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TIGHTNESS OF INVARIANT DISTRIBUTIONS
OF A LARGE-SCALE FLEXIBLE SERVICE SYSTEM

UNDER A PRIORITY DISCIPLINE

By Alexander L. Stolyar and Elena Yudovina∗

Alcatel-Lucent Bell Labs and University of Michigan

We consider large-scale service systems with multiple customer
classes and multiple server pools; interarrival and service times are
exponentially distributed, and mean service times depend both on
the customer class and server pool. It is assumed that the allowed
activities (routing choices) form a tree (in the graph with vertices
being both customer classes and server pools). We study the behavior
of the system under a Leaf Activity Priority (LAP) policy, which
assigns static priorities to the activities in the order of sequential
“elimination” of the tree leaves.

We consider the scaling limit of the system as the arrival rate
of customers and number of servers in each pool tend to infinity in
proportion to a scaling parameter r, while the overall system load
remains strictly subcritical. Indexing the systems by parameter r,
we show that (a) the system under LAP discipline is stochastically
stable for all sufficiently large r and (b) the family of the invariant

distributions is tight on scales r
1

2
+ǫ for all ǫ > 0. (More precisely, the

sequence of invariant distributions, centered at the equilibrium point

and scaled down by r
−( 1

2
+ǫ), is tight.)

1. Introduction. Large-scale service systems with heterogeneous cus-
tomer and server populations bring up the need for efficient dynamic control
policies that dynamically match arriving (or waiting) customers and avail-
able servers. It is desirable to have algorithms that avoid excessive customer
waiting and do not rely on the knowledge of system parameters.

Consider a service system with multiple customer and server types, where
the arrival rate of class i customers is Λi, the service rate of a class i customer
by a type j server is µij, and the server pool sizes are Bj . A desirable feature
of a dynamic control is insensitivity to parameters Λi and µij. That is,
the assignment of customers to server pools should, to the maximal degree
possible, depend only on the current system state (server occupancies, queue
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sizes), and not on prior knowledge of arrival rates or mean service times,
because those parameters may not be known in advance and, moreover,
they may be changing in time.

If the system objective is to minimize the largest average load of any
server pool, a “static” optimal control can be obtained by solving a linear
program, called static planning problem (SPP), which has Bj’s, µij’s and
Λi’s as parameters. An optimal solution to the SPP will prescribe optimal
average rates Λij at which arriving customers should be routed to the server
pools. Typically (in a certain sense) the solution to SPP is unique and the
basic activities, i.e. routing choices (ij) for which Λij > 0, form a tree; let
us assume this is the case. Probabilistic routing with static probabilities
Λij/Λi of routing a customer of type i to server pool j, will balance the
loads among different server pools and will avoid excessive customer waiting;
however, in order to find the routing probabilities, it is necessary to know all
of the parameters Λi, Bj, and µij in advance. The Shadow Routing policy in
[6] is a dynamic control policy, which achieves the load balancing objective
without a priori knowledge of input rates Λi; in the process it “automatically
identifies” the basic activity tree. Shadow Routing policy, however, does need
to “know” the service rates µij .

In this paper we assume that the basic activity tree is known, but not
the precise rates Λi, µij; we restrict the routing choices to activities within
the basic activity tree. We consider the large-number-of-servers asymptotic
regime, in which the arrival rate of customers and number of servers in each
pool tend to infinity in proportion to a scaling parameter r; our focus is
on the case where the overall system load remains strictly subcritical. In
a previous paper [8] we showed that a very natural load balancing policy
considered e.g. by [4, 1, 2] may lead to instability at the system equilib-
rium point: in particular, for certain parameter settings [8, Theorem 7.2]
demonstrated the non-tightness (in fact – evanescence to infinity) of invari-

ant measures on the diffusion, r
1
2 - scale. (More precisely, this means that

the sequence of invariant distributions, centered at the equilibrium point
and scaled down by r−

1
2 , is non-tight, and moreover – escapes to infinity.)

In this paper we consider a different algorithm, which we call the Leaf
Activity Priority (LAP) policy. As specified above, no precise knowledge of
the rates Λi and µij is required, besides the knowledge of the basic activity
tree, and routing is restricted to basic activities only. The policy assigns
static priorities to the activities in the order of sequential “elimination” of
the tree leaves. The precise definition will be given in Section 2.2. Assum-
ing strictly subcritical load, for this policy we first prove that the system
is stochastically stable for all sufficiently large values of r. (In contrast to
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load balancing policies, the stability under LAP is not “automatic”.) Next,
we demonstrate the r-scale (fluid-scale) tightness of stationary distributions;
this fact is closely related to stability – both are“consequences” of the rela-
tively “benign” behavior of the system on the fluid scale. Then, we obtain a
much stronger tightness result, namely that the invariant distributions are
tight on the r

1
2
+ǫ-scale, for any ǫ > 0; this is the main contribution of the

paper, which involves the analysis of the process under hydrodynamic and
local-fluid scaling (in addition to “standard” fluid scaling). We believe that
our analysis can be extended to prove still stronger, diffusion scale (r1/2)
tightness; this is work in progress.

For a general review of literature on the large-number-of-servers asymp-
totic regime, including design and analysis of efficient control algorithms,
see e.g. [4, 6] and references therein.

The rest of the paper is organized as follows. In Section 2 the model, the
asymptotic regime, LAP discipline and basic notation and introduced. The
main results are stated in Theorem 10 of Section 3, with its statements (i)
and (ii) being the stability and tightness results, respectively. Section 4 con-
tains the analysis of the process on the fluid scale, which leads to establishing
stability (Theorem 10(i)) and fluid scale (r-scale) tightness of stationary dis-
tributions. In Section 5, using the fluid-scale tightness as a starting point, we
prove the r1/2+ǫ-scale tightness (Theorem 10(ii)); this is the key part of the
paper, which involves the analysis of system dynamics under LAP discipline
under hydrodynamic and local-fluid scaling.

2. Model.

2.1. The model; Static Planning (LP) Problem. Consider the model in
which there are I customer classes, labeled 1, 2, . . . , I, and J server pools,
labeled 1, 2, . . . , J . (Servers within pool j are referred to as class j servers.
Also, throughout this paper the terms “class” and “type” are used inter-
changeably.) The sets of customer classes and server pools will be denoted
by I and J , respectively. We will use the indices i, i′ to refer to customer
classes, and j, j′ to refer to server pools.

We are interested in the scaling properties of the system as it grows large.
The meaning of “grows large” is as follows. We consider a sequence of sys-
tems indexed by a scaling parameter r. As r grows, the arrival rates and the
sizes of the service pools, but not the speed of service, increase. Specifically,
in the rth system, customers of type i enter the system as a Poisson process
of rate λri = rλi, while the jth server pool has rβj individual servers. (All
λi and βj are positive parameters.) Customers may be accepted for service
immediately upon arrival, or enter a queue; there is a separate queue for
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each customer type. Customers do not abandon the system. When a cus-
tomer of type i is accepted for service by a server in pool j, the service time
is exponential of rate µij; the service rate depends both on the customer
type and the server type, but not on the scaling parameter r. If customers
of type i cannot be served by servers of class j, the service rate is µij = 0.

Remark 1. Strictly speaking, the quantity βjr may not be an integer,
so we should define the number of servers in pool j as, say, ⌊βjr⌋. However,
the change is not substantial, and will only unnecessarily complicate the
notation.

Consider the following, load-balancing, static planning problem (SPP):

(1a) min
λij ,ρ

ρ,

subject to

(1b) λij ≥ 0, ∀i, j

(1c)
∑

j

λij = λi, ∀i

(1d)
∑

i

λij/(βjµij) ≤ ρ, ∀j.

Throughout this paper we will always make the following two assumptions
about the solution to the SPP (1):

Assumption 2 (Complete resource pooling). The SPP (1) has a unique
optimal solution {λij , i ∈ I, j ∈ J }, ρ. Define the basic activities to be the
pairs, or edges, (ij) for which λij > 0. Let E be the set of basic activities.
We further assume that the unique optimal solution is such that E forms a
tree in the (undirected) graph with vertices set I ∪ J .

Assumption 3 (Underload). The optimal solution to (1) has ρ < 1.

Remark 4. Assumption 2 is the complete resource pooling (CRP) con-
dition, which holds “generically” in a certain sense; see [7, Theorem 2.2].

Assumption 3 is essential for the main results of the paper (r
1
2
+ǫ-scale tight-

ness), but many of the auxiliary results hold (along with their proofs) for
the critically loaded case ρ = 1.
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Note that under the CRP condition, all (“server pool capacity”) con-
straints (1d) are binding:

∑

i λij/(βjµij) = ρ, ∀j. This in particular means
that the optimal solution to SPP is such that, if a system with parameter r
will route type i customers to pool j at the rate λijr, the server pool average
loads will be minimized and “perfectly balanced”.

In this paper, we assume that the basic activity tree is known in advance,
and restrict our attention to the basic activities only. Namely, we assume that
a type i customer service in pool j is allowed only if (ij) ∈ E . (Equivalently,
we can a priori assume that E is the set of all possible activities, i.e. µij = 0
when (ij) 6∈ E , and E is a tree. In this case CRP requires that all feasible
activities are basic.) For a customer type i, let S(i) = {j : (ij) ∈ E}; for a
server type j, let C(j) = {i : (ij) ∈ E}.

Under the CRP condition, optimal dual variables νi, i ∈ I, and αj, j ∈ J ,
corresponding to constraints (1c) and (1d), respectively, are unique and all
strictly positive. The dual variable νi is interpreted as the “workload” asso-
ciated with one type i customer, and

αj

βj
is interpreted as the (average) rate

at which one server in pool j processes workload when it is busy, regardless
of the customer type on which it is working, as long as i ∈ C(j). The dual
variables satisfy the relations νiµij = αj/βj for any (ij) ∈ E , and

∑

j αj = 1,
which in particular imply that

(2)
∑

i

νiλi =
∑

i

∑

j

νiλij =
∑

i

∑

j

λij
αj

βjµij
=
∑

j

αj

∑

i

λij
βjµij

= ρ.

Given ρ < 1, this means, for example, that when all servers in the system are
busy, the total rate

∑

i νiλir at which new workload arrives in the system
is strictly less than the rate

∑

j αjr = r at which it is served.

Remark 5. Although (1) is the load-balancing SPP, and the notions
introduced in this subsection are defined in terms of this SPP, the policy
we consider in this paper (defined in Section 2.2) is not a load balancing
policy. In particular, the system equilibrium point under the policy, will not
balance server pool loads, but rather will keep all pools, except one, fully
occupied.

2.2. Leaf activity priority (LAP) policy. For the rest of the paper, we
analyze the performance of the following policy, which we call leaf activity
priority (LAP). The first step in its definition is the assignment of priorities
to customer classes and activities.

Consider the basic activity tree, and assign priorities to the edges as fol-
lows. First, we assign priorities to customer classes by iterating the following
procedure:
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1. Pick a leaf of the tree;
2. If it is a customer class (rather than a server class), assign to it the

highest priority that hasn’t yet been assigned;
3. Remove the leaf from the tree.

Without loss of generality, we assume the customer classes are numbered
in order of priority (with 1 being highest). We now assign priorities to the
edges of the basic activity tree by iterating the following procedure:

1. Pick the highest-priority customer class;
2. If this customer class is a leaf, pick the edge going out of it, assign this

edge the highest priority that hasn’t yet been assigned, and remove
the edge together with the customer class;

3. If this customer class is not a leaf, then pick any edge from it to a
server class leaf (such necessarily exists), assign to this edge the highest
priority that hasn’t yet been assigned, and remove the edge.

It is not hard to verify that this algorithm will successfully assign priorities
to all edges; it suffices to check that at any time the highest remaining
priority customer class will have at most one outgoing edge to a non-leaf
server class.

Remark 6. This algorithm does not produce a unique assignment of
priorities, neither for the customer classes nor for the activities, because
there may be multiple options for picking a next leaf or edge to remove,
in the corresponding procedures. This is not a problem, because our results
hold for any such assignment. Different priority assignments may correspond
to different equilibrium points (defined below in Section 2.3); once we have
picked a particular priority assignment, there is a (unique) corresponding
equilibrium point, and we will be showing steady-state tightness around
that point. Furthermore, the flexibility in assigning priorities may be a useful
feature in practice. For example, it is easy to specialize the above priority
assignment procedure so that the lowest priority is given to any a priori
picked activity.

We illustrate one such priority assignment in Figure 1.
We will write (ij) < (i′j′) to mean that activity (ij) has higher priority

than activity (i′j′). It follows from the priority assignment algorithm that
i < i′ (customer class i has higher priority than i′) implies (ij) < (i′j′). In
particular, if j = j′, we have (ij) < (i′j) if and only if i < i′. Without loss of
generality, we shall assume that the server classes are numbered so that the
lowest-priority activity is (IJ). (In Figure 1, this corresponds to assigning
the number 3 to server pool C.)



STEADY-STATE TIGHTNESS, PRIORITY DISCIPLINE 387

1
2

2 13 4

65

3

4

A B C

Fig 1. An example assignment of priorities to customer classes and activities to an ex-

ample network. Circles represent customer classes, squares represent server pools.

Now we define the LAP policy itself. It consists of two parts: routing and
scheduling. “Routing” determines where an arriving customer goes if it sees
available servers of several different types. “Scheduling” determines which
waiting customer a server picks if it sees customers of several different types
waiting in queue.

Routing: An arriving customer of type i picks an unoccupied server in
the pool j ∈ S(i) such that (ij) ≤ (ij′) for all j′ ∈ S(i) with idle servers. If
no server pools in S(i) have idle servers, the customer queues.

Scheduling: A server of type j upon completing a service picks the cus-
tomer from the queue of type i ∈ C(j) such that i ≤ i′ for all i′ ∈ S(i) with
Qi′ > 0. If no customer types in C(j) have queues, the server remains idle.

We introduce the following notation (for the system with scaling param-
eter r):
Ψr

ij(t), the number of servers of type j serving customers of type i at time t;
Qr

i (t), the number of customers of type i waiting for service at time t.

2.3. LAP equilibrium point. Informally speaking, the equilibrium point
(ψ∗

ij , q
∗
i )(ij)∈E,i∈I is the desired operating point for the (fluid scaled) vec-

tor (Ψr
ij/r,Q

r
i /r)(ij)∈E,i∈I of occupancies and queue lengths under the LAP

policy. Specifically, we will be showing that in steady state the fluid-scaled
vector converges in distribution to the equilibrium point, and will then show
that the deviations from it are small. We define the equilibrium point below;
it will be the stationary point of the fluid models defined in Section 4.

The LAP discipline is not designed with load balancing in mind, so its
equilibrium point does not, of course, achieve load balancing among the
server pools. To define it, we recursively define the quantities λij ≥ 0, which
have the meaning of routing rates, scaled down by factor 1/r. (These λij are
not the same as those given by the optimal solution to the SPP (1).) For the
activity (1j) with the highest priority, define either λ1j = λ1 and ψ∗

1j =
λ1
µ1j

,

or ψ∗
1j = βj and λ1j = βjµ1j , according to whichever is smaller. Replace λ1

by λ1 −λ1j and βj by βj −ψ∗
1j , and remove the edge (1j) from the tree. We

now proceed similarly with the remaining activities.
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Formally, set

λij = min



λi −
∑

j′:(ij′)<(ij)

λij′ , µij

(

βj −
∑

i′<i

λi′j
µi′j

)



 .

Since the definition is in terms of higher-priority activities, this defines the
(λij)(ij)∈E uniquely. The LAP equilibrium point is defined to be the vector

(ψ∗
ij , q

∗
i )(ij)∈E,i∈I

given by

(3) ψ∗
ij =

λij
µij

, q∗i = 0 for all (ij) ∈ E , i ∈ I.

(Since we are in the underloaded case ρ < 1, all queues should be 0 at
equilibrium.) Clearly, by the above construction, we have

λi =
∑

j

λij =
∑

j

µijψ
∗
ij, i ∈ I,

∑

i

ψ∗
ij ≤ βj , j ∈ J .

To avoid trivial complications, throughout the paper we make the follow-
ing assumption:

Assumption 7. If (ψij)(ij)∈E are such that ψij ≥ 0, λi =
∑

j µijψij , and
∑

i ψij ≤ βj for all j, then ψij > 0 for all (ij) ∈ E .

This assumption implies, in particular, that for the equilibrium point we
must have ψ∗

ij > 0 for all (ij) ∈ E and, moreover,
∑

i ψ
∗
ij = βj for all j < J

and
∑

i ψ
∗
iJ < βJ .

The Assumption 7 means that the system needs to employ (on average)
all activities in order to be able to handle the load. It holds, for example,
whenever ρ is sufficiently close to 1. Indeed, suppose the arrival rates (λi)i∈I
are such that ρ = 1−ǫ, and consider the system with arrival rates λ̂i =

1
1−ǫλi.

The basic activity tree E will be the same for (λ̂i)i∈I as for (λi)i∈I . Since
ρ = 1 for (λ̂i)i∈I and CRP holds, there exists a unique set of (ψ̂ij)(ij)∈E
that satisfies the conditions, and it has ψ̂ij > 0 for all (ij) ∈ E . Also, if ǫ is

sufficiently small, we must have ψij ≈ ψ̂ij for all (ij) ∈ E , and hence ψij > 0
for all (ij) ∈ E .

Remark 8. Assumption 7 is technical – our main result, Theorem 10,
can be proved without it, by following the approach presented in the paper.
But, it simplifies the statements and proofs of many auxiliary results, and
thus substantially improves the exposition.
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Remark 9. Although the LAP equilibrium point does not achieve load
balancing, when system is heavily loaded (i.e. ρ is close to 1), the load
balancing is achieved approximately, in the sense that all queues are kept
small and all servers are almost fully loaded – which is the best any “load
balancer” could do (when ρ is close to 1).

2.4. Basic notation. Vector (ξi, i ∈ I), where ξ can be any symbol, is
often written as (ξi); similarly, (ξj, j ∈ J ) = (ξj) and (ξij, (ij) ∈ E) = (ξij).
Furthermore, we often use notation (ξi, ηij) to mean ((ξi, i ∈ I), (ηij , (ij) ∈
E)), and similar notations as well. Unless specified otherwise,

∑

i ξij =
∑

i∈C(j) ξij and
∑

j ξij =
∑

j∈S(i) ξij. For functions (or random processes)
(ξ(t), t ≥ 0) we often write ξ(·). (And similarly for functions with domain
different from [0,∞).) So, for example, (ξi(·)) signifies ((ξi(t), i ∈ I), t ≥ 0).

The symbol =⇒ denotes convergence in distribution of random variables
in the Euclidean space R

d (with appropriate dimension d). The symbol →
denotes ordinary convergence in R

d. Standard Euclidean norm of a vector
x ∈ R

d is denoted |x|, while ‖x‖ denotes the L1-norm (sum of absolute values
of the components); u.o.c. means uniform on compact sets convergence of
functions, with the domain defined explicitly or by the context. For x ∈ R,
⌊x⌋ is the greatest integer less than or equal to x.

3. Main result. We are now in position to state our main result.

Theorem 10. Consider the sequence of systems under LAP policy, in
the scaling regime and under the assumptions specified in Section 2, with
ρ < 1. Then:
(i) For all sufficiently large r, the system is stable, i.e. the countable Markov
chain (Ψr

ij(·), Q
r
i (·)) is positive recurrent.

(ii) For any ǫ > 0, the stationary distribution of r−1/2−ǫ(Ψr
ij(·)−ψ

∗
ijr,Q

r
i (·))

weakly converges to the Dirac measure concentrated at 0.

The proof is given in the rest of the paper, and consists roughly of two
stages. First, we study the process under the fluid scaling r−1(Ψr

ij(·), Q
r
i (·)),

which allows us to prove stability and statement (ii) for ǫ = 1/2. Then we
need a more detailed analysis, involving hydrodynamic and local-fluid scaling
of the process, to prove (ii) for any ǫ > 0.

Throughout the paper, we will use the following additional notation for
the system variables. For a system with parameter r, we denote:
Xr

i (t) =
∑

j Ψ
r
ij(t) +Qr

i (t) is the total number of customers of type i in the
system at time t;
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Ar
i (t) is the total number of customers of type i exogenous arrivals into the

system in interval [0, t];
Dr

ij(t) is the total number of customers of type i that completed the service
in pool j (and departed the system) in interval [0, t];
Ξr
ij(t) is the total number of customers of type i that entered service in pool

j in interval [0, t].
There are some obvious relations between realizations of these processes:
Qr

i (t) = Qr
i (0) + Ar

i (t) −
∑

j Ξ
r
ij(t); Q

r
i (t) > 0 implies

∑

i′ Ψ
r
i′j(t) = βjr for

each j ∈ S(i); and so on.
We can and will assume that a random realization of the system with

parameter r is determined by its initial state and realizations of “driv-

ing” unit-rate, mutually independent, Poisson process Π
(a)
i (·), i ∈ I and

Π
(s)
ij (·), (ij) ∈ E , as follows:

Ar
i (t) = Π

(a)
i (λirt), Dr

ij(t) = Π
(s)
ij

(

µij

∫ t

0
Ψr

ij(u)du
)

;

the driving Poisson processes are common for all r.

4. Fluid scaling. We begin by analyzing the LAP discipline on the
fluid scale. Namely, consider the scaling

(

ψr
ij(t), q

r
i (t), x

r
i (t), a

r
i (t), d

r
ij(t), ξ

r
ij(t)

)

=
1

r

(

Ψr
ij(t), Q

r
i (t),X

r
i (t), A

r
i (t),D

r
ij(t),Ξ

r
ij(t)

)

.

Proposition 11. Suppose (ψr
ij(0), q

r
i (0)) → (ψij(0), qi(0)). Then, w.p.1,

for any subsequence r → ∞ there exists a further subsequence along which
(ψr

ij(·), q
r
i (·), x

r
i (·), a

r
i (·), d

r
ij(·), ξ

r
ij(·)) converges uniformly on compact sets to

a set (ψij(·), qi(·), xi(·), ai(·), dij(·), ξij(·)) of Lipschitz continuous functions
satisfying conditions (4). The conditions involving derivatives are to be sat-
isfied at all regular points of the limiting set of functions. (A time point
t ≥ 0 is regular if both minimum and maximum of any subset of component
functions have derivatives at t. All points t ≥ 0 are regular, except a subset
of zero Lebesgue measure.)

The fluid model conditions are:

(4a) qi(t) ≥ 0, ∀i ∈ I; ψij(t) ≥ 0, ∀(ij) ∈ E ;
∑

i

ψij(t) ≤ βj, ∀j ∈ J

(4b) ai(t) = λit, ∀i ∈ I; dij(t) =

∫ t

0
µijψij(s)ds, ∀(ij) ∈ E



STEADY-STATE TIGHTNESS, PRIORITY DISCIPLINE 391

qi(t) = qi(0) + ai(t)−
∑

j

ξij(t), ∀i ∈ I;(4c)

ψij(t) = ψij(0) + ξij(t)− dij(t), ∀(ij) ∈ E

(4d) xi(t) = qi(t) +
∑

j

ψij(t) = xi(0) + λit−
∑

j

∫ t

0
µijψij(s)ds, ∀i ∈ I

(4e)
∑

i

ψij(t) = βj , whenever qi′(t) > 0 for at least one i′ ∈ C(j)

(4f)
d

dt
ξij(t) = 0, whenever qi′(t) > 0 for at least one i′ ∈ C(j), i′ < i

(4g)
d

dt
ξij(t) = 0, whenever

∑

k

ψkj′(t) < βj′ for at least one (ij′) < (ij)

(4h)
d

dt
ξij(t) =

∑

i′

µi′jψi′j(t)−
∑

(i′j)<(ij)

d

dt
ξi′j(t),

for any (ij) ∈ E such that qi(t) > 0 (and then necessarily
∑

k

ψkj(t) = βj)

(4i)
d

dt
ξij(t) = λi −

∑

(ij′)<(ij)

d

dt
ξij′(t),

for any (ij) ∈ E such that
∑

k

ψkj(t) < βj (and then necessarily qi(t) = 0)

(4j)
d

dt
ξij(t) = min



λi −
∑

(ij′)<(ij)

d

dt
ξij′(t),

∑

i′

µi′jψi′j(t)−
∑

(i′j)<(ij)

d

dt
ξi′j(t)





for any (ij) ∈ E such that qi(t) = 0 and
∑

k

ψkj(t) = βj .
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Proof of Proposition 11. The proof of convergence fact and of the
basic conditions (4a)-(4d) of the limit, is very standard. Indeed, it follows
from the Functional Strong Law of Large Numbers (FSLLN) for the driving
processes, and the scaling applied, that w.p.1 each component function is
asymptotically Lipschitz. For example, for each scaled departure process we
have: w.p.1, for a fixed large C > 0 and any 0 ≤ t1 < t2 <∞,

lim sup
r→∞

drij(t2)− drij(t1) < C(t2 − t1).

This implies that, w.p.1 any subsequence of r has a further subsequence
along which a u.o.c. convergence drij(·) → dij(·) holds, where dij(·) is Lips-
chitz. Similar convergence property holds for each arrival process. From here
we obtain the convergence (along a subsequence) for all other components.
Then, relations (4a)-(4d) are inherited from the corresponding conservation
laws for the pre-limit trajectories.

Properties (4e)-(4i) easily follow from the priority rule of LAP; it suffices
to consider the behavior of pre-limit trajectories in a small time interval
[t, t + δ] when r sufficiently large. (See e.g. [5, Theorem 1] for this type of
argument.)

Finally, to show (4j) we recall that, by the priority assignment procedure,
for the activity (ij): either (ij) has the lowest priority among activities asso-
ciated with customer class i or (ij) has the lowest priority among activities
associated with server pool j (or both). (The former case happens if, at the
time when (ij) was being assigned a priority, it was the only activity associ-
ated with customer class i; analogously, the latter case is when (ij) was the
only activity associated with j.) Taking into account that point t is regular
(which in particular implies q′i(t) = 0 and (d/dt)

∑

k ψkj(t) = 0), we easily
see that in the former case the only possibility is that

d

dt
ξij(t) = λi −

∑

(ij′)<(ij)

d

dt
ξij′(t) ≤

∑

i′

µi′jψi′j(t)−
∑

(i′j)<(ij)

d

dt
ξi′j(t),

and in the latter case we must have

d

dt
ξij(t) =

∑

i′

µi′jψi′j(t)−
∑

(i′j)<(ij)

d

dt
ξi′j(t) ≤ λi −

∑

(ij′)<(ij)

d

dt
ξij′(t).

This implies (4j). We omit further details of the proof which are, again,
rather standard.

We call any Lipschitz solution (ψij(·), qi(·), xi(·), ai(·), dij(·), ξij(·)) of (4) a
fluid model of the system with initial state (ψij(0), qi(0)); a set (ψij(·), qi(·)),
which is a projection of a fluid model we often call a fluid model as well.
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Remark 12. It will not be important for the results in the paper whether
the fluid model with given initial conditions is unique; all that will matter
is the long-term behavior of all fluid models with given initial conditions.

Proposition 13. For any ǫ′ > 0 and any K > 0 there exists a finite
time T = T (K) such that all fluid models whose starting state satisfies
|(ψij(0), qi(0))| ≤ K have

∑

i ψij(t) = βj , ∀j < J , qi(t) = 0, ∀i ∈ I, and
∣

∣ψij(t)− ψ∗
ij

∣

∣ < ǫ′ for all (ij) ∈ E, for all t ≥ T (K).

Sketch of proof. For the highest priority activity (1j) there are two
cases.
Case a: Type 1 is a leaf. In this case j is the unique server to which type
1 jobs are allowed to go, and they have the highest priority there. Pick a
small δ > 0. After a finite time (uniformly bounded above, across all starting
states as in the proposition statement), the condition ψ1j(t) ≥ ψ∗

1j − δ must
hold, because ψ1j(t) < ψ∗

1j − δ implies that (d/dt)ψ1j(t) is positive and

bounded away from 0. After such time, q1(t) > 0 implies
∑′

i ψi′j(t) = βj
and (recall that δ is small) λ1 ≤ µ1jψ1j(t)−δ1 for some δ1 > 0; and therefore
(d/dt)q1(t) ≤ −δ1. We conclude that after a finite time (uniformly bounded
above) we must have q1(t) = 0. This in turn implies that (d/dt)ψ1j(t) is
negative and bounded away from 0 as long as ψ1j(t) > ψ∗

1j + δ. Thus,
|ψ1j(t)− ψ∗

1j | ≤ δ and q1(t) = 0 after a bounded time.
Case b: Pool j is a leaf. Then Assumption 7 implies ψ∗

1j = βj and λ1 > µ1jβj .
In this case, ψ1j(t) = ψ∗

1j starting at some time (that is bounded uniformly
on initial states), simply because (d/dt)ψ1j(t) ≥ λ1 − µ1jβj > 0 as long as
ψ1j(t) < βj .

We see that, in either case a or b, for arbitrarily small δ > 0, there exists
T1 = T1(δ) such that |ψ1j(t)− ψ∗

1j | < δ.
We proceed by induction on the activity priorities and, using Assump-

tion 7, easily establish analogous properties for every activity (i′j′). This
implies the result. We omit details.

Theorem 14. For all sufficiently large r, the LAP discipline stabilizes
the network (in the sense of positive recurrence of the underlying Markov
process). Moreover, the sequence of invariant distributions of (ψr

ij , q
r
i ) is

tight, and the invariant distributions converge weakly to the point mass at
the equilibrium point.

Before we proceed with the proof, we need the following lemma.
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Lemma 15. There exists T1 > 0 such that for any T2 > T1 there exists
a sufficiently large C = C(T2) for which the following holds. For any ǫ > 0,

P







∣

∣

∑

(ij)

νi(d
r
ij(T2)− drij(T1))− (T2 − T1)

∣

∣ ≥ ǫ







→ 0,

as r → ∞, uniformly on initial states with maxi∈I q
r
i (0) ≥ C.

In turn, to prove this lemma, we will need to use fluid models with in-
finite initial states. Note that we cannot appeal directly to the properties
of “standard” fluid models defined earlier, because we require convergence
that is uniform in all large initial states. So, we need the following version of
a fluid limit result. We will use notation R̄ = R∪ {∞} for the the one-point
compactification of R.

Proposition 16. Consider a sequence of fluid-scaled processes
(ψr

ij(·), q
r
i (·)) with deterministic initial states such that

∣

∣(ψr
ij(0), q

r
i (0))

∣

∣ =
C ′(r) → ∞ and

(ψr
ij(0), q

r
i (0)) → (ψij(0), qi(0)),

where each qri (0) and qi(0) is viewed as an element of R̄. Partition the cus-
tomer classes as I = I∞ ∪ I0, where qi(0) = ∞ for i ∈ I∞, and qi(0) <∞
for i ∈ I0. (Necessarily, I∞ is non-empty.) Then, with probability 1, any
subsequence of trajectories has a further subsequence which converges u.o.c.
to a fluid model, satisfying same conditions as (4), except that for all i ∈ I∞

the queue length qi(t) = ∞,∀t ≥ 0. Moreover, all such fluid models are such
that, uniformly on all of them, starting at some finite time T ′

1, all server
pools are fully occupied:

∑

i ψij(t) = βj , t ≥ T ′
1, ∀j.

Proof of this result is very similar to that of Proposition 13 (and in fact
simpler), so it is not spelled out here. We just note that Assumption 7 is
essential in showing that all server pools are occupied after a finite time.
Without the assumption, we could still show that the occupancy becomes
strictly greater than at the equilibrium point, and that would be enough for
our purposes; however, it would make Proposition 16 statement and proof
more cumbersome.

Proof of Lemma 15. Let us choose T1 = 2T ′
1, where T

′
1 is as in Propo-

sition 16. Now, if the lemma statement would not hold, then for some fixed
ǫ′ > 0 we could find a sequence of systems with

∣

∣(ψr
ij(0), q

r
i (0))

∣

∣ = C ′(r) →
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∞, such that

lim sup
r

P







∣

∣

∑

(ij)

νi(d
r
ij(T2)− drij(T1))− (T2 − T1)

∣

∣ ≥ ǫ′







> 0.

This, however, is impossible because, by Proposition 16, w.p.1 from any
subsequence of r we can find a further subsequence such that:

∑

i

ψr
ij(t) →

∑

i

ψij(t) = βj uniformly in [T1, T2], ∀j,

drij(T2)− drij(T1) →

∫ T2

T1

µijψij(t)dt, ∀(ij),

and therefore

∑

(ij)

νi(d
r
ij(T2)− drij(T1)) →

∑

(ij)

νi

∫ T2

T1

µijψij(t)dt =

∑

(ij)

∫ T2

T1

αj

βj
ψij(t)dt =

∑

j

αj

βj

∫ T2

T1

[
∑

i

ψij(t)]dt = T2 − T1.

Proof of Theorem 14. Recall that νi > 0 is the workload associated
with a single request of type i; i.e., the optimal dual variable associated with
(1c) for type i. We consider the quantity

W r(t) =
∑

i

νix
r
i (t)

(where xri (t) =
∑

i q
r
i (t) +

∑

ij ψ
r
ij(t)), the total workload of the system. We

will argue that the quantity

Lr(t) = [W r(t)]2

will serve as a Lyapunov function for the rth system. Namely, the following
property holds: there exist positive constants K, T , C1, C2, C3 such that,
for all sufficiently large r (and all t),

(5) if Lr(t) > K then E[Lr(t+ T )− Lr(t)|Lr(t)] < −C1W
r(t) + C2

and

(6) if Lr(t) ≤ K then E[Lr(t+ T )− Lr(t)|Lr(t)] < C3.
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(The proof of (5)-(6) is given after we complete the theorem proof.) It is
then a standard application of the Foster-Lyapunov criteria to conclude that
for all sufficiently large r the system Markov process is positive recurrent,
and moreover, the stationary distributions are such that EW r =

∑

i νiEx
r
i

remains uniformly (in r) bounded. Indeed, for any fixed initial state of the
process, consider the embedded chain at times 0, T, 2T, . . .. It easily follows
(using the fact that each input flow is Poisson, and fluid scaling is applied)
that 0 ≤ ELr(nT ) = E[W r(nT )]2 < ∞ for all n = 0, 1, 2, . . .. Also, WLOG,
by rechoosing if necessary C1 and C2, we can assume that the “then” part
of (5) holds for any Lr(t). We see that, for any n,

ELr((n+ 1)T )− ELr(nT ) ≤ −C1EW
r(nT ) + C2;

from here the positive recurrence and steady-state bound EW r ≤ C2/C1

easily follow, because the opposite would imply ELr(nT ) → −∞ as n→ ∞.
Uniform bound on EW r implies tightness of invariant distributions. The

tightness together with Proposition 13 imply that the sequence of invariant
distributions must weakly converge to the point mass at equilibrium.

It remains to show property (5)-(6). First, it is easy to see (and is a
standard observation) that
(7)
∀T > 0, E[W r(t+ T )−W r(t)]2 are uniformly bounded across all r and t.

This guarantees (6) for any fixed K. To prove (5), we fix T1 > 0 as in
Lemma 15, and then choose a large fixed T > T1. Note that

(min
i∈I

νi)(max
i∈I

qri (t)) ≤W r(t) ≤ (max
i∈I

νi)(I max
i∈I

qri (t) +
∑

j

βj);

in particular, the condition maxi∈I q
r
i (0) → ∞ in Lemma 15 is equivalent to

W r(0) → ∞. If we fix a sufficiently small ǫ′ > 0 and apply Lemma 15, we
obtain the following fact:
for a sufficiently large fixed K > 0 (as a function of T ), uniformly on all
Lr(0) > K and all large r,

(8) P{W r(T )−W r(0) ≤ 2ρT1 −
1

2
(1− ρ)(T − T1)} ≥ 1− ǫ′.

Indeed, the 2ρT1 is a crude upper bound on W r(T1) −W r(0), which holds
with high probability (w.h.p.) for large r, since by (2) new workload arrives
at average rate ρ (in the fluid-scaled system). The term −(1/2)(1−ρ)(T−T1)
is an upper bound on W r(T ) − W r(T1), also holding w.h.p., because by
Lemma 15 the average rate at which workload leaves the system is w.h.p.
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close to 1 in [T1, T ]; and recall that ρ < 1. This proves (8). The RHS of the
first inequality in (8) can be made negative, with arbitrarily large absolute
value, by choosing T large enough. This implies (5), because we have the
identity Lr(t+T )−Lr(t) = 2W r(t)(W r(t+T )−W r(t))+[W r(t+T )−W r(t)]2

and (7), which in particular implies that |W r(t+ T ) −W r(t)| is uniformly
integrable.

5. Proof of Theorem 10(ii).

5.1. Preliminaries. In the previous section we have shown that the pro-
cess (Ψr

ij(·), Q
r
i (·)) is positive recurrent, and then has unique stationary (or

invariant) distribution for all large r (which proved Theorem 10(i)). More-
over,

(9) r−1(Ψr
ij − ψ∗

ijr,Q
r
i ) =⇒ 0.

Here and in the rest of the paper (Ψr
ij , Q

r
i ) means “(Ψr

ij(t), Q
r
i (t)) in sta-

tionary regime.”
So, we know that Theorem 10(ii) is true for ǫ = 1/2, and our goal is to

prove it for any ǫ > 0. In what follows 0 < ǫ < 1/2 is fixed.
From (9), for an arbitrarily small fixed δ > 0, we can choose a positive

function g(r) = o(r), such that,

(10) P{
∣

∣(Ψr
ij − rψ∗

ij, Q
r
i )
∣

∣ ≤ g(r)} ≥ 1− δ.

Without loss of generality, assume r−1/2−ǫg(r) → ∞.
We will prove that there exist positive constants C and T , such that for

any fixed δ1 > 0 the following holds for all sufficiently large r:

(11)
∣

∣

∣

(

Ψr
ij(0)− rψ∗

ij , Q
r
i (0)

)∣

∣

∣
≤ g(r) implies

P{
∣

∣

∣

(

Ψr
ij(T log r)− rψ∗

ij , Q
r
i (T log r)

)∣

∣

∣
≤ Cr1/2+ǫ} ≥ 1− δ1.

This fact, along with (10), implies that for all large r, in steady-state,

P{
∣

∣

∣

(

Ψr
ij − rψ∗

ij, Q
r
i

)∣

∣

∣ ≤ Cr1/2+ǫ} ≥ (1− δ)(1 − δ1).

This clearly proves Theorem 10(ii), because δ, δ1 can be chosen, and ǫ re-
chosen, to be arbitrarily small. So, the rest of Section 5 is the proof of (11),
with the final part of the proof given in Section 5.4.

We will need FSLLN-type results, which can be obtained from a strong
approximation of Poisson processes, available e.g. in [3, Chapters 1 and 2]:
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Proposition 17. A unit rate Poisson process Π(·) and a standard Brow-
nian motion W (·) can be constructed on a common probability space in such
a way that the following holds. For some fixed positive constants C1, C2, C3,
such that ∀T > 1 and ∀u ≥ 0

P

(

sup
0≤t≤T

|Π(t)− t−W (t)| ≥ C1 log T + u

)

≤ C2e
−C3u.

From here, for the unit rate Poisson processes Π
(a)
i (·) and Π

(s)
ij (·), driving

exogenous arrivals and departures, we obtain the following fact. (For Π
(a)
i (·),

for example, we replace t with λirt; T with λirT log r; and u with r1/4.)

Proposition 18. For any fixed T > 0 and any subsequence of r → ∞,
we can find a further subsequence (with r increasing sufficiently fast), such
that:
for each i

sup
0≤t≤T log r

r−1/2−ǫ/2
∣

∣

∣
Π

(a)
i (λirt)− λirt

∣

∣

∣
→ 0, w.p.1,

and for each (ij)

sup
0≤t≤T log r

r−1/2−ǫ/2
∣

∣

∣Π
(s)
ij (µijβjrt)− µijβjrt

∣

∣

∣→ 0, w.p.1.

Let F r(t) be the process of (unscaled) deviations from equilibrium; that
is,

F r(t) = (Ψr
ij(t)− rψ∗

ij , Q
r
i (t)).

Suppose we have a function h(r), such that r1/2+ǫ ≤ h(r) ≤ g(r). (The
quantity h(r) will be the “scale” of |F r(0)|; sometimes, we simply use h(r) =
|F r(0)|, but not necessarily.) We will establish properties of F r(·) under two
different scalings, called hydrodynamic and local-fluid.

We remark that the use of multiple scalings (in addition to the “standard”
fluid scaling) is typical in the analysis of systems in many-server asymptotic
regime, cf. [4] and references therein. However, our hydrodynamic and local-
fluid scalings are somewhat unusual in that the scaling factor h(r) is strictly
“between” r and r1/2. (When h(r) = r, both local-fluid and hydrodynamic
scalings become the standard fluid scaling; if h(r) = r1/2, the local-fluid
scaling becomes the standard diffusion scaling.) Also, the system behavior,
of course, depends on the control discipline, LAP in our case; and so our
analysis of LAP under various scalings is new. Most importantly, the way we
use these multiple scalings for the purposes of proving tightness of stationary
distributions is novel, to the best of our knowledge.
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5.2. Hydrodynamic scaling. Consider the process under the following
scaling and centering:

(12) (ψ
r
ij(t), q

r
i (t), x

r
i (t), a

r
i (t), d

r
ij(t), ξ

r
ij(t)) =

h(r)−1
(

Ψr
ij((h(r)r

−1t)− rψ∗
ij , Q

r
i (h(r)r

−1t),Xr
i (h(r)r

−1t)− r
∑

j

ψ∗
ij ,

Ar
i (h(r)r

−1t),Dr
ij(h(r)r

−1t),Ξr
ij(h(r)r

−1t)
)

.

Theorem 19. Consider a sequence of deterministic realizations, such
that the driving realizations satisfy FSLLN conditions, namely:

(13) (ari (t), t ≥ 0) → (λit, t ≥ 0), u.o.c., ∀i

(14)
(

h(r)−1
(

Dr
ij(h(r)r

−1t)−µij

∫ h(r)r−1t

0
Ψr

ij(s)ds
)

, t ≥ 0
)

→ 0, u.o.c., ∀(ij).

Suppose (ψ
r
ij(0), q

r
i (0)) → (ψij(0), qi(0)).

Then, for any subsequence of r there exists a further subsequence along
which (ψ

r
ij(·), q

r
i (·), x

r
i (·), a

r
i (·), d

r
ij(·), ξ

r
ij(·)) converges uniformly on compact

sets to a set (ψij(·), qi(·), xi(·), ai(·), dij(·), ξij(·)) of Lipschitz continuous
functions satisfying conditions (15). (The conditions involving derivatives
are to be satisfied at regular time points t ≥ 0 of the limiting set of functions.)

The hydrodynamic model conditions are:

(15a) qi(t) ≥ 0, ∀i ∈ I;
∑

i

ψij(t) ≤ 0, ∀j ∈ J

(15b) ai(t) = λit, ∀i ∈ I; dij(t) = µijψ
∗
ijt, ∀(ij) ∈ E

qi(t) = qi(0) + ai(t)−
∑

j

ξij(t), ∀i ∈ I;(15c)

ψij(t) = ψij(0) + ξij(t)− dij(t), ∀i ∈ I

(15d) xi(t) = qi(t) +
∑

j

ψij(t) ≡ xi(0), ∀i ∈ I
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(15e)
∑

i

ψij(t) = 0, whenever qi′(t) > 0 for at least one i′ ∈ C(j)

(15f)
d

dt
ξij(t) = 0, whenever qi′(t) > 0 for at least one i′ ∈ C(j), i′ < i

(15g)
d

dt
ξij(t) = 0, whenever

∑

k

ψkj′(t) < 0 for at least one (ij′) < (ij)

(15h)
d

dt
ξij(t) =

∑

i′

µi′jψ
∗
i′j −

∑

(i′j)<(ij)

d

dt
ξi′j(t),

whenever qi(t) > 0 (and then necessarily
∑

k

ψkj(t) = 0)

(15i)
d

dt
ξij(t) = λi −

∑

(ij′)<(ij)

d

dt
ξij′(t),

whenever
∑

k

ψkj(t) < 0 (and then necessarily qi(t) = 0)

(15j)

d

dt
ξij(t) = min



λi −
∑

(ij′)<(ij)

d

dt
ξij′(t),

∑

i′

µi′jψ
∗
i′j −

∑

(i′j)<(ij)

d

dt
ξi′j(t)





whenever qi(t) = 0 and
∑

k

ψkj(t) = 0.

There is a clear correspondence between the hydrodynamic model and
fluid model conditions. This is not surprising, of course, – the hydrody-
namic limit is also an FSLLN-type limit, but on a different, finer time and
space scale. We omit the proof of Theorem 19 – it is analogous to that of
Proposition 11.

We call any Lipschitz solution (ψij(·), qi(·), xi(·), ai(·), dij(·), ξij(·)) of (15)

a hydrodynamic model (HM) of the system with initial state (ψij(0), qi(0));

a set (ψij(·), qi(·)), which is a projection of an HM we often call a hydro-

dynamic model as well. Also, we sometimes use shorter notations f
r
(·) =

(ψ
r
ij(·), q

r
i (·)), f(·) = (ψij(·), qi(·)).

We have the following corollary of Theorem 19 which we record for future
reference.
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Corollary 20. For any fixed T > 0, K > 0 and δ2 > 0, there exists
a sufficiently small δ3 > 0, such that the following holds. Uniformly on all
|f

r
(0)| ≤ K and all sufficiently large r, conditions

(16) max
i

sup
[0,T ]

|ari (t)− λit| ≤ δ3,

(17) max
(ij)

sup
[0,T ]

|h(r)−1
(

Dr
ij(h(r)r

−1t)− µij

∫ h(r)r−1t

0
Ψr

ij(s)ds
)

| ≤ δ3,

imply

(18) sup
[0,T ]

|f
r
(t)− f(t)| ≤ δ2,

where f(·) is a hydrodynamic model.

Proof. Suppose not. Fix T,K, δ2. There must exist a sequence δ3 ↓ 0,
and a corresponding sequence r = r(δ3) ↑ ∞, such that (16), (17) and the
convergence f

r
(0) → f(0) of initial states hold, but (18) fails for any hydro-

dynamic model. This, however, is impossible, because according to Theo-
rem 19 (or rather its version, specialized to a finite time interval, to be pre-
cise) we can choose a further subsequence of r along which f

r
(t) → f(t), uni-

formly in [0, T ], where f(·) is a hydrodynamic model starting from f(0).

Theorem 21. For any K > 0 there exists a finite time T = T (K) and
constant C = C(K) > 0 such that all hydrodynamic models with

∣

∣f(0)
∣

∣ ≤ K

satisfy the following conditions:
∑

i ψij(T ) = 0,∀j < J , qi(T ) = 0,∀i ∈ I,

and f(t) ≡ f(T ) for all t ≥ T ; maxt≥0 |f(t)| ≤ CK. Moreover,
(ψij(T ), qi(T )) = L(ψij(0), qi(0)), where L is a fixed linear mapping.

Proof. Consider a fixed HM f(·). Consider the highest priority activity
(1j). There are two possible cases: j is a leaf or 1 is a leaf.
Case a: If j is a leaf, then ψ1j(t) ≤ 0 at all times, and ψ1j(t) must increase
at positive rate, bounded away from 0, until it reaches 0 within a finite time.
Thereafter, ψ1j(t) will stay at 0. (The argument is very similar to Case b in
the proof of Proposition 13.)
Case b: If type 1 is a leaf, then q1(t) must decrease and ψ1j(t) increase at the
same rate (positive, bounded away from 0), until the entire queue (if any)
“relocates into” ψ1j ; after that time, ψ1j(t) and q1(t) = 0 will not change.

We see that in either case a or b, after a finite time, the highest priority
activity (1j) can be in a sense “ignored”. This allows us to proceed by
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induction on the activities, from the highest priority to the lowest, to check
that by some finite time T (depending on K) the hydrodynamic model gets
into a state f(T ), satisfying conditions of the theorem, and will stay in this
state for all t ≥ T . Since all HMs are uniformly Lipschitz, we obviously have
a uniform bound maxt≥0 |f(t)| ≤ CK for some C.

Furthermore, since all xi(t) do not change with time, the linear mapping
L is as follows: L(uij , wi) = (cij , 0) where (cij) is the unique solution to

(19a)
∑

j

uij + wi =
∑

j

cij , ∀i ∈ I

(19b)
∑

i

cij = 0, ∀j < J

Remark 22. Examination of the proof of Theorem 21 reveals that the
HM for any initial state is in fact unique. Moreover, with a little further
argument, it is easy to show that an HM depends on the initial state con-
tinuously. Furthermore, the HMs are scalable: if (f(t), t ≥ 0) is an HM,
then so is (f(ct)/c, t ≥ 0) for any c > 0. From here, it is easy to find that
the theorem statement holds for a constant C independent of K and for
T = CK. We will not need these stronger properties in this paper.

For future reference, note that L(uij, wi) = (cij , 0) is a function only of
the vector (zi), where zi = wi +

∑

j uij . The corresponding linear mapping
from (zi) to (cij), we denote L′.

5.3. Local-fluid scaling. The process under local fluid scaling is as fol-
lows. For each r consider

(ψ̃r
ij(t), q̃

r
i (t)) ≡ f̃ r(t) = h(r)−1F r(t).

We will also denote x̃ri (t) = h(r)−1[Xr
i (t)−

∑

j ψ
∗
ijr] ≡ q̃ri (t) +

∑

j ψ̃
r
ij(t).

Since ψ̃r
ij(·) (as well as ψ

r
ij(·)) is centered before it is scaled in space, we

in particular have (by Assumption 7) that
∑

i ψ̃
r
ij(t) ≤ 0 for all j < J at all

times t.

Theorem 23. Consider a sequence of deterministic realizations, such
that the driving realizations satisfy FSLLN conditions, namely:

(20) (h(r)−1(Ar
i (t)− λirt), t ≥ 0) → 0, u.o.c., ∀i
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(21)
(

h(r)−1
(

Dr
ij(t)− µij

∫ t

0
Ψr

ij(s)ds
)

, t ≥ 0
)

→ 0, u.o.c., ∀(ij).

Assume that the initial states converge to a fixed vector (ψ̃r
ij(0), q̃

r
i (0)) →

(ψ̃ij(0), q̃i(0)). Further assume that q̃i(0) = 0,∀i, and
∑

i ψ̃ij(0) = 0 for all
j < J . (In other words, (ψ̃ij(0), q̃i(0)) = L(ψ̃ij(0), q̃i(0)).) Then, for any
subsequence of r there exists a further subsequence along which

(22) (ψ̃r
ij(·), q̃

r
i (·)) → (ψ̃ij(·), q̃i(·)), u.o.c.,

where (ψ̃ij(·), q̃i(·) is a set of Lipschitz functions, with initial condition
(ψ̃ij(0), q̃i(0)), satisfying (local fluid model) conditions (24). Moreover, these
limit trajectories depend continuously on the initial state and are such that,
uniformly on all of them,

(23) |(ψ̃ij(t), q̃i(t))| ≤ |(ψ̃ij(0), q̃i(0))|c1e
−c2t, ∀t ≥ 0,

where c1, c2 > 0 are fixed constants.

The local fluid model conditions are as follows:

(24a) q̃i(t) = 0, ∀i ∈ I

(24b)
∑

j

ψ̃ij(t) =
∑

j

ψ̃ij(0)−
∑

j

∫ t

0
µijψ̃ij(s)ds, ∀i ∈ I

(24c)
∑

i

ψ̃ij(t) = 0, ∀j < J

The I+J − 1 equations for the I+J − 1 functions (ψ̃ij(·)) can be solved se-
quentially, in order of decreasing activity priority, since the highest unsolved-
for priority will always correspond to either a customer-type or a server-type
leaf of the remaining activity tree. Any Lipschitz trajectory satisfying (24)
we will call a local fluid model (LFM). Conditions (24) reduce to a system of
linear ODEs for (ψ̃ij(t)), which of course implies the continuous dependence
on initial state; the fact that each LFM converges to 0 is easily established,
again by induction on activities; therefore, we obtain the uniform exponen-
tial bound (23).

Analogously to f̃ r(·) = (ψ̃r
ij(·), q̃

r
i (·)), we will use shorter notation f̃(·) =

(ψ̃ij(·), q̃i(·)).



404 A. STOLYAR AND E. YUDOVINA

Proof of Theorem 23. The non-trivial part of the proof is showing
the Lipschitz property of the limit f̃(·), because it is no longer a simple con-
sequence of the FSLLN for the driving processes (as it was for the fluid and
hydrodynamic limits). This is because the arrival and service rates in the sys-
tem (with index r) are O(r), while the space is scaled down by h(r) = o(r).
For the same reason, it is also not “automatic” that the limit queues q̃i(·)
stay at 0. This difficulty is resolved as follows. Consider arbitrary number
C4 > ‖(ψ̃ij(0))‖, and the random time τ(r) = min{t | ‖(ψ̃r

ij(t))‖ ≥ C4}.
Then, for each i, the sequence of trajectories x̃ri (·) is “asymptotically Lip-
schitz” in the interval [0, τ(r)] with the Lipschitz constant η = C4‖(µij)‖;
namely, if we consider each trajectory stopped at the corresponding time
τ(r), i.e. x̃ri (min{t, τ(r)}), then any subsequence of trajectories contains a
further subsequence, converging u.o.c. to a Lipschitz trajectory with con-
stant η. This is because in [0, τ(r)) the scaled difference of arrival and de-
parture rates, h(r)−1|λir−

∑

j µijΨ
r
ij(t)| = |

∑

j µijψ̃
r
ij(t)|, is upper bounded

by η, and we have (20)-(21). (Recall that λi =
∑

j µijψ
∗
ij and ψ̃r

ij(t) =

h(r)−1[Ψr
ij(t)−ψ

∗
ijr].) Similarly, each queue length trajectory q̃ri (·) is asymp-

totically Lipschitz in [0, τ(r)].
From the asymptotic Lipschitz properties described above, we obtain the

following. If τ(r) → 0 along some subsequence, then (denoting x̃i(0) =
∑

j ψ̃ij(0))

(25) sup
[0,τ(r)]

‖(x̃ri (t))− (x̃i(0))‖ → 0, sup
[0,τ(r)]

‖(q̃ri (t))− (q̃i(0))‖ → 0.

If lim inf τ(r) > ǫ4 > 0 along some subsequence, then there exists a further
subsequence along which

(26) (x̃ri (·)) → (x̃i(·)), (q̃ri (·)) → (q̃i(·)),

where the convergences are uniform in [0, ǫ4], and each function x̃i(·) and
q̃i(·) is Lipschitz with constant η in [0, ǫ4].

In the case τ(r) → 0, as a consequence of (25), we also must have

(27) sup
[0,τ(r)]

‖(ψ̃r
ij(t))− (ψ̃ij(0))‖ → 0.

Indeed, if (27) does not hold, then for some fixed δ > 0, we can choose a
subsequence of r and a corresponding sequence of times τ1(r) ∈ [0, τ(r)] such
that ‖(ψ̃r

ij(t))−(ψ̃ij(0))‖ ≥ δ for the first time. Fix T > 0 (we will specify the
choice later), and consider the sequence of times τ1(r) − Th(r)/r. Suppose
first that τ1(r) − Th(r)/r ≥ 0 for infinitely many r; then, we consider a
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further subsequence along which this holds, and the trajectory on the time
interval [τ1(r)− Th(r)/r, τ1(r)]. Now, if we reset the time origin to τ1(r)−
Th(r)/r and “stretch” the interval [τ1(r) − Th(r)/r, τ1(r)] by the factor
r/h(r), we will obtain hydrodynamic-scaled trajectories in the interval [0, T ].
We then choose a further subsequence of r along which these trajectories
converge (u.o.c.) to an HM. This HM f(·) will be such that (xi(0)) = (x̃i(0)),
‖(ψij(0)) − (ψ̃ij(0))‖ ≤ δ, all qi(0) = 0, and ‖(ψij(T )) − (ψ̃ij(0))‖ ≥ δ. We

now specify the choice of T : it is large enough so that (ψij(T )) = L′(xi(0)).

But, (xi(0)) = (x̃i(0)), which means (ψij(T )) = L′(x̃i(0)) = (ψ̃ij(0)) – a
contradiction. The contradiction in the case when τ1(r)−Th(r)/r < 0 for all
large r is obtained similarly, except for all r we use time interval [0, Th(r)/r]
to construct a contradicting HM. Thus, we proved (27). But, this leads to a
contradiction with the definition of τ(r). We conclude that the case τ(r) → 0
is in fact impossible, and we always have the case lim inf τ(r) > ǫ4 > 0
and (26).

Next, in addition to (26), we show that

(28) |f̃ r(t)− Lf̃ r(t)| → 0, in particular |(ψ̃r
ij(t))− L′(x̃ri (t))| → 0,

uniformly in [0, ǫ4]. (This is, again, proved by contradiction. If (28) would not
hold, we would be able to construct an HM violating the claim of Theorem 21
that f(t) = Lf(t) must hold after a finite time. We omit details which are
analogous to those in the proof of (27) above.)

In [0, ǫ4] we also have

x̃i(t) = x̃i(0)− d̃i(t), ∀i,

where the Lipschitz function d̃i(·) is a limit (along a subsequence) of
∑

j

∫ t
0 µijψ̃

r
ij(s)ds.

The above properties lead to conditions (24) on the interval [0, ǫ4].
Namely, we formally define (ψ̃ij(·)) = L′(x̃i(·)), obtain the convergence
(ψ̃r

ij(·)) → (ψ̃ij(·)) from (28), and then (24) follows.
Finally, as already observed earlier, the linear ODE (24) solutions satisfy

condition (23). In particular, each local fluid model remains bounded in
[0,∞). This in turn allows us to conclude that by choosing a sufficiently
large C4, the corresponding ǫ4 can be arbitrarily large. This completes the
proof.

We will actually need a generalized version of Theorem 23.

Theorem 24. Consider a sequence of deterministic realizations, such
that the driving realizations satisfy (20)-(21). Assume that the initial states
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converge to a fixed vector f̃ r(0) → f̃◦(0). (We do not assume f̃◦(0) =
Lf̃◦(0).) Then, for any subsequence of r there exists a further subsequence
along which

(29) f̃ r(·) → f̃(·),

uniformly on compact subsets of [0,∞) not containing 0, where f̃(·) is a
local fluid model with initial state f̃(0) = Lf̃◦(0). (Recall that (23) holds for
any LFM.) In addition, for any K > 0 there exists C = C(K) > 0 such that
|f̃◦(0)| ≤ K implies

(30) lim sup
r→∞

sup
0≤t≤1

|f̃ r(t)| ≤ CK.

Proof. The proof is a slight generalization of that of Theorem 23. For
a fixed T5 > 0 consider the interval [0, T5h(r)/r], and the corresponding
hydrodynamic-scaled trajectories in the interval [0, T5]; T5 is chosen large
enough so that the hydrodynamic model reaches state f̃(0) = Lf̃◦(0) by time
T5. Then, we must have f̃ r(T5h(r)/r) → f̃(0); moreover, by Theorem 21 and
Corollary 20,

lim sup
r→∞

sup
0≤t≤T5h(r)/r

|f̃ r(t)| ≤ CK,

for some C, when |f̃◦(0)| ≤ K.
Then, we consider local fluid scaled trajectories starting time point

T5h(r)/r (as opposed to 0), and the rest of the proof is essentially same
as that of Theorem 23.

The following corollary is derived from Theorem 24 analogously to the
way Corollary 20 was derived from Theorem 19.

Corollary 25. For any fixed K > 0, there exists C = C(K) > 0 such
that the following holds. For any fixed T > 0, δ2 > 0 and ǫ2 > 0, there exists
a sufficiently small δ3 > 0 such that: uniformly on all |f̃ r(0)| ≤ K and all
sufficiently large r, conditions

(31) max
i

sup
[0,T ]

|h(r)−1(Ar
i (t)− λirt)| ≤ δ3,

(32) max
(ij)

sup
[0,T ]

|h(r)−1
(

Dr
i (t)− µij

∫ t

o
Ψr

ij(s)ds
)

| ≤ δ3,

imply

(33) sup
[0,T ]

|f̃ r(t)| ≤ (K + 1)C,
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(34) sup
[ǫ2,T ]

|f̃ r(t)− f̃(t)| ≤ δ2,

where f̃(·) is a local fluid model with |f̃(0)− Lf̃ r(0)| ≤ δ2.

5.4. Proof of Theorem 10(ii). We are now in position to prove (11),
and then Theorem 10(ii). The basic idea is to consider the process in the
interval [0, T log r], subdivided into log r intervals, each being T -long. (To be
precise, we need to consider an integer number, say ⌊log r⌋, of subintervals.
This does not cause any difficulties besides making notation cumbersome.)
Then, using the local fluid limit results, we show that, with high probability,
in each of the T -long subintervals, the norm |F r(t)| decreases by a factor
δ6 ∈ (0, 1), unless the norm |F r(t)| at the beginning of the subinterval is
below r1/2+ǫ – in this case |F r(t)| will be bounded above by 3Cr1/2+ǫ in the
entire subinterval (where C is as in Corollary 25 with K = 2). Now, if δ6 is
small enough, so that

(35) δlog r6 < r1/2+ǫ/r, that is δ6 < e−1/2+ǫ,

this means that |F r(t)| must “dip” below r1/2+ǫ at least once, and there-
fore |F r(T log r)| ≤ 3Cr1/2+ǫ (with high probability). We proceed with the
details.

Let us choose δ6 > 0 satisfying (35), and then δ2 > 0 such that 2δ2 < δ6.
Denote by |L| the norm of the linear operator L (defined in Theorem 21),
i.e. the maximum of absolute values of its eigenvalues. Let us choose T > 0
large enough so that (see Theorem 24) |L|c1e

−c2T < δ2.
Suppose, for each r the initial state is as in (11). To prove (11) it suffices

to show that from any subsequence of r we can find a further subsequence,
along which (11) holds. So, consider any fixed subsequence, and a fixed
δ1 > 0.

In each of the subintervals [(i − 1)T, iT ], i = 1, 2, . . . , log r, we consider
the process with the time origin reset to (i − 1)T and the corresponding
initial state F r((i − 1)T ); and if |F r((i − 1)T )| ≤ g(r), then we set h(r) =
max(|F r((i − 1)T )|, r1/2+ǫ). (If |F r((i − 1)T )| > g(r) we set h(r) = g(r)
for completeness.) By Proposition 18, we can choose a further subsequence,
with r increasing sufficiently fast, so that, w.p.1, conditions (31) and (32)
hold for all large r, simultaneously on each of the subintervals [0, T ], [T, 2T ],
. . . , [T (log r − 1), T log r]. We consider the corresponding local fluid scaled
processes f̃ r(·), with their corresponding h(r), on each of the subintervals;
and apply Corollary 25. We see that, with probability 1, for all large r, the
following holds for each interval [(i− 1)T, iT ], i = 1, 2, . . . , log r:
if |F r((i− 1)T )| ∈ [r1/2+ǫ, g(r)] then |F r(iT )| ≤ 2δ2|F

r((i− 1)T )|;
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if |F r((i− 1)T )| < r1/2+ǫ then |F r(iT )| ≤ 3Cr1/2+ǫ.
Since 2δ2 < δ6 we must have |F r(iT )| < r1/2+ǫ for at least one i. Finally,
we conclude that condition |F r(T log r)| ≤ 3Cr1/2+ǫ must hold (w.p.1 for
all large r). This obviously implies (11).
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