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Abstract: For discrete data especially, standard P-values can misreport
the true significance, even for moderately large sample sizes. The boot-
strap P-value is the exact tail probability of an appropriate test statistic,
calculated assuming the nuisance parameter equals the null maximum likeli-
hood (ML) estimate. For basic discrete models and standard test statistics,
bootstrap P-values have been found to be extremely close to uniformly
distributed under the null ([1]). Detailed numerical results reported there
suggest that this phenomenon is not explained by asymptotics. In this pa-
per, we identify several desirable non-asymptotic properties of bootstrap
P-values and provide arguments for why bootstrap P-values are so close to
exact. The most important of these is that bootstrap will correct ‘incorrect’
ordering of the sample space and that this leads to a more pivotal distribu-
tion. Most of these arguments only hold for discrete models and when the
null ML estimate is used.
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1. Introduction

Consider a parametric model w(y;,\) for a discrete data vector Y € Y. We
want to test the composite null hypothesis 1) = 1y against the alternative 1 > g
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in the presence of a nuisance parameter (vector) A. To this end, we choose a test
statistic T' that measures deviation of the data from what would be expected
under the null.

Commonly T is the likelihood ratio statistic, the score statistic or the Wald
statistic, which are all members of the power divergence family of Cressie and
Read ([2]). Other choices include the Euclidean distance statistic, see [3]. Differ-
ent test statistics will be more powerful at detecting different alternatives. The
precise choice of T' is not critical to main ideas to be presented, though we will
impose some quite weak conditions on 7" in Section 3.

To execute the test we need the null distribution of T'. We will suppose that
T has been defined so that larger values lead to rejection of the null hypothesis.
This paper is about assigning the correct significance to the observed value
t = T(y). The significance profile is

S(t,A) =Pr(T(Y) > t;¢h0,N) = > w(y;vo, \). (1.1)

y:T(y)>t

If X\ were known then this would measure exactly how improbable the observed
value is under the null, but since S(¢,\) depends on A it is not available for
inference.

The classical solution is to approximate the distribution of 7" by a known
continuous distribution H that does not depend on )\, often normal or y2. This
generates the approximate P-value Q(y) = 1—H (T (y)). This can be appropriate
only if the dependence of S(¢,\) on A is slight.

A less crude approach is to acknowledge that the distribution of 7" depends on
A and to replace A by its best estimate from the data. In this paper, we use the
maximum likelihood (ML) estimate Ao under the null. A new result, supporting
this choice, is given in Section 2. This generates the P-value S(T(y), \o(y))
which we denote by Q(y) Note that Q(y) is no longer a monotone function of
T(y). So even though its construction is based on a particular statistic T, it
may no longer be the case that larger values of T" lead to rejection of the null.
In practice, Q(Y) and Q(Y) are highly correlated, and so lower values of Q(y)
will almost always lead to lower values of Q(y).

This paper concerns the null distribution of Q(Y), the so-called bootstrap P-
value statistic. The null distribution turns out to be extremely close to uniform,
regardless of the value of the nuisance parameters.

Example. The key issues are introduced with an example from [13]. In a clinical
trial, y; = 14 out of n1 = 47 or 29.8% of patients assigned the treatment survived
while yo = 48 out of ng = 283 or 17% of patients assigned the placebo survived.
We want to test the null hypothesis of no treatment effect. Two standard test
statistics are the score statistic 77, which here equals 2.085, and the signed
likelihood ratio statistic 75, which here equals 1.983.

These are not small sample sizes so we would expect standard approximate
methods to work well. The significance profile of t; = 2.085 is in the left panel
of Figure 1 as a non-bolded curve and the approximate P-value Q1 (y) = 0.0185
based on the normal approximation as a horizontal line. The nuisance parameter
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Fic 1. Ezact significance of approzimate P-value (solid) and bootstrap P-value (bold). Left.
Score statistics. Right. Stgned likelihood ratio statistic. Vertical line is null estimate of .

A is the common probability of survival. The approximation is poor except near
A = 0.5. The vertical line is the null estimate Ao = 62/330=18.8% of A from
which we read off the bootstrap P-value Ql(y) =0.0233.

The bold curve is the significance profile of the bootstrap P-value, which is to
say it is the lower tail probability of the statistic Ql(Y) as a function of A. The
curve is almost uniformly close to the quoted value of 0.0233, represented as a
bold horizontal line. Note also that, while there is inevitably some breakdown
at the boundary, the curve converges to zero at these endpoints. So the quoted
value of 0.0233 is close to the true significance for most values of A and is
appropriately conservative when the method breaks down. The right panel is
for ty = 2.085 for which the bootstrap P-value is Q(y) =0.0234. The exact
significance of this bootstrap P-value is represented again as a bold curve and,
as was the case for 77, is uniformly close to nominal. Critically important from a
strict frequentist point of view (see [5]), the supremum of the significance profile
is extremely close to nominal.

A large numerical study reported in [1] shows that this behavior is typical
in discrete models; that bootstrap P-values are consistently an order of magni-
tude more accurate than first order P-values, for even small sample size. It is
surprising that this outstanding level of accuracy is not better known.

The purpose of this paper is to explain this behaviour. We give non-asymptotic
arguments for three key features revealed in the above example, namely that
bootstrap (a) makes the statistic more pivotal i.e. the significance profile flatter,
(b) makes the statistic more uniform i.e. the significance profile is flat at the
correct level, (¢) behaves appropriately near the boundary.



2452 C. Lloyd
2. Parametric bootstrap P-values

We start with a test statistic 71" for testing the null hypothesis ¢ = 1)y against
the alternative v > 19 in the presence of nuisance parameters A. This could
in principle be any statistic, but we will impose some natural conditions in the
next section. After observing t = T'(y), the exact significance is S(t, \) as defined
n (1.1). To quote a P-value we need to replace A with some surrogate. What
surrogate for A should be used?

In general, consider replacing A by a data-based surrogate g(Y, 1) which
gives the general P-value P, (Y') := S(T'(Y), g(Y,%0)). If X\ were known then we
would use the ideal P-value PA( ) = S(T, \). We will measure the size violation
of a P-value by

do(P(Y)) =supPr{P(Y) < a} — a.
A

We also let u(X) = inf, {x+Pr(X > x))} measure the size of a random variable
X defined on [0, 1]. When X is stochastically larger, ;(X) is numerically larger.
Several other natural properties also hold (results available from author).

Result 1. Let Ay (Y, \) = |Py(Y) — Py(Y)| measure the stochastic difference
between the ideal P-value Py (Y") and the general surrogate P-value P, (Y"). Then

da (Pg (Y)) < Sl)\lp (A RYE

Note that the right side does not depend on «. This result means that to
control the worst possible size violation, the best surrogate g(Y, ) to use is
one for which the magnitude of the difference between P,(Y) and P\(Y) is
stochastically smallest, for all values of A. This strongly suggests the restricted
ML estimator \o since it is not only asymptotically optimal but also respects
restrictions on the range of \ for fixed v, unlike the unrestricted ML estimator.

A second reason for using Ao is invariance to the choice of . If (¢, \) is
such that the mapping from (1, A) to (¥, 7n) is one-to-one, then the restricted
ML estimator 7jy of 5 satisfies 7 = 17(1, Ag) and as a consequence Q(y) will be
the same using either parametrisation.

It is shown in [4] that using any estimator A that differs from A by O,(m~1/2),
the difference between S(T', A) and S(T', \) is O, (m ™), where m is a measure of
sample size. On the other hand, building on results in [6] and [7] for continuous
models, Lee and Young ([10]) showed that the distribution function of Q(Y) =
S(T(Y), o(Y)) differs from uniform by terms of order O(m=3/2) for any A for
which an Edgeworth expansion of the distribution of T'(Y) is valid. Their result
is not true of the unrestricted ML estimator, and is not uniform in A. Nor is
it proven for discrete models. It is suggested in [8] that, for discrete models,
inferential errors will be O(m~!) so that from the asymptotic point of view any
estimator of A may be used in the discrete case. Yet numerical results in [11]
showed that using Ao makes a big difference, even for small samples.

In summary, there does not seem to be an asymptotic explanation for the
very good small sample performance of bootstrap P-values for discrete models.
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Though there are good heuristic arguments for usmg the restricted ML estimator
)\0, asymptotic accuracy rates seem to be O(m~!) for any sensible estimator.

3. Likelihood based statistics and rankings

The results to be reported are non asymptotic, but instead focus on how stan-
dard and bootstrap tests rank points in the sample space. The arguments rely
on the sample space Y = {y1,y2, ...} being countable so that it can be indexed.
We denote T'(y;), Ao(y;) and 9(y;) by t;, A; and 1, respectively. We also denote

ik = (Y55 Yo, Ar)

noting that 7; ; is the null likelihood of y;. Therefore, 7;; will be very small
when Ay, is far from ); and takes its maximum value of 7; ; when k = j.

We now impose a very natural conditions on how the test statistic T" depends
on 1) and Xo. The key idea is that if two data sets lead to the same value of
5\0, then the data set with the higher value of 1& provides more evidence that
1 > 9. The most transparent example of a test statistic with this property is
the Wald statistic. In our index notation this statistic is t; = (1b; —t0) /0 (¢, A;)
where o2(1, \) is the so-called asymptotic variance of . For fixed ;\j, tj is
monotone increasing in 1/3j. For canonical exponential family models, this is
also true of the likelihood ratio and the score statistics (results available from
author). The author has investigated a range of test statistics, including the
Euclidean statistic in [3], and hypotheses about non-canonical parameters, and
found numerically that the condition above was always satisfied. An example is
given below.

The second condition is actually a condition on the model, namely that 7; ; be
a decreasing function of 9; for 1; > 1)9. Why is this natural? Let us write 7; ; in
the alternative form m((¢);, A;); ¥, A;) where the data y; has been represented
in its sufficient form (¢;, A;). For fixed \;, this will be smaller when v; is
further from vy. Put simply, the further 1/33‘ is from 1, the more improbable
it is assuming 1) = 1pg. Indeed, the null maximised probability 7;; was itself
suggested as an ordering criterion in [9].

Combining this second condition with the first condition on ¢, it follows that
for fixed j\j, t; is increasing in z/AJj and also decreasing in 7, ;. We will say that
T then satisfies the “natural ordering property”.

In summary, we can now described the main pattern of how any “sensible”
statistic will rank the sample space. This pattern applies in particular to likeli-
hood based statistics. Looking at the right panel of Figure 2 as a generic sample
space, all sensible statistics agree on the ranking of data sets within a vertical
column (for which \; is constant). The ranking will be monotone increasing in v);
or equivalently monotone decreasing in 7; ;. On the other hand, for two points y;
and y; with ;\j far from Ay, (i.e. well separated horizontally), different statistics
can disagree in their ranking. These assertions are not true if j\j is the unre-
stricted ML estimator. They are numerically confirmed in the following example.
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Fic 2. Left. LR statistic versus null probability for a logistic regression. Points for which o is
constant are joined by a line. Right. Sufficiency reduced sample space, with points highlighted
for which null probability is less than 0.004.

Example (Logistic regression). For a fixed value of Ag (y;), it is claimed that a
higher value of z/;(yj) implies a lower null probability 7; ;. For canonical discrete
models, this seems to be exactly true. The point is illustrated on the logistic
regression model with binomial denominators n = (5,6,7,8) and covariates
x = (—3,—1,1,3) with slope ¢ and intercept \. Sufficiency implies that inference
should only be based on V' = (>~ Y, > Y;). For all of the 441 distinct values of
V', I computed the signed likelihood ratio statistic t; = T'(v;) for testing ¢ > 0,
the null estimate of the slope S\j = 5\0(1}]-) and the null probability 7; ;. The left
panel in Figure 2 shows that larger values for the test statistic are associated
with points whose null maximised probability is smaller. Points with a common
value of 5\j = 3"Y,/26 are joined by lines which reveals that, for fixed values of
;\j, the relationship is monotone decreasing.

The right hand plot displays the sufficiency reduced sample space. Within
a column, 5\j is constant and both the LR statistic ¢; and 1/3j monotonically
increase while 7; ; decreases. The dark points comprise those for which the null
probability 7; ; is less than 0.004, this value being chosen to roughly match the
tail set T' > 2. Tails sets based on Wald or Score would have the same ordering
within columns but could disagree about the ranking of points well separated
horizontally.

4. Bootstrap pivotality and mis-ranking

We will show how bootstrap makes a P-value more pivotal by re-ranking points
in the sample space. We demonstrate this by imagining a P-value Q(Y") that
is almost pivotal, deliberately vandalising it so that it is non-pivotal and then
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showing that applying bootstrap returns it to being almost pivotal. This process
only works if the original and vandalised P-values respect the natural ordering
principles explained in the previous section. We first need a definition of “almost
pivotal.”

Definition. A statistic Q(Y") is d-pivotal at y if for some non-decreasing func-
tion h

Pr{Q(Y) < Q(y); o, A} = h(Q(y)) + e(Q(y), A) (4.1)

where |e(y,\)| < § for all A € As. The statistic is called J-uniform if h is the
identity.

The subset Aj is necessary so as to exclude the boundary of the parameter
space where the tail probability will typically diverge, else no statistic could be
almost pivotal. Boundary behaviour is studied explicitly in a later section.

Let Q(Y) = 1 — H(T(Y)) for some test statistic T(Y"), where T follows
the natural ordering principle. Denote ¢; = Q(y;). Since ¢; is a monotone de-
creasing function of ¢;, for fixed Mo, g; will be a decreasing function of 1&j and
increasing function of 7; ;. It is convenient to henceforth index the sample space
{y1,...,yn} according to the size of ¢; = Q(y;) so that if j < k then ¢; < ¢s.
For tied values, the index can be defined in any consistent manner.

Suppose now that Q(Y") is very close to pivotal. Consider two points yz, and
Ym such that qr < @, This means that @ ranks y;, as more hostile to the null
than y,,,. We vandalise Q(Y) to Q*(Y) by reversing this ranking. This is simply

achieved by defining
* qr — € j =m
Q(y;) =1 ",
ajj #m.
where € < g, — qr—1. Denoting ¢; = Q(y;), it is obvious that ¢ > g, contra-
dicting the ranking of @. The profile of Q*(Y) at yy, is
Pr(Q*(Y) <qp;) = Pr(Q(Y) <qw;A) + 7(ym, ) (4.2)

which is not approximately pivotal, as it includes an additional highly non-
pivotal term 7(ym, A) which adds a peak of size Ty, m at A = Am. Such spikes
are visible in either panel of Figure 1. The next result shows that bootstrap
restores the ‘correct’ ordering and returns the statistic to d-pivotality.

Result 2. Suppose that Q(Y) is §-pivotal at yr,, g, < ¢, and define Q*(Y) as
above. Suppose

(a) Tmm > L, + 30
(b) A, is far enough from Ay, that 7y, ., <.

Let Q* be the bootstrap P-value based on Q*. Then, Q*(yL) < Q*(ym) and as
a consequence Q*(Y) is d-pivotal at yy,.

Condition (a) means Q(Y) satisfies the natural ordering property that g¢;
be increasing in 7;; (since t; is decreasing in 7, ;). Condition (b) says that
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the two points are well separated in their corresponding estimate of A so that
the vandalised Q*, in disagreeing with @), does not violate the natural ordering
principle.

It is easy to check numerically that the bootstrap does not correct gross errors
in ordering, for instance swapping the ranking of two points with the same value
of Ao. A tedious algebraic argument not presented here confirms that bootstrap
will not correct such mis-ranking. Instead the significance is seriously reduced
(i.e. ¢; is much larger), power is lost and pivotality compromised. Bootstrap then
will not convert a bad P-value into a good one. It refines approximate P-values
that are based on test statistics that satisfy the natural ordering principle.

5. Bootstrap induced uniformity

In this section we show that an almost pivotal but non-uniform P-value will be
made almost uniform by applying the bootstrap once. The uniformity issue has
been addressed by other authors, for instance [4] but the treatment below is
non-asymptotic and emphasises total dependence on .

Bootstrap can automatically correct gross errors in a P-value Q. If @ is ex-
actly pivotal then the proof is easy. The null distribution function h of @) does
not depend on A and so the profile Pr(Q(Y) < Q(y);\) = h(P(y)). Hence
Q(Y) = h(Q(Y)) which has a discretised uniform distribution. So bootstrap
adjusts the distribution to exact uniformity in one step, regardless of its distri-
bution. The problem with this argument is that for discrete models no statistic is
exactly pivotal, since tail probabilities are sums of polynomials. A more refined
argument follows that allows formally for approximate pivotality and uniformity.

Result 3. Suppose that Q(Y) is d-pivotal. Let As be the null estimator of A
restricted to As. Then Q(Y) = Pr(Q(Y) < Q(y); As) is d-uniform.

We can see in Figure 1 (and more generally in the numerical results in [1])
that bootstrap produces a P-value that is very close to pivotal - even more so
than the argument in the previous section might suggest. Result 3 says that
to the extent that bootstrap is successful in producing pivotality, it must also
produce uniformity. It is not possible for the profile to be flat but at the wrong
level.

6. Boundary behaviour

Discrete models typically become degenerate when the parameters are on the
boundary. The model can be degenerate at a single point or on a lower di-
mensional subset of the sample space. Some may argue that properties of a
statistical procedure on the boundary are practically irrelevant if it is post-hoc
unlikely that the parameter is near the boundary. To argue this is to ignore the
fundamentals of frequentist inference, which requires good performance for all
parameter values. One cannot argue post-hoc that some parameter values do
not matter.
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We show that bootstrap P-values will be appropriately conservative at the
boundary i.e. understate the actual significance. Throughout this section, denote
Q(Yobs) = Gobs and Q(yobs) = (obs- Suppose that for some value A\* the model
is degenerate at y* i.e. Pr(Y = y*; \*) = 1. This is the case for instance when
testing equality of two probabilities when the common value A equals 0 or 1, or
for a logistic regression where the baseline probability of success is 0 or 1. This
can be seen in both panels of Figure 1 where the true significance converges to
Zero.

Result 4A. Suppose that gobs < 1. Then the true significance of Q(yobs) equals
zero at \* i.e. .
PI‘(Q(Y) < Ljobs; A*) =0

The proof in the appendix requires that the estimator of A be the restricted
ML estimator. Suppose next that for some value \*, all probability is concen-
trated on a lower dimensional subset V* of ) - typically a boundary set. Let
y* minimise Q(y) over y € V*, regardless of whether it is unique. In the proof
of Result 4A it emerged that necessarily Gops < Q(y*) For the following result
this condition must be imposed.

Result 4B. Suppose that gops < Q(y*) Then the true significance Q(yobs)
equals zero at \* i.e.

Pr(Q(Y) < Gonsi A") =0
Remark. The reason the result is of interest is that it will often be the case
that the significance profile of Q(yobs) is not zero at the boundary, for instance
if gobs > Q(y*). In this case,

PI‘(Q(Y) < Gobs; )‘) > Pr(y*7 )‘)

and when A = A* the probability of y* can easily be quite large since the model
is concentrated on the subspace Y*.

Example. Consider testing the null hypothesis p; = 0.95p( from binomial data,
with Q(Y) obtained from a standard normal approximation to the likelihood
root. The nuisance parameter is taken as A = pg. When A = A* = 1 the model
is concentrated on the boundary set Y* = {(yo, y1) : yo = no}. The significance
profiles in Figure 3 are for the LR statistic, for the data p; = 7/25 = 0.35 and
Po = 9/20 = 0.36. There is modest evidence that p; > 0.95py as measured by
Gobs = 0.095 or gobs = 0.102. Referring to result 4B, the most significant point
of the boundary set is y* = (25,20) for which Q(y*) = 0.076 while Q(y*) =
0.358. Thus Gops < Q(y*) so result 4B applies. Since gons > Q(y*) the profile
of Q(Yobs) at A* = 1 will be greater than Pr(y*; \*) = 0.358. This is displayed
in the left panel. The profile of the bootstrap P-value is bolded and equals 0
at the boundary. The attentive reader will have noted that in this example
Gobs = 0.095 > 0.076 = Q(y*) but Gons = 0.102 < 0.358 = Q(y*) There is
something wrong with the way ) ranks the sample space, which is corrected by
bootstrap. The fact that the bootstrap and ordinary P-values give contradictory
orderings of yons and y* is not especially rare. There are 57 of the 546 points in
the sample space of this example with this property.
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Fic 3. Left. Profile of LR P-value and bootstrap version (bold). Restricted ML estimate and
actual P-value (dotted lines). Right. Profiles after artificially adjusting statistic at (0,0).

To illustrate result 4A, observe that when A = A* = 0 the model is concen-
trated at y* = (0,0). To better reveal the effect of the bootstrap, the LR based
P-value for the data set (0, 0) has been adjusted to a value less than 0.095 so that
Q(y*) < gobs- So we are beginning with an approximate P-value which is a de-
liberately vandalised version of the likelihood root based P-value. Consequently,
the profile diverges to 1.0 at the left hand endpoint as displayed in the right
panel. The bootstrap removes this anomaly. In fact, the profile of this bootstrap
P-value is identical to that of the bootstrap based on the unvandalised P-value.

7. Conclusion

This paper concerns the empirical fact that bootstrap P-values from discrete
models have exact unconditional significance that is very close to the quoted
value apart from the boundary where they are appropriately conservative.

I have investigated these features without recourse to asymptotics, but rather
by looking at how bootstrap modifies the way the sample space is ordered. The
results require that the nuisance parameters A be replaced by the restricted ML
estimator, not just any estimator, and that the basic test statistics T satisfy
some natural properties. The results do not imply that the bootstrap test will
be more powerful. Rather, they implies that the bootstrap P-value gives a more
honest assessment of the significance.

I have not addressed the controversial issues of conditionality that can arise
in discrete data models. In principle, the model 7(y;,\) mentioned in the
first sentence of this paper might be conditional. Provided that the model still
involves a nuisance parameter, results 1-4B will apply conditionally. It is worth
noting that for most discrete data models it is not possible to eliminate all
nuisance parameters by conditioning.

Finally, for the examples in this paper I was able to compute the bootstrap
P-values exactly. This become infeasible for models where the sample space )
is large. Computing bootstrap P-values can be implemented using a version of
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importance sampling ideas. The algorithm allows the full significance profile
S(t, ) to be conveniently approximated, even for large sample sizes. Details are
in [12].

8. Appendices

Proof of result 1. Recall the definition of Ay (Y) = |Py(Y) — PA(Y)| in
the text. measure the difference between the general surrogate P-value and the
“exact” P-value. We express Pr(Py(Y) < a; A) as
Pr({P,(Y) < a} N {A, < 2} )
+Pr({F(Y) < a} n{Ay = 2} )
<Pr(P\(Y) <a+x;\) +Pr(Ay > z;0)
<a+z+Pr(A; >z )N)
where the last inequality follows from a standard result for the distribution

function transform of a random variable. This is true for arbitrary choice of x
so it follows that for any A

Pr(Fy(Y) < a|A) < a+ u(Ag|A).

Taking supremum of both sides gives the result.
Proof of result 2. For simplicity, we suppose that ¢q;_1 < qr. In the event
that qr.—1 = qr., the proof below follows unchanged except that the index L — 1
is replaced with the highest index J such that Q(ys) < Q(yr). The tail sets of
Q*(Y) at y,, and yy, are

{Y)<q.} = {QY)<q-1}U{ym}

') <qrt = {QY) <qr}U{ym}

Therefore the bootstrap transformed values of Q*(Y) are

Cjz = Q*(yL) = F(qL7 5\L) + 7ATWL,Lu (j;kn = Q*(ym) = F(qL—h 5\7n) + ﬁm,m

and the difference between these is

‘j:n - qu = Tm,m — Tm,L — (F(QLv 5\L) - F(QLflv )‘m))

Now

F(qr, ML) = Flqgr-1,Mm) = Flgr—1, ) +7(yr, Ar) — F(qr—1,A\m)
= qr1+e(gr—1, )+ 7oL —qr—1 —e(qr-1,A\m)
< @ +20

since |e(qr—1, )| < ¢ for any A. Hence
am — 41, > Tmm — TL.L — Tm,L — 20
= (fm,m — fL,L —30) + (6 — Tm,L)
which is positive by conditions (a) and (b) of the result.
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By supposition, 7, m > 71,1 + 26 and so Q* ranks y,, as less significant that

yr i.e. ¢, > §;. Consequently, Q(Y') is o-pivotal at yr, as a consequence of the
assumption that Q(Y") is. More formally, the profile of Q*(Y) at yr is

PrQ*(Y) < Q*(yr)) = Pr(Q*(Y)<Q*(yr)) — 7(ym. )
= F(‘]L; /\) + ﬂ-(ymv )\) - 7T(ym; /\)

from (4.2), which equals the pivotal quantity F(qr, \).

Proof of result 3. Denote the distribution function of the approximate P-
value Q(Y') by F(gq, \) which, by hypothesis, can be expressed as h(q) + e(q, \)
with e() small. Denote u; = h(g;) and note that the u; order the sample space
identically to ¢;. Note also that U(Y) = h(Q(Y")) is é-uniform. The bootstrap

P-value @ when y = y; is

F(gj, s(y;)) = uj + e(q;, As(y5))

where 5\5 is the restricted ML estimator restricted to As. So ¢; and u; differ by
ej = e(uj, \s(y;)) which is less than §. This suggest the approximate uniformity
of Q(Y) at y,;. We now prove this. Consider the tail sets

Soi ={y: Q) <4}, Su;={y:Uly) < u;}

keeping in mind that sample points are indexed by U which may not be the same
ordering as Q). Let L = max{l : y; € Sq; N Sy;} and note that y; ¢ Sg; N Sy,
for [ < j. Therefore
PI‘(SQj N S’Uj;)\) < PI"(Uj <UY) <wuyp)
= ur+e(ur, \) —uj; —e(uj,A)
< uy, — ’U,j + 25

where the second inequality follows from the assumption that Q is d-pivotal.
Now yr, € Sg; N Syj if, and only if, 1 < ¢; and ur > u;. Hence

up —u; = (up —qr) — (uj —¢;) — (¢ — qr)
= 0+06— (4 —dr)
< 26

Therefore B
Pl”(SQj n SUj; )\) <wur —u; + 20 < 490.

In a very similar manner, let K be the smallest index such that y; € SqjNSu;
and note that y, ¢ Sg; NSy, for k > j. Therefore
PI‘(SQJ' N Suj; A) < Prlug <UY) < uj)
= uj +e(uj, A) —ur —e(ug, )
< uj —ug + 26



Non-asymptotics of bootstrap P-values 2461

Now yx € Sq; N Syj if, and only if, Gx > §; and ux < u;. Hence

uj —urg = (uj —q;) — (ux — q4r) — (Gx — 4;)
= 0+0—(ix — q)
< 25

Therefore -
Pr(SQj N SUj; /\) <wuj —ug + 20 < 46.

Finally we look at the distribution function of Q(Y') at ¢; and note that

| Pr(Q(Y)<q;); ) —Pr(U(Y) <u;); \)| = | Pr(Sq; N Sujz A) — Pr(Sq; N Suj; M)
< 89

and so

Pr(Q(Y) < g\ —¢ < |Pr(Q(Y)

so Q(Y) is d-uniform.

Proof of result 4A. For any P-value, bootstrapped or otherwise, the profile
at A* must equal either 0 or 1, depending on whether or not y* € {y : P(y) <
Pobs }- This is determined by whether or not pops > P(y*). We will show that
for an bootstrap P-value P(y*) = 1. Note first that under the assumption that
the model becomes degenerate at y*, the null probability Pr(Y = y*;\) is
maximised with respect to A at A* and so the restricted ML estimator j\o(y*) =
A*. Therefore

P(y*) =Pr(P(Y) < P(y*); Ay*)) = Pr(Y =y A(y*)) = Pr(Y = y*;\") = L.

With the assumption that pops < 1 this implies that pops < P (y*) and therefore
that

y* ¢ {y : P(y) S ﬁobs}-
Hence the probability of this set at A = \* is zero.

Proof of result 4B. Since pops < P(y*) < P(y) for all y € Y*, it follows that
{P(Y) < Pobs} C V*

and so

Pr(P(Y) < pobs; A) <1 —Pr(Y*;N)

and the right hand side is zero when A = \*.
The connection between bootstrap and likelihood can be seen by expressing

St ho) = > mw(y;vo, ho)

y:T(y)>t
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and noting that each summand 7 (y; 10, \o) is the likelihood of y maximised
under the null. Bootstrap P-values are thus sums of null maximised likelihoods.
Entry into the tail set is determined by the initial statistic 7'(Y"). If this statistic
is itself closely related to the likelihood then there is a match between the
ordering and the calibration. This is the heuristic behind the result to be proven
below. The argument relies on using the restricted ML estimator ;\0, otherwise
there is no connection with null likelihood. It also relies on the model being
discrete.
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