied only
in a suitable ball around a local minimum of U . Most of the results below are
stated on a given ball B−

R w.r.t. the minus norm. In this case it is enough to as-
sume that 1.14 holds on that ball. If ‖ · ‖− coincides with the Euclidean norm | · |,
then the assumption is equivalent to convexity of U(x) − K|x|2. Moreover, since
∇2U(x) = Id + ∇2V (x), a sufficient condition for (1.40) to hold is∥∥∇2V (x) · η∥∥− ≤ (1 − K)‖η‖− for any x,η ∈ R

d .(1.41)

As a consequence of Propositions 1.7 and 1.9 above, we obtain the following
upper bound for the Kantorovich–Rubinstein–Wasserstein distance of qh(x, ·) and
qh(x̃, ·) w.r.t. the metric d(x, x̃) = ‖x − x̃‖−:

THEOREM 1.15 (Contractivity of semi-implicit MALA transitions). Suppose
that Assumptions 1.5 and 1.14 are satisfied. Then for any h ∈ (0,2), R ∈ (0,∞)

and x, x̃ ∈ B−
R ,

E
[∥∥Wh(x) − Wh(x̃)

∥∥−
] ≤ ch(R) · ‖x − x̃‖−,

where

ch(R) = 1 − 1
2Kh + (1

8M(R)2 + γ (R)
)
h2 + (

Kβ(R) + 1
2δ(R)

)
h5/2

with

M(R) = sup
{∥∥∇2U(z) · η∥∥− :η ∈ B−

1 , z ∈ B−
R

}
,

β(R) = sup
{
P1

(‖z‖−,
∥∥∇U(z)

∥∥−
)

: z ∈ B−
R

}
,

γ (R) = m
1/2
2 · sup

{
Q2

(‖z‖−,
∥∥∇U(z)

∥∥−
)

: z ∈ B−
R

}
,

δ(R) = sup
{
Q2

(‖z‖−,
∥∥∇U(z)

∥∥−
)∥∥∇U(z)

∥∥− : z ∈ B−
R

}
.

The proof is given in Section 7 below.
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REMARK 1.16. Theorem 1.15 shows in particular that under Assumptions 1.5
and 1.14, there exist constants C,q ∈ (0,∞) such that the contraction

E
[∥∥Wh(x) − Wh(x̃)

∥∥−
] ≤

(
1 − K

4
h

)
‖x − x̃‖

holds for x, x̃ ∈ B−
R whenever h−1 ≥ C · (1 + Rq).

EXAMPLE 1.17 (Transition path sampling). In the situation of Examples 1.1
and 1.6 above, condition (1.41) and (hence) assumption 1.14 are satisfied on a
ball B−

R with K independent of d provided ‖D2φ(x)‖ ≤ 1 − K for any x ∈ B−
R ;

cf. (1.35). More generally, by modifying the metric in a suitable way if necessary,
one may expect Assumption 1.14 to hold uniformly in the dimension in neighbor-
hoods of local minima of U .

1.5. Conclusions. For R ∈ (0,∞), we denote by WR the Kantorovich–
Rubinstein–Wasserstein distance based on the distance function

dR(x, x̃) := min
(‖x − x̃‖−,2R

)
.(1.42)

Note that dR is a bounded metric that coincides with the distance function induced
by the minus norm on B−

R . The bounds resulting from Theorems 1.15 and 1.12 can
be iterated to obtain estimates for the KRW distance WR between the distributions
of the corresponding Metropolis–Hastings chains after n steps w.r.t. two different
initial distributions.

COROLLARY 1.18. Suppose that Assumptions 1.5 and 1.14 are satisfied, and
let h ∈ (0,2) and R ∈ (0,∞). Then for any n ∈ N, and for any probability mea-
sures μ,ν on B(Rd),

WR

(
μqn

h, νqn
h

) ≤ ch(R)nWR(μ, ν)

+ 2R · (
Pμ

[∃k < n :Xk /∈ B−
R

] + Pν

[∃k < n :Xk /∈ B−
R

])
.

Here ch(R) is the constant in Theorem 1.15, and (Xn,Pμ) and (Xn,Pν) are
Markov chains with transition kernel qh and initial distributions μ, ν, respectively.
A corresponding result with ch replaced by cOU

h holds for the Metropolis–Hastings
chain with Ornstein–Uhlenbeck proposals.

Since the joint law of Wh(x) and Wh(x̃) is a coupling of qh(x, ·) and qh(x̃, ·)
for any x, x̃ ∈ R

d , Corollary 1.18 is a direct consequence of Theorems 1.15, 1.12,
respectively, and Theorem 2.3 below. The corollary can be used to quantify the
Wasserstein distance between the distribution of the Metropolis–Hastings chain
after n steps w.r.t. two different initial distributions. For this purpose, one can esti-
mate the exit probabilities from the ball B−

R via an argument based on a Lyapunov
function. For semi-implicit Euler proposals we eventually obtain the following
main result:
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THEOREM 1.19 (Quantitative convergence bound for semi-implicit MALA).
Suppose that Assumptions 1.5 and 1.14 are satisfied. Then there exist constants
C,D,q ∈ (0,∞) such that the estimate

W2R

(
νqn

h,πqn
h

) ≤
(

1 − K

4
h

)n

W2R(ν,π) + DR exp
(
−KR2

8

)
nh

holds for any n ∈ N, h,R ∈ (0,∞) such that h−1 ≥ C · (1+R)q , and for any prob-
ability measures ν,π on R

d with support in B−
R . The constants C, D and q can be

made explicit. They depend only on the values of the constants in Assumptions 1.5
and 1.14 and on the moments mk , k ∈ N, w.r.t. the minus norm, but they do not
depend explicitly on the dimension.

The proof of Theorem 1.19 is given in Section 7 below.
Let μR(A) = μ(A|B−

R ) denote the conditional probability measure given B−
R .

Recalling that μ is a stationary distribution for the kernel qh, we can apply Theo-
rem 1.19 to derive a bound for the Wasserstein distance of the discretization of the
MALA chain and μR after n steps:

THEOREM 1.20. Suppose that Assumptions 1.5 and 1.14 are satisfied. Then
there exist constants C, D̄, q ∈ (0,∞) that do not depend explicitly on the dimen-
sion such that the estimate

W2R

(
νqn

h,μR

) ≤ 58R

(
1 − K

4
h

)n

+ D̄R exp
(
−KR2

33

)
nh

holds for any n ∈ N, h,R ∈ (0,∞) such that h−1 ≥ C · (1 + R)q , and for any
probability measure ν on R

d with support in B−
R .

The proof is given in Section 7.
Given an error bound ε ∈ (0,∞) for the Kantorovich–Rubinstein–Wasserstein

distance, we can now determine how many steps of the MALA chain are required
such that

W2R

(
νqn

h,μR

)
< ε for any ν with support in B−

R .(1.43)

Assuming

nh ≥ 4

K
log

(
116R

ε

)
,(1.44)

we have 58R(1 − Kh/4)n ≤ ε/2. Hence (1.43) holds provided the assumptions in
Theorem 1.20 are satisfied, and

D̄R exp
(−KR2/33

)
nh < ε/2.(1.45)

For a minimal choice of n, all conditions are satisfied if R is of order (log ε−1)1/2

up to a log log correction, and the inverse step size h−1 is of order (log ε−1)q/2
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up to a log log correction. Hence if Assumption 1.14 holds on R
d , then a num-

ber n of steps that is polynomial in log ε−1 is sufficient to bound the error by ε

independently of the dimension.
On the other hand, if Assumption 1.14 is satisfied only on a ball B−

R of given
radius R, then a given error bound ε is definitely achieved only provided (1.45)
holds with the minimal choice for nh satisfying (1.44), that is, if

8D̄K−1 log
(
116Rε−1)

R exp
(−KR2/33

)
< ε.(1.46)

If ε is chosen smaller, then the chain may leave the ball B−
R before sufficient mix-

ing on B−
R has taken place.

2. Wasserstein contractivity of Metropolis–Hastings kernels. In this sec-
tion, we first consider an arbitrary stochastic kernel q :S × B(S) → [0,1] on
a metric space (S, d). Further below, we will choose S = R

d and d(x, y) =
‖x − y‖− ∧ R for some constant R ∈ (0,∞], and we will assume that q is the
transition kernel of a Metropolis–Hastings chain.

The Kantorovich–Rubinstein or L1-Wasserstein distance of two probability
measures μ and ν on the Borel-σ -algebra B(S) w.r.t. the metric d is defined by

Wd(μ, ν) = inf
η

∫
d(x, x̃)η(dx dx̃),

where the infimum is over all couplings η of μ and ν, that is, over all probability
measures η on S × S with marginals μ and ν; cf., for example, [34]. In order to
derive upper bounds for the Kantorovich distances Wd(μq, νq), and more gener-
ally, Wd(μqn, νqn), n ∈ N, we construct couplings between the measures q(x, ·)
for x ∈ S, and we derive bounds for the distances Wd(q(x, ·), q(x̃, ·)), x, x̃ ∈ S.

DEFINITION 2.1. A Markovian coupling of the probability measures q(x, ·),
x ∈ S, is a stochastic kernel c on the product space (S × S,B(S × S)) such
that for any x, x̃ ∈ S, the distribution of the first and second component under
c((x, x̃), dy dỹ) is q(x, dy) and q(x̃, dỹ), respectively.

EXAMPLE 2.2. (1) Suppose that (�,A,P) is a probability space, and let
(x, x̃,ω) �→ Y(x, x̃)(ω), (x, x̃,ω) �→ Ỹ (x, x̃)(ω) be product measurable functions
from S × S × � to S such that Y(x, x̃) ∼ q(x, ·) and Ỹ (x, x̃) ∼ q(x̃, ·) w.r.t. P for
any x, x̃ ∈ S. Then the joint distributions

c
(
(x, x̃), ·) = P ◦ (

Y(x, x̃), Ỹ (x, x̃)
)−1

, x, x̃ ∈ S,

define a Markovian coupling of the measures q(x, ·), x ∈ S.
(2) In particular, if (x,ω) �→ Y (x)(ω) is a product measurable function from

S × � to S such that Y(x) ∼ q(x, ·) for any x ∈ S, then

c
(
(x, x̃), ·) = P ◦ (

Y (x),Y (x̃)
)−1

is a Markovian coupling of the measures q(x, ·), x ∈ S.
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Suppose that (Xn, X̃n) on (�,A,P) is a Markov chain with values in S ×S and
transition kernel c, where c is a Markovian coupling w.r.t. the kernel q . Then the
components (Xn) and (X̃n) are Markov chains with transition kernel q and initial
distributions given by the marginals of the initial distribution of (Xn, X̃n), that
is, (Xn, X̃n) is a coupling of these Markov chains. We will apply the following
general theorem to quantify the deviation from equilibrium after n steps of the
Markov chain with transition kernel q:

THEOREM 2.3. Let γ ∈ (0,1), and let c((x, x̃), dy dỹ) be a Markovian cou-
pling of the probability measures q(x, ·), x ∈ S. Suppose that O is an open subset
of S, and assume that the metric d is bounded. Let

� := diamS = sup
{
d(x, x̃) :x, x̃ ∈ S

}
.

If the contractivity condition∫
d(y, ỹ)c

(
(x, x̃), dy dỹ

) ≤ γ · d(x, x̃)(2.1)

holds for any x, x̃ ∈O, then

Wd

(
μqn, νqn)

(2.2)
≤ γ nWd(μ, ν) + � · (

Pμ[∃k < n :Xk /∈ O] + Pν[∃k < n :Xk /∈ O])
for any n ∈ N and for any probability measures μ,ν on B(S). Here (Xn,Pμ) and
(Xn,Pν) are Markov chains with transition kernel q and initial distributions μ, ν,
respectively.

PROOF. Suppose that μ and ν are probability measures on B(S) and η(dx dx̃)

is a coupling of μ and ν. We consider the coupling chain (Xn, X̃n) on (�,A,P)

with initial distribution η and transition kernel c. Since (Xn) and (X̃n) are Markov
chains with transition kernel q and initial distributions μ and ν, we have P◦X−1

n =
μqn and P ◦ X̃−1

n = νqn for any n ∈N. Moreover, by (2.1),

E
[
d(Xn, X̃n); (Xk, X̃k) ∈O ×O ∀k < n

]
= E

[∫
d(xn, x̃n)c

(
(Xn−1, X̃n−1), dxn dx̃n

); (Xk, X̃k) ∈ O ×O ∀k < n

]
≤ γE

[
d(Xn−1, X̃n−1); (Xk, X̃k) ∈O ×O ∀k < n − 1

]
.

Therefore, by induction,

Wd

(
μqn, νqn) ≤ E

[
d(Xn, X̃n)

]
= E

[
d(Xn, X̃n); (Xk, X̃k) ∈ O ×O ∀k < n

]
+E

[
d(Xn, X̃n); ∃k < n : (Xk, X̃k) /∈ O ×O

]
≤ γ nd(x, x̃) + � · P[∃k < n : (Xk, X̃k) /∈ O ×O

]
,

which implies (2.2). �
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REMARK 2.4. Theorem 2.3 may also be useful for studying local equilibra-
tion of a Markov chain within a metastable state. In fact, if O is a region of the
state space where the process stays with high probability for a long time, and if
a contractivity condition holds on O, then the result can be used to bound the
Kantorovich–Rubinstein–Wasserstein distance between the distribution after a fi-
nite number of steps and the stationary distribution conditioned to O.

From now on, we assume that we are given a Markovian coupling of the pro-
posal distributions p(x, ·), x ∈ R

d , of a Metropolis–Hastings algorithm which is
realized by product measurable functions (x, x̃,ω) �→ Y(x, x̃)(ω), Ỹ (x, x̃)(ω) on
a probability space (�,A,P) such that

Y(x, x̃) ∼ p(x, ·) and Ỹ (x, x̃) ∼ p(x̃, ·) for any x, x̃ ∈ R
d .

Let α(x, y) and q(x, dy) again denote the acceptance probabilities and the tran-
sition kernel of the Metropolis–Hastings chain with stationary distribution μ; cf.
(1.10), (1.11) and (1.12). Moreover, suppose that U is a uniformly distributed ran-
dom variable with values in (0,1) that is independent of {Y(x, x̃) :x, x̃ ∈ R

d}.
Then the functions (x, x̃,ω) �→ W(x, x̃)(ω), W̃ (x, x̃)(ω) defined by

W(x, x̃) :=
{

Y(x, x̃), if U ≤ α
(
x,Y (x, x̃)

)
,

x, if U > α
(
x,Y (x, x̃)

)
,

W̃ (x, x̃) :=
{

Ỹ (x, x̃), if U ≤ α
(
x, Ỹ (x, x̃)

)
,

x̃, if U > α
(
x, Ỹ (x, x̃)

)
,

realize a Markovian coupling between the Metropolis–Hastings transition func-
tions q(x, ·), x ∈ R

d , that is,

W(x, x̃) ∼ q(x, ·) and W̃ (x, x̃) ∼ q(x̃, ·)
for any x, x̃ ∈ R

d . This coupling is optimal in the acceptance step in the sense that
it minimizes the probability that a proposed move from x to Y(x, x̃) is accepted
and the corresponding proposed move from x̃ to Ỹ (x, x̃) is rejected or vice versa.

LEMMA 2.5 (Basic contractivity lemma for MH kernels). For any x, x̃ ∈ R
d ,

E
[
d
(
W(x, x̃), W̃ (x, x̃)

)]
≤ E

[
d
(
Y(x, x̃), Ỹ (x, x̃)

)]
+E

[(
d(x, x̃) − d

(
Y(x, x̃), Ỹ (x, x̃)

))
× max

(
1 − α

(
x,Y (x, x̃)

)
,1 − α

(
x̃, Ỹ (x, x̃)

))]
+E

[
d(x,Y (x, x̃) · (

α
(
x,Y (x, x̃)

) − α
(
x̃, Ỹ (x, x̃)

))+]
+E

[
d(x̃, Ỹ (x, x̃) · (

α
(
x,Y (x, x̃)

) − α
(
x̃, Ỹ (x, x̃)

))−]
.
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PROOF. By the definition of W and by the triangle inequality, we obtain the
estimate

E
[
d
(
W(x, x̃), W̃ (x, x̃)

)]
≤ E

[
d
(
Y(x, x̃), Ỹ (x, x̃)

);U < min
(
α

(
x,Y (x, x̃)

)
, α

(
x̃, Ỹ (x, x̃)

))]
+ d(x, x̃) · P[

U ≥ min
(
α

(
x,Y (x, x̃)

)
, α

(
x̃, Ỹ (x, x̃)

))]
+E

[
d
(
x,Y (x, x̃)

);α(
x̃, Ỹ (x, x̃)

) ≤ U < α
(
x,Y (x, x̃)

)]
+E

[
d
(
x̃, Ỹ (x, x̃)

);α(
x,Y (x, x̃)

) ≤ U < α
(
x̃, Ỹ (x, x̃)

)]
.

The assertion now follows by conditioning on Y and Ỹ . �

REMARK 2.6. (1) Note that the upper bound in Lemma 2.5 is close to an
equality. Indeed, the only estimate in the proof is the triangle inequality that has
been applied to bound d(x, Ỹ ) by d(x, x̃) + d(x̃, Ỹ ) and d(x̃, Y ) by d(x, x̃) +
d(x,Y ).

(2) For the couplings and distances considered in this paper, d(Y, Ỹ ) will always
be deterministic. Therefore, the upper bound in the lemma simplifies to

E
[
d(W, W̃)

]
≤ d(Y, Ỹ ) + (

d(x, x̃) − d(Y, Ỹ )
) ·E[

max
(
1 − α(x,Y ),1 − α(x̃, Ỹ )

)]
(2.3)

+E
[
d(x,Y )

(
α(x,Y ) − α(x̃, Ỹ )

)+ + d(x̃, Ỹ )
(
α(x,Y ) − α(x̃, Ỹ )

)−]
.

Here E[max(1 − α(x,Y ),1 − α(x̃, Ỹ ))] is the probability that at least one of the
proposals is rejected.

(3) If the metric d is bounded with diameter �, then the last two expectations
in the upper bound in Lemma 2.5 can be estimated by � times the probability
E[|α(x,Y ) − α(x̃, Ỹ )|] that one of the proposals is rejected and the other one is
accepted. Alternatively (and usually more efficiently), these terms can be estimated
by Hölder’s inequality.

3. Contractivity of the proposal step. In this section we assume V ∈
C2(Rd). We study contractivity properties of the Metropolis–Hastings proposals
defined in (1.23) and (1.27).

Note first that the Ornstein–Uhlenbeck proposals do not depend on V . For h ∈
(0,2), the contractivity condition∥∥Y OU

h (x) − Y OU
h (x̃)

∥∥ = ∥∥(1 − h/2)(x − x̃)
∥∥ = (1 − h/2)‖x − x̃‖(3.1)

holds pointwise for any x, x̃ ∈ R
d w.r.t. an arbitrary norm ‖ · ‖ on R

d .
For the semi-implicit Euler proposals

Yh(x) = x − h

2
∇U(x) +

√
h − h2

4
Z, Z ∼ γ d.
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Wasserstein contractivity does not necessarily hold. Close to optimal sufficient
conditions for contractivity w.r.t. the minus norm can be obtained in a straightfor-
ward way by considering the derivative of Yh w.r.t. x.

LEMMA 3.1. Let h ∈ (0,2), and let C be a convex subset of Rd . If there exists
a constant λ ∈ (0,∞) such that∥∥∥∥(

Id − h

2
∇2U(x)

)
· η

∥∥∥∥−
≤ λ‖η‖− for any η ∈ R

d, x ∈ C,(3.2)

then ∥∥Yh(x) − Yh(x̃)
∥∥− ≤ λ‖x − x̃‖− for any x, x̃ ∈ C.

PROOF. If (3.2) holds, then∥∥∂ηYh(x)
∥∥− =

∥∥∥∥η − h

2
∇2U(x) · η

∥∥∥∥−
≤ λ‖η‖−

for any x ∈ C and η ∈ R
d . Hence∥∥Yh(x) − Yh(x̃)

∥∥− =
∥∥∥∥∫ 1

0

d

dt
Yh

(
tx + (1 − t)x̃

)
dt

∥∥∥∥−

≤
∫ 1

0

∥∥∂x−x̃Yh

(
tx + (1 − t)x̃

)∥∥−dt

≤ λ‖x − x̃‖− for x, x̃ ∈ C. �

REMARK 3.2. (1) Note that condition (3.2) requires a bound on ∇2U in both
directions. This is in contrast to the continuous time case where a lower bound by
a strictly positive constant is sufficient to guarantee contractivity of the derivative
flow.

(2) Condition (3.2) is equivalent to

ξ · η − h

2
∂2
ξηU(x) ≤ λ‖ξ‖+‖η‖− for any x ∈ C, ξ, η ∈ R

d .(3.3)

Recall that for R ∈ (0,∞],
M(R) = sup

{∥∥∇2U(x) · η∥∥− :η ∈ B−
1 , x ∈ B−

R

}
.(3.4)

Hence M(R) bounds the second derivative of U on B−
R in both directions,

whereas the constant K in Assumption 1.14 is a strictly positive lower bound for
the second derivative. We also define

N(R) = sup
{∥∥∇2V (x) · η∥∥− :η ∈ B−

1 , x ∈ B−
R

}
.(3.5)

Note that M(R) ≤ 1 + N(R). As a consequence of Lemma 3.1 we obtain:
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PROPOSITION 3.3. For any h ∈ (0,2) and x, x̃ ∈ B−
R ,∥∥Yh(x) − Yh(x̃)

∥∥− ≤
(

1 − 1 − N(R)

2
h

)
· ‖x − x̃‖−.(3.6)

Moreover, if Assumption 1.14 holds, then∥∥Yh(x) − Yh(x̃)
∥∥− ≤

(
1 − K

2
h + M(R)2

8
h2

)
· ‖x − x̃‖−.(3.7)

PROOF. Note that for z ∈ [x, x̃] and η ∈ R,(
I − h

2
∇2U(z)

)
· η =

(
1 − h

2

)
η − h

2
∇2V (z) · η.(3.8)

Therefore, by (3.5),∥∥∥∥(
I − h

2
∇2U(z)

)
· η

∥∥∥∥−
≤

(
1 − h

2

)
‖η‖− + h

2
N(R) · ‖η‖−.

Inequality (3.6) now follows by Lemma 3.1.
Moreover, if Assumption 1.14 holds, then for z ∈ [x, x̃] and η ∈R

d ,∥∥∥∥(
I − h

2
∇2U(z)

)
· η

∥∥∥∥2

−
= ‖η‖2− − h

〈
η,∇2U(z) · η〉 + h2

4

∥∥∇2U(z) · η∥∥2
−

≤ (
1 − Kh + M(R)2h2/4

)‖η‖2−
= (

1 − Kh/2 + M(R)2h2/8
)2‖η‖2−.

Inequality (3.7) again follows by Lemma 3.1. �

4. Upper bounds for rejection probabilities. In this section we derive the
upper bounds for the MH rejection probabilities stated in Proposition 1.7. As a
first step we prove the explicit formula for the MALA acceptance probabilities
w.r.t. explicit and semi-implicit Euler proposals stated in Proposition 1.3:

PROOF OF PROPOSITION 1.3. For explicit Euler proposals with given step
size h > 0,

logγ d(x)pEuler
h (x, y)

= 1

2
|x|2 + 1

2h

∣∣∣∣y −
(

1 − h

2

)
x + h

2
∇V (x)

∣∣∣∣2 + C

= 1

2h

(
h|x|2 + |y − x|2 − hx · y + 1

4
h2|x|2 + h(y − x) · ∇V (x)

+ 1

2
h2x · ∇V (x) + 1

4
h2∣∣∇V (x)

∣∣2)
+ C

= S(x, y) + 1

2
(y − x) · ∇V (x) + h

8

∣∣x + ∇V (x)
∣∣2
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with a normalization constant C that does not depend on x and y, and a symmetric
function S :Rd ×R

d →R. Therefore, by (1.19),

GEuler
h (x, y) = V (y) − V (x) + logγ d(x)pEuler

h (x, y) − logγ d(y)pEuler
h (y, x)

= V (y) − V (x) − (y − x) · (∇V (y) + ∇V (x)
)
/2

+ h
(∣∣y + ∇V (y)

∣∣2 − ∣∣x + ∇V (x)
∣∣2)

/8.

Similarly, for semi-implicit Euler proposals we obtain

− logγ d(x)ph(x, y) = 1

2
|x|2 + 1

2

∣∣∣∣y −
(

1 − h

2

)
x + h

2
∇V (x)

∣∣∣∣2/(
h − h2

4

)
+ C

= 1

2

((
h − h2

4

)
|x|2 +

∣∣∣∣y −
(

1 − h

2

)
x + h

2
∇V (x)

∣∣∣∣2)
/(

h − h2

4

)
+ C

= −1

2

h

4 − h
|x|2 + S̃(x, y) + 1

2
· 4

4 − h
(y − x)∇V (x)

+ 1

2
· h

4 − h

∣∣x + ∇V (x)
∣∣2

= S̃(x, y) + 1

2
(y − x) · ∇V (x)

+ 1

2

4

4 − h

[
(y + x) · ∇V (x) + ∣∣∇V (x)

∣∣2]
,

and, therefore,

Gh(x, y)

= V (y) − V (x) − (y − x) · (∇V (y) + ∇V (x)
)
/2

+ h

8 − 2h

[
(y + x) · (∇V (y) − ∇V (x)

) + ∣∣∇V (y)
∣∣2 − ∣∣∇V (x)

∣∣2]
. �

From now on we assume that Assumption 1.5 holds. We will derive upper
bounds for the functions Gh(x, y) computed in Proposition 1.3. By (1.16), these
directly imply corresponding upper bounds for the MALA rejection probabilities.

Let ∂n
ξ1,...,ξn

V (z) denote the nth-order directional derivative of the function V

at z in directions ξ1, . . . , ξn. By ∂nV we denote the nth-order differential of V , that
is, the n-form (ξ1, . . . , ξn) �→ ∂n

ξ1,...,ξn
V . For x, x̃ ∈ R

d and n = 1,2,3,4 let

Ln(x, x̃) = sup
{(

∂n
ξ1,...,ξn

V
)
(z) : z ∈ [x, x̃], ξ1, . . . , ξn ∈ B−

1

}
.(4.1)

In other words,

Ln(x, x̃) = sup
z∈[x,x̃]

∥∥(
∂nV

)
(z)

∥∥∗
−,
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where ‖ · ‖∗− is the dual norm on n-forms defined by

‖l‖∗− = sup
{
l(ξ1, . . . , ξn) : ξ1, . . . , ξn ∈ B−

1

}
.

In particular,

L1(x, x̃) = sup
z∈[x,x̃]

∥∥∇V (z)
∥∥+.

By Assumption 1.5,

Ln(x, x̃) ≤ Cn · max
(
1,‖x‖−,‖x̃‖−

)pn ∀x, x̃ ∈R
d, n = 1,2,3,4.(4.2)

We now derive upper bounds for the terms in the expression for Gh(x, y) given
in Proposition 1.3. We first express the leading order term in terms of 3rd deriva-
tives of V :

LEMMA 4.1. For x, y ∈ R
d ,

V (y) − V (x) − y − x

2
· (∇V (y) + ∇V (x)

)
= −1

2

∫ 1

0
t (1 − t)∂3

y−xV
(
(1 − t)x + ty

)
dt.

PROOF. A second-order expansion for f (t) = V (x + t (y − x)), t ∈ [0,1],
yields

V (y) − V (x) =
∫ 1

0
∂y−xV

(
x + t (y − x)

)
dt

= (y − x) · ∇V (x) +
∫ 1

0

∫ t

0
∂2
y−xV

(
x + s(y − x)

)
ds dt

= (y − x) · ∇V (x) +
∫ 1

0
(1 − s)∂2

y−xV
(
x + s(y − x)

)
ds,

and, similarly,

V (y) − V (x) = (y − x) · ∇V (y) −
∫ 1

0

∫ 1

t
∂2
y−xV

(
x + s(y − x)

)
ds dt

= (y − x) · ∇V (y) −
∫ 1

0
s∂2

y−xV
(
x + s(y − x)

)
ds.

By averaging both equations, we obtain

V (y) − V (x) − y − x

2
· (∇V (y) + ∇V (x)

)
= 1

2

∫ 1

0
(1 − 2s)∂2

y−xV
(
x + s(y − x)

)
ds

= 1

2

∫ 1

0
t (1 − t)∂3

y−xV
(
x + t (y − x)

)
dt.
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Here we have used that for any function g ∈ C1([0,1]),∫ 1

0
(1 − 2s)g(s) ds =

∫ 1

0
(1 − 2s)

∫ s

0
g′(t) dt ds

=
∫ 1

0

∫ 1

t
(1 − 2s) dsg′(t) dt = −

∫ 1

0
t (1 − t)g′(t) dt. �

LEMMA 4.2. For x, y ∈ R
d , the following estimates hold:

(1) |V (y) − V (x)| ≤ L1(x, y) · ‖y − x‖−;
(2) |V (y) − V (x) − y−x

2 · (∇V (y) + ∇V (x))| ≤ 1
12L3(x, y) · ‖y − x‖3−;

(3) |(∇U(y)+∇U(x)) ·(∇V (y)−∇V (x))| ≤ L2(x, y) ·‖∇U(y)+∇U(x)‖− ·
‖y − x‖−;

(4) ‖∇U(y) + ∇U(x)‖− ≤ 2‖∇U(x)‖− + (1 + L2(x, y)) · ‖y − x‖−.

REMARK 4.3. The estimates in Lemma 4.2 provide a bound for the terms in
the expression (1.32) for Gh(x, y) in the case of semi-implicit Euler proposals. For
explicit Euler proposals, one also has to bound the term∣∣∇U(y)

∣∣2 − ∣∣∇U(x)
∣∣2 = ∣∣y + ∇V (y)

∣∣2 − ∣∣x + ∇V (x)
∣∣2.

Note that even when V vanishes, this term cannot be controlled in terms of ‖ · ‖−
in general. A valid upper bound is∣∣∇U(y) + ∇U(x)

∣∣ · |y − x| + L2(x, y)
∥∥∇U(y) + ∇U(x)

∥∥− · ‖y − x‖−.

PROOF OF LEMMA 4.2. By Lemma 4.1 and by definition of Ln(x, y), we
obtain ∣∣V (y) − V (x)

∣∣ ≤ sup
z∈[x,y]

∣∣∂y−xV (z)
∣∣ ≤ L1(x, y) · ‖y − x‖−,

∣∣∣∣V (y) − V (x) − y − x

2
· (∇V (y) + ∇V (x)

)∣∣∣∣
≤ 1

2

∫ 1

0
t (1 − t) dt sup

z∈[x,y]
∣∣∂3

y−xV (z)
∣∣ ≤ 1

12
L3(x, y) · ‖y − x‖3−,

(∇U(y) + ∇U(x)
) · (∇V (y) − ∇V (x)

)
= ∂∇U(y)+∇U(x)V (y) − ∂∇U(y)+∇U(x)V (x)

=
∫ 1

0
∂2∇U(y)+∇U(x),y−xV

(
(1 − t)x + ty

)
dt

≤ L2(x, y) · ∥∥∇U(y) + ∇U(x)
∥∥− · ‖y − x‖−.
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Moreover, the estimate∥∥∇U(y) + ∇U(x)
∥∥− ≤ 2

∥∥∇U(x)
∥∥− + ∥∥∇U(y) − ∇U(x)

∥∥−
≤ 2

∥∥∇U(x)
∥∥− + ‖y − x‖− + ∥∥∇V (y) − ∇V (x)

∥∥−
≤ 2

∥∥∇U(x)
∥∥− + (

1 + L2(x, y)
) · ‖y − x‖−

holds by definition of L2(x, y) and since∥∥∇V (y) − ∇V (x)
∥∥− ≤ ∣∣∇V (y) − ∇V (x)

∣∣ = sup
|ξ |=1

(
∂ξV (y) − ∂ξV (x)

)
≤ sup

‖ξ‖−≤1

(
∂ξV (y) − ∂ξV (x)

)
.

�

Recalling the definitions of Y OU
h (x) and Yh(x) from (1.23) and (1.27), we ob-

tain:

LEMMA 4.4. For x ∈ R
d, h ∈ (0,2) and n ∈ {1,2,3,4} with pn ≥ 1, we

have:

(1) ‖Y OU
h (x) − x‖− ≤ h

2 ‖x‖− + √
h‖Z‖−;

(2) ‖Yh(x) − x‖− ≤ h
2 ‖∇U(x)‖− + √

h‖Z‖−;
(3) ‖Y OU

h (x)‖− ≤ (1 − h
2 )‖x‖− + √

h‖Z‖−;
(4) ‖Yh(x)‖− ≤ ‖x‖− + h

2 ‖∇U(x)‖− + √
h‖Z‖−;

(5) Ln(x,Y OU
h (x)) ≤ Cn2pn−1(max(1,‖x‖−)pn + hpn/2‖Z‖pn− );

(6) Ln(x,Yh(x)) ≤ Cn3pn−1(max(1,‖x‖−)pn + (h
2 )pn‖∇U(x)‖pn− +

hpn/2‖Z‖pn− ).

PROOF. Estimates (1)–(4) are direct consequences of the triangle inequality.
Moreover, by (3) and (4),

max
(
1,‖x‖−,

∥∥Y OU
h (x)

∥∥−
) ≤ max

(
1,‖x‖−

) + √
h‖Z‖−

and

max
(
1,‖x‖−,

∥∥Yh(x)
∥∥−

) ≤ max
(
1,‖x‖−

) + h

2

∥∥∇U(x)
∥∥− + √

h‖Z‖−.

Estimates (5) and (6) now follow from (4.2) and Hölder’s inequality. �

We now combine the estimates in Lemmas 4.2 and 4.4 in order to prove Propo-
sition 1.7 and the first part of Proposition 1.11:

PROOF OF PROPOSITION 1.7. By (1.16) and Proposition 1.3, for h ∈ (0,2),

E
[(

1 − αh

(
x,Yh(x)

))k]1/k ≤ ∥∥Gh

(
x,Yh(x)

)+∥∥
Lk ≤ I + h

4
II,(4.3)
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where

I =
∥∥∥∥V (

Yh(x)
) − V (x) − Yh(x) − x

2
· (∇V

(
Yh(x)

) − ∇V (x)
)∥∥∥∥

Lk
,

II = ∥∥(∇U
(
Yh(x)

) + ∇U(x)
) · (∇V

(
Yh(x)

) − ∇V (x)
)∥∥

Lk .

By Lemma 4.2,

I ≤ E
[
L3

(
x,Yh(x)

)k · ‖Yh(x) − x‖3k−
]1/k

/12 and(4.4)

II ≤ E
[
L2

(
x,Yh(x)

)k · ‖Yh(x) − x‖k−
(4.5)

× (
2
∥∥∇U(x)

∥∥− + (
1 + L2

(
x,Yh(x)

)) · ‖Yh(x) − x‖−
)k]1/k

.

The assertion of Proposition 1.7 for semi-implicit Euler proposals is now a direct
consequence of the estimates (2) and (6) in Lemma 4.4. The assertion for Ornstein–
Uhlenbeck proposals follows similarly from (1.21), the estimates (1) in Lemma 4.2
and (1), (3) and (5) in Lemma 4.4. �

It is possible to write down the polynomial in Proposition 1.7 explicitly. For
semi-implicit Euler proposals, we illustrate this in the case k = 1 and p2 = p3 = 0.
Here, by (4.4) and (4.5) we obtain

I ≤ C3

12
E

[(
h
∥∥∇U(x)

∥∥−/2 + √
h‖Z‖−

)3] ≤ C3

4

(
h3∥∥∇U(x)

∥∥3
−/8 + h3/2m3

)
,

II ≤ C2E
[(

h
∥∥∇U(x)

∥∥−/2 + √
h‖Z‖−

)
× (

2
∥∥∇U(x)

∥∥− + (1 + C2)
(
h
∥∥∇U(x)

∥∥−/2 + √
h‖Z‖−

))]
≤ C2

(
h
∥∥∇U(x)

∥∥2
− + 2

√
h
∥∥∇U(x)

∥∥−m1

+ (1 + C2)

(
h2

2

∥∥∇U(x)
∥∥2
− + 2hm2

))
.

Hence by (4.3),

E
[
1 − αh

(
x,Yh(x)

)] ≤ h3/2 ·
(

1

4
C3m3 + 1

2
C2m1

∥∥∇U(x)
∥∥−

)
+ h2 ·

(
1

4
C2

∥∥∇U(x)
∥∥2
− + 1

2
C2(1 + C2)m2

)
(4.6)

+ h3 ·
(

1

32
C3

∥∥∇U(x)
∥∥3
− + 1

8
C2(1 + C2

)∥∥∇U(x)
∥∥2
−

)
.

For Ornstein–Uhlenbeck proposals, we derive the explicit bound for the rejec-
tion probabilities stated in Proposition 1.11 for the case k = 1 and p2 = 0.
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PROOF OF PROPOSITION 1.11, FIRST PART. If p2 = 0, then for any x ∈ R
d ,∥∥∇V (x)

∥∥+ ≤ ∥∥∇V (0)
∥∥+ + ∥∥∇V (x) − ∇V (0)

∥∥+ ≤ C1 + C2 · ‖x‖−.(4.7)

Therefore, for any x, y ∈ R
d ,∣∣V (y) − V (x)

∣∣ ≤ (
C1 + C2 · max

(‖x‖−,‖y‖−
)) · ‖y − x‖−.

Hence, by (1.21) and by (1) and (3) in Lemma 4.4,

E
[
1 − αOU(

x,Y OU
h (x)

)]
≤ E

[(
V

(
Y OU

h (x)
) − V (x)

)+]
≤ E

[(
C1 + C2 · max

(‖x‖−,
∥∥Y OU

h (x)
∥∥−

)) · ∥∥Y OU
h (x) − x

∥∥−
]

≤ E
[(

C1 + C2 · (‖x‖− + √
h‖Z‖−

)) · (
h‖x‖−/2 + √

h‖Z‖−
)]

= m1
(
C1 + C2‖x‖−

) · h1/2

+ 1

2

(
2m2C2 + C1‖x‖− + C2‖x‖2−

) · h + 1

2
m1C2‖x‖− · h3/2. �

5. Dependence of rejection on the current state. We now derive estimates
for the derivatives of the functions

Fh(x,w) = Gh

(
x, x − h

2
∇U(x) + w

)
,(5.1)

F OU
h (x,w) = GOU

(
x, x − h

2
x + w

)
, (x,w) ∈ R

d ×R
d,(5.2)

w.r.t. x. Since

Gh

(
x,Yh(x)

) = Fh

(
x,

√
h − h2

4
Z

)
with Z ∼ γ d, and(5.3)

GOU(
x,Y OU

h (x)
) = F OU

h

(
x,

√
h − h2

4
Z

)
with Z ∼ γ d,(5.4)

these estimates can then be applied to control the dependence of rejection on the
current state x.

For Ornstein–Uhlenbeck proposals, by (1.21), we immediately obtain

∇xF
OU
h (x,w) =

(
1 − h

2

)(∇V (y) − ∇V (x)
) − h

2
∇V (x),(5.5)

where y := (1 − h
2 )x + w.

For semi-implicit Euler proposals, the formula for the derivative is more in-
volved. To simplify the notation we set for x ∈ R

d and fixed h ∈ (0,2),

x′ := x − h

2
∇U(x).(5.6)
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In the sequel, we use the conventions

v · w =
d∑

i=1

viwi, (v · T )j =
d∑

i=1

viTi,j , (T · v)j =
d∑

j=1

Ti,j vj ,

(S · T )ik =
d∑

j=1

Si,j Tj,k

for vectors v,w ∈R
d and (2,0) tensors S,T ∈ R

d ⊗R
d . In particular,

v · (S · T ) = (v · S) · T ,

that is, the brackets may be omitted. We now give an explicit expression for the
derivative of Fh(x,w) w.r.t. the first variable:

PROPOSITION 5.1. Suppose V ∈ C2(Rd). Then for any x,w ∈R
d ,

∇xFh(x,w) = ∇V (y) − ∇V (x) − y − x

2
· (∇2V (y) + ∇2V (x)

)
+ h

4
(y − x) · ∇2V (y) · (

Id + ∇2V (x)
)

+ h

8 − 2h

(∇V (y) − ∇V (x) + ∇U(y) + ∇U(x)
)

× (∇2V (y) − ∇2V (x)
)

− h2

16 − 4h

(∇V (y) − ∇V (x) + ∇U(y) + ∇U(x)
) · ∇2V (y)

× (
Id + ∇2V (x)

)
with y := x′ + w = x − h

2 ∇U(x) + w.

PROOF. Let

W(x) := ∇V (x) = ∇U(x) − x, x ∈ R
d .

By Proposition 1.3,

Fh(x,w) = Ah(x,w) + h

8 − 2h
Bh(x,w)(5.7)

for any x,w ∈ R
d , where

Ah(x,w) := V
(
x′ + w

) − V (x) − x′ + w − x

2
· (∇V

(
x′ + w

) + ∇V (x)
)

and

Bh(x,w) := (∇U
(
x′ + w

) + ∇U(x)
) · (∇V

(
x′ + w

) − ∇V (x)
)
.
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Noting that by (5.6),

x − x′ = h

2
∇U(x) = h

2
x + h

2
∇V (x),(5.8)

∇x

(
x − x′) = h

2
∇2U(x) = h

2
Id + h

2
∇2V (x) and(5.9)

∇xx
′ = Id − h

2
∇2U(x) =

(
1 − h

2

)
Id − h

2
∇2V (x),(5.10)

we obtain with y = x′ + w

∇xAh(x,w) = W
(
x′ + w

) ·
(
Id − h

2
∇2U(x)

)
− W(x)

− x′ + w − x

2
·
(
∇W

(
x′ + w

) ·
(
Id − h

2
∇2U(x)

)
+ ∇W(x)

)
+ h

4

(
W

(
x′ + w

) + W(x)
) · ∇2U(x)

= W(y) − W(x) − y − x

2
· (∇W(y) + ∇W(x)

)
− h

4

(
W(y) − W(x)

) · ∇2U(x) + h

4
(y − x) · (∇W(y) · ∇2U(x)

)
,

∇xBh(x,w) = (
W

(
x′ + w

) − W(x)
)

×
(
∇2U

(
x′ + w

) ·
(
Id − h

2
∇2U(x)

)
+ ∇2U(x)

)
+ (∇U

(
x′ + w

) + ∇U(x)
)

×
(
∇W

(
x′ + w

) ·
(
Id − h

2
∇2U(x)

)
− ∇W(x)

)
= (

W(y) − W(x)
) · (∇2U(y)

+ ∇2U(x)
) + (∇U(y) + ∇U(x)

) · (∇W(y) − ∇W(x)
)

− h

2

(
W(y) − W(x)

) · (∇2U(y) · ∇2U(x)
)

− h

2

(∇U(y) + ∇U(x)
) · (∇W(y) · ∇2U(x)

)
.

In total, we obtain

∇xFh(x,w) = ∇xAh(x,w) + h

8 − 2h
∇xBh(x,w)

= W(y) − W(x) − y − x

2
· (∇W(y) + ∇W(x)

)
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+ h

8 − 2h

(
W(y) − W(x)

) · (∇2U(y) − ∇2U(x)
)

+ h

4
(y − x) · ∇W(y) · ∇2U(x)

+ h

8 − 2h

(∇U(y) + ∇U(x)
) · (∇W(y) − ∇W(x)

)
+

(
2h

8 − 2h
− h

4

)(
W(y) − W(x)

) · ∇2U(x)

− h2

16 − 4h

(
W(y) − W(x)

) · ∇2U(y) · ∇2U(x)

− h2

16 − 4h

(∇U(y) + ∇U(x)
) · ∇W(y) · ∇2U(x)

= W(y) − W(x) − y − x

2
· (∇W(y) + ∇W(x)

)
+ h

4
(y − x) · ∇W(y) · ∇2U(x)

+ h

8 − 2h

(
W(y) − W(x) + ∇U(y) + ∇U(x)

)
× (∇W(y) − ∇W(x)

)
− h2

16 − 4h

((
W(y) − W(x)

) · (∇2U(y) − Id

)
+ (∇U(y) + ∇U(x)

) · ∇W(y)
) · ∇2U(x).

Here we have used that

∇2U = Id + ∇2V = Id + ∇W.

The assertion follows by applying this identity to the remaining ∇2U terms as
well. �

Similar to Lemma 4.2 above, we now derive bounds for the individual sum-
mands in the expressions for ∇xF

OU
h and ∇xFh in (5.5) and Proposition 5.1.

LEMMA 5.2. For V ∈ C4(Rd) and x, y ∈R
d the following estimates hold:

(1) ‖∇V (y) − ∇V (x)‖+ ≤ L2(x, y) · ‖y − x‖−;
(2) ‖∇V (y) − ∇V (x) − y−x

2 · (∇2V (y) + ∇2V (x))‖+ ≤ L4(x, y) · ‖y −
x‖3−/12;

(3) ‖(y−x) ·∇2V (y) ·(Id +∇2V (x))‖+ ≤ L2(y, y) ·(1+L2(x, x)) ·‖y−x‖−;
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(4) ‖(∇V (y) − ∇V (x) + ∇U(y) + ∇U(x)) · (∇2V (y) − ∇2V (x))‖+ ≤
L3(x, y) · (L2(x, y)‖y − x‖− + ‖∇U(y) + ∇U(x)‖−) · ‖y − x‖−;

(5) ‖(∇V (y) − ∇V (x) + ∇U(y) + ∇U(x)) · ∇2V (y) · (Id + ∇2V (x))‖− ≤
L2(y, y) · (L2(x, y)‖y − x‖− + ‖∇U(y) + ∇U(x)‖−) · (1 + L2(x, x)).

PROOF. (1) For any ξ ∈ R
d , we have∣∣∂ξV (y) − ∂ξV (x)

∣∣ ≤ sup
z∈[x,y]

∣∣∂2
y−x,ξV (z)

∣∣ ≤ L2(x, y)‖x − y‖−‖ξ‖−.

This proves (1) by definition of ‖ · ‖+.
(2) By Lemma 4.1 applied to ∂ξV ,∣∣∣∣∂ξV (y) − ∂ξV (x) − y − x

2
· (∇∂ξV (y) − ∇∂ξV (x)

)∣∣∣∣
≤ 1

2

∫ 1

0
t (1 − t) dt · sup

z∈[x,y]
∣∣∂3

y−x∂ξV (z)
∣∣ ≤ 1

12
L4(x, y)‖x − y‖3−‖ξ‖−.

(3) For v,w ∈ R
d , we have∣∣v · ∇2V (y)w

∣∣ = ∣∣∂2
vwV (y)

∣∣ ≤ L2(x, y)‖v‖−‖w‖−.(5.11)

Since ‖ · ‖− is weaker than the Euclidean norm, we obtain∣∣(y − x) · ∇2V (y) · (
I + ∇2V (x)

) · ξ ∣∣
≤ L2(y, y)‖y − x‖−

∥∥(
I + ∇2V (x)

) · ξ∥∥−
≤ L2(y, y)‖y − x‖−

(
1 + L2(x, x)

)‖ξ‖−.

(4), (5) For v,w ∈ R
d ,∣∣v · (∇2V (y) − ∇2V (x)

) · w∣∣ =
∣∣∣∣∫ 1

0
∂3
y−x,v,wV

(
(1 − t)x + ty

)
dt

∣∣∣∣
≤ L3(x, y)‖y − x‖−‖v‖−‖w‖−.

Therefore,∣∣(∇V (y) − ∇V (x) + ∇U(y) + ∇U(x)
) · (∇2V (y) − ∇2V (x)

) · ξ ∣∣
≤ L3(x, y)‖y − x‖− · (∥∥∇V (y) − ∇V (x)

∥∥− + ∥∥∇U(y) + ∇U(x)
∥∥−

) · ‖ξ‖−
≤ L3(x, y)‖y − x‖− · (

L2(x, y)‖y − x‖− + ∥∥∇U(y) + ∇U(x)
∥∥−

) · ‖ξ‖−,

and, correspondingly,∣∣(∇V (y) − ∇V (x) + ∇U(y) + ∇U(x)
) · ∇2V (y) · (

I + ∇2V (x)
) · ξ ∣∣

≤ L2(y, y) · (
L2(x, y)‖y − x‖− + ∥∥∇U(y) + ∇U(x)

∥∥−
)

× (
1 + L2(x, x)

)‖ξ‖−. �
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By combining Proposition 5.1 with the estimates in Lemma 5.2 and Lemma 4.4,
we will now prove Proposition 1.9.

PROOF OF PROPOSITION 1.9. Fix h ∈ (0,2). By (1.17) and (1.18), for any
x, x̃ ∈ R

d , ∥∥αh

(
x,Yh(x)

) − αh

(
x̃, Yh(x̃)

)∥∥
Lk

≤ ∥∥Gh

(
x,Yh(x)

) − Gh

(
x̃, Yh(x̃)

)∥∥
Lk(5.12)

≤ ‖x − x̃‖− · sup
z∈[x,x̃]

∥∥∥∥∇xGh

(
x,Yh(x)

)∥∥+
∥∥
Lk .

Moreover, by (5.3) and Proposition 5.1,∥∥∥∥∇xGh

(
x,Yh(x)

)∥∥+
∥∥
Lk

= ∥∥∥∥∇xFh

(
x,

√
h − h2/4Z

)∥∥+
∥∥
Lk(5.13)

≤ I + h

4
· II + h

8 − 2h
· III + h2

16 − 4h
· IV,

where

I = E
[∥∥∇V

(
Yh(x)

) − ∇V (x) − 1
2

(
Yh(x) − x

)
× (∇2V

(
Yh(x)

) + ∇2V (x)
)∥∥k

+
]1/k

,

II = E
[∥∥(

Yh(x) − x
) · ∇2V

(
Yh(x)

) · (
I + ∇2V (x)

)∥∥k
+

]1/k
,

III = E
[∥∥(∇V

(
Yh(x)

) − ∇V (x) + ∇U
(
Yh(x)

) + ∇U(x)
)

× (∇2V
(
Yh(x)

) − ∇2V (x)
)∥∥k

+
]1/k

,

IV = E
[∥∥(∇V

(
Yh(x)

) − ∇V (x) + ∇U
(
Yh(x)

) + ∇U(x)
)

× ∇2V
(
Yh(x)

) · (
I + ∇2V (x)

)∥∥k
+

]1/k
.

By applying the estimates from Lemmas 5.2 and 4.2(4), we obtain

I ≤ 1
12E

[
L4

(
x,Yh(x)

)k∥∥Yh(x) − x
∥∥3k
−

]1/k
,(5.14)

II ≤ (
1 + L2(x, x)

) ·E[
L2

(
Yh(x), Yh(x)

)k∥∥Yh(x) − x
∥∥k
−

]1/k
,(5.15)

III ≤ E
[
L3

(
x,Yh(x)

)k∥∥Yh(x) − x
∥∥k
−

(5.16)
× ((

1 + 2L2
(
x,Yh(x)

))k∥∥Yh(x) − x
∥∥k
− + 2

∥∥∇U(x)
∥∥k
−

)]1/k
,

IV ≤ (
1 + L2(x, x)

)
×E

[
L2

(
Yh(x), Yh(x)

)k(5.17)

× ((
1 + L2

(
x,Yh(x)

))k∥∥Yh(x) − x
∥∥k
− + 2

∥∥∇U(x)
∥∥k
−

)]1/k
.
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The assertion for semi-implicit Euler proposals is now a direct consequence of the
estimates in Lemma 4.4, (4.2) and (5.12).

The assertion for Ornstein–Uhlenbeck proposals follows in a similar way
from (5.5), Lemma 5.2(1) and the estimates in Lemma 4.4. �

Again, it is possible to write down the polynomial in Proposition 1.9 explicitly.
For semi-implicit Euler proposals, we illustrate this in the case k = 1 and p2 =
p3 = p4 = 0. Here, by (5.14), (5.15), (5.17) and (5.17) we obtain

I ≤ C4

12
E

[(
h

2

∥∥∇U(x)
∥∥− + √

h‖Z‖−
)3]

≤ C4

4

(
h3

8

∥∥∇U(x)
∥∥3
− + h3/2m3

)
,

II ≤ (
C2 + C2

2
)
E

[
h

2

∥∥∇U(x)
∥∥− + √

h‖Z‖−
]

= (
C2 + C2

2
)(h

2

∥∥∇U(x)
∥∥− + h1/2m1

)
,

III ≤ C3

(
2
∥∥∇U(x)

∥∥− ·E
[
h

2

∥∥∇U(x)
∥∥− + √

h‖Z‖−
]

+ (1 + 2C2)E

[(
h

2

∥∥∇U(x)
∥∥− + √

h‖Z‖−
)2])

≤ 2C3
∥∥∇U(x)

∥∥−
(

h

2

∥∥∇U(x)
∥∥− + √

hm1

)

+ C3(1 + 2C2)

(
h2

2

∥∥∇U(x)
∥∥2 + 2hm2

)
,

IV ≤ (1 + C2)C2

(
(1 + C2)E

[
h

2

∥∥∇U(x)
∥∥− + √

h‖Z‖−
]

+ 2
∥∥∇U(x)

∥∥−
)

≤ 2(1 + C2)C2
∥∥∇U(x)

∥∥− + (1 + C2)
2C2

(
h

2

∥∥∇U(x)
∥∥− + √

hm1

)
.

Hence by (5.13), for h ∈ (0,2),

E
[∥∥∇xGh

(
x,Yh(x)

)∥∥+
]

≤ 1
4h3/2(

C4m3 + (1 + C2)C2m1 + 2C3
∥∥∇U(x)

∥∥−m1
)

+ 1
8h2(

4C2(1 + 2C2)m2 + 3C2(1 + C2)
∥∥∇U(x)

∥∥− + 2C3
∥∥∇U(x)

∥∥2
−

)
(5.18)

+ 1
16h5/2C2(1 + C2)

2(
2m1 + h1/2∥∥∇U(x)

∥∥−
)

+ 1
32h3(

4C3(1 + 2C2)
∥∥∇U(x)

∥∥2
− + C4

∥∥∇U(x)
∥∥3
−

)
.

For Ornstein–Uhlenbeck proposals, we prove the explicit bound for the depen-
dence of the rejection probabilities on the current state for the case k = 2 and
p2 = 0 as stated in Proposition 1.11.
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PROOF OF PROPOSITION 1.11, SECOND PART. If p2 = 0, then by (5.4), (5.5)
and (4.7),∥∥∇xG

OU(
x,Y OU

h (x)
)∥∥+ ≤ ∥∥∇V

(
Y OU

h (x)
) − ∇V (x)

∥∥+ + h

2

∥∥∇V (x)
∥∥+

≤ C2
∥∥Y OU

h (x) − x
∥∥− + (

C1 + C2‖x‖−
)
h/2

≤ C2‖Z‖−h1/2 + (
C1 + 2C2‖x‖−

)
h/2

for any x ∈R
d . Therefore,

E
[∥∥∇xG

OU(
x,Y OU

h (x)
)∥∥2

+
]1/2 ≤ C2m

1/2
2 h1/2 + (

C1 + 2C2‖x‖−
)
h/2.

The assertion now follows similarly to (5.12). �

6. Upper bound for exit probabilities. In this section, we prove an upper
bound for the exit probabilities of the MALA chain from the ball B−

R that is re-
quired in the proof of Theorem 1.19; cf. [12] for a detailed proof of a more general
result. Let

f (x) := exp
(
K‖x‖2−/16

)
.(6.1)

The following lemma shows that f (x) acts as a Lyapunov function for the MALA
transition kernel on B−

R :

LEMMA 6.1. Suppose that Assumptions 1.5 and 1.14 hold. Then there exist
constants C1,C2, ρ1 ∈ (0,∞) such that

qhf ≤ f 1−Kh/4eC2h on B−
R(6.2)

for any R,h ∈ (0,∞) such that h−1 ≥ C1(1 + R)ρ1 .

PROOF. We first observe that a corresponding bound holds for the proposal
kernel ph. Indeed, by (1.27), and since ‖v‖2− = v · Gv with a nonnegative definite
symmetric matrix G ≤ I , an explicit computation yields

(phf )(x) = E

[
exp

(
K

∥∥∥∥x − h

2
∇U(x) +

√
h − h2/4Z

∥∥∥∥2

−

/
16

)]

≤ exp
(
K(1 + Kh/4)

∥∥∥∥x − h

2
∇U(x)

∥∥∥∥2

−

/
16

)
.

Moreover, by Assumption 1.14,∥∥∥∥x − h

2
∇U(x)

∥∥∥∥2

−
≤

(
1 − Kh

2

)
‖x‖2− + h

2K

∥∥∇U(0)
∥∥2
− + h2

4

∥∥∇U(x)
∥∥2
−.

Hence by Assumption 1.5, there exist constants C3,C4, ρ2 ∈ (0,∞) such that

(phf )(x) ≤ f (x)1−Kh/4eC3h
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for any x ∈ R
d and h ∈ (0,∞) such that h−1 ≥ C4(1 + ‖x‖−)ρ2 . By the upper

bound for the rejection probabilities in Proposition 1.7, we conclude that there
exists a polynomial s such that the corresponding upper bound

qhf ≤ f 1−Kh/4eC3h + s(R)h3/2f

= f 1−Kh/4(
eC3h + s(R)h3/2f Kh/4)

≤ f 1−Kh/4e(C3+1)h

holds on B−
R whenever both h−1 ≥ C4(1 + R)ρ2 and s(R)h1/2f Kh/4 ≤ 1. The

assertion follows, since the second condition is satisfied if K2hR2/64 ≤ 1 and
s(R)eh1/2 ≤ 1. �

Now consider the first exit time

TR := inf
{
n ≥ 0 :Xn /∈ B−

R

}
,

where (Xn,Px) is the Markov chain with transition kernel qh and initial condition
X0 = x Px -a.s. We can estimate TR by constructing a supermartingale based on
the Lyapunov function f :

THEOREM 6.2. If Assumptions 1.5 and 1.14 hold, then there exist constants
C,ρ,D ∈ (0,∞) such that the upper bound

Px[TR ≤ n] ≤ Dnh exp
[
K

(‖x‖2− − R2)
/24

]
(6.3)

holds for any n ≥ 0, R,h ∈ (0,∞) such that h−1 ≥ C(1 + R)ρ , and x ∈ B−
R .

PROOF. Fix n ∈ N, choose C1,C2, ρ1 as in the lemma above, and let

Mj := f (Xj )
(1−Kh/4)n−j

exp

(
−C2h

j∑
i=0

(1 − Kh/4)n−i

)

for j = 0,1, . . . , n. If h−1 ≥ C1(1 + R)ρ1 , then by Jensen’s inequality and (6.2),

Ex[Mj+1|Fj ] ≤ (qhf )(Xj )
1−Kh/4 exp

(
−C2h

j+1∑
i=0

(1 − Kh/4)n−i

)

≤ Mj on
{
Xj ∈ B−

R

}
for any j < n.

Hence the stopped process (M
TR

j )0≤j≤n is a supermartingale, and thus

Ex[MTR
;n − m ≤ TR ≤ n] ≤ Ex[M0] for any 0 ≤ m ≤ n.

Noting that M0 = f (x)(1−Kh/4)n = exp((1 − Kh/4)nK‖x‖2−/16), and

MTR
≥ (

f (XTR
) exp(−4C2/K)

)(1−Kh/4)n−TR

= exp
[(

K

16
R2 − 4C2/K

)
· (1 − Kh/4)n−TR

]
,
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we obtain the bound

Px[n − m ≤ TR ≤ n]

≤ exp
[(

1 − Kh

4

)m(
K

16

((
1 − Kh

4

)n−m

‖x‖2− − R2
)

+ 4C2

K

)]
for any 0 ≤ m ≤ n provided R2 ≥ 64C2/K

2. In particular, if mKh/2 ≤ log(3/2),
then (1 − Kh/4)m ≥ exp(−mKh/2) ≥ 2/3, and hence

Px[n − m ≤ TR ≤ n] ≤ exp(4C2K) · exp
(
K

(‖x‖2− − R2)
/24

)
.

The assertion follows by partitioning {0,1, . . . , n} into blocks of length ≤ m where
m = �2 log(3/2)K−1h−1�. �

7. Proof of the main results. In this section, we combine the results in or-
der to derive the contraction properties for Metropolis–Hastings transition kernels
stated in Theorems 1.15, 1.12 and 1.19, and we finally prove 1.20. Note that for
x, x̃ ∈ R

d , the distances∥∥Y OU
h (x) − Y OU

h (x̃)
∥∥− = (1 − h/2)‖x − x̃‖− and(7.1) ∥∥Yh(x) − Yh(x̃)
∥∥− = ∥∥x − x̃ − (∇U(x) − ∇U(x̃)

)
h/2

∥∥−(7.2)

are deterministic. We now combine Lemma 2.5 with the estimates in Proposi-
tions 1.7 and 1.9:

PROOF OF THEOREM 1.15. We fix h ∈ (0,2), R ∈ (0,∞) and x, x̃ ∈ B−
R . By

the basic contractivity Lemma 2.5 and by (2.3), respectively,

E
[∥∥Wh(x) − Wh(x̃)

∥∥−
]

≤ ‖x − x̃‖−
− (

1 −E
[
max

(
1 − αh

(
x,Yh(x)

)
,1 − αh

(
x̃, Yh(x̃)

))])
× (‖x − x̃‖− − ∥∥Yh(x) − Yh(x̃)

∥∥−
)

+E
[
max

(∥∥x − Yh(x)
∥∥−,

∥∥x̃ − Yh(x̃)
∥∥−

)2]1/2

×E
[(

αh

(
x,Yh(x)

) − αh

(
x̃, Yh(x̃)

))2]1/2
.

By Proposition 3.3,∥∥Yh(x) − Yh(x̃)
∥∥− ≤ (

1 − Kh/2 + M(R)2h2/8
) · ‖x − x̃‖−,

and by Lemma 4.4 (2),

E
[
max

(∥∥x − Yh(x)
∥∥−,

∥∥x̃ − Yh(x̃)
∥∥−

)2]1/2

≤ m
1/2
2 h1/2 + max

(∥∥∇U(x)
∥∥−,

∥∥∇U(x̃)
∥∥−

)
h/2.
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The assertion of Theorem 1.15 follows by combining these estimates with the
bounds for the acceptance probabilities in Propositions 1.7 and 1.9. �

The corresponding bound for Ornstein–Uhlenbeck proposals follows similarly
from Lemma 2.5 and Proposition 1.11:

PROOF OF THEOREM 1.12. We again fix h ∈ (0,2), R ∈ (0,∞), and
x, x̃ ∈ B−

R . Since Y OU
h (x) − Y OU

h (x̃) = (1 − h/2)(x − x̃) and ‖x − Y OU
h (x)‖− ≤

‖x‖−h/2 + ‖Z‖−
√

h, the basic contractivity Lemma 2.5 implies

E
[∥∥WOU

h (x) − WOU
h (x̃)

∥∥−
]

≤
(

1 − h

2

)
‖x − x̃‖−

+ h

2
‖x − x̃‖−E

[
max

(
1 − αOU(

x,Y OU
h (x)

)
,1 − αOU(

x̃, Y OU
h (x̃)

))]
+

(
h

2
max

(‖x‖−,‖x̃‖−
) + √

hm
1/2
2

)
×E

[(
αOU(

x,Y OU
h (x)

) − αOU(
x̃, Y OU

h (x̃)
))2]1/2

.

The assertion of Theorem 1.12 follows by combining this estimates with the
bounds for the acceptance probabilities in Proposition 1.11. �

PROOF OF THEOREM 1.19. Noting that

‖x‖− − (2R)2 ≤ −3R2 for any x ∈ B−
R ,

the assertion is a direct consequence of Corollary 1.18 and Theorem 6.2 applied
with R replaced by 2R. �

Let μR = μ(·|B−
R ) denote the conditional measure on B−

R . The fact that μR is
a stationary distribution for the Metropolis–Hastings transition kernel qh can be
used to bound the Wasserstein distance between μRqn

h and μR :

LEMMA 7.1. For any R ≥ 0 and a ∈ (0,1),

W2R

(
μRqn

h,μR

) ≤ 8R
(
μRqn

h

)(
R

d \ B−
R

)
≤ 8(1 − a)−1W2R

(
μRqn

h, δ0q
n
h

) + 8R
(
δ0q

n
h

)(
B−

aR

)
.

PROOF. The distance induced by the total variation norm ‖·‖TV is the Wasser-
stein distance w.r.t. the metric d(x, y) = I{x �=y}. Since d2R(x, y) ≤ 4Rd(x, y), we
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obtain

W2R

(
μRqn

h,μR

) ≤ 4R
∥∥μRqn

h − μR

∥∥
TV

= 8R
∥∥(

μRqn
h − μR

)+∥∥
TV(7.3)

≤ 8R
(
μRqn

h

)(
R

d \ B−
R

)
.

Here we have used in the last step that μqh = μ, and hence(
μRqn

h

)
(A) ≤ (

μRqn
h

)(
A ∩ B−

R

) + (
μRqn

h

)(
R

d \ B−
R

)
≤ μR(A) + (

μRqn
h

)(
R

d \ B−
R

)
for any Borel set A ⊆R

d . Moreover, for a ∈ (0,1),

W2R

(
μRqn

h, δ0q
n
h

)
(7.4)

≥ (R − aR) · ((
μRqn

h

)(
R

d \ B−
R

) − (
δ0q

n
h

)(
R

d \ B−
aR

))
.

Indeed, for any coupling η(dx dx̃) of the two measures,

η
(
d2R(x, x̃) ≥ R − aR

) ≥ (
μRqn

h

)(
R

d \ B−
R

) − (
δ0q

n
h

)(
R

d \ B−
aR

)
.

The assertion follows by combining the estimates in (7.3) and (7.4). �

PROOF OF THEOREM 1.20. By combining the estimates in Theorem 1.19,
Lemma 7.1 with a = 6/7, and Theorem 6.2, we obtain

W2R

(
νqn

h,μR

) ≤ W2R

(
νqn

h,μRqn
h

) +W2R

(
μRqn

h,μR

)
≤

(
1 − K

4
h

)n

W2R(ν,μR) + DR exp
(−KR2/8

)
nh

+ 56 ·
(

1 − K

4
h

)n

W2R(μR, δ0) + 56DR exp
(−KR2/8

)
nh

+ 8RP0[T6R/7 ≤ n]

≤ 58R ·
(

1 − K

4
h

)n

+ 57DR exp
(−KR2/8

)
nh

+ 8DR exp
(−KR2/33

)
nh. �
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