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Abstract: This paper provides a Bayesian procedure to aggregate experts’
information in a group decision making context. The belief of each expert
is elicited as a multivariate prior distribution. Then, linear and logarith-
mic combination methods are used to represent a consensus distribution.
Anyway, the choice of the appropriate strategy will depend on the deci-
sion maker’s judgements. A significant task when using opinion pooling is
to find the optimal weights. In order to carry it out, a criterion based on
Kullback-Leibler divergence is proposed. Furthermore, based on the previ-
ous idea, an alternative procedure is presented when a solution cannot be
found. The theoretical foundations are discussed in detail for each aggre-
gation scheme. In particular, it is shown that a general unified method is
achieved when they are applied to multivariate natural exponential fami-
lies. Finally, two illustrative examples show that the proposed techniques
can be easily applied in practice and their usefulness for decision making
under the described situations.
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1. Introduction

An important issue involved in decision problems is the aggregation of experts’
opinions. See, for instance, [17, 25], or [11]. Decision makers often consult experts
before making their choices about a topic. In this sense, it could be necessary or
desirable to obtain a joint probability distribution of the quantities of interest,
which includes the beliefs of the experts (see, e.g., [24]).

Belief aggregation of subjective distributions has been of great interest in sev-
eral fields of knowledge. [11] classified the methods to get the aggregated opinion
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of a group of experts in two types: mathematical and behavioral methods. In
the first case, each expert provides his/her information as a probability distri-
bution over the quantities of interest and independently of the others. Then,
the decision maker needs to combine these distributions to obtain a single dis-
tribution (see, e.g, [1]). A widely used mathematical technique to get this joint
distribution is opinion pooling. The main idea is to find an aggregated distribu-
tion that satisfies a set of reasonable axioms (see, e.g., [17, 10] and [24]). The
two most common and used combined distributions are the linear and logarith-
mic opinion pools (see, e.g., [28] and [3]). For the first of them, the probability
distributions of the experts are averaged whereas, for logarithmic opinion pool,
these distributions are multiplied and renormalized. Anyway, the decision maker
should consistently decide on the way to combine the distributions elicited by
the experts.

A point of controversy when these combined distributions are used, is how to
choose the experts’ weights. Namely, the decision maker needs to reflect his/her
beliefs about the expertise of the experts through the weights. Some related
works can be referred to [17, 12, 9, 26] and references therein, and [21], among
others.

[27] presented a general Bayesian procedure to estimate a set of appropriate
weights in a mixture of prior distributions. The proposed procedure was theoret-
ically formulated for the class of the natural exponential families with quadratic
variance.

The aim of this paper is to extend the previous procedure to multivariate
settings by considering both linear and also including logarithmic opinion pools.
Although two ways to combine experts’ probability distributions are discussed,
the paper does not pretend to compare the merits of linear and logarithmic
opinion pools when the proposed approach is applied. Thus, the focus of this
paper is the choice of the weights when using either of the two aggregation
methods. The fact of increasing the dimensionality of the model could lead to
a computationally complex procedure which, at the same time, involves the
number of experts.

Firstly, a theoretical development is made for each aggregation technique. It
is shown how neither the dimensionality nor the number of experts represent dif-
ficulties in the final process. Next, a general unified analysis of distributions that
belong to the natural exponential families is made. These families are consid-
ered because they include distributions frequently used in practice. In addition,
a straightforward method that allows to obtain the multivariate expectations
involved in the process is presented. Therefore, the entire procedure for those
distributions is analytical. It is important to emphasize that the reader could
apply the technique for a particular distribution. Generally, numerical methods
must be used.

The outline of the paper is as follows. In Section 2, we introduce the notation
for multivariate natural exponential families. Section 3 shows the general proce-
dure by differentiating between the two schemes to get the joint prior distribu-
tion. In addition, we present a unified framework for the previously considered
multivariate distributions in both cases. In Section 4, we apply the developed
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methodology to the multinomial distribution and to the bivariate normal distri-
bution, as examples of a discrete case and a continuous case, respectively. The
conclusion is presented in Section 5.

2. Multivariate natural exponential families

Let η be a σ-finite positive measure on the Borel sets of R
d. Suppose η is

not concentrated on an affine subspace of Rd. A random vector X is distributed
according to a natural exponential family if its density with respect to η satisfies:

f(x|θ) = exp
{

xTθ −M (θ)
}

, θ ∈ Θ ⊆ N , (2.1)

where M (θ) = log
∫

exp{xTθ}dη (x), N = {θ ∈ R
d : M (θ) < ∞} and Θ =

Interior(N ) is nonempty. N is called the natural parameter space and M (θ) the
cumulant generating function. See [4] and [7] for a description of these families.

If X is a random vector distributed according to (2.1), then:

E(X |θ) = ∇M (θ) = µ and Var(X |θ) = HM (θ),

where ∇M(θ) = ∂M(θ)
∂θ and HM (θ) = ∂2M(θ)

∂θT ∂θ
denote the gradient vector and

the Hessian matrix of M(θ), respectively.
Conjugate prior distributions as in [13] and [19] are considered. Let µ0 =

(µ01 , µ02 , . . . , µ0d)
T ∈ Ω (the mean space) and m > 0, the conjugate prior

distributions for θ are:

π (θ) = K(m,µT
0 ) exp

{

mµT
0 θ −mM (θ)

}

, (2.2)

where K(m,µT
0 ) is chosen to make

∫

Θ
π (θ) dθ = 1.

3. The method

Let X be a random vector distributed according to a density f(x|θ), and sup-
pose that k experts provide prior information about the quantities of interest θ.
Then, the opinion of each expert is elicited as a proper prior distribution πj(θ).
In this context, there are different methods to achieve the aggregated opinion
of a group of experts (see, e.g., [14, 15]). One of them consists of using a linear
opinion pool:

πm (θ) =

k
∑

j=1

ωjπj (θ) , (3.1)

where ωj, j = 1, 2, . . . , k are the mixture weights, which are nonnegative and
sum up to one (see, e.g., [16]).

An alternative approach to the linear opinion pool is the logarithmic opinion
pool, which has the expression:

πl (θ) = t

k
∏

j=1

(πj (θ))
ωj , (3.2)
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where t is the normalizing constant, i.e.:

t−1 =

∫

Θ

k
∏

j=1

(πj (θ))
ωj dθ

and the weights ωj satisfy the previously specified conditions.
The linear and logarithmic opinion pools lead to quite different aggregated

prior distributions (see, e.g.,[24]). In general, a logarithmic opinion pool results
in a combined prior distribution which is frequently unimodal and less dispersed
than the one obtained through a linear combination. In consequence, it is more
likely to indicate consensual values when decisions must be made (see [17]). Note
that, in a linear opinion pool the decision maker takes into account the full range
of parameter values, that is, the range of values of θ supported by each expert,
whereas in a logarithm opinion pool he/she focuses on the common range of
parameter values. Illustrative examples that show the main differences between
the two aggregation schemes are presented in [24] and [21]. Moreover, for the
logarithmic opinion pool, it is satisfied that if an expert gives zero probability
to a certain set, then the pooled distribution must also assigns zero probability
to that set.

In any case, the preference for a particular combination will depend on the
the decision maker’s judgements about the parameter of interest, which have to
support the previous information provided by the experts.

In expressions (3.1) and (3.2), ωj, j = 1, 2, . . . , k are the specified weights
according to the experts’ beliefs and they should be chosen to indicate the
relative reliability of each expert. One of the most common practical strategies
consists of placing an equal prior weight over each component (see, [23] where
several examples are discussed). Then, the information provided for each expert
is equally reliable. Thus, all experts participate equally in the initial aggregated
distribution.

Here, the weights are not fixed from the beginning and, a general proce-
dure to obtain them is proposed. The objective is to choose the weights such
that no expert has more prior influence than the others on the combined prior
distributions πm (θ) and πl (θ), respectively. In order to do it, the Kullback-
Leibler divergence is used as a general measure to describe the discrepancy from
each component distribution to the combined distribution. Observe that other
divergence measures can be used (see, for instance, [2] for other information-
theoretic measures). Nevertheless, it will be observed throughout the paper that
the use of Kullback-Leibler divergence provides analytical advantages as well as
computational simplicity. See [6] and [5] for the use of this divergence mea-
sure.

In the next two Subsections, the procedure is developed when linear and
logarithmic opinion pools are selected. Subsequently, the previous process is
applied to natural exponential families.
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3.1. Linear opinion pool

The Kullback-Leibler divergence between the combined prior distribution πm

and the component prior distribution πj is defined as:

KL(πm||πj) =

∫

Θ

πm(θ) log

(

πm(θ)

πj(θ)

)

dθ = Eπm(log πm(θ))− Eπm(log πj(θ)).

The objective is to find ω1, ω2, . . . , ωk, such that:

KL(πm||π1) = KL(πm||π2) = · · · = KL(πm||πk), (3.3)

with the constrains
k
∑

j=1

ωj = 1 and ωj ≥ 0.

From the expression for the linear opinion pool and the definition of the
Kullback-Leibler divergence, it is obtained:

Eπm (log πs (θ)) =

k
∑

j=1

ωjEπj (log πs (θ)) ,

and the solution can be obtained from the linear equation system:

k
∑

j=1

ωj

(

Eπj (log πh (θ))− Eπj (log π1 (θ))
)

= 0, h = 2, 3, . . . , k,

k
∑

j=1

ωj = 1,

(3.4)

being ωj ≥ 0, j = 1, 2, . . . , k. Observe that the equalities given in (3.3) are
equivalent to the previous linear equation system.

Note that the main difficulty in the previous procedure is to obtain the ex-
pectations involve in the process. In particular, a unified analytical process can
be performed when prior distributions as those in Section 2 are considered.

In order to do it, firstly, the expression for the conjugate prior distribution
(2.2) is considered. Then, the expectations are given by:

Eπj (log πs(θ)) = logK(ms,µ
T
0s) +msµ

T
0sEπj (θ)−msEπj (M (θ)),

and the linear equation system (3.4) has the following expression:

k
∑

j=1

ωj

[

(mhµ
T
0h −m1µ

T
01)Eπj (θ) + (m1 −mh) Eπj (M(θ))

]

= logK
(

m1,µ
T
01

)

− logK
(

mh,µ
T
0h

)

, for h = 2, 3, . . . , k,
k
∑

j=1

ωj = 1,

(3.5)

with ωj ≥ 0, j = 1, 2, . . . , k.
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Next, the expectations Eπj (θ) and Eπj (M(θ)) are analytically obtained for
this class of prior distributions. Then, the following equality is considered:

log

∫

Θ

exp
{

mjµ
T
0jθ −mjM (θ)

}

dθ = − logK(mj ,µ
T
0j),

and the partial derivatives ∂µ
0j
(− logK(mj ,µ

T
0j)) and ∂mj (− logK(mj ,µ

T
0j))

are calculated.

Observe that

∂µ
0j
(− logK(mj ,µ

T
0j))=

(

∂µ01j (− logK(mj ,µ
T
0j)), . . . , ∂µ0d

j(− logK(mj ,µ
T
0j))
)T

.

Then, the partial derivatives with respect to µ0tj , t = 1, 2, . . . , d, are given by:

∂µ0tj
(− logK(mj,µ

T
0j)) =

∫

Θ
exp

{

mjµ
T
0jθ −mjM (θ)

}

mjθtdθ
∫

Θ
exp

{

mjµ
T
0jθ −mjM (θ)

}

dθ
= mjEπj (θt) .

Thus,

∂µ
0j
(− logK(mj ,µ

T
0j)) =

(

mjEπj (θ1) ,mjEπj (θ2) , . . . ,mjEπj (θd)
)T

.

The partial derivatives with respect to mj , j = 1, 2, . . . , k, have the expression:

∂mj (− logK(mj ,µ
T
0j)) =

∫

Θ
exp

{

mjµ
T
0jθ −mjM (θ)

} (

µT
0jθ −M (θ)

)

dθ
∫

Θ
exp

{

mjµ
T
0jθ −mjM (θ)

}

dθ

= µT
0jEπj (θ)− Eπj (M (θ)) .

Finally, the expectations are given by the following expressions:

Eπj (θ) =
1

mj

(

∂µ01j (− logK(mj ,µ
T
0j)), . . . , ∂µ0d

j(− logK(mj,µ
T
0j)
)T

,

Eπj (M (θ)) = µT
0jEπj (θ)− ∂mj (− logK(mj,µ

T
0j)). (3.6)

A difficulty arising from the previous procedure is that, it is not always possible
to find a solution satisfying the constrains ωj ≥ 0, j = 1, 2, . . . , k, i.e., on the

simplex Sk = {(ω1, ω2, . . . , ωk) :
∑k

j=1 ωj = 1, ωj ≥ 0, j = 1, 2, . . . , k}. The
multinomial application presented in Subsection 4.1 shows this case in a clear
way. In order to solve this problem, the following alternative process can be
considered. The procedure consists of finding the weight vector (ω1, ω2, . . . , ωk)
that minimizes u, satisfying:

|KL(πm||πs)−KL(πm||πh)| ≤ u for 1 ≤ s < h ≤ k, (3.7)

where u is a nonnegative real number. Finally, this problem is equivalent to the
linear optimization problem:
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minimize u, such that:

k
∑

j=1

ωj

[

Eπj (log (πh (θ)))− Eπj (log (πs (θ)))
]

− u ≤ 0,

−
k
∑

j=1

ωj

[

Eπj (log (πh (θ)))− Eπj (log (πs (θ)))
]

− u ≤ 0,

k
∑

j=1

ωj = 1, ωj ≥ 0,

(3.8)

for 1 ≤ s < h ≤ k.
Note that, by using this procedure, the maximum difference among experts is

the smallest possible in the Kullback-Leibler sense. When u = 0, the procedures
(3.4) and (3.8) are equivalent. Thus, the obtained solution is the same. In addi-
tion, for the conjugate prior distributions (2.2), the previous linear optimization
problem has the expression:

minimize u such that:

k
∑

j=1

ωj

[(

mhµ
T
0h −msµ

T
0s

)

Eπj (θ) + (ms −mh)EπjM ((θ))
]

− u

≤ logK
(

ms,µ
T
0s

)

− logK
(

mh,µ
T
0h

)

,

−
k
∑

j=1

ωj

[(

mhµ
T
0h −msµ

T
0s

)

Eπj (θ) + (ms −mh)EπjM ((θ))
]

− u

≤ logK
(

mh,µ
T
0h

)

− logK
(

ms,µ
T
0s

)

,
k
∑

j=1

ωj = 1, ωj ≥ 0,

(3.9)

for 1 ≤ s < h ≤ k and where the expectations are given by (3.6).

3.2. Logarithmic opinion pool

Now, a logarithmic opinion pooling is chosen to obtain the aggregated prior
distribution. If the same reasoning, as in the previous Subsection is applied,
then the solution can be found by solving the nonlinear equation system:

Eπl
(log πh (θ))− Eπl

(log π1 (θ)) = 0, h = 2, 3, . . . , k,

k
∑

j=1

ωj = 1,
(3.10)

with the constrains ωj ≥ 0, j = 1, 2, . . . , k and, where πl denotes the combined
prior distribution (3.2).

In order to solve it, the expectations have to be calculated. Once again, a
general study could be addressed when conjugate prior distributions (2.2) are
considered.
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For these distributions, the aggregated prior distribution (3.2) is given by:

πl (θ) = t

k
∏

j=1

(πj (θ))
ωj = t

k
∏

j=1

(

K(mj ,µ
T
0j) exp

{

mjµ
T
0jθ −mjM (θ)

})ωj

where the normalizing constant t satisfies:

t−1 =
k
∏

j=1

K(mj ,µ
T
0j)

ωjK−1(
k
∑

j=1

ωjmjµ
T
0j ,

k
∑

j=1

ωjmj),

being K(
∑k

j=1 ωjmjµ
T
0j ,
∑k

j=1 ωjmj), the normalizing constant for the distri-
bution:

exp







k
∑

j=1

ωjmj(µ
T
0jθ −M (θ))







.

Thus, the pooled prior distribution is:

πl (θ) =
K(
∑k

j=1 ωjmjµ
T
0j ,
∑k

j=1 ωjmj)
∏k

j=1 K(mj ,µT
0j)

ωj

k
∏

j=1

(πj (θ))
ωj (3.11)

= K(

k
∑

j=1

ωjmjµ
T
0j ,

k
∑

j=1

ωjmj) exp







k
∑

j=1

ωjmj(µ
T
0jθ −M (θ))







.

It is satisfied:

Eπl
(log πs(θ)) = logK(ms,µ

T
0s) +msµ

t
0sEπl

(θ)−msEπl
(M (θ)),

and, in consequence, the nonlinear equation system (3.10) has the following
expression:

(mhµ
t
0h −m1µ

t
01)Eπl

(θ) + (m1 −mh)Eπl
(M(θ))

= logK (m1,µ
t
01)− logK (mh,µ

t
0h) , for h = 2, 3, . . . , k,

k
∑

j=1

ωj = 1,

(3.12)

being ωj ≥ 0, j = 1, 2, . . . , k.
Now, the main aim is to obtain the expectations Eπl

(θ) and Eπl
(M(θ)),

respectively. Observe that, the pooled prior distribution (3.11) belongs to the
same class as the prior distributions (2.2). Therefore it has, in particular, the
general expression:

π (θ) = K(m,µT
0 ) exp

{

mµT
0 θ −mM (θ)

}

, (3.13)

where the parameters, between the expressions (3.13) and (3.11), can be iden-
tified as:

m =

k
∑

j=1

ωjmj and mµT
0 =

k
∑

j=1

ωjmjµ
T
0j .
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Hence, in order to obtain the expectations Eπl
(θ) and Eπl

(M(θ)), the same
scheme as the one used in the linear case could be followed.

Observe that, it is not always possible to find solution on the simplex Sk =
{(ω1, ω2, . . . , ωk) :

∑k
j=1 ωj = 1, ωj ≥ 0, j = 1, 2, . . . , k}. In order to solve this

problem the procedure in the previous Subsection could be applied. Now, the
following nonlinear optimization problem is obtained:

minimize u such that:
(

mhµ
T
0h −mlµ

T
0s

)

Eπl
(θ) + (ml −mh)Eπl

M ((θ))− u

≤ logK
(

ms,µ
T
0s

)

− logK
(

mh,µ
T
0h

)

,

−
[(

mhµ
T
0h −msµ

T
0s

)

Eπl
(θ) + (ms −mh)Eπl

M ((θ))
]

− u

≤ logK
(

mh,µ
T
0h

)

− logK
(

ms,µ
T
0s

)

,
k
∑

j=1

ωj = 1, ωj ≥ 0,

(3.14)

for 1 ≤ s < h ≤ k.

4. Illustrative examples

In this Section two examples are presented to illustrate the proposed Bayesian
approaches. Firstly, a practical application for the multinomial distribution is
shown. Next, an example for the bivariate normal distribution is considered.
Observe that, in both cases, bivariate random variables are considered in order
to graphically illustrate both the component prior distributions and the joint
prior distributions.

4.1. Linear opinion pool: Multinomial sampling

A discrete random vector x = (x1, x2)
T has a multinomial distribution of di-

mension 2, if its probability mass function is

f (x|p, r) =
r!

2
∏

t=1
xt!(r −

2
∑

t=1
xt)!

2
∏

t=1

pxt
t (1−

2
∑

t=1

pt)
r−

∑
2

t=1
xt ,

where
∑2

t=1 xt ≤ r, r = 1, 2, . . . , 0 < pt < 1,
∑2

t=1 pt < 1, t = 1, 2.
The canonical representation (see, e.g., [8]) is given by (2.1), where the natural

parameter is θ = (θ1, θ2)
T
, and

θt = log

(

pt
1− p1 − p2

)

, t = 1, 2,

thus, Θ = R
2 and M (θ) can be expressed as:

M (θ) = −r log(1− p1 − p2) = r log(1 + eθ1 + eθ2).
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Suppose that three experts supply prior information over p = (p1, p2)
T as three

Dirichlet distributions with parametersmjµ01j , mjµ02j , mj(r−µ01j−µ02j), j =
1, 2, 3, wheremj > 0 and µ0tj ∈ (0, r), t = 1, 2. If the canonical parameterization
is considered, then the combined prior distributions over θ is:

πm (θ) =

3
∑

j=1

ωjπj (θ) =

3
∑

j=1

ωjK(mj,µ
T
0j) exp

{

mjµ
T
0jθ −mjM (θ)

}

, (4.1)

where the normalizing constant is given by the expression:

K(mj ,µ
T
0j) =

Γ (rmj)
2
∏

t=1
Γ (mjµ0tj) Γ(mj(r −

2
∑

t=1
µ0tj))

, j = 1, 2, 3.

Next, in order to obtain the weights, the expectations Eπj (θ) and Eπj (M(θ))
must be calculated. It is satisfied:

− logK(mj,µ
T
0j) =

2
∑

t=1

log Γ (mjµ0tj) + log Γ(mj(r −
2
∑

t=1

µ0tj))− log Γ (rmj) .

Thus, the partial derivatives are given by:

∂µ
0j
(− logK(mj,µ

T
0j)) =

(

mj(Ψ (mjµ01j)−Ψ(mj(r −
2
∑

t=1

µ0tj))),mj

×(Ψ (mjµ02j)−Ψ(mj(r −
2
∑

t=1

µ0tj)))

)T

,

∂mj (− logK(mj,µ
T
0j)) =

2
∑

t=1

µ0tjΨ(mjµ0tj) + (r −
2
∑

t=1

µ0tj)

×Ψ(mj(r −
2
∑

t=1

µ0tj))− rΨ(rmj) ,

where Ψ (·) = Γ
′

(·)
/

Γ (·) denotes the digamma function.

From both previous expressions, it is obtained:

Eπj (θ) =

(

Ψ(mjµ01j)−Ψ(mj(r−
2
∑

t=1

µ0tj)),Ψ(mjµ02j)−Ψ(mj(r−
2
∑

t=1

µ0tj))

)T

,

and

Eπj (M (θ)) = r

(

Ψ(rmj)−Ψ(mj(r −
2
∑

t=1

µ0tj))

)

.

Therefore, both the linear equation system (3.5) and the linear optimization
problem (3.9) can be easily obtained by considering the previous expressions.
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p1 p2

π3

p1 p2

πm

p1 p2

π1

p1 p2

π2

Fig 1. Prior distributions and mixture prior distributions.

In order to illustrate the previous development, it is assumed that the three
experts are providing prior information over θ in r = 10 trials. This individual
information is combined by using the mixture of prior distributions (4.1). The

selected parameters are m1 = 1, m2 = 1.5, m3 = 0.9, µ01 = (6, 2, 2)T , µ02 =

(2, 14/3, 10/3)
T

and µ03 = (20/9, 10/3, 40/9)
T
. These parameters have been

chosen with the aim of presenting how the proposed procedures behave. Now, the
weights are calculated by solving the linear equation system given in (3.5). By
using the previous parameters, the following linear equation system is obtained:

−12.9951ω1 − 2.2575ω2 − 3.5891ω3 = −6.7259,

−3.3043ω1 + 3.8682ω2 + 3.8845ω3 = −0.1055,

ω1 + ω2 + ω3 = 1,

constrained to ωj ≥ 0, j = 1, 2, 3. The solution obtained is (ω1, ω2, ω3) =
(0.5516, 1.5403, −1.0919), which does not belong to S3. Therefore the alter-
native approach must be used. The linear optimization problem (3.9) is solved,
leading to the solution (ω1, ω2, ω3) = (0.4389, 0.1184, 0.4428) and to the optimal
value u = 0.8333.

Figure 1 shows the prior distributions provided by each expert together with
the aggregated prior distribution by using the obtained weights. The usual pa-
rameterization is used to represent all prior distributions since they can be more
easily visualized.
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p1 p2

π0.3

Fig 2. Mixture prior distributions by using the same weights for all experts.

Observe that, through this procedure, the best weights combination is ob-
tained, in the sense that it provides the lowest value for the differences between
the corresponding Kullback-Leibler divergences. Therefore, the obtained aggre-
gated distribution is the one with the highest agreement with the information
provided by the experts. Consequently, any other combination is worse than
the previous one since the obtained value for the proposed differences is higher.
Figure 2 shows the combined distribution, π0.3, by using the prior distributions
described in the first setting and by taking the same values for the weights ωj ,
j = 1, 2, 3.

It can be graphically observed, that the the first expert’s information is
less represented in the density π0.3 (see Figure 2) than in the combined prior
distribution, πm, displayed in Figure 1. Thus, the value for the differences
|KL(π0.3||πh) − KL(π0.3||πs)|, 1 ≤ s < h ≤ 3 are higher than those obtained
by using the proposed procedure. Consequently, taking equal weights is not the
best combination when the criterion in this paper is used.

4.2. Logarithmic opinion pool: Multinomial sampling

Under the initial conditions presented in the previous Subsection, a logarithmic
opinion pooling is considered to get the following aggregated prior distribution:

π (θ) = K(
3
∑

j=1

ωjmjµ
T
0j ,

3
∑

j=1

ωjmj) exp







3
∑

j=1

ωjmj(µ
T
0jθ −M (θ))







,

where the normalizing constant is given by:

K(

3
∑

j=1

ωjmjµ
T
0j ,

3
∑

j=1

ωjmj) =

Γ(r
3
∑

j=1

ωjmj)

2
∏

t=1
Γ(

3
∑

j=1

ωjmjµ0tj)Γ(
3
∑

j=1

ωjmj(r −
2
∑

t=1
µ0tj))

.
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By taking into account the previous development for the linear combination and
the development in Subsection 3.2, it is followed that:

Eπl
(θ) =



Ψ(

3
∑

j=1

ωjmjµ01j)−Ψ(

3
∑

j=1

ωjmj(r −
2
∑

t=1

µ0tj),Ψ(

3
∑

j=1

ωjmjµ02j)

−Ψ(

3
∑

j=1

ωjmj(r −
2
∑

t=1

µ0tj)





T

,

and

Eπl
(M (θ)) = r



Ψ(

3
∑

j=1

rωjmj)−Ψ(

3
∑

j=1

ωjmj(r −
2
∑

t=1

µ0tj)



 .

Therefore, for the considered parameter values m1 = 1, m2 = 1.5, m3 = 0.9,
µ01 = (6, 2, 2)

T
, µ02 = (2, 14/3, 10/3)

T
and µ03 = (20/9, 10/3, 40/9)

T
, the

nonlinear equation system is given by:

−3Ψ(6ω1 + 3ω2 + 2ω3) + 5Ψ(2ω1 + 7ω2 + 3ω3)− 5Ψ(10ω1 + 15ω2 + 9ω3)

+3Ψ(2ω1 + 5ω2 + 4ω3) = −6.7259,

−4Ψ(6ω1 + 3ω2 + 2ω3) + Ψ(2ω1 + 7ω2 + 3ω3) + Ψ(10ω1 + 15ω2 + 9ω3)

+2Ψ(2ω1 + 5ω2 + 4ω3) = −0.1055

ω1 + ω2 + ω3 = 1.

As in the linear case, it is not possible to find a solution that satisfies ωj ≥ 0, j =
1, 2, 3, i.e., on the simplex S3. Hence, the nonlinear optimization problem (3.14)
is solved. The following solution is found: (ω1, ω2, ω3) = (0.5406, 0.4594, 0), being
the optimal value u = 0.3596.

Thus, according to the proposal made in (3.7), a combined prior distribution
that considers only the information provided by the first and second experts,
is enough to represent the initial group opinion. In addition, this combination
is the best one under the criterion exposed in this paper. Figure 3 shows the
prior distributions provided by each expert together with the aggregated prior
distribution by using the calculated weights.

In contrast to the linear opinion pool in the previous Subsection, it can be
observed that a narrower prior distribution is obtained with the logarithmic
opinion pool, i.e., it is more concentrated on the common range of parameter
values.

Figure 4 shows the combined distribution, π0.3, by using the prior distribu-
tions described in the first setting and by taking the same values for the weights
ωj , j = 1, 2, 3. By considering the comment in the previous paragraph, it is visu-
ally complicated to observe the differences between both combined prior distri-
butions. Thus, Figure 4 also exhibits the logarithmic pools under the two weight
vectors. The third expert has more impact on the aggregated prior distribution
π0.3 than on the prior distribution πl. Hence, under the proposal in this paper,
the expert 3 has to be excluded in order to obtain the best weight combination.
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p1 p2

π3

p1 p2

πl
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π1

p1 p2

π2

Fig 3. Prior distributions and logarithmic aggregated prior distribution.
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Densities

p1 p2

π0.3

Fig 4. Logarithmic aggregated prior distributions

4.3. Linear opinion pool: Bivariate normal distribution

A continuous random vector x = (x1, x2)
T
has a bivariate normal distribution,

if its density function is

f (x|λ) =
1

2π |Σ|1/2
exp

{

−
1

2
(x− λ)T Σ−1 (x− λ)

}

,
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where λ = (λ1, λ2)
T

is the two-dimensional mean vector and Σ denotes the
non-singular covariance matrix, i.e.:

Σ =

(

σ2
x1

ρσx1
σx2

ρσx1
σx2

σ2
x2

)

,

with ρ being the correlation between the random variables X1 and X2. It is
assumed that this matrix is fixed.

The canonical representation is given by (2.1), where θ = Σ−1λ, Θ = R
2,

M (θ) = 1
2λ

TΣ−1λ = 1
2θ

TΣθ and b (x) = 1
2π|Σ|1/2

exp{− 1
2x

TΣ−1x} (see,

e.g., [22]).
Suppose that two experts provide prior information over λ as two normal

prior distributions N(µ0j ,Σ/mj), j = 1, 2. If the canonical parameterization

is used, the prior distributions over θ = Σ−1λ supplied by each expert are
N(µ0jΣ

−1,Σ−1 /mj ), j = 1, 2.
Then, the mixture of prior distributions is given by:

πm (θ) =

2
∑

j=1

ωjK(mj ,µ
T
0j) exp

{

mjµ
T
0jθ −mj

1

2
θTΣθ

}

,

where ω1 + ω2 = 1, ωj ≥ 0 and

K(mj,µ
T
0j) =

m
1/2
j

2π
∣

∣Σ−1
∣

∣

1/2
exp

{

−
1

2
µT

0jmjΣ
−1µ0j

}

,

with

Σ−1 =
1

σ2
x1
σ2
x2

(1− ρ2)

(

σ2
x2

−ρσx1
σx2

−ρσx1
σx2

σ2
x1

)

.

In order to obtain the linear equation system given in (3.5), the expectations
Eπj (θ) and Eπj (M(θ)) must be calculated. Firstly, the partial derivatives ∂µ

0j

(− log K(mj , µ
T
0j)) and ∂mj (− logK(mj ,µ

T
0j)) are obtained. By taking into

account the following equality:

− logK
(

mj ,µ
T
0j

)

= −
1

2
logmj + log(2π) +

1

2
log
∣

∣Σ−1
∣

∣+
1

2
µT

0jmjΣ
−1µ0j ,

it is obtained:

∂µ
0j

(

− logK
(

mj ,µ
T
0j

))

=

(

mj

2 |Σ|

(

2µ01jσ
2
x2

− 2ρσx1
σx2

µ02j

)

,

mj

2 |Σ|

(

−2ρσx1
σx2

µ01j + 2µ02jσ
2
x1

)

)T

.

Therefore:

Eπj (θ)=

(

1

2 |Σ|

(

2µ01jσ
2
x2
−2ρσx1

σx2
µ02j

)

,
1

2 |Σ|

(

−2ρσx1
σx2

µ01j+2µ02jσ
2
x1

)

)T

.
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On the other hand, it is satisfied:

∂mj

(

− logK
(

mj ,µ
T
0j

))

= −
1

2m
+

1

2
µT

0jΣ
−1µ0j .

Then,

Eπj (M (θ)) =
1

2mj
−

ρσx1
σx2

µ01jµ02j

|Σ|
+

µ2
01jσ

2
x2

+ µ2
02jσ

2
x1

2 |Σ|
.

Thus, it is finally obtained the following linear equation system:

2
∑

j=1

ωj

[(

m2µ
T
02 −m1µ

T
01

)

Eπj (θ) + (m1 −m2)EπjM ((θ))
]

= logK
(

m1,µ
T
01

)

− logK
(

m2,µ
T
02

)

,

k
∑

j=1

ωj = 1

(4.2)

where Eπj (θ) and Eπj (M(θ)) are given by the previous expressions and ωj ≥ 0,
j = 1, 2.

[18] consider Bayesian inference when prior distributions and likelihood func-
tions are both available for inputs and outputs of a deterministic simulation
model. This problem is related to the issue of aggregating experts’ opinions.
They studied alternative strategies for aggregation, then describe computational
approaches for implementing pooled inference for simulation models. The fol-
lowing particular situation was considered:

Let M (φ) = (12φ1 − 1
2φ2 + 2, 1

4φ1 +
1
8φ2 − 1) = (θ1, θ2) = θT be a model

linking an input φ to an output θ. Suppose an expert on φ (Expert 1) and
an expert on θ (Expert 2) are independently consulted, and they each offer a
prior distribution which describes their beliefs and corresponding uncertainty
about reasonable values of their parameter of expertise. Given M (φ), Expert 2
implicitly professes an opinion about reasonable values of φ. Similarly, Expert
1 implicitly professes an opinion about θ. This occurs even if each expert has
no knowledge of the other’s field. Assume that the solicited prior distributions
are two-dimensional prior distributions (see Figure 5):

π1 (θ) = N2

[(

3
− 13

8

)

,

(

1 .8
.8 2

)]

, π2 (θ) = N2

[(

1
0

)

,

(

2 1.6
1.6 4

)]

.

Then, the two available prior distributions for θ, π1 (θ) and π2 (θ) are pooled
through (3.1) to form a single prior π (θ).

Next, the weights must be calculated such that the mixture of prior distribu-
tions represents a consensus between the beliefs of the experts. In order to do it,
the linear equation system given by (4.2) is solved for this particular case. The
solution is (ω1, ω2) = (0.66522, 0.33478), which belongs to S2. Figure 6 shows
the mixtures of prior distributions by using the previously calculated weights
and ω1 = ω2 = 0.5, respectively. This last pooled distribution is denoted by π0.5.
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Fig 5. From left to right: Prior distributions π1(θ) and π2(θ).
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Fig 6. From left to right: Mixture prior distributions πm(θ) and π0.5(θ).

Given the number of experts as well as the prior distributions elicited by
them, it is difficult to made a comparison between the two combined prior dis-
tributions. Nevertheless, it can be observed that when the obtained weights are
used, then the prior distribution πm is more peak-shaped than the aggregated
prior distribution π0.5. Therefore, the information supplied by the first expert
is less represented in the joint prior distribution π0.5 than in the prior distribu-
tion πm.

Consequently, whereas the density πm is providing equal reliability to the
information provided by the experts, i.e., KL(πm||π1) = KL(πm||π2), the joint
prior distribution, π0.5, satisfies KL(π0.5||π2) < KL(π0.5||π1).

4.4. Logarithmic opinion pool: Bivariate normal distribution

When a logarithmic opinion pooling is used, it is obtained:

π (θ) = K(

2
∑

j=1

ωjmjµ
T
0j ,

2
∑

j=1

ωjmj) exp







2
∑

j=1

ωjmjµ
T
0jθ −mjM (θ))







,
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which, is a normal distribution:N
(

∑
2

j=1
ωjmjµ0j∑

2

j=1
ωjmj

Σ−1, Σ
−1

∑
2

j=1
ωjmj

)

. Thus, the nor-

malizing constant has the expression:

K(

2
∑

j=1

ωjmjµ
T
0j ,

2
∑

j=1

ωjmj) =

(
2
∑

j=1

ωjmj)
1/2

2π |Σ−1|1/2
× exp





























2
∑

j=1

ωjmjµ
T
0j

2
∑

j=1

ωjmj











×





2
∑

j=1

ωjmj



Σ−1











2
∑

j=1

ωjmjµ0j

2
∑

j=1

ωjmj





























.

Next, the expectations Eπl
(θ) and Eπl

(M(θ)) have to be calculated. By tak-
ing into account the previous development for the linear combination and the
comments in Subsection 3.2, it is followed that:

Eπl
(θ) =











1

|Σ|
2
∑

j=1

ωjmj





2
∑

j=1

ωjmjµ01jσ
2
x2

−
2
∑

j=1

ωjmjµ02jρσx1
σx2



 ,

1

|Σ|
2
∑

j=1

ωjmj





2
∑

j=1

ωjmjµ02jσ
2
x1

−
2
∑

j=1

ωjmjµ01jρσx1
σx2















T

,

and

Eπl
(M (θ)) = −

1

2
2
∑

j=1

ωjmj

+
1

2 |Σ| (
2
∑

j=1

ωjmj)2











2
∑

j=1

ωjmjµ01j





2

σ2
x2

+

(

2
∑

j=1

ωjmjµ02j

)2

σ2
x1



−

(
2
∑

j=1

ωjmjµ01j)(
2
∑

j=1

ωjmjµ02j)

|Σ| (
2
∑

j=1

ωjmjµ01j)
2

ρσx1
σx2

.

Now, the scenario described in [18] is considered. Hence, the prior distributions
(see Figure 5) supplied by the two experts are:

π1 (θ) = N2

[(

3
− 13

8

)

,

(

1 .8
.8 2

)]

, π2 (θ) = N2

[(

1
0

)

,

(

2 1.6
1.6 4

)]

.

Given these prior distributions, the nonlinear equation system given in (3.12) is
solved The solution obtained is (ω1, ω2) = (0.33558, 0.66442).
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Fig 7. From left to right: Mixture prior distributions πl(θ) and π0.5(θ).

Figure 7 presents the mixtures of prior distributions by using the previously
calculated weights and ω1 = ω2 = 0.5, respectively. This last pooled distribution
is denoted by π0.5.

Contrary to the linear combination in the previous Subsection, it can be
noted that the logarithmic opinion pool produces a prior distribution more
concentrated on the common range of parameter values. Thus, depending on
what the decision maker needs, the obtained aggregated prior distributions have
different characteristics.

In relation to the joint prior distribution π0.5, Figure 7 shows that it is more
peak-shaped than the density πl. Thus, the information provided by the first
expert has more impact on the aggregated prior distribution π0.5 than on the
prior density πl. In consequence, it satisfies KL(π0.5||π1) < KL(π0.5||π2) and
the weight values (ω1, ω2) = (0.5, 0.5) are not the best ones, under the proposed
criterion.

5. Conclusion

The main novelty of this paper is to build a combined prior distribution by con-
sidering two axiomatic approaches in multivariate settings. Firstly, a theoretical
development is performed under the two axiomatic methods. This process leads
to different optimization problems and, in consequence, to weights according
to the features of the used formulation. This last fact is illustrated with exam-
ples, where it is shown how the combined prior distributions behave with the
obtained weights and equal weights. The proposed methodology is applied to
the natural exponential families. Thus, it is presented how is possible a direct
implementation for several distributions widely used in practice. Hence, despite
the fact that everything becomes computationally much more difficult in multi-
dimensional situations, the proposed approaches are reduced to problems based
on simple theory that can be easily solved.

Finally, it is important to observe that the general proposal in Subsections 3.1
and 3.2, is valid independently of the considered distributions. In particular, the
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use of prior predictive distributions as the experts’ distributions would be very
useful in many applications (see, for instance, [20] and references therein). Thus,
if the expectations involved in the process can be analytically calculated, then
a similar scheme as the one developed for the natural exponential families could
be followed. Otherwise, simulation techniques could be adequately used, in order
to obtain the expectations required to apply the proposal.
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