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Abstract: In this paper we are concerned with fully automatic and lo-
cally adaptive estimation of functions in a “signal 4+ noise”-model where
the regression function may additionally be blurred by a linear operator,
e.g. by a convolution. To this end, we introduce a general class of statis-
tical multiresolution estimators and develop an algorithmic framework for
computing those. By this we mean estimators that are defined as solutions
of convex optimization problems with £o.-type constraints. We employ a
combination of the alternating direction method of multipliers with Dyk-
stra’s algorithm for computing orthogonal projections onto intersections of
convex sets and prove numerical convergence. The capability of the pro-
posed method is illustrated by various examples from imaging and signal
detection.
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1. Introduction

In numerous applications, the relation of observable data Y and the (unknown)
signal of interest u’ can be modeled as an inverse linear regression problem.
We shall assume that the data Y = {Y,} is sampled on the equidistant grid
X ={1,... ,m}d, with m,d € N and that u° € U for some linear space U, such
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as the Euclidean space or a Sobolev class of functions. Hence the model can be
formalized as

Y, = (Ku), +¢,, veXxX. (1)

Here we assume that ¢ = {e, }, y are independent and identically distributed
r.v. with E(,) = 0 and E (¢2) = ¢ > 0 (white noise). Moreover, K : U —
(R™)4 denotes a linear operator that encodes the functional relation between the
quantities that are accessible by experiment and the underlying signal. Often the
operator K does not have a continuous inverse (or its inverse is ill-conditioned
in a discrete setting, where K is a matrix), that is estimation of u° given the
data Y is an ill-posed problem. As a consequence, estimators for u” can not
be obtained by merely applying the inverse of K to an estimator of Ku°, in
general. Instead, more sophisticated statistical regularization techniques have to
be employed that, loosely speaking, are capable of simultaneously inverting K
and solving the regression problem.

The application we primarily have in mind is the reconstruction of low-
dimensional signals (e.g. images) u® which are presumed to exhibit a strong
neighborhood structure as it is characteristic for imaging or signal detection
problems. These neighborhood relations are often modeled by prior smoothness
or structural assumptions on u? (e.g. on the texture of an image).

The aim of this paper is twofold. First, we will introduce the broad class of
statistical multiresolution estimators (SMRE). We claim that numerous regular-
ization techniques, that were recently proposed for different problems in various
branches of applied mathematics and statistics, can be considered as special
cases of these. Among others, this includes the Dantzig selector (see [4, 7, 29]
and references therein) that was recently proposed in the context of high dimen-
sional statistics. Our prior focus, however, will be put on imaging problems and
it will turn out that the aforementioned neighborhood relations can be modeled
within our SMRE framework in a straightforward manner. This will result in
locally adaptive and fully automatic image reconstruction methods.

The high intrinsic structure of the signals that are typically under consid-
eration in imaging is in contrast to the usual situation in high-dimensional
statistics. Here u is usually assumed to be unstructured but to have a sparse
representation with respect to some basis of U (cf. [7, 8, 43]). Consequently,
the consistent estimation of u° is realized by minimizing a regularization func-
tional which fosters sparsity, such as the ¢;-norm of the coefficients, subject to
an {.-constraint on the coefficients of the residual, i.e.

inf ful, st KUY - Ku)ll, < (2)

In order to apply this approach for image reconstruction, two modifications
become necessary: Often one aims to minimize other regularization functionals
such as the total variation semi-norm (cf. [34, 37]) or Sobolev norms, say. Hence,
we suggest to replace the ¢1-norm in (2) by a general convex functional J that
models the smoothness or texture information of signals or images (cf. [1, 35]).
Furthermore, we relax the /,.-constraint such that neighborhood relations of the



Statistical multiresolution Dantzig estimation in tmaging 233

image can be taken into account. This generalizes the Dantzig selector to this
task in a natural way and obviously increases estimation efficiency. As we will
layout in Paragraph 1.2.2, this requires new algorithms to compute efficiently
the resulting large scale optimization problem.

1.1. Statistical multiresolution estimation

We will now introduce the announced class of estimators. To this end, let S
be some index set and W = {ws : 5es } be a set of given weight-functions

on the grid X = {1,...,m}%. A statistical multiresolution estimator (SMRE)
(or generalized Dantzig selector), is defined as a solution of the constrained
optimization problem

. S . <
ing J(u) st max uze;(wu (AY = Ku)),| <q. (3)

Here, J : U — R denotes a regularization functional that incorporates a priori
knowledge on the unknown signal u° (such as smoothness) and A : (R™)? —
(R™)? a possibly non-linear transformation. The constant ¢ can be considered
as a universal regularization parameter that governs the trade-off between reg-
ularity and data-fit of the reconstruction. In most practical situations ¢ is cho-
sen to be the a-quantile ¢, of the multiresolution (MR) statistic T(e), where
T : (R™)? — R encodes the inequality constraint in (3), i.e.

Tw) = max , ve (R™) (4)

> wi (M),

veX

To this end, we assume the distribution of T'(¢) to be (approximately) known.
This can either be obtained by simulations or in some cases the limiting dis-
tribution can even be derived explicitly. The regularization parameter ¢ then
admits a sound statistical interpretation: Each solution 4, of (3) satisfies

P (J(ta) < J(u%)) >

i.e. the estimator 1, is more regular (in terms of J) than u° with a probability
of at least «. To see this simply observe that the true signal u® satisfies the
constraint in (3) with probability at least a.

For a given estimator @ of u”, the set W is assumed to be rich enough in
order to catch all relevant non-random signals that are visible in the residual
Y — K. Then, the average function

Y wr (M),

veX

(5)

ps(v) =

evaluated at v =Y — K4 is supposed to be significantly larger than ¢ for at least
one w € W, whenever Y — K4 fails to resemble white noise. Put differently, the
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MR-statistic T(Y — K@) is bounded by ¢, whenever Y — K4 is accepted as white
noise according to the resolution provided by W. In fact, this is a key observation
that reveals numerous potential application areas of the estimation method
(3). The examples we have in mind are mainly from statistical signal detection
and imaging, where the index set S is typically chosen to be an overlapping
(redundant) system of subsets of the grid X and w? is the normalized indicator
function on S € S. Consequently the inequality constraint in (3) guarantees that
the residual resembles white noise on all sets S € S. In other words, the SMRE
approach in (3) yields a reconstruction method that locally adapts the amount
of reqularization according to the underlying image features. We illustrate this
in Section 3 by various examples.

Summarizing, the optimization problem in (3) amounts to choose the most
parsimonious among all estimators @ for which the residual Y — K4 resembles
white noise according to the statistic 7. If Y — K4 contains some non random
signal, T(Y — K1) is likely to be larger than ¢ and u happens to lie outside
the admissible domain of (3). Thus, the multiresolution constraint prevents too
parsimonious reconstructions due to the minimization of J.

1.2. Algorithmic challenges and related work
1.2.1. Multiresolution methods

SMRESs and related MR-statistics have recently been studied in various contexts.
We give a brief (but incomplete) overview.

Classical MR-statistics are obtained from the general form in (4) by setting
U = (R™)? and A = Id. Moreover, one considers the system W to contain
indicator functions on cubes. To be more precise, define the index set S to be
the system of all d-dimensional cubes in X and set w® = xs/v/#5S. Then, the
MR-statistic in (4) reduces to

Tw) =

Zvu

ves

1
&5 V#ES

This statistic was introduced in [42] (called scanning statistic there) in order to
detect a signal against a noisy background. It was shown in [31] that

lim ()
Sl S
m—o0 \/2d logm

If the system S is reduced to the set of all dyadic squares, then it was proved
n [28] that (after suitable transformations) T also converges weakly to the
Gumbel distribution. There, the authors also established a method for locally
adaptive image denoising employing linear diffusion equations with spatially
varying diffusivity. SMREs (3) have been studied recently for the case d =1 in
[12] and [6], where total-variation penalty and the number of jumps in piecewise
constant regression were considered as regularization functional J, respectively.
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In [21] consistency and convergence rates for SMREs have been studied in a
general Hilbert space setting.

SMREs with squared residuals, that is A(v), = v2, yield another class of
estimators that have attracted much attention. Above all, the situation where
S consists of the single set X and w™ is chosen to be the constant 1 function is of
special interest, since then (3) reduces to the penalized least square estimation.
In particular (3) then can be rewritten into

: 2

ing J(u) + )\VZ@:{(KU Y), (6)
for a suitable multiplier A > 0. If J(u) = [Ju/|; the LASSO estimator will result
(cf. [43]). Recently, also non-trivial choices of & were considered. In [3] S is
chosen to consist of a partition of G which is obtained beforehand by a Mumford-
Shah segmentation. In [15], a subset S C X is fixed and afterwards S is defined
as the collection of all translates of S.

In [17] MR-statistics are used for shape-constrained estimation based on test-
ing qualitative hypothesis in nonparametric regression for d = 1. Here, the
weight functions w® incorporate qualitative features such as monotonicity or
concavity. Similarly, MR-statistics are used in [18] in order to detect locations
of local increase and decrease in density estimation. Much in the same spirit is
the work in [16] where multiscale sign tests are employed for computing confi-
dence bands for isotonic median curves.

As mentioned previously, the Dantzig selector [7] is also covered by the gen-
eral SMRE framework in (3). To see this, set U = RP (with typically p > m),
A = Id and define the weights

w¥=Kys, Se8.

Then, each solution of (3) can be considered as a generalized Dantzig selector.
The matrix K € R™*P in this context is usually interpreted as design matriz
of a high dimensional linear model. The classical Dantzig selector as introduced
in [7] then results in the special case where S only consists of single-elemented
subsets of {1,...,p} and J is chosen to be the ¢;-regularization functional

P
J(u) = Jlully =) il
i=1

Hence LASSO and Dantzig selector are uni-scale estimators which take into
account the largest (S = {X}) and smallest (S consists of all singletons in

{1,...,p}) scales, respectively. In this sense, they constitute two extreme cases
of SMRE.

1.2.2. Algorithmic challenges

From a computational point of view, computing an SMRE amounts to solve the
constrained optimization problem (3) which can be rewritten into

unelg Jw) st pus(Y — Ku)<gq, V(S €S). (7)
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We note that in practical applications the number of constraints in (7), that is
the cardinality of the index set S, can be quite large (in Section 3.2 denoising
of a 512 x 512 image results in more than 6 million inequalities). Moreover, the
inequalities (even for the simplest case where A = Id) are mutually correlated.
Both of these facts turn (7) into a numerically challenging problem and standard
approaches (such as interior point or conjugate gradient methods) perform far
from satisfactorily.

The authors in [3, 15, 28] approach the numerical solution of (7) by means
of an analogon of (6) with spatially dependent multiplier A € (R™)?, i.e.

inf v(Ku—Y)2.
7igUJ(u)—l—ueZX/\( u )%

Starting from a (constant) initial parameter A = \g, the parameter \ is it-
eratively adjusted by increasing it in regions which were poorly reconstructed
before according to the MR-statistic T'. This approach strongly depends on the
special structure of S that allows a straightforward identification of each set
S € § with a unique point in the grid X. Put differently, it is not clear how to
modify this paradigm in order to solve (3) for highly redundant systems S as
we have it in mind.

Recently a general algorithmic framework was introduced in [2] for the solu-
tions of large-scale convex cone problems

inf J(u) st. Ku—-Y ek
uelU

where K is a convex cone in some Euclidean space. The approach was realized in
the software package Templates for First-Order Conic Solvers (TFOCS)!. The
above formulation is very general and in order to recover (7) one has to consider
the cone

Y Al

ves

K= {(v,q) € (R™IxR :

gqv(SGS)}

The approach in [2] employs the dual formulation of the problem

inf J*(K"v)+ (Y,v) st.vek”

gev
which involves the computation of the dual cone K* (J* denotes the Legendre-
Fenchel dual of J). This approach is particularly appealing for the uni-scale
Dantzig selector since in this situation the cone K coincides with the epi-graph
of the ¢*°-norm and hence its dual cone is straightforward to compute (it is
the epi-graph of the ¢!-norm). As it is argued in [2], this approach is capable
of computing Dantzig selectors for large scale problems in contrast to previous
approaches such as standard linear programming techniques [7] or homotopy
methods such as DASSO [29] or [41]. As the authors stress, their approach works

Lavailable at http://tfocs.stanford. edu/
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well in the case when /C is the epi-graph of a norm for which the projections onto
K* are trackable and computationally efficient. However, for the applications we
have in mind (such as locally adaptive imaging reconstruction), the approach
in [2] is only of limited use: In contrast to the aforementioned epi-graphs, the
large number of (strongly dependent) constraints in (7) brings about a cone K
that on the one hand exhibits a tremendous amount of faces compared to the
dimension of the image space dim(H) = md and that on the other hand is no
longer symmetric w.r.t. to the g-axis. Both of these facts turn the computation
of dual cone K* (or the projections onto it) into a most challenging problem,
even in the simplest case when A is linear.

The aim of this paper is to develop a general algorithmic framework that
makes solutions of (7) numerically accessible for many applications. In order to
do so we propose to introduce a slack variable in (7) and then use the alternat-
ing direction method of multipliers, an Uzawa-type algorithm that decomposes
problem (7) into a J-penalized least squares problem for the primal variable and
a orthogonal projection problem on the feasible set of (7) for the slack variable.
This approach has the appealing effect that once an implementation for the pro-
jection problem is established, different regularization functionals J can easily
be employed without changing the backbone of the algorithm. Our work is much
in the same spirit as [33], which considered an alternating direction method for
the computation of the Dantzig selector recently. In this case the computation
of the occurring orthogonal projections are available in closed form, whereas in
our applications this is not the case due to the aforementioned dependencies.

In order to tackle the orthogonal projection problem we employ Dykstra’s
projection method [5] which is capable of computing the projection onto the
intersection of convex bodies by merely using the individual projections onto
the latter. The efficiency of the proposed method hence increases considerably
if the index set S can be decomposed into “few” partitions that contain indices
of mutually independent inequalities in (7). In particular, by this approach we
will be able to compute classical SMRE (as introduced in [12, 21]) in d = 2
space dimensions which to our knowledge has never been done so far. This puts
us into the position to study the performance of such estimators compared with
other benchmark methods in locally adaptive signal recovery (such as adaptive
weights smoothing cf. [40]). As it will turn out in Section 3 it will outperform
these visually as well as quantitatively.

1.3. Organization of the paper

The paper is organized as follows: In Section 2 we introduce a general algorith-
mic approach for computing SMREs. We will rewrite (7) into a linearly con-
strained problem and compute a saddle point of the corresponding augmented
Lagrangian by the alternating direction method of multipliers in Paragraph 2.2.
Under quite general assumption, we prove convergence of the algorithm in The-
orem 2.2 and give some qualitative estimates for the iterates in Theorem 2.4.
One of the occurring minimization steps amounts to the computation of an or-
thogonal projection onto a convex set in FKuclidean space. In Paragraph 2.3,
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this problem will be tackled by means of Dykstra’s projection algorithm intro-
duced in [5]. Finally, we illustrate the performance of some particular instances
of SMREs in Section 3: We study problems in nonparametric regression, image
denoising and deconvolution of fluorescence microscopy images and compare our
results to other methods by means of simulations.

2. Computational methodology

In this section we will address the question on how to solve the linearly con-
strained optimization problem (7). After discussing some notations and basic
assumptions in Subsection 2.1, we will reformulate the problem in Paragraph 2.2
such that the alternating direction method of multipliers (ADMM), a Uzawa-
type algorithm, can be employed as a solution method. As an effect, the task of
computing a solution of (7) is replaced by alternating

i) solving an unconstrained penalized least squares problem that is indepen-
dent of the MR-statistic T and

ii) computing the orthogonal projection on a convex set in Euclidean space
that is independent of J.

This reveals an appealing modular nature of our approach: The regularization
functional J can easily be replaced once a method for the projection problem
is settled. For the latter we will propose an iterative projection algorithm in
Paragraph 2.3 that was introduced by Boyle and Dykstra in [5].

2.1. Basic assumptions and notation

From now on, X will stand for the d-dimensional grid {1, ... ,m}d and agree
upon H = RX ~ (R™)4 being the space of all real valued functions v :
X — R. Moreover, we assume that S denotes some index set and that W =
{ws : Ses } is a collection of elements in H. For two elements v, w € H we
will use the standard inner product and norm

(v, w) = Z vpw, and vl =/ (v,v),

veX

respectively. Next, we assume that A : H — H is continuous such that A(0) =0
and that for all S € S the mapping

v (w9, A(v))
is convex. With this notation, we can rewrite the average function in (5) in the

compact form
ps(v) = [{w, Aw))]

We note, that it is not restricitve to consider more generaly A : H — RN
with arbitrary N € N. This could e.g. be useful for augmenting the constraint
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set of (7) with further constraints of different type. For the signal and image
detection problems as studied in this paper, however, A is always a pointwise
transformation of the residuals. Hence, we will restrict our considerations on the
case when A : H — H.

Furthermore, we define U to be a separable Hilbert-space with inner product
(-,-)y and induced norm [|-||;;. The operator K : U — H is assumed to be linear
and bounded and the functional J : U — R is convex and lower semi-continuous,
that is

{tn},eny C U and nl;ngo up=uelU = Ju)< linrgioréf J ().
Recall the definition of the MR-statistic in (4). Throughout this paper we will
agree upon the following

Assumption A. i) Forally € H there existsu € U such that T(Ku—y) < q.
ii) For ally € H and ¢ € R the set

: — <
{uEU rggguS(Ku y)—i—J(u)_c}

is bounded.

Under Assumption A it follows from standard techniques in convex optimiza-
tion, that a solution of (7) exists. As we will discuss in Section 2.2 it even follows
that a saddle point of the corresponding Lagrangian exists (cf. Theorem 2.1 be-
low). In this context Assumption A i) is often referred to as Slater’s constraint
qualification and is for instance satisfied if K (U) is dense in H. Moreover, As-
sumption A ii) will be needed in order to guarantee convergence of the algorithm
for computing such a solution, as it is proposed in the upcoming section. This
requirement is fulfilled if J is coercive i.e.

lim  J(u) = oco.
Il =00
In many applications U is some function space and J a gradient based regular-
ization functional, such as the total variation semi-norm (cf. Section 3.2). Then
a typical sufficient condition for Assumption A ii) is that K does not annihilate
constant functions.

2.2. Alternating direction method of multipliers

By introducing a slack variable v € H we rewrite (7) to the equivalent problem

bnfeH J(u) + G(v) subjectto Ku+v=Y. (8)

Here, G denotes the characteristic function on the feasible region C of (7), that
is,
0 ifveC

C={veH : ps(v)<q¥(S€S)} and Gv)= {+oo else. ®)
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Note that due to the assumptions on A, the set C is closed and convex. The tech-
nique of rewriting (7) into (8) is referred to as the decomposition-coordination
approach, see e.g. Fortin & Glowinski [20, Chap. III|. There, Lagrangian multi-
plier methods are used for solving (8). To this end, we recall the definition of
the augmented Lagrangian of Problem (8), that is

1
L(u,vip) = oy [ K+ v~ Y|P+ J(u)+G@)—(p, Ku+v—Y), X>0. (10)
The name stems from the fact that the ordinary Lagrangian
L(u,v;p) = J(u) + G(v) — (p, Ku+v-Y)

is augmented by the quadratic penalty term (2\) =1 || Ku + v — YH2 that fosters
the fulfillment of the linear constraints in (8). The augmented Lagrangian method
consists in computing a saddle point (@, 0, p) of Ly, that is

LA(ﬁ7@7p) < LA(ﬁ7@7ﬁ) < L)\(U,'U;]a), V((U,U,p) €U X H x H)

We note that each saddle point (i, 0, p) of the augmented Lagrangian L) is
already a saddle point of L and vice versa and that in either case the pair (4, 0)
is a solution of (8) (and thus @ is a desired solution of (7)). This follows e.g. from
[20, Chap 3. Thm. 2.1]. Sufficient conditions for the existence of saddle points
are usually harder to come up with. Assumption A summarizes a standard set
of such conditions.

Theorem 2.1. Assume that Assumption A holds. Then, there exists a saddle
point (G, D,p) of L.

Proof. According to [19, Chap. III, Prop. 3.1 and Prop. 4.2] a saddle point of L
exists, if there is an element ug € U such that G is continuous at Kug — Y and
that

lim  J(u)+ G(Ku—-Y) = o0. (11)

llwllg—oe

According to Assumption A i) and due to the continuity of A the first require-
ment is clearly satisfied. Further, the coercivity assumption (11) is a consequence
of Assumption A ii). O

We will use the Alternating Diretion Method of Multipliers (ADMM) (cf.
Algorithm 1) as proposed in [20, Chap. III Sec. 3.2] for the computation of a
saddle point of Ly (and hence of a solution of (7)): Successive minimization of
the augmented Lagrangian L) w.r.t. the first and second variable followed by an
explicit step for maximizing w.r.t. the third variable is performed. Convergence
of this method is established in Theorem 2.2 which is a generalization of [20,
Chap. III Thm. 4.1]. We note that the proof, as presented in the Appendix A
allows for approximate solution of the individual subproblems. For the sake of
simplicity, we present the Algorithm in its exact form.
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Algorithm 1 Alternating Direction Method of Multipliers

Require: Y € H (data), A > 0 (step size), 7 > 0 (tolerance).
Ensure: (u[7],v[7]) is an approximate solution of(8) computed in k[7] iteration steps.
ug < Oy and vg =po < Oy
r < ||[Kug +vo — Y| and k «+ 0.
while r > 7 do
k< k+1.
vg < U where 0 € C satisfies

5 — (Y 4+ Apr—1 — Kug—1)|I* < [lo— (Y + Apr—1 — Kup—1)[I? V(v e€C).  (12)

uy, < u where @ satisfies

1 _
5IIKU—(Y+>\pk71—vk)|2+>\J(U)S [Ku = (Y + App—1 = vp)[I*+AJ (w) V(u € U).

(13)

N | =

Pr ¢ Pr—1 — (Kug +op —Y)/A

7 max(||Kug + v = Y, [ K (ue = ur—1)|)-
end while
u[7] < u and v[7] < v and k[7] + k.

Theorem 2.2. Every sequence {(ug,vi)},~q that is generated by Algorithm 1
is bounded in U x H and every weak cluster point is a solution of (8). Moreover,

S i+ og = Y+ 1K (i — i) < oo
keN

Remark 2.3. i) Theorem 2.2 implies, that each weak cluster point of {uy},~,
is a solution of (7). In particular, if the solution u' of (7) is unique (e.g. if
J is strictly convex), then us, — uf.

ii) Note in particular that (12) is independent of the choice of J, while (13)
is independent of the MR-statistic being used. This decomposition gives
the proposed method a neat modular appeal: Once an efficient solution
method for the projection problem (12) is established (see e.g. Section 2.3),
the regularization functional .J in (3) can easily be replaced by providing
an algorithm for the penalized least squares problem (13). For most pop-
ular choices of J, problem (13) is well studied and efficient computational
methods are at hand (see [44] for a extensive collection of algorithms and
[32] for an overview on MCMC methods).

For a given tolerance 7 > 0, Theorem 2.2 implies that Algorithm 1 terminates
and outputs approximate solution u[7] and v[r] of (8). However, the breaking
condition in Algorithm 1 merely guarantees that the linear constraint in (8) is
approximated sufficiently well. Moreover, we know from construction that v[r] €
C, which implies G(v[r]) = 0. So, it remains to evaluate the validity of u[7]:

Theorem 2.4. Let (4,0,p) € U x H x H be any saddle point of Ly. Moreover,
let 7> 0 and u[r] € U be returend by Algorithm 1. Then,

0 < J(ulr)) - J(@) — (K*p,ulr] — @)y < (6 e W) v(r > 0).
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The result in Theorem 2.4 shows how the accuracy of the approximate solu-
tion u[7] depends on 7. Moreover, it reveals that choosing a small step size X in
Algorithm 1 possibly yields a slow decay of the objective functional J. However,
it follows from the definition of L in (10) that a small value for X fosters the
linear constraint in (8).

Corollary 2.5. Let the assumtions of Theorem 2.4 be satisfied. Moreover, as-
sume that J is a quadratic functional, i.e. J(u) = 3 HLuH%,, where V' is a further
Hilbert-space and L : U D D — V is a linear, densely-defined and closed opera-
tor. Then

|L(ulr] — @)l = O(v7) V(r > 0).

Example 2.6 (Dantzig selector). As already mentioned in the introduction,
SMRE (i.e. finding solutions of (3)) reduces to the computation of Dantzig
selectors for the particular setting d = 1, U = RP (with usually p > m) and

J(u) = [lull; -

When applying Algorithm 1 the subproblem (13) amounts to compute

ug € argél@?in% | Ku— (Y + Apr—1 — o) |)” + A l|lull; -
This is the well known least absolute shrinkage and selection operator (LASSO)
estimator [43]. For the classical Dantzig selector, one chooses & = {1,...,p}
and defines for S € S the weight w® = Kxysy- Hence, the subproblem (12) in
this case consists in the orthonormal projection of Yy = Y + App_1 — Kug_1
onto the set

C=<KvelR™: wavj <qgfor1<S<p
1<j<m

The implications of Theorem 2.4 in the present case are in general rather weak.
If the saddle point @ is known to be S-sparse and when K restricted to the
support of @ is injective, then it can be shown that |u[r] — |, = O(7).

We finally note that for this particular situation a slightly different decompo-
sition than proposed in (2.2) is favorable. To be more precise, define K = KT K
and Y = KTY and consider

J(u) + G(v) subject to Ku—v=Y.

where G is the characteristic function on the set {v € H : |v|| < ¢}. Algo-
rithm 1 applied to this modified decomposition then results in the ADMM as
introduced in [33]. In this case the projection in step (12) has a closed from.

2.3. The projection problem

Algorithm 1 resolves the constrained convex optimization problem (7) into a
quadratic program (12) and an unconstrained optimization problem (13). The
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quadratic program (12) in the k-th step of Algorithm 1 can be written as a
projection:

inf v~ Vil subject to pus(v) < V(s € S) (14)
where Yy =Y + App—1 — Kui_1. We reformulate the side conditions to

’UGC:ﬂCS where Cg={ve H:pus(v) <q}. (15)
SeS

The sets Cs are closed and convex and problem (14) thus amounts to compute
the projection P¢(Y%) of Y onto the intersection C of closed and convex sets.
According to this interpretation, we use Dykstra’s projection algorithm as in-
troduced in [5] to solve (14). This algorithm takes an element v € H and convex
sets Di1,...,Dy C H as arguments. It then creates a sequence converging to
the projection of v onto the intersection of the D; by successively performing
projections onto individual D;’s. To this end, let Pp(-) denote the projection
onto D C H and Sp = Pp — Id be the corresponding projection step. Dykstra’s
method is summarized in Algorithm 2.

Algorithm 2 Dykstra’s Algorithm

Require: h € H (data), D1,...,Dp C H (closed and convex sets)
Ensure: A sequence {hy}; .y that converges strongly to Pp(h) where D =(,_y s D;
h0,0 «~—h
for j =1 to M do
ho,j < Pp; (ho,j—1) and Qo,; <+ Sp; (ho,j-1)
end for
hy hoy]\/[ and k «+ 1
for k> 1 do
hi,o < hi
for j =1to M do
hi,j < Pp,(hi,j—1 — Qr—1,5) and Q. ; < Sp, (hi,j—1 — Qr—1,5)
end for
hk+1 — hk)]y] and k+— k+1
end for

A natural explanation of the algorithm in a primal-dual framework as well
as a proof that the sequence {h(M,k)},  converges to Pp(h) in norm can be
found in [13, 23]. For the case when D constitutes a polyhedron even explicit
error estimates are at hand (cf. [46]):

Theorem 2.7. Let {hy}, oy be the sequence generated by Algorithm 2 and Pp(h)
be the projection of the input h onto D. Then there exist constants p > 0 and
0 < ¢ <1 such that for all k € N

i = Po(h)] < pet.

Remark 2.8. The constant ¢ increases with the number M of convex sets which
intersection form the set D that h is to be projected on. The convergence rate
therefore improves with decreasing M. For further details and estimates for the
constants p and ¢, we refer to [46].
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NN e Ya Pe(¥k)

Fic 1. Admissible set C for the projection problem (14) as in Example 2.9 (left) and Example
2.10 (right).

Note that application of Dykstra’s algorithm is particularly appealing if the
projections Pp; can be easily computed or even stated explicitly, as it is the
case in the following examples.

Example 2.9. Assume that A = Id. Then the sets C's are the rectangular
cylinders
Cs = {v €H : ‘<ws,v>| < q}.

The projection can therefore be explicitly computed as

PCS (1}) _ v — Sign (<w5,v>) ”%;H (|<|w771|)_| - q> if l[Ls(’U) > q .

) else

The left image in Figure 1 depicts an example for C for H = R2. For a detailed
geometric interpretation of the MR-statistic we also refer to [36].

Example 2.10. Assume that A(v), = v2. Then, it follows that v — (w¥, A(v))
is convex if and only if w5 > 0 for all v € X. In this case, the sets C's are elliptic

cylinders
ng{veH : wavigq}.
veX

Moreover, if ws € {0,1} for all v € X, then the projection Pc can be explicitly
computed as

__a _ B i -
PCs (1)) — { (wS)A(v)>'UX{wS_1} + VX {wS=0} i MS('U) q .

v else

The right image in Figure 1 depicts an example of C for H = R2.

A first approach to use Dykstra’s algorithm to solve (14) is to set M = #S
and identify D; with C's for all j =1,..., M. In view of Remark 2.8, however, it
is clearly desirable to decrease the number M of convex sets that enter Dykstra’s
algorithm. In order to do so, we take a slightly more sophisticated approach than
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the one just presented. We partition the set § into &1,..., Sy such that for all
S#£S5¢eS;

w$Llw® and %A(-)D =0,Y(re S ves) (16)
and regroup {Cs}, g into {Dy,..., Dy} with
D= () Cs. (17)
ses;

Given the projections Py, the projection onto D; can be easily computed: For
v € H identify the set

Vi={5€&;:ps(v)>q}

of indices for which v violates the side condition (15) and set

Pp,(v) =v— Y (Pes —1d)v
Sev;

To keep M small, we choose Sy C {1,..., N} as the biggest set such that
(16) holds for all S, 5 € S;. We then choose Sy C S\ S; with the same property
and continue in this way until all indices are utilized. While this procedure does
not necessarily result into M being minimal with the desired property, it still
yields a distinct reduction of N in many practical situations. We will illustrate
this approach for SMREs in imaging in Section 3.

3. Applications

In this section we will illustrate the capability of Algorithm 1 for computing
SMREs in some practical situations: In Section 3.1 we will study a simply one-
dimensional regression problem as it was also studied in [12], yet with a different
penalty function J. In Section 3.2 we illustrate how SMREs performs in image
denoising. In both cases we compare our results to other methods. Finally, we
will apply the SMRE technique to the problem of image deblurring in confocal
fluorescence microscopy in Section 3.3.

Before we study the aforementioned examples, we clarify some common no-
tation. We will henceforth assume that U = H = (R™)? with d = 1 (Section
3.1) and d = 2 (Sections 3.2 and 3.3), respectively. Moreover, we will employ
gradient based regularization functionals of the form

1
J(u) =TVp(u) == > [Du, |5 withp e {1,2} (18)
veX
where |-|, is the Euclidean norm in R? and D denotes the forward difference

operator defined by

Upte; — Uy f1<1y;,<n—1
(Duy )i = i
0 else.



246 K. Frick et al.

For the case p = 2 the minimization problem (13) amounts to solve an implicit
time step of the d-dimensional diffusion equation with initial value (Y +Apj_1 —
v ) and time step size A. This can be solved by a simple (sparse) matrix inversion.

For the case p = 1, T'V; is better known as total-variation semi-norm. It was
shown in [34] (see also [24] for similar results in the continuous setting) that
the taut-string algorithm (as introduced in [10]) constitutes an efficient solution
method for (13) in the case d = 1. In the general case d > 1, we employ the fixed
point approach for solving the Euler-Lagrange equations for (13) described in
[14] (see also [44, Chap. 8.2.4]). We finally note that the functional TV; fails to
be differentiable; a fact that leads to serious numerical problems when trying
to compute the Euler-Lagrange conditions for (13). Hence, we will use in our
simulations a regularized version of T'V; defined by

TV (u) = Y \/(Duy)? + 32 (19)
veX

for a small constant g > 0.

Fvaluation

In order to evaluate the performance of SMREs, we will employ various distance
measures between an estimator 4 and the true signal «°. On the one hand, we
will use standard measures such as mean integrated squared error (MISE) and
the mean integrated absolute error (MIAFE) which are given by

1 . 1 N
MISE = E (W > (i, — u?,)2> and MIAE = E (W > fiw — u?,|> :
veX

veX

respectively. On the other hand, we also intend to measure how well an esti-
mator & matches the “smoothness” of the true signal u°, where smoothness is
characterized by the regularization functional J. To this end, we introduce the
symmetric Bregman divergence

Diym(ﬁ,uo) = % Z (VJ(,&)V _ VJ(’U,O),,) (ﬂu _ UB) :
veX

where V.J denotes the gradient of the regularization functional .J. Clearly,
D™ (@, u") is symmetric and since .J is assumed to be convex, also non-negative.
However, the symmetric Bregman divergence usually does not satisfy the tri-
angle inequality and hence in general does not define a (semi-) metric on U
[9]. The following examples shed some light on how the Bregman divergence
incorporates the functional J in order to measures the distance of @ and u°.

Example 3.1. Let J(u) =TV, as in (18).
i) If p =2, then
DY™(a,u") = Y |Da, — Dud >
veX
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In other words, the symmetric Bregman distance w.r.t. to T'V5 is the mean
squared distance of the derivatives of @ and u°.
ii) If p =1, then

1 D Du’
DY (0. u0) = — — Y _ — ¥ ). (Di, — DU
s ) m2u;<<lmu| |Du3|> (Di, = D)

1 ) 0 Di, Dul
~ 5 X (ol + ) (1= g3y o)

1 X
=3 > (IDdy| + [Du’|) (1 = cos ),
veX

where 7, denotes the angle between the level lines of 4 and u° at the
point z,,. Put differently, the symmetric Bregman divergence w.r.t the total
variation semi-norm 7'V} is small if for sufficiently many points x, either
both @ and u" are constant in a neighborhood of z, or the level lines of i
and u° through w,, are parallel. In practice rather TVlﬂ in (19) (for a small
B > 0) instead of TV is used in order to avoid singularities. Then, the
above formulas are slightly more complicated.

We will use the mean symmetric Bregman divergence (MSB) given by
MSB = E (D¥™ (@, u"))

as an additional evaluation method. In all our simulations we approximate the
expectations above by the empirical means of 500 trials.

Comparison with other methods

We will compare the SMREs to other regression methods. Firstly, we will con-
sider estimators obtained by the global penalized least squares method:

1
() == argmin = Y (u, —Y)?+ A (u), A>0. (20)
ueH 2 veX
In particular, we focus on estimators @(\) that are closest (in some sense) to
the true function u’. We call such estimators oracles. We define the L*- and
Bregman-oracle by 2 = 4(\2) and 4 = @(\g), where

Ay :=E (argmin |u® — ’&(}\)H) and Mg :=E (argmin DSJym(uO,ﬁ()\))) :
A>0 A>0

respectively. Of course, oracles are not available in practice, since the true sig-
nal u° is unknown. However, they represent ideal instances within the class
of estimators given by (20) that usually perform better than any data-driven
parameter choices (such as cross-validation) and hence may serve as a reference.

Secondly, we also compare our approach to adaptive weights smoothing (AWS)
[40] which constitutes a benchmark technique for data-driven, spatially adaptive
regression. We compute these estimators by means of the official R-package? and

2available at http://cran.r-project.org/web/packages/aws/index.html
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denote them by 45 where ker € {Gaussian, Triangle} decodes the shape of
the underlying regression kernel.

3.1. Non-parametric regression

In this section we apply the SMRE technique to a nonparametric regression
problem in d = 1 dimensions, i.e. the noise model (1) becomes

Y, =ul+e, v=1,...,m, (21)

where we assume that ¢, are independently and normally distributed r.v. with
E(e,) = 0 and E (512,) = 02. The upper left image in Figure 2 depicts the
true signal u° (solid line) and the data Y, with m = 1024 and ¢ = 0.5. The
application we have in mind with this example arises in NMR, spectroscopy,
where the NMR, spectra provide structural information on the number and type
of chemical entities in a molecule. In this context, we suggest to choose J = T'V3,
since the true signal u° is rather smooth (see [12] for examples where J is chosen
to be the total variation of the first and second derivative).

Finally, we discuss the MR-statistic T in (4). We choose A = Id and the index
set S to consist of all discrete intervals with side lengths ranging from 1 to 100.
For an interval S € S we set w® = (#5)~'/?xs. Thus, each SMRE solves the
constrained optimization problem

1
V#S

We choose ¢ to be the a-quantile of the MR-statistic T, that is

. 1
qa—lnf{qeR : P(Igggm ,;SEV

inf TVa(u)  s.t.
uelU

Z(Y - u)u

ves

<q Y(SEeS). (22)

< q) > a} a e (0,1). (23)

We note that except for few special cases (cf. [28, 30]) closed form expressions
for the distribution of the MT-statistic T" are usually not at hand. In practice
one rather considers the empirical distribution of T" where the variance o2 can
be estimated at a rate v/md (cf. [38]).

We will henceforth denote by 1, a solution of (22) with ¢ = g,. As argued in
Section 1.1, i, is smoother (i.e. has smaller value T'Vz) than the true signal u°
with a probability of at least a while it satisfies the constraint that the multires-
olution statistic 7" does not exceed ¢,. This is a sound statistical interpretation

of the regularization parameter a.

Numerical results and simulations

In Figure 2 the oracles ;> and g, the AWS-estimators 4172"8l¢ and and 4520

as well as the SMRE 4.9, Ug.75 and .5 are depicted. It is evident that the
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FIG 2. Row-wise from top left: True signal u® (solid) with data Y, oracles i 2 and g, AWS

estimators a,ﬂ}ﬁ"gl“ and ﬁ,lcu‘};”sm”, and the SMREs 1.9, Go.75 and Ug.5-

SMRE matches the smoothness of the true object much better than the other
estimators while the essential features of the signal (such as peak location and
peak height) are preserved. In particular, almost no additional local extrema
are generated by our approach which stays in obvious contrast to the other
methods. Moreover, we point out that the SMRE are quite robust w.r.t. the
choice of the confidence level a.

We verify this behavior by a simulation study in Table 1. For different noise
levels (o = 0.1,0.3 and 0,5) we compare the MISE, MIAE and MSB. Addition-
ally, we compute the mean number of local maxima (MLM) of 4 relative to the
number of local maxima in u° (which is 11). Here 4 is any of the above esti-
mators. Note that the latter measure (similar to the MSB) takes into account
the smoothness of the estimators where a value MLM > 1 indicates too many
local maxima and hence a lack of regularity whereas MLM < 1 implies severe
oversmoothing.
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TABLE 1
Simulation studies for one dimensional peak data set
[ =01 I T=03

MISE | MSB | MIAE | MLM MISE | MSB | MIAE | MLM
G2 0.009 | 0.008 | 0.071 11.881 0.046 | 0.027 | 0.156 | 10.915
B 0.009 | 0.007 | 0.070 | 11.700 0.048 | 0.026 | 0.149 | 10.359
goriansle 0.007 | 0.007 0.048 2.551 0.040 0.035 0.112 3.053
@Gauss 0.054 | 0.040 | 0.068 1.971 0.062 | 0.041 | 0.107 2.230
@0.9 0.008 | 0.004 | 0.047 1.336 0.056 | 0.019 | 0.127 1.273
20.75 0.007 | 0.004 | 0.044 1.342 0.050 | 0.018 | 0.121 1.290
0.5 0.007 | 0.004 | 0.043 1.366 0.046 | 0.017 | 0.116 1.290

| | 7=05 |

MISE | MSB | MIAE | MLM

U2 0.091 | 0.037 | 0.213 9.860

B 0.094 | 0.036 | 0.206 9.135

aftansle | 0078 | 0.058 | 0.162 | 3.141

@Gauss 0.079 | 0.043 | 0.149 2.330

0.9 0.134 | 0.034 | 0.207 1.194

Q0.75 0.120 | 0.032 | 0.196 1.241

0.5 0.109 | 0.030 | 0.186 1.238

As it becomes apparent from Table 1, the SMREs are performing similarly
well when compared to the reference estimators as far as the standard measures
MISE and MIAE are concerned. For small noise levels (o = 0.1) SMREs even
prove to be superior. The distance measures MSB and MLM, however, are sig-
nificantly smaller for SMREs which indicates that these meet the smoothness of
the true object u® much better than the reference estimators (cf. Example 3.1
i)). All in all, the simulation results confirm our visual impressions above.

Implementation details

The current index set S results in an overall number of constraints in (22) of

100
#S =) (1024 — i+ 1) = 97450.
i=1
As pointed out in Section 2.3, the efficiency of Dykstra’s Algorithm can be
increased by grouping independent side-conditions, that is side-conditions cor-
responding to intervals in § with empty intersection. For example, the system S

can be grouped such that the intersection of the corresponding sets D1, ..., Dys

in (17) form C with
100

M =" i=5050.
i=1
In all our simulations we set 7 = 104 and A = 1.0 in Algorithm 1 which results
in k[r] ~ 100 iterations and an overall computation time of approximately
20 minutes for each SMRE. We note, however, that more than 95% of the
computation time is needed for the projection step (12) and that a considerable
speed up for the latter could be achieved by parallelization.
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3.2. Image denoising

In this section we apply the SMRE technique to the problem of image denois-
ing, that is non-parametric regression in d = 2 dimensions. In other words, we
consider the noise model (21) as in Section 3.1, where the index v ranges over
the discrete square {1,..., m}2. In Figure 3 two typical examples for images u"
and noisy observations Y are depicted (m = 512 and o = 0.1, where u° is scaled
between 0 (black) and 1 (white)).

We will use the total-variation semi-norm J = TVl’g as regularization func-
tional (3 = 1078). Moreover, we choose A to be defined as

Aw), =v2, Y(vel,...,m?). (24)

The index set S is defined to be the collection of all discrete squares with side
lengths ranging from 1 to 25 and we set w® = cgxs with yet to be defined
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Fic 3. Standard test images “cameraman” (top) and “roof” (bottom) and their noisy coun-
terparts.
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constants cg. Thus, each SMREs solves the constrained optimization problem

inf TV (u) st %as(y —u)? <q Y(SeS). (25)

We agree upon ¢ = 1 and specify the constants cgs. To this end, compute for
s =1,...,25 the quantile values

Ja,s =infdgeR : P rgléig(ZE?,Sq 2l-a ae(0,1)
#S=sVES

and set cg = q;;& g- In other words, the definition of cg implies that the true
signal u” satisfies the constraints in (25) for squares of a fized side length s with
probability at least a. We will henceforth denote by ., a solution of (25). We
remark on this particular choice of the parameters wg below.

Numerical results and simulations

In Figures 4 and 5 the oracles > and 4p, the AWS-estimators 411888l and
a5auss as well as the SMRE g g are depicted (for the “cameraman” and “roof”
test image respectively). It is rather obvious that the L*-oracles are not fa-
vorable: although relevant details in the image are preserved, smooth parts
(as e.g. the sky) still contain random structures. In contrast, the estimator
45215 preserves smooth areas but looses essential details. The aws-estimator
with triangular kernel performs much better, however, it gives piecewise con-
stant reconstructions of smoothly varying portions of the image, which is clearly
undesirable. The SMRE and the Bregman-oracle visually perform superior to
the other methods. The good performance of the Bregman-oracle indicates that
the symmetric Bregman distance is a good measure for comparing images. In
contrast to the Bregman-oracle, the SMRE adapts the amount of smoothing to
the underlying image structure: Constant image areas are smoothed nicely (e.g.
sky portions), while oscillating patterns (e.g. the grass part in the “cameraman”
image or the roof tiles in the “roof” image) are recovered.

We evaluate the performance of the SMREs by means of a simulation study.
To this end, we compute the MISE, MIAE and MSB and compare these values
with the reference estimators. We note, however, that in particular the MISE and
MIAE are not well suited in order to measure the distance of images for they are
inconsistent with human eye perception. In [45] the structural similarity index
(SSIM) was introduced for image quality assessment that takes into account
luminance, contrast and structure of the images at the same time. We use the
author’s implementation® which is normalized such that the SSIM lies in the
interval [—1,1] and is 1 in case of a perfect match. We denote by MSSIM the
empirical mean of the SSIM in our simulations.

In Table 2 the simulation results are listed. A first striking fact is the good
performance of the L?-oracle w.r.t. the MISE and MIAE which is supposed to

Savailable at https://www.ece.uwaterloo. ca/~z70wang/research/ssim/
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FIG 4. Reconstructions “cameraman” (row-wise from top left): L?-oracle U2, Bregman-oracle
- . .~ Triangle - i ~
ap, AWS estimators Gy, ¢ and ugﬁ;‘ssm”, and SMRE tg.9.

imply reconstruction properties superior to the other methods. Keeping in mind
the visual comparison in Figures 4 and 5, however, this is rather questionable.
On the other hand, it becomes evident that the L%-oracle has a rather poor
performance w.r.t. the MSB which is more suited for measuring image distances.
It is therefore remarkable that the SMRE performs equally good as the Bregman-
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FIG 5. Reconstructions “roof” (row-wise from top left): L*-oracle U2, Bregman-oracle g,

AWS estimators ﬁﬂ?"gle and ﬁgﬁ;‘ssm”, and SMRE 4g.9.

oracle which, in contrast to the SMRE, is not accessible (since u® is usually
unknown). As far as the structural similarity measure MSSIM is concerned our
approach proves to be superior to all others. Finally, the simulation results
indicate that aws estimation is not favourable for denoising of natural images.
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TABLE 2
Simulation studies for the test images “cameraman” and “roof”.
| “cameraman” ] “roof” |
MISE MSB MIAE | MSSIM MISE MSB MIAE | MSSIM
U2 0.0017 | 0.0314 | 0.0276 0.7739 0.0029 | 0.0499 | 0.0383 0.6700
up 0.0023 | 0.0256 | 0.0275 0.7995 0.0038 | 0.0405 | 0.0391 0.6607

asriangle | 00032 | 0.0482 | 0.0308 | 0.7657 0.0046 | 0.0702 | 0.0416 | 0.6205
Gauss 0.0046 | 0.0470 | 0.0360 | 0.7284 0.0053 | 0.0686 | 0.0457 | 0.5668
0.0 0.0021 | 0.0252 | 0.0297 | 0.8024 0.0033 | 0.0374 | 0.0407 | 0.7003

Notes on the choice of A and w®

In general, a proper choice of the transformation A and of the weight-functions
w? can be achieved by including prior structural information on the true image
to be estimated. Substantial parts of natural images, such as photographs, con-
sists of oscillating patterns (as e.g. fabric, wood, hair, grass etc.). This becomes
obvious in the standard test images depicted in Figure 3. We claim that for
signals that exhibit oscillating patterns, a quadratic transformation A as in (24)
is favorable, since it yields (compared to the linear statistic studied in Section
3.1) a larger power of the local test statistic on small scales.

In order to illustrate this, we simulate noisy observations Y of the test images
u in Figure 3 as in (21) with ¢ = 0.1 and compute a global estimator @ by
computing a minimizer of the ROF-functional (20) (with A = 0.1). We intend
to examine how well over-smoothed regions in 4 are detected by the MR-statistic
T(Y — @) as in (4) with two different average functions (cf. (5))

S

ves

ad pas(e) = Y02

ves

pi,s(v) =

respectively. For the sake of simplicity we restrict for the moment our consider-
ations on the index set S of all 5 x 5 sub-squares in {1, ..., m}2. In Figure 6 the
local means p; s of the residuals v = Y — @ for the “roof”-image are depicted.
To be more precise, the center coordinate of each square S € S is colored ac-
cording to p; s, Hence, large values indicate locations where the estimator 4 is
considered over-smoothed according to the statistic. It becomes visually clear
that the localization of oversmoothed regions is better for ps g. This is a good
motivation for incorporating the local means of the squared residuals in the
SMRE model (7).

We finally comment on the choice of ¢g. Since ¢, are independent and nor-
mally distributed random variables, the (scaled) average function

o % ps(e) = Z (%)2
ves

is x? distributed with #S degrees of freedom. Note that the distribution of
0 2pg(e) is identical only for sets S of the same scale #S. As a consequence of
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FIG 6. Local means p1,s (left) and po s (right)) of the residuals for “roof” image.

this, it is likely that certain scales dominate the supremum in the MR-statistic
T which spoils the multiscale properties of our approach. As a way out, we
compute normalizing constants for each scale separately.

An alternative approach would be to search for transformations that turn
s (g) into almost identically distributed random variables. Logarithmic and p-
root transformations are often employed for this purpose (see e.g. [25]). This
will be investigated separately.

Implementation details

The current index set S results in an overall number of constraints in (25) of

25
#S = (512 —i+1)? = 6251300,

=1

Again by grouping independent side-conditions, the system S can be grouped

such that the intersection of the corresponding sets Dy, ..., Dy in (17) form C
with
25
M =Y "i* =5525.
i=1

In all our simulations we set 7 = 10~* and A = 0.25 in Algorithm 1 which results
in k[7] ~ 30 iterations and a overall computation time of approximately 2 hours
for each SMRE. Hence, parallelization is clearly desirable in this case.

3.3. Deconvolution

Another interesting class of problems which can be approached by means of
SMREs are deconvolution problems. To be more precise, we assume that K is
a convolution operator, that is

(Ku), = (k*u), = Z ky—mUm

meRd
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where k is a square-summable kernel on the lattice Z? and v € H is extended
by zero-padding. We will focus on the situation where k is a circular Gaussian
kernel with standard deviation o given by

1 T v?

k, = me—ﬁ. (26)

With Z =Y + Apr_1 + v, the primal step (13) in Algorithm 1 amounts to solve

1
up < argmin — Z (Ku)y — Z)?* + N (u),
ueH 2 veX

where we choose J to be as in (18) and apply the techniques described in [44]
for the numerical solution.

In order to illustrate the performance of our approach in practical appli-
cations, we give an example from confocal microscopy, nowadays a standard
technique in fluorescence microscopy (cf. [39]). When recording images with
this kind of microscope, the original object gets blurred by a Gaussian kernel
(in first order). The observations (photon counts) can be modeled as a Poisson
process, i.e.

Y, = Poiss((Ku’),), veX. (27)

The image depicted in Figure 7(a) shows a recording of a PtK2 cell taken
from the kidney of potorous tridactylus. Before the recording, the protein [-
tubulin was tagged with a fluorescent marker such that it can be traced by the
microscope. The image in 7(a) shows an area of 18 x 18 ym? at a resolution
of 798 x 798 pixel. The point spread function of the optical system can be
modeled as a Gaussian kernel with full width at half maximum of 230nm, which
corresponds to o = 4.3422 in (26).

Note that (27) does not fall immediately into the range of models covered by
(1). We will adapt the present situation to the SMRE methodology described in
Section 1 by standardization and consider instead of (3) the modified problem

inf J(u) st T<%>§l (28)

where the division is understood pointwise. Clearly, the problem of finding a
solution of (28) is much more involved than solving (3) for the constraints
being nonconvez: Firstly, the functional G as defined in (9) is nonconvex as
a consequence of which the convergence result in Theorem 2.2 does not apply
and secondly Dykstra’s projection algorithm as described in Section 2 cannot
be employed.

We propose the following ansatz in order to circumvent this problem: Instead
of projecting onto the intersection C of sets Cg as described in (15), we now
project in the k-th step of Algorithm 1 onto

Cplk] = ﬁ Cpslk] where Cpglk] = {v €eH : ug (v/\/K—uk) < q}.
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(a) Fluorescence microscopy data of a (b) SMRE fig.9: Fully automated and
PtK2 cell in potorous tridactylus kid- locally adaptive deconvolution of mi-
ney. The bright filaments indicate the croscopy data.

location of the protein S-tubulin.

Fic 7. Reconstruction of confocal microscopy data.

with a pointwise division by the square root of Kuy. Put differently, in the
k-th step of Algorithm 1 we use the previous estimate uj of u® as a lagged
standardization in order to approximate the constraints in (28). In fact, we use

max (K ug,e) with a small number € > 0 for standardization, in order to avoid
instabilities.

We note that while with this modification Dykstra’s algorithm becomes ap-
plicable again, the projection problem (12) now changes in each iteration step of
Algorithm 1. As a consequence, Theorem 2.2 does not hold anymore after this
modification, either. So far, we have not come up with a similar convergence
analysis.

We compute the SMRE 1.9 by employing Algorithm 1 with the modifications
described above. As in the denoising examples in Section 3.2 the index set S
consists of all squares with the side-lengths {1,...,25} and we choose w” = x5
and A = Id. We note, that this results in an overall number of #S = 95 436 200
inequality constraints. The constant ¢ are chosen as in (23), where we assume
that €, are independent and standard normally distributed r.v.

In Algorithm 1 we set A = 0.05 and compute 100 steps. We observe that
after a few iterations (~ 15) the error 7 falls below 1072 and almost stagnates
thereafter, which is due to the fact that we do not increase the accuracy in the
subroutines for (13) and (12). Each iteration step in Algorithm 1 approximately
takes 10 minutes, where 90% of the computation time is needed for (13). The
result is depicted in Figure 7(b).

The benefits of our method are twofold:

i) The amount of regularization is chosen in a completely automatic way. The
only parameter to be selected is the level «v in (23). Note that the parameter
A in Algorithm 1 has no effect on the output (though it has an effect on
the number of iterations needed and the numerical stability).
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(a) STED microscopy recording of (b) Detail comparison between confo-
the PtK2 cell data set. cal recording (left), SMRE 9.9 (middle)
and STED recording (right).

F1c 8. Comparison with high-resolution STED microscopy data.

~—

ii) The reconstruction has an appealing locally adaptive behavior which in the
present example mainly concerns the gaps between the protein filaments:
whereas the marked S-tubulin is concentrated in regions of basically one
scale, the gaps in between actually make up the multiscale nature of the

image.

In the present situation we are in the comfortable position to have a reference
image at hand by means of which we can evaluate the result of our method:
STED (STimulated Emission Depletion) microscopy constitutes a relatively new
method, that is capable of recording images at a physically 5-10 times higher
resolution as confocal microscopy (see [26, 27]). Hence a STED image of this
object may serve as “gold standard” reference image.

Figure 8(a) depicts a STED recording of the PtK2 cell data set in Figure
7(a). The comparison of the SMRE i g with the STED recording in Figure 8(b)
shows that our SMRE technique chooses a reasonable amount of regularization:
No artifacts due to under-regularization are generated and on the other hand
almost all relevant geometrical features that are present in the high-resolution
STED recording become visible in the reconstruction. In particular, we note
that filament bifurcations (one such bifurcation is marked by a black box in
Figure 8(b)) become apparent in our reconstruction that are not visible in the
recorded data.

Finally, we mention that aside to standardization, other transformations of
the Poisson data (27) could possibly be considered. For example Anscombe’s
transformation is known to yield reasonable approximations to normality even
for low Poisson-intensities and hence has a particular appeal for e.g. microscopy
data with low photon-counts. We are currently investigating SMREs that employ
Anscombe’s transform, where in particular the arising projection problems are
challenging.
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4. Conclusion and outlook

In this work, we propose a general estimation technique for nonparametric in-
verse regression problems in the white noise model (1) based on the convex
program (7). It amounts to finding a minimizer of a convex regularization func-
tional J(u) over a set of feasible estimators that satisfy the fidelty condition
T(Y — Ku) < ¢, where T is assumed to be the maximum over simple convex
constraints and ¢ is some quantile of the statistic T(¢). Any such minimizer
we call statistical multiresolution estimator (SMRE). This approach covers well
known uni-scale techniques, such as the Dantzig selector, but with a vast field of
potentially new application areas, such as locally adaptive imaging. The partic-
ular appeal of the multi-scale generalization arises for those situations where a
“neighboring relationship” within the signal can be employed to gain additional
information by “averaging” neighboring residuals. We demonstrate in various
examples that this improvement is drastic.

We approach the numerical solution of the problem by the ADMM (cf. Al-
gorithm 1) that decomposes the problem into two subproblems: A J-penalized
least squares problem, independent of 7', and an orthogonal projection prob-
lem onto the feasible set of (7) that is independent of J. The first problem
is well studied and for most typical choices of J fast and reliable numerical
approaches are at hand. The projection problem, however, is computational de-
manding, in particular for image denoising applications. We propose Dykstra’s
cyclic projection method for its approximate solution. Finally, by extensive nu-
merical experiments, we illustrate the performance of our estimation scheme (in
nonparametric regression, image denoising and deblurring problems) and the
applicability of our algorithmic approach.

Summarizing, this paper is meant to introduce a novel class of statistical esti-
mators, to provide a general algorithmic approach for their numerical computa-
tion and to evaluate their performance by numerical simulations. The inherent
questions on the asymptotic behaviour of these estimators (such as consistency,
convergence rates or oracle inequalities) remain —to a large extent— unan-
swered. This opens an interesting area for future research.

A first attempt has been made in [21] where it is assumed that the model
space U > u' is some Hilbert-space of real valued functions on some domain
Q and that K : U — L*(Q) is linear and bounded. The error model (1) then
has to be adapted accordingly. When Y is a Gaussian process on L? (Q) with
mean Ku" and variance o > 0, consistency and convergence rates for SMREs
as 0 — 07 have been proved in [21] for the case when A = Id. However, in
order to extend these results to the present setting, one would rather work with
a discrete sample of Kug on the grid X and then consider the case when the
number of observations N = md tends to infinity. The previous analysis in
[21] indicates two major aspects that have to be considered in the asymptotic
analysis for SMREs:

(a) As N — oo usually the cardinality of the index set S (and hence of the set
of weight functions W) gets unbounded. Thus, the mutliresolution statistic
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T(e) =Tn(e) in (4) is likely to degenerate unless it is properly normalized
and W satisfies some entropy condition. In the linear case (A = Id) we
utilized a result from [17] that guarantees a.s. boundedness of Ty ().

(b) In order to derive convergence rates (or risk bounds) it is well known that
the true signal u® has to satisfy some apriori regularity conditions. When
using general convex regularization functionals J, this is usually expressed
by the source condition

K*p° € 0J(u®), for some p° € L*().

Here K* denotes the adjoint of K and 0.J the (generalized) derivative of

J. For example, if J(u) = 3 ], then this conditions means that u® €
ran(K*).

It would be of great interest to transfer and extend the results in [21] to the
present situation. It is to be expected that (a) and (a) above are necessary
assumptions for this purpose.

As stressed by the referees, other extensions are of interest and will be post-
poned to future work. In contrast to imaging, in many other applications the
design X is random, rather than fixed. In these situations an obvious way to
extend our algorithmic framework would be to select suitable partitions S ac-
cording to the design density, i.e. with finer resolution at locations with a high
concentration of design points. It also remains an open issue how to extend the
SMRE methodology to density estimation rather than regression, in particular
in a deconvolution setup. For d = 1 a first step in this direction has been taken
in [11] and it will be of great interest to explore whether our approach allow
this to be extended to d > 2.
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Appendix A: Proofs

In this section we shall give the proofs of Theorems 2.2 and 2.4 as well as
Corollary 2.5. We note, that convergence of Algorithm 1 is a classical subject in
optimization theory and a proof can e.g. be found in [20, Chap. IIT Thm. 4.1].
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However, in order to apply these results, it is necessary that certain regularity
conditions for J hold, that are not realistic for our purposes (as e.g. in the case
of total-variation regularization). The assertions of Theorems 2.2 and 2.4 are
modifications of the standard results.

Moreover, we will allow for approzimate solution of the subproblems (12) and
(13). To this end, we rewrite these two subproblems as variational inequalities,
ie. given (ug—1,vVk—1,pr—1) we find (ug,vg, pr) such that

G(v) — Glog) + N (Kup_1 +vp =Y — App_1,v — vg) > —ex, Yo € H (29a)

J(u) — J(ug) + AN Kup, + v — Y — A\pp—1, Ku — Kuy) > 0k, Yu € U
(29b)

Pk = pr—1 — (Kug + v, = Y) /A, (29¢)
where we assume that {1, €2, ...} and {41, 02, ...} are given sequences of positive
numbers. Note that (29a) implies that G(vy) = 0 and hence vy, € C and that for
er = 0, = 0 (29a) and (29b) are equivalent to (12) and (13), respectively.

Finally, we remind the reader of the definition of the subdifferential (or gener-
alized derivative) F of a convex function F' : V' — R on a real Hilbert-space V:

E€OF(v) & Fw)>F)+(Ew—u), Y(weV).

If £ € OF (v), then £ is called subgradient of F at v. It follows from [19, Chap III,
Prop. 3.1 and Prop. 4.1] that the Lagrangian L (and hence also the augmented
Lagrangian L)) has a saddle-point (4, 0,p) € U x H x H if and only if

Ka+o=Y, K'peat(a) and peoG(d). (30)

We will henceforth assume that {(ug,vr,pr)},ey 1S @ sequence generated by
iteratively repeating the steps (29a) - (29¢). Further, we introduce the notation

Up = up — U, Vp:=vpy—0 and pg:=pg—D-

We start with the following

Lemma A.1. For all k > 1 we have that

(M- ll® + A2 1Kt l?) = (Il + A2 K
>\ (Hmk + og||* + (| K i1 — KﬂkHQ) —2X72(0k + 0p—1) — Ok —ex (31)
Proof. The assertion follows by repeating the steps (5.6)-(5.25) in the proof of

[20, Chap. IIT Thm. 4.1] after replacing (5.9) and (5.10) by (29a) and (29b)
respectively. O

We continue with the proof of Theorem 2.2. More precisely, we prove the
following generalized version
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Proposition A.2. Assume that the sums Y ., 0, and Y, e are finite.
Then, the sequence {(uk,vi)}y s, is bounded in U x H and every weak cluster
point is a solution of (8). Moreover,

DK+ o = YII* 4 1K (ur = ur—)|* < oo
keN

Proof. Let k > 1 and define D = > 77 6, and E = Y~ &. Summing up
Inequality (31) over k and keeping in mind that Kay + 9 = Kuy + v, —Y and
Kup 1 — Kup = Kup_1 — Kuy, shows

o0
S IEu + ok = Y| + | Kug-1 — Kug|)?
k=1

<N pIP + |Ka|* + (4N"2+1)D+ E <

where we have used that g = @ and pg = p. Furthermore, it follows again from
(31) that

Iel* + A2 K al)® < [BI° + A2 [Kal® + (A2 + 1)D+ E<oo  (32)
This together with the fact that ||Kuy + vi — Y|| — 0 shows that
max([| Kugll, |vk]l, lpk]l) = O(1).

Together with the optimality condition for (13) this in turn implies that for an
arbitrary u € H

J(ug) < J(u) + AN Kuy + v — Y — App—1, Ku — Kug) + 0 = O(1).  (33)
Summarizing, we find that

_ < S o <
max s (Kug = V) +J (ug) < max ||| [A(Kur = V)| +J(ur) < e <00

for a suitably chosen constant ¢ € R, since A is supposed to be continuous. Thus,
it follows from Assumption A that {us},.y is bounded and hence sequentially
weakly compact. Now, let (@, 7,p) be a weak cluster point of {(ug, vk, Pr)} ey
and recall that (a,0,p) was assumed to be a saddle point of the augmented
Lagrangian L. Setting v = @ in (33) thus results in

J(ug) < J(@) + X" Kup, +vg — Y, K — Kug) + (pr—1, Kuy, — Ka) + 0,
= J(ﬁ) + <pk71, Kuk — Kﬁ> + 0(1) (34)

Using the relation K4 + v =Y we further find

<pk,1,K’u,k — K’&> = <pk,1,K’u,k — Y —|— 1A)>
= (pp—1, Kup +vp, = Y) — (pr—1, 01 — 0) = o(1) — (pr—1,v6 — 0) (35)



264 K. Frick et al.

From the definition of vy in (29a) and from the fact that ¢,v; € C it follows
that
(Y + Ap—1 — (Kug—1 +vg), 0 —vg) < ey

which in turn implies that

— (Pr—1,06 — ) S ATHY — (Kug—1 + vp), vp — ) + &,
= )\_1 <Y — (Kuk + ’Uk),’Uk — 1A)> + )\_1 (Kuk — Kug_1,v — 1A)> + e = 0(1)
(36)
Combining (34), (35) and (36) gives

limsup J(ug) < J(a).

k—o00

Now, choose 2 subsiequence. {up(k)}keN such that Up (k) 4.’[1,. Since J is convex
and lower semi-continuous it is also weakly lower semi-continuous and hence the
previous estimate yields

J(@) < lminf J(uypy) < J(a).

k— o0

Moreover, we have that v,;) € C for all k € N. Since C is closed we conclude
that 0 € C. Since K& + © = Y this shows that (@,?) solves (8) and thus
J(@) = J(4). O

We proceed with the proof of Theorem 2.4. Again we present a generalized
version. To this end, let D and F be as in Proposition A.2.

Proposition A.3. There exists a constant C = C(\, 4, 0,p, E, D) such that
0 < J(ulr]) = J(@) = (K*p,ul[r] — @), < CT+ O] + ey V(7 > 0).
Proof. Define B2 = (4\™! +1)D + E. Then it follows from (32) that

AT up — Kall < [Ip] + A7 [ Kall + B (37)
lpell < 211l + 27" | K@l + B, (38)

where (u,0,p) is an arbitrary saddle point of Ly(u,v,p). Assume that 7 > 0
and that k = k[r] is such that

max(||Ku, +vr, = Y|, [|Kug—1 — Kugl]) < 7.
Then, it follows from (34), (36), (37) and (38) and that

< J(@) + AN (Kug +vp — Y, K — Kug) + (pr_1, Kuy, — K@) + 0,
< J(@) +7([pl + AT [Kall + B) + el T+ (pr—1,0 — vi) + Ok
<J

(@) + 73 ||p|| + 2271 || Ka|| +2B) + 227 7 |log — 0| 4 6r + €
(39)

J (ug)
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After observing that Kuy — Kt + v, — 0 = Y it follows that |jvy — 9| < 7 +
|Kuy, — K| and combining (39) and (37) gives

J(ur) < J(@) + 7 (515 + AN Kl + 4B +23717) + 6 + =i
Now, observe that from the definition of the subgradient and (30), it follows

that J(ug) > J(@) + (K*p,ur, — @) and that (p, v —0) < 0. This and the fact
that Ko + © =Y implies that

0 < J(ug) = J(@) = (K", up — )
— J(uk) = J(8) — (p, Ku +vp — Y) + (p, K+ 5 — V) + (5, v — 0)
< J(ur) = J(@) + [Ipll 7
<7 (6]p| + 4N |Ka| + 4B 4+ 2X7'7) + 0k + €. (40)
This together with (39) finally proves the first part of the assertion. O

Remark A.4. For the case when D = E = 0, it is seen from the proof of
Proposition (A.3) that the constant C' takes the simple form

. 4| Kul|l + 21

¢ =7 (ofa)+ 2,

Proof of Corollary 2.5. Assume that J(u) = 1 |\Lu||%/ Then it follows (see e.g.
[22, Lem. 2.4]) that the subdifferential 0.7 (@) consists of the single element L* Lii.
Hence the extremality relations (30) imply that K*p = L*La. Now it is easy to
observe that

Tl = (@) — (K", 3) = 3 (1L~ )}
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