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In this paper we propose an inversion algorithm with computable
error bounds for two-dimensional, two-sided Laplace transforms. The
algorithm consists of two discretization parameters and two trunca-
tion parameters. Based on the computable error bounds, we can se-
lect these parameters appropriately to achieve any desired accuracy.
Hence this algorithm is particularly useful to provide benchmarks.
In many cases, the error bounds decay quickly (e.g., exponentially),
making the algorithm very efficient. We apply this algorithm to price
exotic options such as spread options and barrier options under var-
ious asset pricing models as well as to evaluate the joint cumulative
distribution functions of related state variables. The numerical exam-
ples indicate that the inversion algorithm is accurate, fast and easy
to implement.

1. Introduction It is well-known that European option prices under
the Black-Scholes model (BSM) can be computed directly via the celebrated
Black-Scholes formula. However, closed-form solutions for European option
prices are usually unavailable in more sophisticated asset pricing models.
Carr and Madan [9] applied the fast Fourier transform (FFT) method to
value European options under a wide range of models. Specifically, if the
characteristic function of the asset return is known analytically, one can
derive a closed-form, one-dimensional Fourier transform for the European
option value with respect to (w.r.t.) the logarithm of the strike price. Then
the FFT can be used to invert this one-dimensional Fourier transform to
produce a numerical European option price. For more related literature, we
refer to Carr and Madan [9, 10] and references therein.

However, as pointed out in [10], the plain FFT breaks down for deep
out of the money options and even generates negative values. This prob-
lem becomes more serious for model calibration which requires us to value
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European options for a wide spectrum of strikes repeatedly. Indeed, even
in the cases when Carr and Madan’s FFT breaks down, its accuracy can
be improved by making different choices of the algorithm parameters. For
example, Lee [21] studied how to improve the accuracy of one-dimensional
Fourier transform method by conducting an error analysis. Alternatively, in
the framework of Euler inversion algorithms, Cai et al. [7] generalized the
elegant Euler inversion algorithm for one-sided Laplace transforms (Abate
and Whitt [1]) to the two-sided case, and the computable error bounds of
the resulting algorithm enable us to select the parameters suitably to achieve
desired accuracy.

It is worth noting that these inversion algorithms are focused on one-
dimensional transforms, which are available in closed form for European
options in a wide range of models. Nonetheless, for many exotic options
even under simple models, there exist only closed-form solutions to two-
dimensional (two-sided) Laplace transforms rather than one-dimensional
(one-sided) ones; e.g., barrier options and step options under the double-
and mixed-exponential jump diffusion models, and spread options under
the variance gamma model and even under the BSM.

In this paper, we propose an inversion algorithm with computable error
bounds for two-dimensional, two-sided Laplace transforms. Although an im-
portant motivation of ours is to price exotic options in financial engineering,
the developed algorithm is much more widely applicable and can be poten-
tially used to compute quantities of interest in general contexts with known
two-dimensional Laplace transforms, e.g., the time-dependent probability
distributions in queueing models (see Choudhury et al. [11]), the operational
solutions of fractional diffusion equations (see Valkó and Abate [26]), and
the first passage time distributions for spectrally one-sided Lévy processes
(see Rogers [24]). The algorithm has three appealing features.

(i) The Laplace inversion formula is very simple to implement (see (5)),
involving four parameters—two discretization parameters C1 and C2

and two truncation parameters N1 and N2.
(ii) Both discretization and truncation errors have explicit expressions. As

a result, under mild conditions we can derive computable bounds for
both errors in terms of parameters C1, C2, N1 and N2. By choosing
these parameters appropriately based on computable error bounds, the
algorithm can achieve any desired accuracy, and therefore is especially
useful to provide benchmarks.

(iii) In many cases, the discretization error bound decays exponentially,
while the truncation error bound decays exponentially or in a power
law, leading to fast computation.
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Our algorithm essentially extends the one-dimensional, two-sided Laplace
inversion algorithm in [7] to the two-dimensional case. Another key difference
between these two papers is that we provide a unified approach to finding the
discretization error bounds based on the “known” Laplace transforms rather
than the “unknown” original functions; see Section 3.2.1 and Proposition 3.2.
This technique can also be applied to the one-dimensional case.

Our algorithm can also be viewed as an extension of the multidimensional,
one-sided Euler inversion algorithm in [11] to the two-sided case. Petrella
[23] proposed a similar algorithm with a scaling factor but without rigorous
justification. As pointed out in [7], Petrella’s method imposed a constraint
on the scaling parameter, which may cause large errors even in the one-
dimensional case; see Section 4.3 in [7]. Furthermore, Petrella did not analyze
the truncation errors. Lee [21] conducted an elegant error analysis for the
one-dimensional Fourier transform method. By contrast, our paper deals
with the so-called Euler inversion algorithm in the two-dimensional case,
where the inversion formula and hence the expressions of discretization and
truncation errors are different. Therefore, the error analysis especially for
discretization errors is also different.

In fact, our algorithm essentially belongs to the category of Euler inversion
algorithms which have enjoyed great popularity in the areas of operations
research and applied probability (see, e.g., [1, 11, 23, 7]). Motivated by
applications in financial engineering, e.g., path-dependent option pricing, we
extend the existing Euler inversion algorithms to the two-dimensional, two-
sided case. An attractive feature of our algorithm is that in many cases, we
can derive computable bounds for both discretization and truncation errors
(please see Sections 5–7). As a result, the numerical outputs of our algorithm
consist of not only the inversion result but also the two error bounds (please
see the numerical results in Section 8). These error bounds can tell us how
accurate our inversion results are. This is useful especially in the absence
of reliable benchmarks. Furthermore, by choosing the algorithm parameters
appropriately based on the computable error bounds, we can achieve any
desired accuracy. Therefore, our algorithm is particularly useful to provide
benchmarks.

Besides Fourier and Laplace transforms, other transform-based methods
applied in financial engineering include the Hilbert transform in Feng and
Linetsky [13, 14], the sinc expansion in Feng and Lin [12], and the fast Gaus-
sian transform in Broadie and Yamamoto [2], to name just a few. These algo-
rithms serve different purposes. For example, the Hilbert transform method
is a powerful instrument to calculate expectations involving indicator func-
tions. The sinc expansion approach along with the Hilbert transform is very
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Fig 1. Divide the plane into four disjoint regions w.r.t. ~M = (M1,M2).

accurate, efficient, and robust in evaluating the cumulative distribution func-
tion (cdf) of the asset return and in pricing European options under expo-
nential Lévy models. The fast Gaussian transform algorithm is extremely
fast and especially useful when pricing discrete barrier and lookback options
under models with Gaussian or mixed-Gaussian returns.

The remainder of this paper is organized as follows. Section 2 presents
the two-dimensional, two-sided Laplace inversion formula. We investigate
the bounds for discretization and truncation errors in Sections 3 and 4,
respectively. The financial applications of our inversion algorithm are dis-
cussed in Sections 5–7, and numerical results are given in Section 8. All the
proofs are deferred to the appendices.

2. The main result Before presenting our main result, we introduce
several notations used throughout the paper. ~x denotes a two-dimensional
row vector (x1, x2) ∈ R

2 or C
2. For any ~x and ~y, their inner product and

Hadamard product are expressed by “·” and “◦”, respectively, i.e.,

~x · ~y := x1y1 + x2y2 and ~x ◦ ~y := (x1y1, x2y2).

For ease of exposition, we divide the plane R2 into the following four disjoint
regions w.r.t. ~M = (M1,M2); see Figure 1 for an illustration.

D
~M
0 = {~t : |t1| ≤ M1, |t2| ≤ M2}, D

~M
1 = {~t : |t1| > M1, |t2| ≤ M2},

D
~M
2 = {~t : |t1| ≤ M1, |t2| > M2}, D

~M
3 = {~t : |t1| > M1, |t2| > M2}.
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2.1. Two-dimensional, two-sided Laplace transforms Consider a function

f(~t) defined for ~t ≡ (t1, t2) ∈ R
2. Its two-sided Laplace transform or bilateral

Laplace transform Lf (~s) is defined as

(1) Lf (~s) :=

∫ +∞

−∞

∫ +∞

−∞
e−~s·~tf(~t)dt1dt2

for complex vector ~s ≡ ~v + i~ω ∈ C
2, where ~v ≡ ℜ(~s) and ~ω ≡ ℑ(~s) are

real and imaginary parts of ~s, respectively. We define the region of absolute
convergence (ROAC) of the two-sided Laplace transform to be the interior
of the following set

(2)

{

~s ∈ C
2 :

∫ +∞

−∞

∫ +∞

−∞
|e−ℜ(~s)·~tf(~t)|dt1dt2 < +∞

}

.

It is easy to see that Lf (~s) in (1) is well defined for any ~s ∈ROAC.
Note that the ROAC does not depend upon ℑ(~s). Therefore, we can sim-

ply use the range of ℜ(~s) to represent the ROAC throughout the paper.
We point out that both two-dimensional, one-sided Laplace transforms

and two-dimensional Fourier transforms are special cases of two-dimensional,
two-sided Laplace transforms. Indeed, if f(~t) = 0 for any ~t 6∈ [0,+∞) ×
[0,+∞), then its two-sided Laplace transform is reduced to the one-sided
one

Lf (~s) =

∫ +∞

0

∫ +∞

0
e−~s·~tf(~t)dt1dt2, for ℜ(~s) ∈ ROAC.

If we confine our attention to Lf (~s) only for ~s with ℜ(~s) = 0, this results in
the Fourier transform Ff (~ω) of the function f(~t)

Ff (~ω) :=

∫ ∞

−∞

∫ ∞

−∞
e−i~ω·~tf(~t)dt1dt2 ≡ Lf (i~ω), for any ~ω ∈ R

2.

It is worth noting that the ROACs of certain two-sided Laplace transforms
may not include the imaginary axis. Thus the corresponding Fourier trans-
forms might not be well defined.

2.2. The two-dimensional, two-sided Laplace inversion formula Under
mild conditions, we shall derive a two-dimensional, two-sided Laplace inver-
sion formula that involves the parameters ~C = (C1, C2) and ~N = (N1, N2)
for the purpose of controlling discretization and truncation errors, respec-
tively.
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Assumption 2.1. The function f(~t) is continuous on R
2, and for any

fixed ~v ∈ ROAC of Lf (·), the function g(~t) := e−~v·~tf(~t) has the following
upper bound:

(3) |g(~t)| ≤ κe−c1|t1|−c2|t2|,

where κ, c1, and c2 are positive constants independent of ~t.

Assumption 2.2. For any fixed ~v ∈ ROAC, there exists a constant α > 1
such that

(i) for any fixed ω2, |Lf (~v + i~ω)| = O(|ω1|−α) as |ω1| → +∞;
(ii) for any fixed ω1, |Lf (~v + i~ω)| = O(|ω2|−α) as |ω2| → +∞; and
(iii) |Lf (~v + i~ω)| = O(|ω1ω2|−α) as |ω1|, |ω2| → +∞.

Theorem 2.3. Consider a function f(~t) satisfying Assumption 2.1 and
2.2. Then for any ~v ∈ ROAC, ~t ∈ R

2, ~C ≥ 0, and ~N ∈ N
2 such that

(|t1|+ C1)(|t2|+ C2) 6= 0, we have

(4) f(~t) = fA(~t, ~v, ~C, ~N) + eT (~t, ~v, ~C, ~N)− eD(~t, ~v, ~C).

(I) fA(~t, ~v, ~C, ~N) is an approximation to f(~t) and is given by

fA(~t, ~v, ~C, ~N) =
e~v·~t

4(|t1|+ C1)(|t2|+ C2)

(5)

×
∑

~k∈Z2∩D ~N
0

(−1)k1+k2ℜ
(

e−i(~a◦~k◦ ~C)·sgn(~t)Lf (~v + i~a ◦ ~k)
)

,

where sgn(x) equals 1 if x ≥ 0 and −1 otherwise, sgn(~t) := (sgn(t1), sgn(t2)),
and aj =

π
tj+Cjsgn(tj )

for j = 1, 2.

(II) eT (~t, ~v, ~C, ~N) and eD(~t, ~v, ~C) denote the truncation error and the dis-
cretization error of the approximation fA(~t, ~v, ~C, ~N ) to f(~t), respectively.

eT (~t, ~v, ~C, ~N ) =
e~v·~t

4(|t1|+ C1)(|t2|+ C2)

(6)

×
∑

~k∈Z2\D ~N
0

(−1)k1+k2ℜ
(

e−i(~a◦~k◦ ~C)·sgn(~t)Lf (~v + i~a ◦ ~k)
)

,

eD(~t, ~v, ~C) =
∑

~k∈Z2\{~0}

e−2(~v◦~k)·(~t+ ~C◦sgn(~t))f(~t+ 2~k ◦ (~t+ ~C ◦ sgn(~t ))).(7)
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Proof. See Appendix A.

Remark 2.1. Assumption 2.1 and 2.2 are sufficient but not necessary
for the inversion formula (4) to hold. Indeed, they are used to justify a two-
dimensional Poisson summation formula in the proof. Other conditions that
can validate the Poisson summation formula will also lead to (4). We adopt
Assumption 2.1 and 2.2 mainly because they are mild and easy to check in
many financial applications.

Remark 2.2. The inversion algorithm is easy to implement in that the
inversion formula (5) is very simple. Furthermore, both discretization and
truncation errors have closed-form expressions which facilitate respective
error controls. As one shall see later, we can usually control them to achieve
any desired accuracy by choosing sufficiently large discretization parameter
~C and truncation parameter ~N .

3. Discretization errors

3.1. Necessity of introducing the discretization parameter ~C First of all,
we point out that to invert the two-sided Laplace transforms, the introduc-
tion of the discretization parameter ~C is necessary. Without introducing ~C
(i.e., if ~C = ~0), the discretization error can be quite large no matter what
~v ∈ ROAC is selected; see the example below.

Consider evaluating the two-dimensional standard normal probability den-
sity function (pdf) f(~t) = 1

2πe
− 1

2
(t21+t22) at the point ~t∗ = (14 ,

1
4) by inverting

its Laplace transform Lf (~s) = e
1
2
(s21+s22) via the two-dimensional, two-sided

Laplace inversion algorithm. If ~C = ~0, simple algebra yields that the dis-
cretization error satisfies

eD(~t
∗, ~v,~0) ≥



























f(−1
4 ,−1

4)e
1
2
(v1+v2) ≥ f(−1

4 ,−1
4) > 0.14, if v1 ≥ 0, v2 ≥ 0;

f(34 ,−1
4)e

1
2
(−v1+v2) ≥ f(34 ,−1

4 ) > 0.11, if v1 < 0, v2 ≥ 0;

f(−1
4 ,

3
4)e

1
2
(v1−v2) ≥ f(−1

4 ,
3
4 ) > 0.11, if v1 ≥ 0, v2 < 0;

f(34 ,
3
4 )e

1
2
(−v1−v2) ≥ f(34 ,

3
4) > 0.09, if v1 < 0, v2 < 0.

In other words, no matter what ~v ∈ R
2 ≡ ROAC is chosen, the inversion

algorithm without the introduction of ~C always leads to a large discretiza-
tion error (>0.09). See Figure 2 for an illustration. When ~C = ~0 and ~v
varies in the rectangle [−1, 1]× [−1, 1], the absolute errors between the true
value and the inversion results are no less than 3.6175. However, when ~C in-
creases to (1.5, 1) and then to (2.5, 3), the maximum absolute errors decrease
dramatically to 0.2022 and 3.9399 × 10−5, respectively.
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via the two-dimensional, two-sided Laplace inversion algorithm with ~N =

(200, 200) and ~C = (0, 0), (1.5, 1), and (2.5, 3). When ~C = (0, 0), the minimum absolute
error is 3.6175. When ~C increases to (1.5, 1) and (2.5, 3), the maximum absolute errors
decrease to 0.2022 and 3.9399 × 10−5, respectively.

3.2. Exponential decay of discretization errors Introducing the discretiza-

tion parameter ~C is not only necessary but can also make the discretization
error achieve an exponential decay, leading to a fast computation for the in-
version algorithm. When implementing the numerical inversion in practice,
we usually first choose a closed rectangle

[l∗1, u
∗
1]× [l∗2, u

∗
2] ⊂ ROAC.

Without loss of generality, l∗j and u∗j for j = 1, 2 are assumed to be nonzero.
The following theorem shows that for any ~v ∈ (l∗1, u

∗
1) × (l∗2, u

∗
2), the dis-

cretization error decays exponentially as ~C increases.

Theorem 3.1. If there exists a function δ(·) such that for any ~y ∈
[l∗1, u

∗
1]× [l∗2, u

∗
2],

e−~y·~t|f(~t)| ≤ δ(~y) < +∞, for any ~t ∈ R
2,(8)

then for any ~v ∈ (l∗1, u
∗
1) × (l∗2, u

∗
2),

~C ∈ R
2
+ and ~t ∈ R

2, the discretization
error has the following bound

(9) |eD(~t, ~v, ~C)| ≤ ρ(~v,~t)

(e2d1C1 − 1)(e2d2C2 − 1)
+

ρ1(v1, t1)

e2d1C1 − 1
+

ρ2(v2, t2)

e2d2C2 − 1
,
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where dj = min{vj − l∗j , u
∗
j − vj} for j=1,2,

ρ1(v1, t1) = δ(l∗1 , l
∗
2)e

l∗1t1−2(v1−l∗1)|t1| + δ(u∗1, l
∗
2)e

u∗
1t1−2(u∗

1−v1)|t1|,

ρ2(v2, t2) = δ(l∗1 , l
∗
2)e

l∗2t2−2(v2−l∗2)|t2| + δ(l∗1 , u
∗
2)e

u∗
2t2−2(u∗

2−v2)|t2|,

and

ρ(~v,~t) = δ(l∗1 , l
∗
2) exp

{

l∗1t1 − 2(v1 − l∗1)|t1|+ l∗2t2 − 2(v2 − l∗2)|t2|
}

+ δ(u∗1, l
∗
2) exp

{

u∗1t1 − 2(u∗1 − v1)|t1|+ l∗2t2 − 2(v2 − l∗2)|t2|
}

+ δ(u∗1, u
∗
2) exp

{

u∗1t1 − 2(u∗1 − v1)|t1|+ u∗2t2 − 2(u∗2 − v2)|t2|
}

+ δ(l∗1 , u
∗
2) exp

{

l∗1t1 − 2(v1 − l∗1)|t1|+ u∗2t2 − 2(u∗2 − v2)|t2|
}

.

Moreover, it follows that limC1,C2→+∞ eD(~t, ~v, ~C) = 0.

Proof. See Appendix B.

Remark 3.1. As interpreted in Section 3.2.1 and illustrated in Sec-
tions 5–7, in many cases δ(~y) in (8) can be specified explicitly. As a result,
the upper bound (9) of the discretization error is computable, and hence we
can control the discretization error simply by choosing sufficiently large C1

and C2.

The choice of [l∗1, u
∗
1]× [l∗2, u

∗
2] affects the selection of ~C and ~N in a com-

plicated way. Indeed, from (9), we can see that it affects the selection of ~C
through ρ(~v,~t), ρ1(v1, t1), ρ2(v2, t2) (where the values of the function δ(~y)
at the four corner points of [l∗1, u

∗
1]× [l∗2, u

∗
2] are involved) and dj for j = 1, 2.

However, δ(~y) is specified case by case and could be selected in different
ways even in the same case. Therefore, the effect of [l∗1, u

∗
1] × [l∗2, u

∗
2] on the

selection of ~C also depends on the selection of δ(~y) and might need to be
analyzed case by case. Besides, since [l∗1, u

∗
1]× [l∗2, u

∗
2] affects the selection of

~C, (14) and (16) imply that [l∗1, u
∗
1] × [l∗2, u

∗
2] also affects the selection of ~N

through ζj(~v, kjbjsgn(tj)) for j = 1, 2 (here bj :=
π

|tj |+Cj
) as well as through

b−α1
1 , b−α2

2 , b−α3
1 and b−α4

2 in the case of (14) or through bξ11 , bξ22 , bξ31 and

bξ42 in the case of (16). Nonetheless, the functions ζj(~v, ωj) and the values
of αj and ξj are different if the quantities to compute and/or the models

are different. Accordingly, the effect of [l∗1, u
∗
1]× [l∗2, u

∗
2] on the selection of ~N

might also need to be analyzed case by case.
However, it is worth pointing out that although the choice of [l∗1, u

∗
1] ×

[l∗2, u
∗
2] affects the selection of ~C and ~N , as long as it is selected from the
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ROAC, we can always use the discretization and truncation error bounds to
achieve the desired accuracy by choosing sufficiently large ~C and ~N . More-
over, numerical examples suggest that the resulting algorithms are accurate
and fast.

3.2.1. Specification of the function δ(~y) To guarantee that Theorem 3.1
holds, we need to specify the function δ(~y) in (8). However, since this depends
on the information about the unknown original function f(~t), it does not
seem easy. Sometimes we can specify δ(~y) based on probability meanings of
the unknown function f(~t) in financial applications. This is exactly what is
used in Cai et al. [7] in the one-dimensional case. Nonetheless, this problem
seems challenging in general cases.

To overcome this difficulty, in Proposition 3.2 we propose a general ap-
proach to specifying δ(~y) based on the known Laplace transform Lf (~y+ i~ω)
of f(~t) rather than the unknown function f(~t).

Proposition 3.2. If for any ~y ∈ [l∗1, u
∗
1] × [l∗2, u

∗
2], the function δ(~y)

satisfies

(10)

∫ +∞

−∞

∫ +∞

−∞
|Lf (~y + i~ω)|dω1dω2 ≤ 4π2δ(~y),

then it also satisfies (8).

Proof. See Appendix B.

According to Proposition 3.2, as long as we can find a function δ(~y) that
satisfies (10), then it also satisfies (8). Since Lf (~y + i~ω) is assumed to be
given in closed form, it is usually easy to explicitly specify δ(~y) that satisfies
(10) and hence (8). Indeed, if we can show that Lf (~y + i~ω) satisfies certain
asymptotic conditions (13) or (15) and moreover, if we can find L(~y), L1(~y)
and L2(~y) satisfying (these two conditions are satisfied in many applications;
see Sections 5–7)

sup
|ω1|<M1,|ω2|<M2

|Lf (~y + i~ω)| ≤ L(~y), sup
|ω1|≤M1

|ζ1(~y, ω1)| ≤ L1(~y), and(11)

sup
|ω2|≤M2

|ζ2(~y, ω2)| ≤ L2(~y),

for any ~y ∈ ROAC, then some simple algebra yields that for any ~y ∈ ROAC,

∫ +∞

−∞

∫ +∞

−∞
|Lf (~y + i~ω)|dω1dω2 ≤ 4U(~y),
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where U(~y) is defined as
(12)

U(~y) =































































































M1M2L(~y) +
M1M

α2−1
2 L1(~y)

α2 − 1
+

Mα1−1
1 M2L2(~y)

α1 − 1

+ ζ(~y)
Mα3−1

1

α3 − 1

Mα4−1
2

α4 − 1
, if (13) holds;

M1M2L(~y) +M1L1(~y)
ρ
(α2−1)/ξ2
2

ξ2
Γ

(

1− α2

ξ2
, ρ2M

ξ2
2

)

+M2L2(~y)
ρ
(α1−1)/ξ1
1

ξ1
Γ

(

1− α1

ξ1
, ρ1M

ξ1
1

)

+ ζ(~y)
ρ
(α3−1)/ξ3
3

ξ3
· ρ

(α4−1)/ξ4
4

ξ4
Γ

(

1− α3

ξ3
, ρ3M

ξ3
3

)

× Γ

(

1− α4

ξ4
, ρ4M

ξ4
4

)

, if (15) holds.

Then applying Proposition 3.2, we can specify δ(~y) := π2U(~y), which satis-
fies (8).

As a by-product of Proposition 3.2, we have the following proposition to
verify the condition (3) in Assumption 2.1.

Proposition 3.3. If there exists a function δ(~v) that satisfies (8) for
any ~v in ROAC of Lf (~s), then there exist κ, c1 and c2 such that (3) holds.

Proof. See Appendix B.

4. Truncation errors In addition to the discretization error eD(~t, ~v, ~C),
our inversion formula (4) has another error source—the truncation error
eT (~t, ~v, ~C, ~N ). In Theorem 4.1, we derive truncation error bounds when the
Laplace transform satisfies certain asymptotic conditions. It turns out that
in many applications, these asymptotic conditions are satisfied and the in-
volved parameters can be specified explicitly; see Sections 5–7. This then
leads to computable truncation error bounds, based on which we can con-
trol the truncation error simply by choosing sufficiently large N1 and N2.

Theorem 4.1. For any fixed ~t ∈ R
2, ~v ∈ ROAC and ~C ≥ 0 such that

|tj |+ Cj > 0 for j = 1, 2,

(i) if there exist αp > 1 for p = 1, . . . , 4, ~M ≥ 0, and positive functions ζ(~v)
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and ζj(~v, ωj) for j = 1, 2 such that

(13) |Lf (~v + i~ω)| ≤















ζ2(~v, ω2)|ω1|−α1 , for all ~ω ∈ D
~M
1 ;

ζ1(~v, ω1)|ω2|−α2 , for all ~ω ∈ D
~M
2 ;

ζ(~v)|ω1|−α3 |ω2|−α4 , for all ~ω ∈ D
~M
3 ,

then the truncation error

|eT (~t, ~v, ~C, ~N )| ≤ e~v·~t

2(|t1|+ C1)(|t2|+ C2)

[

B1( ~N ) +B2( ~N ) +B3( ~N)
]

(14)

for any ~N ∈ N
2 such that Nj >

Mj

bj
− 1 with bj := |aj| ≡ π

|tj |+Cj
> 0 for

j = 1, 2, where

B1( ~N) =
b−α1
1

α1 − 1
N1−α1

1

N2
∑

k2=−N2

ζ2(~v, k2b2sgn(t2))

= O
(

N1−α1
1

)

, for any fixed N2,

B2( ~N) =
b−α2
2

α2 − 1
N1−α2

2

N1
∑

k1=−N1

ζ1(~v, k1b1sgn(t1))

= O
(

N1−α2
2

)

, for any fixed N1,

B3( ~N) = 2ζ(~v)
b−α3
1

α3 − 1

b−α4
2

α4 − 1
N1−α3

1 N1−α4
2 = O

(

N1−α3
1 N1−α4

2

)

;

(ii) if there exist ρp > 0, ξp > 0, αp ∈ R for p = 1, . . . , 4, ~M ≥ 0, and
positive-valued functions ζ(~v) and ζj(~v, ωj) for j = 1, 2 such that
(15)

|Lf (~v + i~ω)| ≤















ζ2(~v, ω2)|ω1|−α1e−ρ1|ω1|ξ1 , for all ~ω ∈ D
~M
1 ;

ζ1(~v, ω1)|ω2|−α2e−ρ2|ω2|ξ2 , for all ~ω ∈ D
~M
2 ;

ζ(~v)|ω1|−α3 |ω2|−α4e−ρ3|ω1|ξ3−ρ4|ω2|ξ4 , for all ~ω ∈ D
~M
3 ,

then the truncation error

|eT (~t, ~v, ~C, ~N )| ≤ e~v·~t

2(|t1|+ C1)(|t2|+ C2)

[

B1( ~N ) +B2( ~N ) +B3( ~N)
]

(16)

for any ~N ∈ N
2 such that for j = 1, 2,

Nj > max
{Mj

bj
,
1

bj

(max{−αj , 0}
ξjρj

)
1
ξj ,

1

bj+2

(max{−αj+2, 0}
ξj+2ρj+2

)
1

ξj+2

}

,
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where

B1( ~N) =
ρ

α1−1
ξ1

1

b1ξ1
Γ

(

1− α1

ξ1
, ρ1b

ξ1
1 N ξ1

1

) N2
∑

k2=−N2

ζ2(~v, k2b2sgn(t2))

= O
(

N1−α1−ξ1
1 e−ρ1b

ξ1
1 N

ξ1
1

)

, for fixed N2,

B2( ~N) =
ρ

α2−1
ξ2

2

b2ξ2
Γ

(

1− α2

ξ2
, ρ2b

ξ2
2 N ξ2

2

) N1
∑

k1=−N1

ζ1(~v, k1b1sgn(t1))

= O
(

N1−α2−ξ2
2 e−ρ2b

ξ2
2 N

ξ2
2

)

, for fixed N1,

B3( ~N) = 2
ρ

α3−1
ξ3

3

b1ξ3

ρ
α4−1
ξ4

4

b2ξ4
ζ(~v)Γ

(

1− α3

ξ3
, ρ3b

ξ3
1 N ξ3

1

)

Γ

(

1− α4

ξ4
, ρ4b

ξ4
2 N ξ4

2

)

}

= O
(

N1−α3−ξ3
1 N1−α4−ξ4

2 e−ρ3b
ξ3
1 N

ξ3
1 −ρ4b

ξ4
2 N

ξ4
2

)

.

Here, for any s ∈ R and x > 0, Γ(s, x) :=
∫ +∞
x ys−1e−ydy. When s > 0,

Γ(s, x) denotes the upper incomplete gamma function.

Proof. See Appendix C.

Since in many cases, both discretization error bounds in Theorem 3.1
and truncation error bounds in Theorem 4.1 can be computed explicitly,
we can control these two errors to achieve any desired accuracy, say 10−n

with n ∈ N, by selecting the discretization parameter ~C and the truncation
parameter ~N in the following two steps.

• Step 1. Based on Theorem 3.1, select sufficiently large ~C = (C1, C2)
such that the discretization error is no greater than 0.5× 10−n;

• Step 2. For fixed ~C chosen in Step 1, based on Theorem 4.1, select
sufficiently large ~N = (N1, N2) such that the truncation error is no
greater than 0.5 × 10−n.

5. Application I: Spread options The spread option, whose payoff
depends on the difference between two market variables, has been traded
actively in various financial markets, including the equity derivatives mar-
ket (index spread options), the commodity market (crack spread and crush
spread options), and the energy market (spark spread options). However,
no closed-form solutions are available for the spread option prices even un-
der the BSM. But their two-dimensional Laplace transforms have explicit
expressions under quite general models (Hurd and Zhou [17]). This section
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Table 1

Connections among some Laplace transforms. Here LSpr(~s) is derived based on Hurd and
Zhou [17] and B(x, y) denotes the beta function for x and y with ℜ(x) > 0 and ℜ(y) > 0

Original functions Laplace transforms ROACs

The joint pdf f(·) Lf (~s) ROAC of Lf (~s)

The joint cdf F (·) LF (~s) =
1

s1s2
Lf (~s) R

2
+∩ ROAC of Lf (~s)

Spread option price Spr(·) LSpr(~s) {~v : v2 < 0, v1 + v2 > 1}∩

= e−rTK
B(−s2,s1+s2−1)

s1(s1−1)
Lf (−~s) ROAC of Lf (−~s)

demonstrates that our two-dimensional, two-sided Laplace inversion algo-
rithm can generate highly accurate numerical prices for spread options very
fast as well as provide the related error bounds.

5.1. Laplace transforms The payoff function of the spread option is typ-
ically defined as (S1(T )−S2(T )−K)+, where K > 0 is the strike price, T is
the maturity, and

Sj(t) = exj(0)+Xj(t) for j = 1, 2,

are prices of two correlated assets with respective return processes {Xj(t)}
and initial prices exj(0). Assume ESj(T ) < +∞ for j = 1, 2, and that
the two-dimensional, two-sided Laplace transform of the joint pdf f(~u) of
~X(T ) := (X1(T ),X2(T )) for ~u ∈ R

2 is given by

Lf (~s) :=

∫ +∞

−∞

∫ +∞

−∞
e−~s·~uf(~u)du1du2(17)

≡ E
(

e−~s· ~X(T )
)

, for any ~v := ℜ(~s) ∈ ROAC of Lf .

Then Table 1 provides the two-dimensional Laplace transform of its joint
cdf as well as that of the following spread option price w.r.t. ~u := (x1(0) −
logK,x2(0) − logK) under the given risk neutral measure P

Spr(~u) := e−rTE
[

(S1(T )− S2(T )−K)+
]

(18)

= e−rTKE

[

(

eu1+X1(T ) − eu2+X2(T ) − 1
)+

]

.

The following proposition shows that under mild conditions our inversion
formula (4) applies to evaluate the spread option prices and the joint cdf of
the asset returns.

Proposition 5.1. (i) If ESj(T ) < +∞ for j = 1, 2, ~X(T ) ≡ (X1(T ),
X2(T )) has a continuous distribution under the risk neutral measure P, and
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Table 2

Specification of δ(~y) for computing the discretization error bounds

δ(~y) in (8)

The joint cdf F (·) 1
π2y1y2

U(~y)

Spread option price Spr(·) e−rT KB(−y2,y1+y2−1)

π2y1(y1−1)
U(−~y)

~0 belongs to the ROAC of Lf (~s), then both F (~u) and Spr(~u) satisfy Assump-
tion 2.1;
(ii) If Lf (~s) satisfies either (13) except that αp > 0, p = 1, . . . , 4, or (15),
then LF (~s) satisfies Assumption 2.2. If Lf (−~s) satisfies either (13) except
that α1 > −1 and α3 > −1, or (15), then LSpr(~s) satisfies Assumption 2.2.

Proof. See Appendix D.

5.2. Discretization errors To compute the discretization error bound in
(9), it is required to specify the function δ(~y) in (8) explicitly. As interpreted
in Section 3.2.1, if for any fixed ~y ∈ ROAC, we can show Lf (~y+ i~ω) satisfies
(13) or (15) and moreover, if we can find L(~y), L1(~y) and L2(~y) satisfying
(11) (it is usually easy to find them because Lf (~y + i~ω) is assumed to have
a closed-form expression; see Section 5.4), then applying Proposition 3.2
and according to Table 1, we can specify respective δ(~y) for F (·) and Spr(·)
immediately; see Table 2, where U(~y) is defined in (12).

5.3. Truncation errors To compute the truncation error bound in (14)
or (16), we need to specify the parameters in (13) or (15). Indeed, if Lf (~s)
satisfies (13) or (15) with known parameters, LF (~s) and LSpr(~s) also have
similar asymptotic behaviors and related parameters can be easily obtained
in Table 3. For instance, note that

|LSpr(~s)| = e−rTK

∣

∣

∣

∣

B(−s2, s1 + s2 − 1)

s1(s1 − 1)
Lf (−~s)

∣

∣

∣

∣

≤ e−rTKB(−v2, v1 + v2 − 1)
1

|ω1|2
|Lf (−~s)|

Hence, if Lf (~s) satisfies (13) with parameters M1, M2, α1, α2, α3 and α4,
then LSpr(~s) also satisfies (13) with parameters M1, M2, α1 + 2, α2, α3 + 2
and α4.

5.4. Two examples The BSM. Consider a two-dimensional BSM with
risk-free interest rate r, volatilities σ1, σ2, dividends q1, q2, and correlation
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Table 3

Connections among the parameters in (13) and (15) for computing the truncation error
bounds. Here j = 1, 2 and p = 1, . . . , 4

Laplace Parameters Parameters
transforms in (13) in (15)

The joint pdf f(·) Lf (~s) Mj , αp Mj , αp, ρp, ξp
The joint cdf F (·) LF (~s) Mj , αp + 1 Mj , αp + 1, ρp, ξp

Spread option Spr(·) LSpr(−~s) Mj , αp + 2× 1{p is odd} Mj , αp + 2× 1{p is odd},

ρp, ξp

ρ ∈ (−1, 1). The asset returns X1(T ) and X2(T ) have a joint normal distri-
bution and the Laplace transform of its joint pdf f(~u) is given by

Lf (~s) = exp

{

−s1

(

r − q1 −
σ2
1

2

)

T − s2

(

r − q2 −
σ2
2

2

)

T(19)

+
(s21σ

2
1 + s22σ

2
2)T

2
+ s1s2σ1σ2ρT

}

for ℜ(~s) ∈ R
2. Then the Laplace transforms of the joint cdf of X1(T ) and

X2(T ) and the spread option price can be obtained immediately from Ta-
ble 1. According to Proposition 5.1 and the following Proposition 5.2, our
inversion formula (4) can be used to evaluate them by inverting their trans-
forms.

The truncation error bounds related to the computation of the joint cdf
and the spread option price can be derived by Theorem 4.1 with the param-
eters given in the following proposition.

Proposition 5.2. The two-sided Laplace transform Lf (~s) under the
two-dimensional BSM satisfies (15) with the parameters M1 = M2 = 0,
αp = 0, ξp = 2, ρp = (1− |ρ|)T/2 for p = 1, . . . , 4,

ζ(~v) = exp

{

T ×
[

−v1

(

r − q1 −
σ2
1

2

)

− v2

(

r − q2 −
σ2
2

2

)

+
1

2
v21σ

2
1

+
1

2
v22σ

2
2 + v1v2σ1σ2ρ

]}

, and

ζj(~v, ωj) = ζ(~v) exp

{

−T (1− |ρ|)
2

ω2
j

}

, for j = 1, 2.

The Laplace transforms LF (~s) and LSpr(~s) also satisfy (15) with the param-
eters given by Table 3.
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Proof. The proof follows immediately by noting that

|Lf (~s)| = ζ(~v) exp

{

(−T )×
(

1

2
σ2
1ω

2
1 +

1

2
σ2
2ω

2
2 + ω1ω2σ1σ2ρ

)}

≤ ζ(~v) exp

{

−T (1− |ρ|)
2

(~ω · ~ω)
}

.

The discretization error bounds related to the computation of the joint
cdf and the spread option price can be obtained by Theorem 3.1 and Table 2,
where U(~y) = π

2T (1−|ρ|)ζ(~y) can be found easily because M1 = M2 = 0.

The Variance Gamma (VG) Model. Under the two-dimensional VG
Model, the Laplace transform of the joint pdf f(~u) of the asset returns
X1(T ) and X2(T ) has the following closed-form expression (see [17])

Lf (~s) =

[

1−
(

1

a−
− 1

a+

)

(s1 + s2)−
(s1 + s2)

2

a−a+

]−αλT

(20)

×
2
∏

j=1

[

1−
(

1

a−
− 1

a+

)

sj −
s2j

a−a+

]−(1−α)λT

for ~v ≡ ℜ(~s) ∈ {~v ∈ R
2 : vj ∈ (−a+, a−), j = 1, 2, and v1+v2 ∈ (−a+, a−)},

where 0 < α < 1, a− > 0, a+ > 1 and λ > 0.
Like the BSM, from Table 1 we can obtain the Laplace transforms of

the joint cdf of X1(T ) and X2(T ) and the spread option price immediately.
Proposition 5.1 and the following Proposition 5.3 indicate that our inversion
formula (4) can be applied to evaluate them by inverting their transforms.
Furthermore, the truncation error bounds for the joint cdf of X1(T ) and
X2(T ) and the spread option price can also be derived by Theorem 4.1 with
the parameters given in Proposition 5.3.

Proposition 5.3. The two-sided Laplace transform Lf (~s) under the
two-dimensional VG model satisfies (13) with the parameters αp = 2(1 −
α)λT for p = 1, . . . , 4, Mj = max{a+ + vj, a− − vj} for j = 1, 2,

ζ(~v) = (a−a+)
2(1−α)λT

[

1−
(

1

a−
− 1

a+

)

(v1 + v2)−
(v1 + v2)

2

a−a+

]−αλT

, and

(21)

ζj(~v, ωj) = ζ(~v)
(

max
{

(a− − vj) · (a+ + vj), |ωj |2
})−(1−α)λT

, for j = 1, 2.

The Laplace transforms LF (~s) and LSpr(~s) also satisfy (13) with the param-
eters given by Table 3.
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Proof. See Appendix D.

Besides, the discretization error bounds for the joint cdf and the spread
option price can be obtained by Theorem 3.1 and Table 2, where we can
simply select L(~y) = Lf (~y), L1(~y) = |Lf (y1, y2+iM2)|, and L2(~y) = |Lf (y1+
iM1, y2)|.

6. Application II: Barrier options The pricing of barrier options
relies heavily upon the joint distribution of the terminal asset return and
the first passage time. Accordingly, analytical solutions are usually unavail-
able under general asset pricing models. Under the double-exponential jump
diffusion model (DEM, see Kou [18]), Kou et al. [20] derived a closed-form
two-dimensional Laplace transform for the barrier option price w.r.t. the
transformed strike and the maturity. This section will apply our inversion
formula (4) to compute the barrier option price and the joint cdf of the
terminal asset return and the first passage time under the DEM. The com-
putable bounds for both the discretization and truncation errors will also
be provided.

6.1. Laplace transforms In the DEM, the asset price St under the risk
neutral measure P is given by

St = S0e
Xt with the asset return Xt = µt+ σWt +

Nt
∑

i=1

Yi,

where µ = r− σ2

2 − λζ, ζ = pη
η−1 +

qθ
θ+1 − 1, r is the risk free interest rate, σ

is the volatility, {Wt : t ≥ 0} is a standard Brownian motion, {Nt : t ≥ 0}
is a Poisson process with rate λ, and {Yi : i = 1, 2, . . .} are independent and
identically distributed double exponential random variables with the pdf
(22)
fY (x) = pηe−ηx1{x≥0} + qθeθx1{x<0}, with η > 1, p+ q = 1, p, q, θ ∈ R

+.

The Lévy exponent of this double exponential jump diffusion process Xt is

G(z) :=
logEezXt

t
(23)

=
σ2z2

2
+ µz + λ

(

pη

η − z
+

qθ

θ + z
− 1

)

, for ℜ(z) ∈ (−θ, η).

Denote the first passage time of {Xt : t ≥ 0} to a flat barrier b by:

τb := inf{t : Xt ≥ b},
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Table 4

Connection among several transforms related to barrier options under the DEM

Original functions Laplace transforms ROACs

The joint pdf Lf (~s) ROAC of Lf (~s)
fτb,Xτb

(·)

The joint cdf LF (~s) {~v : 0 < v2 < η, v1 > max{G(v2), 0}}

Fτb,XT
(·) =

Lf (s1,−s2)

s2(s1−G(s2))
∩ ROAC of Lf (s1,−s2)

UIC barrier LUIC(~s) {~v : 0 < v2 < η − 1, v1 > (G(v2 + 1)− r)+}

option UIC(·) =
S
s2+1

0
Lf (s1+r,−s2−1)

s2(s2+1)(s1+r−G(s2+1))
∩ ROAC of Lf (s1 + r,−s2 − 1)

where b > 0 and Xτb := lim supt→+∞Xt on the set {τb = +∞}. Kou and
Wang [19] derived the Laplace transform of the joint pdf fτb,Xτb

of τb andXτb :

Lf (~s) =
η − β1,s1

β2,s1 − β1,s1
e−bs2−bβ1,s1

(

1 +
β2,s1 − η

η + s2

)

(24)

+
β2,s1 − η

β2,s1 − β1,s1
e−bs2−bβ2,s1

(

1 +
β1,s1 − η

η + s2

)

,

for ℜ(~s) ∈ (0,+∞) × (−η,+∞), where β1,s1 and β2,s1 are the two roots of
the equation G(z) = s1 with positive real parts.

Consider an up-and-in call (UIC) barrier option with the barrier H > S0,
the strike K, and the maturity T . Its price under the risk neutral measure
P is given by

UIC(T, k) = e−rTE
[

(S0e
XT − e−k)+1{τb<T}

]

,

where k := − logK and b := log(H/S0) > 0. Besides, we are interested in
the joint cdf of τb and XT , or equivalently the following probability

Fτb,XT
(~t) := P (τb ≤ t1,XT ≥ −t2).

Kou et al. [20] derived closed-form two-dimensional Laplace transforms of
the joint cdf Fτb,XT

(~t) w.r.t. t1 and t2 as well as that of the UIC barrier
option price UIC(T, k) w.r.t. T and k; see Table 4. We point out that it
is not easy to determine the ROAC of Lf (~s). Kou and Wang [19] showed
(0,+∞) × (−η,+∞) ⊂ ROAC of Lf (~s), whereas Cai and Sun [8] proved
that Lf (~s) exists for a larger set, i.e., for ℜ(~s) ∈ [M(G),+∞) × (−η,+∞),
where M(G) := minx∈(−θ,η)G(x).

The following proposition shows that our inversion formula (4) is appli-
cable to the evaluation of the joint cdf Fτb,XT

(·) and the UIC barrier option
price UIC(·).
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Proposition 6.1. Under the DEM, we have (i) both Fτb,XT
(·) and UIC(·)

satisfy Assumption 2.1, and (ii) both LF (~s) and LUIC(~s) satisfy Assump-
tion 2.2.

Proof. See Appendix F.

6.2. Discretization errors To compute the discretization error bounds in
(9) via Theorem 3.1, we are required to specify the function δ(~y) in (8).
To this end, we can still apply Proposition 3.2 and the method in Section
3.2.1 by using the result in the following Proposition 6.2 in Section 6.3. Here
we provide a more straightforward approach alternatively. For any ~v in the
respective ROACs,

e−~v·~t|Fτb,XT
(t1, t2)| ≤ e−~v·~tP (X2 ≥ −t2) ≤ e−~v·~tEev2(X2+t2)

≤ Eev2X2 = eG(v2)T ;

e−v1T−v2k|UIC(T, k)| ≤ e−(v1+r)T−v2kE
[

S0e
XT 1{XT+logS0+k≥0}

]

≤ e−(v1+r)T−v2kE
[

S0e
XT ev2(XT+logS0+k)

]

= Sv2+1
0 eG(v2+1)T−(v1+r)T ≤ Sv2+1

0 .

Consequently, we can simply select δ(~y) = eG(y2)T for Fτb,XT
(·) and δ(~y) =

Sv2+1
0 for UIC(·).

6.3. Truncation errors To calculate the truncation error bounds via The-
orem 4.1, we need to specify the asymptotic behavior of LF (~s) and LUIC(~s).
The following proposition shows both of them satisfy (13) with explicit pa-
rameters.

Proposition 6.2. (i) For any ~v ∈ ROAC of LF (~s), the function LF (~s)
satisfies (10) with α1 = 2, α2 = 3, α3 = 3

2 , α4 = 2, and other associated
parameters explicitly specified in (44).
(ii) For any ~v ∈ ROAC of LUIC(~s), the function LUIC(~s) satisfies (10) with
α1 = 2, α2 = 4, α3 = 3

2 , α4 = 3, and other associated parameters explicitly
specified in (45).

Proof. See Appendix G.

7. Application III: Computing sensitivities In Sections 5 and 6,
we apply our inversion formula to evaluate certain joint cdfs and exotic
option prices. This section will illustrate that it can also be used to compute
sensitivities or greeks of options.
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Table 5

Laplace transforms of two deltas ∆1(~u) and ∆2(~u) of the spread option

Functions Laplace transforms ROACs

∆1(~u) L∆1
(~s) = e−rTK

B(−s2,s1+s2)
s1

{~v : v2 < 0, v1 + v2 > 0}∩

×Lf (−1− s1,−s2) ROAC of Lf (−1− s1,−s2)

∆2(~u) L∆2
(~s) = e−rTK

(s2+1)B(−1−s2,s1+s2)
s1(s1−1)

{~v : v2 < −1, v1 + v2 > 0}∩

×Lf (−s1,−1− s2) ROAC of Lf (−s1,−1− s2)

We take two deltas of spread options as an example and use the same
notations as in Section 5. Assume Lf (~s) is the two-dimensional Laplace
transform of the joint pdf of two underlying asset returns X1(T ) and X2(T );
see (17). Then the Laplace transform LSpr(~s) of the spread option price w.r.t.
~u ≡ (X1(0)− logK,X2(0) − logK) is given by (see Table 1)

LSpr(~s) = e−rTK
B(−s2, s1 + s2 − 1)

s1(s1 − 1)
Lf (−~s),(25)

for ~v ≡ ℜ(~s) ∈ {v2 < 0, v1 + v2 > 0}∩ ROAC of Lf (~s). Consider two deltas
of spread options as follows.

∆1(~u) :=
∂Spr(~u)

∂S1(0)
and ∆2(~u) :=

∂Spr(~u)

∂S2(0)

Differentiating (25) w.r.t. S1(0) and S2(0) respectively and interchanging
derivatives and integrals based on Theorem A.12 in Schiff [25] yields Laplace
transforms of the two deltas; see Table 5.

Under similar mild conditions as in Proposition 5.1, we can show that our
inversion algorithm is valid for computing ∆1(~u) and ∆2(~u).

Proposition 7.1. (i) If ESj(T ) < +∞ for j = 1, 2, ~X(T ) ≡ (X1(T ),
X2(T )) has a continuous distribution under the risk neutral measure P, and
~0 belongs to the ROAC of Lf (~s), then both of the functions ∆1(~u) and ∆2(~u)
satisfy Assumption 2.1.
(ii) If Lf (−1− s1,−s2) satisfies (13) except α1 > 0 and α3 > 0, or satisfies
(15), then L∆1(~s) satisfies Assumption 2.2; if Lf (−s1,−1−s2) satisfies (13)
except α1 > 0, α2 > 2, α3 > 0 and α4 > 2, or satisfies (15), then L∆2(~s)
satisfies Assumption 2.2.

Proof. The argument of (ii) is straightforward by Table 7, and (i) can
be shown in the same way as for Proposition 5.1.

7.1. Discretization errors To compute discretization error bounds via
Theorem 3.1, we derive the required functions δ(~y) in (8) in a similar manner
as in Section 5.2; see Table 6.
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Table 6

Specification of δ(~y) for computing discretization error bounds of two deltas. Here U(~y)
is defined in (12)

δ(~y) in (8)

∆1(~u)
e−rT KB(−y2,y1+y2)

π2y1
U(−1− y1,−y2)

∆2(~u))
e−rT K·|y2+1+iM2|·B(−y2−1,y1+y2)

π2y1(y1−1)
U(−y1,−1− y2)

Table 7

Connections among the parameters in (13) and (15) for computing the truncation error
bounds of two deltas. Here j = 1, 2 and p = 1, . . . , 4. Without loss of generality, we

assume M2 ≥ |v2|+ 1 here

Laplace transforms Parameters in (13) Parameters in (15)

The pdf f(·) Lf (~s) Mj , αp Mj , αp, ρp, ξp
∆1(~u) L∆1

(−1− s1,−s2) Mj , αp + 1{p is odd} Mj , αp + 1{p is odd},

ρp, ξp
∆2(~u) L∆2

(−s1,−1− s2) Mj , Mj , αp − 1 + 3× 1{p is odd},

αp − 1 + 3× 1{p is odd} ρp, ξp

7.2. Truncation errors To calculate truncation error bounds via Theo-
rem 4.1, we need to specify the asymptotic behavior of L∆1(~s) and L∆2(~s).
According to their explicit expressions, we obtain

|L∆1(~s)| ≤ e−rTKB(−v2, v1 + v2)
1

|ω1|
|Lf (−1− s1,−s2)|,

|L∆2(~s)| ≤ e−rTKB(−v2 − 1, v1 + v2)

√
2|ω2|
|ω1|2

|Lf (−s1,−1− s2)|,

for |ω2| ≥ |v2|+1. Consequently, if the asymptotic behavior of Lf (~s) satisfies
(13) or (15) with explicit parameters, then L∆1(~s) and L∆2(~s) also satisfy
(13) or (15) with parameters given in Table 7.

8. Numerical examples In this section we provide numerical results
for the quantities of interest discussed in Sections 5–7, by inverting their re-
spective two-dimensional Laplace transforms via our inversion formula (4).
The numerical results indicate that our algorithm is very accurate and fast.
The major difference from most of other numerical methods is that our al-
gorithm also generates discretization and truncation error bounds, which
tell us how accurate the numerical results are. Indeed, we can control these
two errors to any desired accuracy by selecting sufficiently large parameters
~C and ~N . Therefore, our algorithm is especially suitable to provide bench-
marks. All numerical experiments here are conducted via MATLAB R2011a
on a desktop computer with 2.85GB of RAM and an Intel Core i5-2500
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Table 8

Pricing spread call options and evaluating the joint cdf P (X1(T ) ≤ x1, X2(T ) ≤ x2)
under the two-dimensional BSM. The column “Cai & Shi” denotes numerical results
obtained via our algorithm. The column “Hurd & Zhou” is taken from Table 1 of [17].
“True values” are calculated from the analytical formula of the joint normal cdf. The
model parameters are the same as in Table 1 of [17], i.e., r = 0.1, σ1 = 0.2, σ2 = 0.1,
q1 = q2 = 0.05, S1(0) = 100, S2(0) = 96, ρ = 0.5 and T = 1. The inversion algorithm
parameters are v1 = 7, v2 = −2, C1 = C2 = 10, N1 = 400 and N2 = 600 for the top

panel, and x2 = 0.1, v1 = v2 = 3, C1 = C2 = 7 and N1 = N2 = 200 for the bottom panel.
It takes around 1 second and 0.03 seconds to generate one numerical result for the spread

option price and the joint cdf, respectively, via our algorithm

Pricing spread call options under the two-dimensional BSM

K Cai & Shi UB of disc. err. UB of trunc. err. Hurd & Zhou Abs. err.

0.4 8.31246073 3.2E-9 6.3E-9 8.312461 0.000000

0.8 8.11499376 9.4E-11 5.3E-12 8.114994 0.000000

1.2 7.92081978 1.2E-11 6.7E-14 7.920820 0.000000

1.6 7.72993249 2.7E-12 2.7E-15 7.729932 0.000000

2.0 7.54232390 8.7E-13 2.0E-16 7.542324 0.000000

2.4 7.35798430 3.5E-13 2.3E-17 7.357984 0.000000

2.8 7.17690236 1.6E-13 3.6E-18 7.176902 0.000000

3.2 6.99906512 8.0E-14 6.9E-19 6.999065 0.000000

3.6 6.82445805 4.4E-14 1.6E-19 6.824458 0.000000

4.0 6.65306511 2.6E-14 4.1E-20 6.653065 0.000000

Evaluating the joint cdf P (X1(T ) ≤ x1, X2(T ) ≤ x2) under the two-dimensional BSM

x1 Cai & Shi UB of disc. err. UB of trunc. err. True values Abs. err.

−1 0.0000001302 1.2E-11 1.6E-12 0.0000001302 0.0000000000

−0.5 0.0039833228 4.1E-12 7.1E-12 0.0039833228 0.0000000000

−0.3 0.0476656931 3.0E-12 1.3E-11 0.0476656931 0.0000000000

−0.1 0.2333029204 2.4E-12 2.4E-11 0.2333029204 0.0000000000

0 0.3801785475 1.7E-12 3.2E-11 0.3801785475 0.0000000000

0.1 0.5212051305 1.5E-12 4.3E-11 0.5212051305 0.0000000000

0.3 0.6782910666 1.3E-12 7.8E-11 0.6782910666 0.0000000000

0.5 0.7071168688 1.3E-12 1.4E-10 0.7071168688 0.0000000000

(3.3GHz) processor. The codes are available on the first author’s website
http://ihome.ust.hk/~ningcai/index_IELM_1.html.

8.1. Evaluating spread options and related joint CDF in the BSM and VG
Table 8 gives numerical results (denoted by “Cai & Shi”) for the spread call
options and the joint cdf of the asset returns under the two-dimensional
BSM via our inversion formula (4) as well as the related discretization and
truncation error bounds. We can see that our algorithm is highly accurate
and efficient. (i) Our numerical results for the spread option prices agree

http://ihome.ust.hk/~ningcai/index_IELM_1.html
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with those obtained by Hurd and Zhou [17] (denoted by “Hurd & Zhou”)
to 6 decimal points. In fact, our algorithm is much more accurate than
reflected from the comparison with Hurd and Zhou [17] because the error
bounds indicate that our results have achieved the accuracy of 10−9 ∼ 10−14.
(ii) Our numerical results for the joint cdf agree with the true values to 10
decimal points. Besides, our algorithm is robust because even in the extreme
case x1 = −1 where the probability is very small, our algorithm is still highly
accurate with reliable error bounds. (iii) It takes only 1 second and 0.03
seconds to generate one numerical result for the spread option price and the
joint cdf, respectively, via our algorithm.

Similarly, Table 9 provides numerical results for the spread call option
prices and the joint cdf of the asset returns under the two-dimensional VG
model as well as the associated error bounds. It is indicated that our algo-
rithm is still highly accurate and efficient.

8.1.1. Pricing spread options in the “deep out of the money” case As
pointed out by Carr and Madan [10], the plain FFT might break down
for deep out of the money European call options and even generate nega-
tive values. In this section, we intend to apply our two-dimensional, two-
sided Laplace inversion method to price the spread call options in a similar
“deep out of the money” case, where S2(0) +K is much larger than S1(0).
Specifically, under both the two-dimensional BSM and the VG model, we
set S1(0) = 100 and let S2(0) + K vary from 120 to 200 with increment
10. The numerical spread option prices are given in Table 10. We can see
that our algorithm is still highly accurate even in the extreme cases, e.g.,
S2(0) + K = 180, 190 and 200. This implies that our algorithm is quite
robust.

8.1.2. The special case K = 0 under the BSM When K = 0, the spread
option price under the two-dimensional BSM has an analytical formula; see
(29) in Appendix E. Furthermore, its Laplace transform also becomes sim-
pler in this special case. In fact, its single Laplace transform w.r.t. X2(0)
has a closed-form expression given by (30) in Appendix E. Then the one-
dimensional, two-sided Euler inversion algorithm applies as a special case
of our two-dimensional algorithm. Moreover, the related discretization and
truncation error bounds can be derived similarly. See Appendix E for more
details. Table 11 reports the comparison between our Laplace inversion re-
sults and the true values obtained from the analytical formula, and also
provides the associated discretization and truncation error bounds. It can
be seen that the inversion method is still highly accurate.
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Table 9

Pricing spread call options and evaluating the joint cdf P (X1(T ) ≤ x1, X2(T ) ≤ x2)
under the two-dimensional VG model. The column“Cai & Shi” denotes numerical results
obtained via our algorithm. The column “Hurd & Zhou” is taken from Table 3 of [17].
“MC values” and “Std. err.” are Monte Carlo simulation estimates and associated

standard errors, respectively, obtained using a sample size of 107. The model parameters
are the same as n Table 3 of [17], i.e., r = 0.1, a− = 24.4499, a+ = 20.4499, α = 0.4,

λ = 10, S1(0) = 100, S2(0) = 96, ρ = 0.5, and T = 1. The inversion algorithm
parameters are v1 = 7, v2 = −2, C1 = 7, C2 = 6, N1 = 300 and N2 = 600 for the top

panel, and x2 = 0.1, v1 = v2 = 3, C1 = C2 = 7 and N1 = N2 = 200 for the bottom panel.
It takes around 0.8 second and 0.05 seconds to generate one numerical result for the

spread option price and the joint cdf, respectively, via our algorithm

Pricing spread call options under the two-dimensional VG model

K Cai & Shi UB of disc. err. UB of trunc. err. Hurd & Zhou Abs. err.

2.0 9.727458 6.7E-6 2.2E-5 9.727458 0.000000

2.2 9.630006 4.1E-6 1.2E-5 9.630005 0.000001

2.4 9.533200 2.6E-6 7.1E-6 9.533199 0.000001

2.6 9.437040 1.8E-6 4.3E-6 9.437040 0.000000

2.8 9.341528 1.2E-6 2.7E-6 9.341527 0.000001

3.0 9.246662 8.5E-7 1.8E-6 9.246662 0.000000

3.2 9.152445 6.1E-7 1.2E-6 9.152445 0.000000

3.4 9.058875 4.5E-7 8.2E-7 9.058875 0.000000

3.6 8.965954 3.3E-7 5.7E-7 8.965954 0.000000

3.8 8.873681 2.5E-7 4.1E-7 8.873681 0.000000

4.0 8.782057 2.0E-7 3.0E-7 8.782057 0.000000

Evaluating the joint cdf P (X1(T )≤ x1, X2(T )≤x2) under the two-dimensional VG model

x1 Cai & Shi UB of disc. err. UB of trunc. err. MC values Abs. err.

(Std. err.)

−1 0.00000075 2.9E-9 2.6E-11 0.00000050 0.00000025

(0.00000022)

−0.5 0.00203320 1.1E-9 6.6E-11 0.00200914 0.00002406

(0.00001405)

−0.3 0.02349541 7.8E-10 9.8E-11 0.02355573 −0.00006032

(0.00004540)

−0.1 0.13879889 6.6E-10 1.5E-10 0.13881740 −0.00001851

(0.00008944)

0 0.24898022 6.6E-10 1.9E-10 0.24894320 0.00003702

(0.00010146)

0.1 0.36606506 4.8E-10 2.7E-10 0.36614173 −0.00007667

(0.00010571)

0.3 0.51059581 4.5E-10 5.9E-10 0.51067527 −0.00007946

(0.00011211)

0.5 0.54472360 4.5E-10 1.3E-9 0.54478029 −0.00005669

(0.00011704)
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Table 10

Pricing spread options under the two-dimensional BSM and VG model in the “deep out
of the money” case. The column“Cai & Shi” denotes numerical results obtained via our
algorithm, while “MC values” and “Std. err.” are Monte Carlo estimates and associated

standard errors, respectively, obtained by simulating 107 samples. All the model
parameters are the same as in Table 8 for the BSM and in Table 9 for the VG model.

The parameters for the inversion algorithm are v1 = 7, v2 = −2, C1 = C2 = 10,
N1 = 400 and N2 = 600 for the BSM, and v1 = 7, v2 = −2, C1 = 7, C2 = 6, N1 = 300

and N2 = 600 for the VG model. It takes around 1 second and 0.6 seconds to produce one
numerical result under the BSM and the VG model, respectively

Pricing spread call options under the two-dimensional BSM

in the “deep out of the money” case

S2(0) +K Cai & Shi UB of UB of MC values Std. err. Abs. err.

disc. err. trunc. err.

120 1.53065155 1.2E-17 1.3E-31 1.529657 0.001410 0.000997

130 0.65133480 6.6E-18 2.7E-34 0.650397 0.001000 0.000937

140 0.26157215 4.6E-18 2.2E-36 0.261200 0.000660 0.000372

150 0.10052638 3.8E-18 3.9E-38 0.100450 0.000416 0.000076

160 0.03739572 3.6E-18 1.2E-39 0.037423 0.000256 −0.000027

170 0.01358880 3.9E-18 5.5E-41 0.013667 0.000155 −0.000078

180 0.00485842 4.7E-18 3.4E-42 0.004915 0.000093 −0.000057

190 0.00171883 6.4E-18 2.7E-43 0.001748 0.000056 −0.000029

200 0.00060442 5.4E-18 4.7E-43 0.000620 0.000034 −0.000016

Pricing spread call options under the two-dimensional VG model

in the “deep out of the money” case

S2(0) +K Cai & Shi UB of UB of MC values Std. err. Abs. err.

disc. err. trunc. err.

120 2.66155555 4.1E-11 3.3E-12 2.657996 0.001964 0.003560

130 1.34263221 2.2E-11 3.4E-13 1.340673 0.001558 0.001959

140 0.65757636 2.8E-11 6.1E-14 0.656471 0.001172 0.001105

150 0.31851544 4.9E-11 1.6E-14 0.317920 0.000856 0.000595

160 0.15464860 8.9E-11 5.0E-15 0.154085 0.000617 0.000664

170 0.07592838 1.6E-10 1.9E-15 0.075502 0.000445 0.000426

180 0.03789519 2.7E-10 7.9E-16 0.037695 0.000322 0.000200

190 0.01928059 4.4E-10 3.7E-16 0.019220 0.000235 0.000061

200 0.01001325 4.2E-10 2.3E-16 0.010033 0.000174 −0.000020

8.2. Evaluating barrier options and related joint CDF under the DEM
In Table 12, we provide numerical results for the up-and-in call barrier op-
tion prices and the quantity P (τb ≤ x1,XT ≥ −x2) under the DEM as well
as the related error bounds. Note that in this case, the truncation error is
not as easy to control as for the spread options. This is primarily because
the truncation error bounds decay more slowly in a power way; see Propo-
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Table 11

Pricing spread options when K = 0 under the two-dimensional BSM. The column “Cai
& Shi” denotes numerical results obtained via Laplace inversion algorithm, while “True
values” are computed from the analytical formula (29). The model parameters are the
same as in Table 8 except that S2(0) varies from 80 to 120. The inversion algorithm
parameters are v = −2, C = 2, and N = 80. It takes approximately 0.0003 seconds to

generate one spread option price via our algorithm

Pricing spread options under the two-dimensional BSM when K = 0

S2(0) Cai & Shi UB of disc. err. UB of trunc. err. True values Abs. err.

80 19.710565 4.8E-7 6.4E-9 19.710565 0.000000

85 15.686513 3.8E-7 8.6E-9 15.686513 0.000000

90 12.108034 3.0E-7 1.1E-8 12.108034 0.000000

95 9.056493 2.4E-7 1.4E-8 9.056493 0.000000

100 6.564677 2.0E-7 1.8E-8 6.564677 0.000000

105 4.615204 1.6E-7 2.2E-8 4.615204 0.000000

110 3.151297 1.4E-7 2.7E-8 3.151297 0.000000

115 2.093444 1.1E-7 3.2E-8 2.093444 0.000000

120 1.355646 9.7E-8 3.7E-8 1.355646 0.000000

sition 6.2. However, the numerical results are still accurate compared with
the benchmarks.

8.3. Computing two deltas of spread options in the BSM and VG model
Table 13 gives numerical results for two deltas of spread options under the
BSM and VG model as well as the related error bounds. It can be seen
that all the numerical results stay within the 95% confidence intervals of
the associated Monte Carlo simulation estimates. Indeed, the error bounds
indicate that the numerical results are more accurate than reflected from the
comparison with the Monte Carlo estimates. Besides, the algorithm is very
efficient in that it takes only 0.7 seconds to generate one numerical result.

9. Conclusions This paper is devoted to the development of a two-
dimensional, two-sided Euler inversion algorithm with computable bounds
for both discretization and truncation errors. This algorithm is especially
useful to provide benchmarks in that the computable error bounds make it
possible for us to select the algorithm parameters properly to achieve any
desired accuracy. Since the error bounds decay quickly, e.g., exponentially,
in many cases, the algorithm is very efficient. Numerical experiments of
applying this algorithm to the valuation of some exotic options and joint
cdfs suggest that the algorithm is accurate, fast, and simple to implement.

Z-transforms can be considered as the counterpart of Laplace transforms
in the discrete case and also have many applications in operations research
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Table 12

Pricing up-and-in call barrier options and evaluating P (τb ≤ x1, XT ≥ −x2) under the
DEM. The column “Cai & Shi” denotes numerical results obtained via our algorithm.
The column “KPW” is taken from Table 4 of Kou et al. [20]. “MC values” and “Std.

err.” are Monte Carlo simulation estimates and associated standard errors, respectively,
obtained by simulating 50, 000 samples and using 20, 000 time steps. The model

parameters are the same as in [20], i.e., S0 = 100, H = 115, r = 0.05, σ = 0.2, p = 0.5,
η = θ = 30 and T = 1. The inversion algorithm parameters are v1 = 2.5, v2 = 3, C1 = 8,
C2 = 4, N1 = 1500 and N2 = 400 for the top panel, and v1 = v2 = 3, x1 = 1, C1 = 4,
C2 = 3, N1 = 700 and N2 = 1000 for the bottom panel. It takes around 2.6 seconds and

2.9 seconds to generate one numerical price for the barrier option price and the
probability, respectively, via our algorithm

Pricing up-and-in call barrier options under the DEM

K λ Cai & Shi UB of UB of KPW Abs. err.

disc. err. trunc. err.

0.5 9.64681 6.0E-5 7.9E-4 9.64680 0.00001

101 1.0 9.75756 6.4E-5 7.3E-4 9.75755 0.00001

2.0 9.97456 7.1E-5 7.1E-4 9.97456 0.00000

0.5 7.98683 6.4E-5 7.1E-4 7.98683 0.00000

105 1.0 8.09581 6.7E-5 6.6E-4 8.09581 0.00000

2.0 8.30966 7.4E-5 6.3E-4 8.30966 0.00000

0.5 6.47897 6.7E-5 6.4E-4 6.47897 0.00000

109 1.0 6.58585 7.1E-5 5.9E-4 6.58586 −0.00001

2.0 6.79587 7.8E-5 5.7E-4 6.79588 −0.00001

Evaluating P (τb ≤ x1, XT ≥ −x2) under the DEM

x2 Cai & Shi UB of UB of MC values (Std. err.) Abs. err.

disc. err. trunc. err.

−0.5 0.01020 6.9E-6 1.2E-5 0.01069 (0.00043) −0.00049

−0.3 0.09095 6.8E-6 2.1E-5 0.09082 (0.00098) 0.00013

−0.1 0.35480 6.7E-6 3.6E-5 0.35345 (0.00130) 0.00135

0.1 0.51205 2.4E-7 6.6E-5 0.50981 (0.00155) 0.00224

0.3 0.53686 2.2E-7 1.3E-4 0.53471 (0.00165) 0.00215

0.5 0.53845 2.1E-7 2.4E-4 0.53637 (0.00166) 0.00208

and financial engineering. Our future research topics include the study of in-
version algorithms with computable error bounds for two-dimensional, two-
sided Z-transforms and the mixed Z-Laplace transforms.
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Table 13

Evaluating two deltas ∆1(~u) and ∆2(~u) of spread options under the BSM and VG model.
The column“Cai & Shi” denotes numerical results obtained via our algorithm, while
“MC values” and “Std. err.” are Monte Carlo estimates obtained by simulating 107

samples, and their associated standard errors, respectively. Related parameters for the
inversion algorithm are C1 = 6, C2 = 3, N1 = N2 = 300, v1 = 7, and v2 = −2 for the

BSM, and C1 = 6, C2 = 2, N1 = 300, N2 = 400, v1 = 7, and v2 = −2 for the VG model.
All model parameters are the same as in Table 8 for the BSM and in Table 9 for the VG.

It takes around 0.7 seconds to produce one numerical result via our algorithm

Evaluating the delta ∆1(~u) of spread options under the two-dimensional BSM

K Cai & Shi UB of UB of MC values Std. err. Abs. err.
disc. err. trunc. err.

0.8 0.579294 8.9E-7 3.2E-13 0.579159 0.000133 0.000135
1.6 0.562677 8.9E-7 5.1E-18 0.562609 0.000134 0.000068
2.4 0.546017 8.9E-7 2.6E-21 0.545980 0.000135 0.000037
3.2 0.529348 8.9E-7 6.1E-24 0.529352 0.000136 −0.000004
4.0 0.512705 8.9E-7 3.6E-26 0.512674 0.000137 0.000031

Evaluating the delta ∆1(~u) of spread options under the two-dimensional VG model

K Cai & Shi UB of UB of MC values Std. err. Abs. err.
disc. err. trunc. err.

2.4 0.577788 2.5E-9 1.3E-7 0.577762 0.000177 0.000026
2.8 0.570967 1.5E-9 5.6E-8 0.570981 0.000178 −0.000014
3.2 0.564124 1.0E-9 2.8E-8 0.564119 0.000178 −0.000001
3.6 0.557263 8.7E-10 1.5E-8 0.557267 0.000178 −0.000004
4.0 0.550386 8.7E-10 8.6E-9 0.550459 0.000179 −0.000083

Evaluating the delta ∆2(~u) of spread options under the two-dimensional BSM

K Cai & Shi UB of UB of MC values Std. err. Abs. err.
disc. err. trunc. err.

0.8 -0.514821 7.0E-8 3.3E-12 −0.514699 0.000121 −0.000122
1.6 −0.497716 4.1E-9 1.4E-16 −0.497663 0.000122 −0.000053
2.4 −0.480702 7.7E-10 1.2E-19 −0.480681 0.000122 −0.000021
3.2 −0.463812 2.4E-10 4.5E-22 −0.463832 0.000122 0.000020
4.0 −0.447079 9.5E-11 3.6E-24 −0.447063 0.000122 −0.000016

Evaluating the delta ∆2(~u) of spread options under the two-dimensional VG model

K Cai & Shi UB of UB of MC values Std. err. Abs. err.
disc. err. trunc. err.

2.4 −0.490498 7.0E-9 2.6E-7 −0.490499 0.000150 0.000001
2.8 −0.483567 6.5E-9 1.1E-7 −0.483609 0.000150 0.000042
3.2 −0.476642 8.4E-9 4.9E-8 −0.476664 0.000150 0.000022
3.6 −0.469725 1.3E-8 2.4E-8 −0.469756 0.000150 0.000031
4.0 −0.462818 2.0E-8 1.3E-8 −0.462917 0.000150 0.000099
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APPENDIX A: PROOF OF THEOREM 2.3

Proof. In fact, it suffices to prove (4) in the special case of C1 = C2 = 0,
i.e.,

f(~t) =
e~v·~t

4|t1t2|
∑

~k∈Z2

(−1)k1+k2ℜ
(

Lf

(

v1 + i
k1π

t1
, v2 + i

k2π

t2

))

(26)

−
∑

~k∈Z2\{~0}

e−2~v◦~k◦~tf((2~k + 1) ◦~t).

If C1 6= 0 or C2 6= 0, we can obtain (4) immediately by applying (26) to a
new function f∗(~y) := f(~y − sgn(~t) ◦ ~C) at the point ~t+ sgn(~t) ◦ ~C.

Define g(t) := e−~v·~tf(~t). Then to prove (26) under the assumption t1t2 6=
0, it is equivalent to showing the following two-dimensional Poisson summa-
tion formula.

∑

~k∈Z2

g(t1 + 2k1|t1|, t2 + 2k2|t2|)(27)

=
1

4|t1t2|
∑

~k∈Z2

(−1)k1+k2Lf

(

v2 + i
k1π

|t1|
, v2 + i

k2π

|t2|

)

.

Introduce a new function

gp(~x) :=
∑

~l∈Z2

g
(

2|t1|(x1+ l1), 2|t2|(x2+ l2)
)

, with gp(~x+~l) ≡ gp(~x) ∀ ~l ∈ Z
2.

We point out that gp(
1
2 ,

1
2) is exactly the LHS of (27). Now we shall prove

that the RHS of (27) is exactly the Fourier series of gp(
1
2 ,

1
2), and moreover,

it converges to gp(
1
2 ,

1
2). This can be obtained immediately by Proposition

3.3.2 in Grafakos [16] if we can verify the following three conditions: (a) gp(~x)
is continuous at the point (12 ,

1
2); (b) gp(~x) ∈ L1([0, 1] × [0, 1]); and (c) the

partial sum of the Fourier series of gp(~x) converges at the point (12 ,
1
2). Let

us verify (a), (b), and (c) one by one.
As for (a), we claim that gp(~x) is continuous on R

2. Indeed, consider a

sequence ~x(n) := (x
(n)
1 , x

(n)
2 ) → ~x and assume |~x(n) − ~x| < 1 without loss of

generally. Then by (3) we obtain that for any ~l ∈ Z
2,

g
(

2|~t| ◦ (~x(n) +~l)
)

≤ κe−2c1|t1|·|x(n)
1 +l1|−2c2|t2|·|x(n)

2 +l2|

≤ κe−2c1|t1l1|−2c2|t2l2|e2c1|t1|(|x1|+1)+2c2|t2|(|x2|+1) =: g∗(~l),



434 N. CAI AND C. SHI

with
∑

~l∈Z2 g
∗(~l) < +∞. Applying the dominated convergence theorem

yields gp(~x) = limn→+∞ gp(~x
(n)).

The condition (b) is also satisfied because

∫ 1

0

∫ 1

0
|gp(~x)|dx1dx2 ≤

∫ 1

0

∫ 1

0

∑

~l∈Z2

∣

∣

∣
g
(

2|~t| ◦ (~x+~l)
)
∣

∣

∣
dx1dx2(28)

=
∑

~l∈Z2

∫ 1

0

∫ 1

0

∣

∣

∣
g
(

2|~t| ◦ (~x+~l)
)
∣

∣

∣
dx1dx2

=

∫ +∞

−∞

∫ +∞

−∞

∣

∣g(2|~t| ◦ ~x)
∣

∣ dx1dx2

=
1

4|t1t2|

∫ +∞

−∞

∫ +∞

−∞
|g(~x)| dx1dx2 < +∞.

To show that (c) also holds, we calculate the Fourier coefficients of gp(~x) as
follows.

c~k(~x) =

∫ 1

0

∫ 1

0
gp(x)e

−2πi~k·~xdx1dx2

=
∑

~l∈Z2

∫ 1

0

∫ 1

0
g
(

2|~t| ◦ (~x+~l)
)

e−2πi~k·~xdx1dx2

=

∫ +∞

−∞

∫ +∞

−∞
g
(

2|~t| ◦ ~x
)

e−2πi~k·~xdx1dx2

=
1

4|t1t2|

∫ +∞

−∞

∫ +∞

−∞
g(~x)e

−i
(

k1πx1
|t1|

+
k2πx2
|t2|

)

dx1dx2

=
1

4|t1t2|
Lf

(

v1 + i
k1π

|t1|
, v2 + i

k2π

|t2|

)

,

where the second equality holds due to (28) and Fubini’s Theorem. Accord-
ingly, for any fixed ~x ∈ R

2, the partial sum S ~N (~x) of the Fourier series of
gp(~x) is given by

S ~N (~x) =
1

4|t1t2|

N1
∑

k1=−N1

N2
∑

k2=−N2

Lf

(

v1 + i
k1π

|t1|
, v2 + i

k2π

|t2|

)

e2πi
~k·~x.

As N1 and N2 tend to +∞, the double series S ~N (~x) is absolutely convergent
because of Assumption 2.2. This implies that (c) also holds.
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APPENDIX B: PROOF OF THEOREM 3.1, PROPOSITION 3.2 AND
PROPOSITION 3.3

Proof of Theorem 3.1. Our proof is focused only on the case: t1 ≥ 0
and t2 ≥ 0. Other cases can be treated similarly and are thus omitted. First
of all, we know from (7) that

|eD(~t, ~v, ~C)| ≤
∑

~k∈Z2\{~0}

e−2(~v◦~k)·(~t+ ~C◦sgn(~t))|f(~t+ 2~k ◦ (~t+ ~C ◦ sgn(~t)))|.

Divide the region of ~k, i.e., Z2\{~0}, into eight disjoint subregions

A1 = Z
+ × Z

+, A2 = Z
− × Z

+, A3 = Z
− × Z

−, A4 = Z
+ × Z

−,

B1 = {0} × Z
+, B2 = {0} × Z

−, B3 = Z
+ × {0}, B4 = Z

− × {0}.

By (8) we obtain

|f(~x)| ≤























δ(l∗1 , l
∗
2)e

l∗1x1+l∗2x2 when x1 ≥ 0, x2 ≥ 0;

δ(u∗1, l
∗
2)e

u∗
1x1+l∗2x2 when x1 < 0, x2 ≥ 0;

δ(u∗1, u
∗
2)e

u∗
1x1+u∗

2x2 when x1 < 0, x2 < 0;

δ(l∗1 , u
∗
2)e

l∗1x1+u∗
2x2 when x1 ≥ 0, x2 < 0.

Note that 2kj(tj + Cjsgn(tj)) + tj always has the same sign with kj . Then

∑

A1

:=
∑

~k∈A1

exp−2(~v◦~k)·(~t+ ~C◦sgn(~t)) |f(~t+ 2~k ◦ (~t+ ~C ◦ sgn(~t)))|

≤ δ(l∗1, l
∗
2)

+∞
∑

k1=1

+∞
∑

k2=1

[

e−2k1(t1+C1)v1−2k2(t2+C2)v2

× el
∗
1(2k1(t1+C1)+t1)+l∗2(2k2(t2+C2)+t2)

]

= δ(l∗1, l
∗
2)e

(3l∗1−2v1)t1+(3l∗2−2v2)t2 e−2C1(v1−l∗1)

1− e−2(t1+C1)(v1−l∗1)

e−2C2(v2−l∗2)

1− e−2(t2+C2)(v2−l∗2)

≤ δ(l∗1, l
∗
2)e

(3l∗1−2v1)t1+(3l∗2−2v2)t2 1

e2d1C1 − 1

1

e2d2C2 − 1
.

Similarly, it can be shown that

∑

A2

≤ δ(u∗1, l
∗
2)e

(2v1−u∗
1)t1+(3l∗2−2v2)t2 1

e2d1C1 − 1

1

e2d2C2 − 1
,

∑

A3

≤ δ(u∗1, u
∗
2)e

(2v1−u∗
1)t1+(2v2−u∗

2)t2
1

e2d1C1 − 1

1

e2d2C2 − 1
,
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∑

A4

≤ δ(l∗1 , u
∗
2)e

(3l∗1−2v1)t1+(2v2−u∗
2)t2

1

e2d1C1 − 1

1

e2d2C2 − 1
,

∑

B1

≤ δ(l∗1, l
∗
2)e

3l∗2−2v2

e2d2C2 − 1
,

∑

B2

≤ δ(l∗1, u
∗
2)e

2v2−u∗
2

e2d2C2 − 1
,

∑

B3

≤ δ(l∗1, l
∗
2)e

3l∗1−2v1

e2d1C1 − 1
,

∑

B4

≤ δ(u∗1, l
∗
2)e

2v1−u∗
1

e2d1C1 − 1
.

Adding the eight inequalities above together completes the proof.

Proof of Proposition 3.2. By the Bromwich contour integral we ob-
tain

e−~y·~t|f(~t)| = e−~y·~t

4π2

∣

∣

∣

∣

∫ +∞

−∞

∫ +∞

−∞
e(~y+i~ω)·~tLf (~y + i~ω)dω1dω2

∣

∣

∣

∣

≤ 1

4π2

∫ +∞

−∞

∫ +∞

−∞
|Lf (~y + i~ω)|dω1dω2,

which justifies Proposition 3.2 immediately.

Proof of Proposition 3.3. Since the ROAC is defined to be the inte-
rior of the set (2), there exists ǫ > 0 such that [v1−ǫ, v1+ǫ]×[v2−ǫ, v2+ǫ] ⊂
ROAC of Lf (~s). Then for any ~v in ROAC, (8) implies (3) with parameters
κ = max {δ(v1 + ǫ, v2 + ǫ), δ(v1 + ǫ, v2 − ǫ), δ(v1 − ǫ, v2 + ǫ), δ(v1 − ǫ, v2 − ǫ)}
and c1 = c2 = ǫ.

APPENDIX C: PROOF OF THEOREM 4.1

Proof. From (6) we know

|eT (~t, ~v, ~C, ~N)| ≤ e~v·~t

4(|t1|+ C1)(|t2|+ C2)

∑

~k∈Z2\D ~N
0

|Lf (~v + i~a ◦ ~k)|.

(i) If Lf (~v + i~ω) satisfies (13), simple algebra yields

∑

D1

:=
∑

~k∈Z2∩D ~N
1

|Lf (~v + i~a ◦ ~k)|

≤ 2

N2
∑

k2=−N2

ζ2(~v, b2k2sgn(t2))

+∞
∑

k1=N1+1

(b1k1)
−α1

≤ 2

N2
∑

k2=−N2

ζ2(~v, b2k2sgn(t2))

∫ +∞

N1

x−α1dx
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= 2

N2
∑

k2=−N2

ζ2(~v, b2k2sgn(t2))b
−α1
1

N1−α1
1

α1 − 1
.

Similarly, we can obtain

∑

D2

:=
∑

~k∈Z2∩D ~N
2

|Lf (~v + i~a ◦ ~k)| ≤ 2

N1
∑

k1=−N1

ζ1(~v, b1k1sgn(t1))b
−α2
2

N1−α2
2

α2 − 1
,

∑

D3

:=
∑

~k∈Z2∩D ~N
3

|Lf (~v + i~a ◦ ~k)| ≤ 4ζ(~v)

+∞
∑

k1=N1+1

+∞
∑

k2=N2+1

(b1k1)
−α3(b2k2)

−α4

≤ 4ζ(~v)b−α3
1

N1−α3
1

α3 − 1
b−α4
2

N1−α4
2

α4 − 1
.

Then (14) follows immediately.
(ii) Similarly to (i), if Lf (~v + i~ω) satisfies (15), we have

∑

D1

≤ 2

N2
∑

k2=−N2

ζ2(~v, b2k2sgn(t2))

+∞
∑

k1=N1+1

(b1k1)
−α1e−ρ1(b1k1)ξ1

≤ 2

N2
∑

k2=−N2

ζ2(~v, b2k2sgn(t2))

∫ +∞

N1

x−α1e−ρ1(b1x)ξ1dx

= 2

N2
∑

k2=−N2

ζ2(~v, b2k2sgn(t2))
Γ(1−α1

ξ1
, ρ1b

ξ1
1 N ξ1

1 )

b1ξ1
ρ

α1−1
ξ1

1 ,

where the second inequality holds because the function x−αje−ρjx
ξj

is de-

creasing in x when x ≥ (
max{−αj ,0}

ξjρj
)

1
ξj . Similarly,

∑

D2

≤ 2

N1
∑

k1=−N1

ζ1(~v, b1k1sgn(t1))
Γ(1−α2

ξ2
, ρ2b

ξ2
2 N ξ2

2 )

b2ξ2
ρ

α2−1
ξ2

2 ,

∑

D3

≤ 4ζ(~v)
Γ(1−α3

ξ3
, ρ3b

ξ3
1 N ξ3

1 )

b1ξ3
ρ

α3−1
ξ3

3

Γ(1−α4
ξ4

, ρ4b
ξ4
2 N ξ4

2 )

b2ξ4
ρ

α4−1
ξ4

4 .

Thus (16) is proved.

APPENDIX D: PROOF OF PROPOSITION 5.1 AND
PROPOSITION 5.3

Proof of Proposition 5.1. The proof of (ii) is straightforward accord-
ing to Table 1. As for (i), F (·) is continuous because ~X(T ) has a continuous
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distribution. Besides, applying the dominated convergence theorem and us-
ing the fact that EeX1(T ) < +∞ yields that Spr(·) is also continuous. Finally,
it is straightforward and elementary to verify that F (·) and Spr(·) satisfy
(3) thanks to the assumption that ~0 belongs to the ROAC and the details
are thus omitted.

Proof of Proposition 5.3. Since α ∈ (0, 1) and λ > 0, we obtain from
(20) that

|Lf (~s)| =
(

a− − s1 − s2
a−

· a+ + s1 + s2
a+

)−αλT

×
2
∏

j=1

(

a− − sj
a−

· a+ + sj
a+

)−(1−α)λT

≤
(

a− − v1 − v2
a−

· a+ + v1 + v2
a+

)−αλT

×
2
∏

j=1

(

max{(a− − vj) · (a+ + vj), |ωj |2}
a−a+

)−(1−α)λT

= ζ(~v)

2
∏

j=1

(

max
{

(a− − vj) · (a+ + vj), |ωj |2
})−(1−α)λT

,

which completes the proof.

APPENDIX E: THE SPECIAL CASE K = 0 OF SPREAD OPTIONS
UNDER THE BSM

When K = 0, the spread option under the two-dimensional BSM becomes
analytically tractable. Indeed, if we define a new measure P̂

dP̂

dP
= e−(r−q2)T S2(T )

S2(0)
,

then by change of measure we obtain a closed-form spread option price as
follows

e−rTE[(S1(T )− S2(T ))
+] = S2(0)e

−q2T Ê

[

(

S1(T )

S2(T )
− 1

)+
]

= S2(0)e
−q2T

[

eµ̃+
σ̃2

2 Φ

(

µ̃

σ̃
+ σ̃

)

− Φ

(

µ̃

σ̃

)]

,(29)

where µ̃ = x1(0) − x2(0) − (q1 − q2)T − σ̃2/2, σ̃ =
√

(σ2
1 + σ2

2 − 2σ1σ2ρ)T ,
Φ(·) denotes the standard normal cdf, and the second equality holds because
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S1(T )/S2(T ) is still log-normally distributed under the new measure P̂. In
fact, (29) is essentially the Black-Scholes formula.

When K = 0, the Laplace transform of the spread option price also
becomes simpler. Indeed, the single Laplace transform w.r.t. X2(0) has a
closed-form expression. Specifically, defining Spr(x) := e−rTE[(ex1(0)+X1(T )−
ex+X2(T ))+], then we have

LSpr(s) :=

∫ +∞

−∞
e−sxSpr(x)dx

= e−rTE

[

∫ x1(0)+X1(T )−X2(T )

−∞
e−sx(ex1(0)+X1(T ) − ex+X2(T ))dx

]

=
e−rT+(1−s)x1(0)

s(s− 1)
E[e−(s−1)X1(T )+sX2(T )]

=
e−rT+(1−s)x1(0)

s(s− 1)
Lf (s − 1,−s) < +∞,(30)

for all s ≡ v + iω with v ≡ ℜ(s) < 0, where Lf (·, ·) is given by (19) and the
second equality follows from Fubini’s Theorem.

Then the one-dimensional, two-sided Euler inversion algorithm applies
to evaluate the spread option price Spr(x) as a special case of our two-
dimensional algorithm. Moreover, the related discretization and truncation
error bounds can be derived similarly (see also Cai et al [7]). More precisely,
note that for all v < 0 and ω 6= 0,

|LSpr(s)| =
∣

∣

∣

∣

∣

e−rT+(1−v−iω)x1(0)

(v + iω)(v − 1 + iω)

∣

∣

∣

∣

∣

· |Lf (s − 1,−s)| ≤ ζ(v)

|ω|2 e
−ρ̂|ω|2 ,

where ρ̂ = (σ2
1 + σ2

2 − 2σ1σ2ρ)T/2 and

ζ(v) := exp
{

− rT + (1− v)x1(0) + (1− v)(r − q1 − σ2
1/2)T

+ v(r − q2 − σ2
2/2)T + ((v − 1)2σ2

1 + v2σ2
2)T/2 + (1− v)vσ1σ2ρT

}

.

Then adapting Theorem 4.1 for the one-dimensional case (or applying The-
orem 5.1 in Cai et al [7] directly) yields the following truncation error bound

|eT (x, v, C,N)| ≤ ζ(v)evt
√
ρ̂

2π
· Γ

(

−1

2
,

ρ̂π2N2

(|t|+ C)2

)

.

Besides, to control the discretization error, we need to first specify a similar
function δ(·) as in (8). Analogously to Section 3.2.1, we can specify δ(·) in
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the following way.

e−yx|Spr(x)|

=
e−yx

2π

∣

∣

∣

∣

∫ +∞

−∞
e(y+iω)xLSpr(y + iω)dω

∣

∣

∣

∣

≤ 1

2π

∫ +∞

−∞
|LSpr(y + iω)|dω

=
1

2π

[
∫ −1

−∞
|LSpr(y + iω)|dω +

∫ 1

−1

∣

∣

∣

∣

∫ +∞

−∞
e−(y+iω)xSpr(x)dx

∣

∣

∣

∣

dω

+

∫ +∞

1
|LSpr(y + iω)|dω

]

≤ ζ(y)

π

∫ +∞

1

1

ω2
e−ρ̂ω2

dω +
1

2π

∫ 1

−1

∫ +∞

−∞
e−yxSpr(x)dxdω

=
ζ(y)

√
ρ̂

2π
Γ

(

−1

2
, ρ̂

)

+
1

π
LSpr(y) =: δ(y), for any y < 0 and x ∈ R.

Then adapting Theorem 3.1 for the one-dimensional case (or applying The-
orem 4.1 in Cai et al [7] directly) yields the following discretization error
bound

|eD(x, v, C)| ≤ ρ(v, x)

eθ(v)C − 1
,

for any v ∈ (σ∗
l , σ

∗
u), where σ

∗
l <σ∗

u< 0, θ(v) := 2·min{σ∗
u−v, v−σ∗

l }> 0, and

ρ(v, x) :=

{

δ(σ∗
u)e

(2v−σ∗
u)x + δ(σ∗

l )e
(3σ∗

l −2v)x, if x ≥ 0,

δ(σ∗
l )e

(2v−σ∗
l )x + δ(σ∗

u)e
(3σ∗

u−2v)x, if x < 0.

APPENDIX F: PROOF OF PROPOSITION 6.1

Proof. The argument of (ii) is straightforward according to Table 4 and
Proposition 6.2 in Section 6.3. As regards (i), it follows from Proposition 3.3
that both Fτb,XT

(·) and UIC(·) satisfy (3) because in Section 6.2 we succeed
in finding the functions δ(~v) that satisfy (8) for any ~v in their respective
ROACs. Therefore, what is left is to verify the continuity of Fτb,XT

(·) and
UIC(·). Define two sets A := {The process {Xt} jumps at time T} and B :=
{τb = T}. It is easy to see that P (A) = P (B) = 0 under the DEM. Then for
any ~δ ∈ R

2, as ~δ → 0, we have

UIC(T + δ1, k + δ2) = e−r(T+δ1)E
[

(S0e
XT+δ1 − e−k−δ2)+1{τb<T+δ1}

]

= e−r(T+δ1)E
[

(S0e
XT+δ1 − e−k−δ2)+1{τb<T+δ1} · 1Ac∩Bc

]

,

→ e−rTE
[

(S0e
XT − e−k)+1{τb<T} · 1Ac∩Bc

]

= UIC(T, k),

where the second and third equalities hold because P (A ∪ B) = 0, and the
“→” holds due to the dominated convergence theoremand and the continuity
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of the function (S0e
XT − e−k)+1{τb<T} in T and k on the set Ac ∩Bc. This

implies that UIC(·) is a continuous function. The continuity of Fτb,XT
(·) can

be shown similarly and is omitted.

APPENDIX G: PROOF OF PROPOSITION 6.2

To prove Proposition 6.2, we first present the following three lemmas.

Lemma G.1. For any fixed v1 = ℜ(s1) > max{G(v2), 0} and v2 =
ℜ(s2) ∈ (−θ, η), we have

(i) |s1 −G(s2)| ≥ ζ̂|ω1| for all ~ω ∈ D
~M∗

1 ;

(ii) |s1 −G(s2)| ≥
σ2

4
|ω2|2 for all ~ω ∈ D

~M∗

2 ;

(iii) |s1 −G(s2)| ≥
σ

2
|ω1|1/2|ω2| for all ~ω ∈ D

~M∗

3 .

where ~ω := (ω1, ω2) ≡ ℑ(~s), ζ̂ := ζ̂(~v, ω2) = (v1 − ℜ(G(s2)))/|v1 − G(s2)|,
for v1 6= G(s2) and ζ̂ = 1 for v1 = G(s2),

~M∗ := (M∗
1 ,M

∗
2 ), M∗

1 =

(

5λ

σM∗
2

)2 ( c2
M∗

2

+ 1

)2

, and

M∗
2 = max

{

√

4

σ2
(λ+ |c1|) +

(

4

σ2
λc2

)2/3

,
2
√
2

σ2
×

√

(σ2v2 + µ)2 + |c1|σ2
}

.

Here c1 := v1 − 1
2σ

2v22 − µv2 and c2 := ηp+ θq.

Proof. Indeed, (i) holds for all ~ω ∈ R
2. If ℑ(G(s2)) = 0, (i) can be

obtained immediately because ζ̂ = 1 and |s1−G(s2)| ≥ |ω1|. If ℑ(G(s2)) 6= 0,
then we have ζ̂ < 1 and (i) also holds because

|s1 −G(s2)| =
√

(v1 −ℜ(G(s2)))2 + (ω1 −ℑ(G(s2)))2

=

√

ζ̂2ω2
1 +

(

ω1

√

1− ζ̂2 −ℑ(G(S2))/

√

1− ζ̂2
)2

≥ ζ̂|ω1|.

Now let us prove (ii). For any ~ω ∈ D
~M∗

2 , some algebra yields

|s1 −G(s2)|

(31)

≥
∣

∣

∣

∣

(

σ2

2
ω2
2 + c1

)

+ i(ω1 − (σ2v2 + µ)ω2)

∣

∣

∣

∣

−
∣

∣

∣

∣

λ

(

ηp

η − s2
+

θq

θ + s2
− 1

)
∣

∣

∣

∣
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≥ σ2

2
ω2
2 − |c1| − λ

(

c2
M∗

2

+ 1

)

≥ σ2

4
ω2
2 +

σ2

4
M∗2

2 − |c1| − λ

(

c2
M∗

2

+ 1

)

=
σ2

4
ω2
2 +

σ2

4

[

M∗2
2 − 4

σ2
(|c1|+ λ)− 4

σ2

λc2
M∗

2

]

,

where the second and third inequalities hold because |ω2| > M∗
2 . Further-

more, by the definition of M∗
2 , we know M∗

2 ≥
√

4
σ2 (λ+ |c1|) + ( 4

σ2λc2)2/3.

It follows that

M∗2
2 − 4

σ2
(|c1|+ λ) ≥

4
σ2λc2

√

M∗2
2 − 4

σ2 (|c1|+ λ)
>

4

σ2

λc2
M∗

2

,

which along with (31) leads to (ii) immediately.
Finally, we shall show (iii). Similarly as in the derivation of (31), when

|ω2| > M∗
2 we have

|s1 −G(s2)|

≥
∣

∣

∣

∣

(

σ2

2
ω2
2 + c1

)

+ i(ω1 − (σ2v2 + µ)ω2)

∣

∣

∣

∣

−
∣

∣

∣

∣

λ

(

ηp

η − s2
+

θq

θ + s2
− 1

)
∣

∣

∣

∣

≥
[

(

σ2

2
ω2
2 + c1

)2

+ (ω1 − (σ2v2 + µ)ω2)
2

]1/2

− λ

(

c2
M∗

2

+ 1

)

.

(32)

By the definition of M∗
2 , we know M∗

2 ≥ 2
√
2

σ2

√

(σ2v2 + µ)2 + |c1|σ2, which

implies that σ4

8 ω2
2 ≥ σ4

8 M∗2
2 ≥ (σ2v2 + µ)2 + |c1|σ2, for any |ω2| > M∗

2 . It
follows that

(

σ2

2
ω2
2 + c1

)2

+ (ω1 − (σ2v2 + µ)ω2)
2

=
σ4

8
ω4
2 + c21 +

1

2
ω2
1 +

1

2
(ω1 − 2(σ2v2 + µ)ω2)

2

+ ω2
2

(

σ4

8
ω2
2 − (σ2v2 + µ)2 − c1σ

2

)

≥ σ4

8
ω4
2 +

1

2
ω2
1 ≥ σ2

2
|ω1||ω2|2.(33)

From (32) and (33) we obtain

|s1 −G(s2)| ≥
σ√
2
|ω1|

1
2 |ω2| − λ

(

c2
M∗

2

+ 1

)

>
σ

2
|ω1|

1
2 |ω2|+

σ

5
M

∗ 1
2

1 M∗
2 − λ

(

c2
M∗

2

+ 1

)

=
σ

2
|ω1|

1
2 |ω2|,

where the second inequality holds because 1√
2
> 1

2 + 1
5 .
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Lemma G.2. For any fixed x > 0 and y ∈ R, the equation G(z) = x+ iy
has exactly two roots with positive real parts, denoted by β1,x+iy and β2,x+iy.
Moreover, when |y| is sufficiently large such that |y| > Y (x), β1,x+iy and
β2,x+iy satisfy

(34) |β1,x+iy − η| ≤ Y3

|y|θ = O
( 1

|y|
)

and |β2,x+iy − zy| ≤
2|µ|
σ2

= O(1),

where zy =

√
|y|
σ (1 + i · sgn(y)), Y (x) = max{Y1, Y2, Y3, Y4}, Y1 = 2(ση +

2|µ|
σ )2, Y2 = 1

2(
4|µ|
σ + σ

|µ|(x + 2λ))2, Y3 = 2η2σ2 + 2η|µ| + λ + x + 2λη|pη −
qθ|+ ληθ, and Y4 =

Y3
ηθ .

Proof. For any fixed x > 0 and any y ∈ R, the equation G(z) = x+ iy
has exactly four complex roots, β1,x+iy, β2,x+iy, γ1,x+iy and γ2,x+iy, which
are all continuous functions of y (see, e.g., Ostrowski [22]). In particular,
when y = 0, Kou and Wang [19] showed that all the four roots are real and
satisfy

(35) −∞ < γ2,x < −θ < γ1,x < 0 < β1,x < η < β2,x < +∞.

We claim that for the fixed x > 0 and any y ∈ R, the real parts of the four
complex roots are all non-zero. Otherwise, there exist d, y ∈ R such that
G(id) = x+ iy. However, this contradicts to

ℜ(G(id)) ≤ −σ2

2
d2 − λ+ λ

∣

∣

∣

∣

pη

η − id

∣

∣

∣

∣

+ λ

∣

∣

∣

∣

qθ

θ + id

∣

∣

∣

∣

≤ −σ2

2
d2 − λ+ λp+ λq

= −σ2

2
d2 ≤ 0 < x.

Note that the real parts of the four roots are all continuous in y. Moreover,
by (35) we know ℜ(βj,x+iy) > 0 and ℜ(γj,x+iy) < 0 for j = 1, 2 when x > 0
and y = 0. Therefore, this still holds for the fixed x > 0 and any y ∈ R, i.e.,
there exists exactly two roots with positive real parts.

Now we begin to prove (34). For the first inequality in (34), define

f1(z) := (η − z)(θ + z), g1(z) :=
λ((pη − qθ)z + ηθ)

1
2σ

2z2 + µz − λ− x− iy
,

and a disk K1 := {z ∈ C : |z − η| < R1} with R1 = Y3
|y|θ < η (because

|y| > Y4). Thus for all z ∈ K1, we have ℜ(z) > 0 and |z| < 2η. Then for any
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z ∈ K1 and |y| > Y (x), the denominator of g1(Z) must be non-zero because
its absolute value satisfies

∣

∣

∣

∣

1

2
σ2z2 + µz − λ− x− iy

∣

∣

∣

∣

≥ |iy| −
∣

∣

∣

∣

1

2
σ2z2 + µz − λ− x

∣

∣

∣

∣

(36)

≥ |y| − 2η2σ2 − 2η|µ| − λ− x > 0.

Here the second inequality holds because |z| < 2η and the last holds because
|y| > Y (x) ≥ Y3. Therefore, g1(z) is analytic on K1. Furthermore, by (36)
we can obtain that for any z ∈ ∂K1 and |y| > Y (x),

|g1(z)| ≤
|λ(pη − qθ)z + ληθ|

|y| − 2η2σ2 − 2η|µ| − λ− x
(37)

≤ 2λη|pη − qθ|+ ληθ

|y| − 2η2σ2 − 2η|µ| − λ− x
=:

h1(|y|)
|y| ,

where h1(u) := (2λη|pη−qθ|+ληθ)u
u−2η2σ2−2η|µ|−λ−x

is decreasing in u for u > Y3. It follows

from (37) that

|g1(z)| ≤
h1(|y|)
|y| ≤ h1(Y3)

|y| =
Y3

|y| = R1θ, for any z ∈ ∂K1 and |y| > Y (x).

On the other hand, apparently f1(z) is analytic on K1. Moreover, since
ℜ(z) > 0 and θ > 0, we have

|f1(z)| = R1|θ + z| > R1θ, for any z ∈ ∂K1.

Thus Rouché’s Theorem applies and implies that for any |y| > Y (x), the
number of zeros of f1(z) + g1(z) in K1 is the same as that of f1(z) in K1.
Hence for any |y| > Y (x), G(z) = x+ iy has exactly one root in K1 because

G(z) − (x + iy) ≡
1
2
σ2z2+µz−λ−x−iy

(η−z)(θ+z) · [f1(z) + g1(z)]. The first inequality in

(34) is proved.
The second inequality in (34) can be proved via Rouché’s Theorem anal-

ogously with f2(z) :=
1
2σ

2z2 − iy, g2(z) := λ( pη
η−z + qθ

θ+z − 1) − x+ µz, and

a disk K2 := {z ∈ C : |z − zy| < 2|µ|
σ2 }. The length proof is omitted and

available upon request.

Lemma G.3. Lf (~s) satisfies (13) except that α1 = α3 = 1, α2 = α4 = 0,
M1 = Y (v1), M2 = 1,

ζ1(~v, ω1) = e−bv2

(∣

∣

∣

∣

e−bβ1,s1 (η − β1,s1) + e−bβ2,s1 (β2,s1 − η)

β2,s1 − β1,s1

∣

∣

∣

∣
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+
|(e−bβ1,s1 − e−bβ2,s1 )(β2,s1 − η)(η − β1,s1)|

|β2,s1 − β1,s1 | · (η + v2)

)

,

ζ2(~v, ω2) =
e−bv2

T0
(T1 + T2 + T3), and ζ(~v) = ζ2(~v, 0),

where

T0 = |zM1 − η| − Y3

M1θ
− 2|µ|

σ2
, T1 = e

−b
(

η− Y3
M1θ

)

Y3

θ
,

T2 =
16σ2

b2
e
− b

2

(√
|ω1|

σ
− 2|µ|

σ2

)

(

|zM1 − η| − 2|µ|
σ2

)

,

T3 =
Y3

θ|η + s2|
[

e
−b

(

η− Y3
M1θ

)

+ e
−b

(√
M1
σ

− 2|µ|

σ2

)

]

(

|zM1 − η| − 2|µ|
σ2

)

,

zM1 =
√
M1
σ (1 + i · sgn(ω1)), and Y (·), Y3, β1,s1 and β2,s1 are the same as in

Lemma G.2.

Proof. By (24) we obtain |Lf (~s)| ≤ ζ1(~v, ω1). Hence for all ~ω, in partic-

ular, for all ~ω ∈ D
~M
2 , we have |Lf (~s)| ≤ ζ1(~v, ω1) ≡ ζ1(~v, ω1)|ω2|−α2 .

When ~ω ∈ D
~M
1 ∪ D

~M
3 ≡ {~ω : |ω1| > M1}, we have |ω1| > Y (v1). Thus

applying Lemma G.2 yields

|e−bβ1,s1 | = e−bℜ(β1,s1 ) ≤ e
−b

(

η− Y3
M1θ

)

(38)

|e−bβ2,s1 | = e−bℜ(β2,s1 ) ≤ e
−b

(√
|ω1|

σ
− 2|µ|

σ2

)

.

Moreover, when ~ω ∈ D
~M
1 ∪D

~M
3 , from the definition of Y (·) in Lemma G.2

we conclude that |ω1| > Y (v1) ≥ Y1 ≡ 2(ση + 2|µ|
σ )2, which further implies

ℜ(zω1) − 2|µ|
σ2 > ℜ(zM1) − 2|µ|

σ2 =

√
|M1|
σ − 2|µ|

σ2 >
√
Y1
σ − 2|µ|

σ2 ≥ η. It follows

that |zω1 − η| ≥ |zM1 − η|. Therefore, for any ~ω ∈ D
~M
1 ∪D

~M
3 ,

I1(ω1) := |β2,s1 − β1,s1 | ≥ |zω1 − η| − |zω1 − β2,s1 | − |β1,s1 − η|
≥ |zM1 − η| − |zω1 − β2,s1 | − |β1,s1 − η|

≥ |zM1 − η| − 2|µ|
σ2

− Y3

M1θ
,(39)

where the last inequality holds due to Lemma G.2. Furthermore, for any

~ω ∈ D
~M
1 ∪D

~M
3 , we have

I2(ω1) :=

∣

∣

∣

∣

β2,s1 − η

β2,s1 − β1,s1

∣

∣

∣

∣

≤ 1 +

∣

∣

∣

∣

β1,s1 − η

β2,s1 − β1,s1

∣

∣

∣

∣
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≤ 1 +
Y3
M1θ

|zM1 − η| − 2|µ|
σ2 − Y3

M1θ

=
|zM1 − η| − 2|µ|

σ2

|zM1 − η| − 2|µ|
σ2 − Y3

M1θ

,(40)

where the second inequality holds because of Lemma G.2 and (39). Besides,

define h(x) := xe−
b
2σ

√
x for x ≥ 0. It is easy to obtain that h(x) attains its

maximum at x = 16σ2/b2.Thus by (38) we have
(41)

I3(ω1) := |ω1e
− b

2
β2,s1 | ≤ |ω1|e−

b
2σ

√
|ω1|+ b|µ|

σ2 ≤ h

(

16σ2

b2

)

e
b|µ|

σ2 <
16σ2

b2
e

b|µ|

σ2 .

From (24) we obtain

|Lf (~s)| ≤ e−bv2
{

e−bβ1,s1 |η − β1,s1 |/I1(ω1) + e−
b
2
β2,s1 I2(ω1)I3(ω1)/|ω1|

+ [(e−bβ1,s1 + e−bβ2,s1 )|η − β1,s1 |I2(ω1)]/|η + s2|
}

Substituting (34), (38), (39), (40) and (41) into the RHS of the inequality

above yields |Lf (~s)| ≤ ζ2(~v,ω2)
|ω1| ≤ ζ(~v)

|ω1| for all ~ω ∈ D
~M
1 ∪D

~M
3 .

Proof of Proposition 6.2. For any ~v ∈ ROAC of Lf (~s), from Table 4
we know

|LF (s1,−s2)| =
∣

∣

∣

∣

1

−s2(s1 −G(−s2))
Lf (~s)

∣

∣

∣

∣

(42)

≤ 1

|ω2|
1

|s1 −G(−s2)|
· |Lf (~s)|

|LUIC(s1 − r,−s2 − 1)| =
∣

∣

∣

∣

S−s2
0

−s2(−s2 + 1)(s1 −G(−s2))
Lf (~s)

∣

∣

∣

∣

(43)

≤ S−v2
0

|ω2|2
∣

∣

∣

∣

1

s1 −G(−s2)

∣

∣

∣

∣

· |Lf (~s)|.

Combining Lemma G.1 and G.3 with (42) yields

|LF (s1,−s2)| ≤















ζ̂−1ζ2(~v, ω2)|ω1|−2, for all ~ω ∈ D
~MF

1 ;

4σ−2ζ1(~v, ω1)|ω2|−3, for all ~ω ∈ D
~MF

2 ;

2σ−1ζ(~v)|ω1|−
3
2 |ω2|−2, for all ~ω ∈ D

~MF

3 ,

(44)

where ~MF := (MF
1 ,MF

2 ) with MF
j = max{M∗

j ,Mj} for j = 1, 2. Here, M∗
1 ,

M∗
2 , and ζ̂ are given in Lemma G.1 with v2 replaced by −v2, while M1, M2,

ζ1(~v, ω1), ζ2(~v, ω2), and ζ(~v) are given in Lemma G.3.
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Similarly, combining Lemma G.1 and G.3 with (43) yields

|LUIC(s1 − r,−s2 − 1)| ≤















ζ̂−1S−v2
0 ζ2(~v, ω2)|ω1|−2, for all ~ω ∈ D

~MUIC

1 ;

4σ−2S−v2
0 ζ1(~v, ω1)|ω2|−4, for all ~ω ∈ D

~MUIC

2 ;

2σ−1S−v2
0 ζ(~v)|ω1|−

3
2 |ω2|−3, for all ~ω ∈ D

~MUIC

3 ,

(45)

where ~MUIC ≡ ~MF . The proof of Proposition 6.2 is completed.
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