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Cook’s distance [Technometrics 19 (1977) 15-18] is one of the most im-
portant diagnostic tools for detecting influential individual or subsets of ob-
servations in linear regression for cross-sectional data. However, for many
complex data structures (e.g., longitudinal data), no rigorous approach has
been developed to address a fundamental issue: deleting subsets with differ-
ent numbers of observations introduces different degrees of perturbation to
the current model fitted to the data, and the magnitude of Cook’s distance
is associated with the degree of the perturbation. The aim of this paper is
to address this issue in general parametric models with complex data struc-
tures. We propose a new quantity for measuring the degree of the perturbation
introduced by deleting a subset. We use stochastic ordering to quantify the
stochastic relationship between the degree of the perturbation and the mag-
nitude of Cook’s distance. We develop several scaled Cook’s distances to re-
solve the comparison of Cook’s distance for different subset deletions. Theo-
retical and numerical examples are examined to highlight the broad spectrum
of applications of these scaled Cook’s distances in a formal influence analy-
sis.

1. Introduction. Influence analysis assesses whether a modification of a sta-
tistical analysis, called a perturbation (see Section 2.2), seriously affects specific
key inferences, such as parameter estimates. Such perturbation schemes include
the deletion of an individual or a subset of observations, case weight perturbation
and covariate perturbation, among many others [8, 9, 28]. For example, for linear
models, a perturbation measures the effect on the model of deleting a subset of the
data matrix. In general, perturbation measures do not depend on the data directly,
but rather on its structure via the model. If a small perturbation has a small effect
on the analysis, our analysis is relatively stable, while if a large perturbation has a
small effect on the analysis, we learn that our analysis is robust [11, 16]. If a small
perturbation seriously influences key results of the analysis, we want to know the
cause [9, 11]. For instance, in influence analysis, a set of observations is flagged
as “influential” if its removal from the dataset produces a significant difference in
the parameter estimates or, equivalently, a large value of Cook’s distance for the
current statistical model [5, 8].
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Since the seminal work of Cook [8] on Cook’s distance in linear regression for
cross-sectional data, considerable research has been devoted to developing Cook’s
distance for detecting influential observations (or clusters) in more complex data
structures under various statistical models [1, 6, 8, 10, 12, 14, 15, 23, 29]. For ex-
ample, for longitudinal data, Preisser and Qaqish [19] developed Cook’s distance
for generalized estimating equations, while Christensen, Pearson and Johnson [7],
Banerjee and Frees [4] and Banerjee [3] considered case deletion and subject dele-
tion diagnostics for linear mixed models. Furthermore, in the presence of missing
data, Zhu et al. [29] developed deletion diagnostics for a large class of statisti-
cal models with missing data. Cook’s distance has been widely used in statistical
practice and can be calculated in popular statistical software, such as SAS and R.

A major research problem regarding Cook’s distance that has been largely ne-
glected in the existing literature is the development of Cook’s distance for general
statistical models with more complex data structures. The fundamental issue that
arises here is that the magnitude of Cook’s distance is positively associated with
the amount of perturbation to the current model introduced by deleting a subset
of observations. Specifically, a large value of Cook’s distance can be caused by
deleting a subset with a larger number of observations and/or other causes such
as the presence of influential observations in the deleted subset. To delineate the
cause of a large Cook’s distance for a specific subset, it is more useful to compute
Cook’s distance relative to the degree of the perturbation introduced by deleting
the subset [11, 28].

The aim of this paper is to address this fundamental issue of Cook’s distance
for complex data structures in general parametric models. The main contributions
of this paper are summarized as follows:

(a.1) We propose a quantity to measure the degree of perturbation introduced
by deleting a subset in general parametric models. This quantity satisfies several
attractive properties including uniqueness, nonnegativity, monotonicity and addi-
tivity.

(a.2) We use stochastic ordering to quantify the relationship between the degree
of the perturbation and the magnitude of Cook’s distance. Particularly, in linear
regression for cross-sectional data, we first show the stochastic relationship be-
tween the Cook’s distances for any two subsets with possibly different numbers of
observations.

(a.3) We develop several scaled Cook’s distances and their first-order approx-
imations in order to compare Cook’s distance for deleted subsets with different
numbers of observations.

The rest of the paper is organized as follows. In Section 2, we quantify the
degree of the perturbation for set deletion and delineate the stochastic relationship
between Cook’s distance and the degree of perturbation. We develop several scaled
Cook’s distances and derive their first-order approximations. In Section 3, we an-
alyze simulated data and a real dataset using the scaled Cook’s distances. We give
some final remarks in Section 4.
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2. Scaled Cook’s distance.

2.1. Cook’s distance. Consider the probability function of a random vector
Y' =], ...,v]), denoted by p(Y|6), where 8 = (01, ...,0,)7 isaq x 1 vec-
tor in an open subset ©® of R? and Y; = (y; 1, ..., Yi,m,;), in which the dimension
of ¥;, denoted by m;, may vary significantly across all i. Cook’s distance and many
other deletion diagnostics measure the distance between the maximum likelihood
estimators of # with and without Y; [8, 10]. A subscript “[I]” denotes the relevant
quantity with all observations in I deleted. Let Y[;; be a subsample of Y, with
Y; ={Y; j:(i, j) €1} deleted, and p(Y[71|0) be its probability function. We de-
fine the maximum likelihood estimators of @ for the full sample Y and a subsample
Y|/ as

(2.1 0 = argmaxlog p(Y[#) and @[, = argmaxlog p(Y(76).
0 0

respectively. Cook’s distance for /, denoted by CD(/), can be defined as follows:
2.2) CD(I) = (8111 — )" Gp(81 — 6).

where G, is chosen to be a positive definite matrix. The matrix G is not changed
or re-estimated when a subset of the data is deleted. Throughout the paper, G g
is set as —892 log p(Ylé) or its expectation, where 83 represents the second-order
derivative with respect to €. For clustered data, the observations within the same
cluster are correlated. A sensible model p(Y|#) should explicitly model the corre-
lation structure in the clustered data and thus —83 log p(Yl@) implicitly incorpo-
rates such a correlation structure.

More generally, suppose that one is interested in a subset of # or g; lin-
early independent combinations of @, say L7@, where L is a ¢ x ¢ matrix with
rank(L) = g1 [4, 10]. The partial influence of the subset / on LTé, denoted by
CD(/|L), can be defined as

2.3) CD(|L) = (B — 0) " LILT G /Ly 'L” (6, — 6).

For notational simplicity, even though we may focus on a subset of §, we do not
distinguish between CD(/|L) and CD(/) throughout the paper.

Based on (2.2), we know that Cook’s distance CD(/) is explicitly determined
by three components, including the current model fitted to the data, denoted by M,
the dataset Y and the subset /, itself. Cook’s distance is also implicitly determined
by the goodness of fit of M to Y for I, denoted by G (1Y, M), and the degree of
the perturbation to M introduced by deleting the subset 7, denoted by P (1| M).
Thus, we may represent CD(/) as follows:

(2.4) CDU)=FU, M,Y)=FPUIIM),GU|Y,M)),

where F1(-, -, ) and F>(-, -) represent nonlinear functions.
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We may use the value of CD([/) to assess the influential level of the subset /. We
may regard a subset / as influential if either the value of CD([) is relatively large,
compared with other Cook’s distances, or the magnitude of CD(/) is greater than
the critical points of the X2 distribution [10]. However, for complex data structures,
we will show that it is useful to compare Cook’s distance relative to its associated
degree of perturbation.

2.2. Degree of perturbation. Consider the subset I and the current model M.
We are interested in developing a measure to quantify the degree of the perturba-
tion to M introduced by deleting the subset I, regardless of the observed data Y.
We emphasize here that the degree of perturbation is a property of the model, un-
like Cook’s distance which is also a property of Y. Abstractly, P(I|M) should be
defined as a mapping from a subset / and M to a nonnegative number. However,
according to the best of our knowledge, no such quantities have ever been devel-
oped to define a workable P (I|M) for an arbitrary subset / in general parametric
models, due to many conceptual difficulties [11]. Specifically, even though [11]
placed the Euclidean geometry on the perturbation space for one-sample problems,
such a geometrical structure cannot be easily generalizable to general data struc-
tures (e.g., correlated data) and related parametric models. For instance, for corre-
lated data, a sensible model M should model the correlation structure, and a good
measure P (/| M) should explicitly incorporate the correlation structure specified
in M and the subset /. However, the Euclidean geometry proposed by [11] cannot
incorporate the correlation structure in the correlated data.

Our choice of P (I|.M) is motivated by five principles, as follows:

e (P.a) (nonnegativity) For any subset I, P(I|M) is always nonnegative.

e (Pb) (uniqueness) P(/|M) =0 if and only if / is an empty set.

e (P.c) (monotonicity) If I, C Iy, then P(Ix| M) < P(I1|M).

e (Pd) (additivity) If I, C I1, I1p = 11 — I and p(Yy,,|Y[1,1,0) = p(Yy,,|
Y[1,,], 0) for all §, then we have P (11| M) = P(IL|M) + P(11.2|M).

e (Pe) P(1|M) should naturally arise from the current model M, the data Y and
the subset /.

Principles (P.a) and (P.b) indicate that deleting any nonempty subset always in-
troduces a positive degree of perturbation. Principle (P.c) indicates that deleting
a larger subset always introduces a larger degree of perturbation. Principle (P.d)
presents the condition for ensuring the additivity property of the perturbation.
Since Y[Il»z] is the union of Y[Il] and le’ p(Y[1'2|Y[11], 0) = p(Y11'2|Y[11‘2], 0)
is equivalent to that of Y;,, being independent of Y;, given Y[;,;. The additiv-
ity property has important implications in cross-sectional, longitudinal and family
data. For instance, in longitudinal data, the degree of perturbation introduced by
simultaneously deleting two independent clusters equals the sum of their degrees
of individual cluster perturbations.
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Principle (P.e) requires that P(I|M) depend on the triple (M,Y, ). We
propose P(I|M) based on the Kullback-Leibler divergence between the fit-
ted probability function p(Y|#) and the probability function of a model for
characterizing the deletion of Y;, denoted by p(Y|@, I). Note that p(Y|f) =
p(Y(1110)p(Y1|Y[11,0), where p(Y;|Y[s],0) is the conditional density of Y,
given Y[;). Let . be the true value of § under M [24, 25]. We define p(Y|0, I)
as follows:

(2.5) p(Y10. 1) = p(Y(110) p(Y11Y(1). 05,

in which p(Y;|Y[1],0+) is independent of #. In (2.5), by fixing § = 6, in
(YY1, 0), we essentially drop the information contained in Y; as we esti-
mate 6. Specifically, @[ 71 is the maximum likelihood estimate of @ under p(Y|0, I).
If M is correctly specified, then p(Y;|Y[], 0+) is the true data generator for Y/
given Y[7). The Kullback-Leibler distance between p(Y|#) and p(Y|0, 1), de-
noted by KL(Y, 010., I), is given by

p(Y|0) > (p(Y1|Ym,0>)
2.6 Y|0)1 —— " JdY = Y|0)1 —— "~ |dY.
o) [ pov )°g<p(Y|0,1> | poviorios p(Y11Y 111, 02)

We use KL(Y, 00, I) to measure the effect of deleting Y; on estimating @ with-
out knowing that the true value of 8 is .. If Y, is independent of Y|}, then we
have

KL(Y. 016, ) = /p(Y1|0)log<M) Y,

p(Y110+)
which is independent of Y{;. In this case, the effect of deleting Y; on estimating 6
only depends on {p(Y;|0):0 € B}.

A conceptual difficulty associated with KL(Y, 60, I) is that both 6 and 0., are
unknown. Although 6, is unknown, it can be assumed to be a fixed value from a
frequentist viewpoint. For the unknown 6, we can always use the data Y and the
current model M to calculate an estimator  in a neighborhood of @... Under some
mild conditions [24, 25], one can show that /n (é — 0,) is asymptotically normal,
and thus @ should be centered around 0... Moreover, since Cook’s distance is to
quantify the change of the parameter estimates after deleting a subset, we need
to consider all possible @ around 0., instead of focusing on a single 6. Specifi-
cally, we consider # in a neighborhood of 6, by assuming a Gaussian prior for #
with mean 6, and positive definite covariance matrix X, (e.g., the Fisher informa-
tion matrix), denoted by p(0|0., X,). Finally, we define P(I| M) as the weighted
Kullback-Leibler distance between p(Y|0) and p(Y|@, I) as follows:

2.7 PU|M) =/KL(Y,0|0*, Dp010., Z,)do.

This quantity P(/|M) can also be interpreted as the average effect of deleting
Y; on estimating # with the prior information that the estimate of 8 is centered
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around 0. Since P(I|M) is directly calculated from the model M and the sub-
set [, it can naturally account for any structure specified in M. Furthermore, if we
are interested in a particular set of components of # and treat others as nuisance
parameters, we may fix these nuisance parameters at their true value.

To compute P(I|M) in a real data analysis, we only need to specify M
and (0., X.). Then we may use some numerical integration methods to compute
P(I|M). Although (8., X.) are unknown, we suggest substituting 6, by an esti-
mator of @, denoted by 0, and =, by the covariance matrix of 0. Throughout the
paper, since 0 is a consistent estimator of 0. [24, 25], we set @ = 6 and Y, as the
covariance matrix of 9.

We obtain the following theorems, whose detailed assumptions and proofs can
be found in the Appendix.

THEOREM 1. Suppose that L{Y : p(Y;|Y[11,0) = p(Y;1Y[11,0+)}) > O for
any 0 # 0., where L(A) is the Lebesgue measure of a set A. Then, P(I| M) de-
fined in (2.7) satisfies the four principles (P.a)—(P.d).

As an illustration, we show how to calculate P (/| M) under the standard linear
regression model for cross-sectional data as follows.

EXAMPLE 1. Consider the linear regression model y; = Xl-T B, + &i, where x;
is a p x 1 vector, and the ¢; are independently and identically distributed (i.i.d.)
as N(O, af). Lety= (y1,...,y,)] and X be an n x p matrix of rank p with
ith row XiT. In this case, # = (87, 02)7. Recall that B = XTX)"XTy, 6% =
y ' (1, — Hyy/n, COV(B) = of(XTX)_l and var(62) = ZUf/n, where I, is an n x
n identity matrix and Hy = (h;;) = X(XTX)~!1XT. We first compute the degree of
the perturbation for deleting each (y;, X;). We consider two scenarios: fixed and
random covariates. For the case of fixed covariates, M assumes y; ~ N (XiTﬂ ,02).
After some algebraic calculations, it can be shown that P({i}| M) equals

X/ Eol(B=B)B=B"I 1 1

2.8) 0.5Eg[log(c2/0)]+0.5
(2.8) gllog(oy /o) + o2 T3

where Ey is taken with respect to p(0]0., G;el). Moreover, the right-hand side
of (2.8) contains only terms involving n and X, since perturbation is defined only
in terms of the underlying model M. This is also at the core of why only stochastic
ordering is possible for Cook’s distance, which is a function of both the perturba-
tion and the data. See Section 2.3 for detailed discussions. Furthermore, if § is the
parameter of interest in § and o2 is a nuisance parameter, then 0.5Ey [log(cn,ﬁ2 / o],
and 1/(2n) can be dropped from P ({i}| M) in (2.8).

Furthermore, for the case of random covariates, we assume that the x;’s are
independently and identically distributed with mean p, and covariance matrix X, .
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It can be shown that P({i}| M) equals

(2.9) 05Eqllog(02/0))] +0.507 (S Esl(B — BB~ B 1)~ 5+ L

If B is the parameter of interest in #, and o2 is a nuisance parameter, then
P{i}|M) reduces to p/(2n). Furthermore, consider deleting a subset of obser-
vations {(y;,,Xx;,):k=1,....,n(I)} and I = {iy, ..., i, }. It follows from Theo-
rem 1 that P({i1,...,iyn}M) = Z”(” P{ir}|M). Furthermore, for the case of
random covariates, we have P(I| M) = n(1)P({1}| M) for any subset [ with n(/)
observations. Thus, in this case, deleting any two subsets /1 and /I with the same
number of observations, that is, n(l1) = n(l3), has the same degree of perturba-
tion. An important implication of these calculations in real data analysis is that we
can directly compare CD(/1) and CD(/) when n(ly) =n(l>).

2.3. Cook’s distance and degree of perturbation. To understand the relation-
ship between P (/| M) and CD(/) in (2.4), we temporarily assume that the fitted
model M is the true data generator of Y. To have a better understanding of Cook’s
distance, we consider the standard linear regression model for cross-sectional data
as follows.

EXAMPLE 1 (Continued). We are interested in 8 and treat o2 as a nuisance
parameter. We first consider deleting individual observations in linear regression.
Cook’s distance [8] for case i, (y;, X;), is given by

B - B[;’])TXTX(I§ - ﬁ[i]) _ 2 5 hi

o
2.10 CD{i}) = . ,
10 4D 52 5211 hy

where fS is the least squares ¢ estimate of ,B 62 is a consistent estimator of o2, t; =
¢/ (0 T=hi) and By = B — (XTX)~'x;6;/(1 — hi), in which & = y; —x! .
It should be noted that except for a constant p, CD({i}) is almost the same as
the original Cook’s distance (Cook [8]). As shown in (2.8) and (2.9), regardless
of the exact value of (y;,Xx;), deleting any (y;, X;) has approximately the same
degree of perturbation to M. Moreover, the CD({i}) are comparable regardless
of i. Specifically, if &; ~ N (0, o), then ? follows the x>(1) distribution for all i.
For the case of random covariates, if x; are identically distributed, then all CD({i})
are truly comparable, since they follow the same distribution.

We consider deleting multiple observations in the linear model. Cook’s distance
for deleting the subset / with n([) is given by

B-B)"X'XB-By) 1, _ 1,
(2.11) L7] (}2 L7] :geIT(In(I)—HI) 1H1(In(1)—H]) ]el,

where €; is an n(I) x 1 vector containing all ¢; fori € I and Hy = X; (XTX)_1XIT,
in which X7 is an n(/) x p matrix whose rows are XlT for all i € I. Similar to the
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deletion of a single case, deleting any subset with the same number of observations
introduces approximately the same degree of perturbation to M, and the CD(])
are comparable among all subsets with the same n (/). We will make this statement
precise in Theorem 2 given below.

Generally, we want to compare CD(/) and CD(/,) for any two subsets with
n(ly) #n(l>). As shown in Example 1, when n (/1) > n(l2), deleting /] introduces
a larger degree of perturbation to model M compared to deleting /,. To compare
Cook’s distances among arbitrary subsets, we need to understand the relationship
between P(I|M) and CD(/) for any subset /. Surprisingly, in linear regression
for cross-sectional data, we can show the stochastic relationship between P (1| M)
and CD([1), as follows.

THEOREM 2. For the standard linear model, where y = XB + ¢ and ¢ ~
N(0,621,), we have the following results:

(a) Forany I, C Iy, CD(1y) is stochastically larger than CD(1») for any X, that
is, P(CD(11) > t|M) = P(CD(I) > t|M) holds for any t > 0.

(b) Suppose that the components of Xy and Xy are identically distributed for
any two subsets I and 1" with n(I) = n(I"). Thus, CD(I) and CD(I’) follow the
same distribution when n(I) = n(I') and CD(I}) is stochastically larger than
CD(1) for any two subsets I, and Iy with n(Iy) > n(ly).

Theorem 2(a) shows that the Cook’s distances for two nested subsets satisfy
the stochastic ordering property. Theorem 2(b) indicates that for random covari-
ates, the Cook’s distances for any two subsets also satisfy the stochastic ordering
property under some mild conditions.

According to Theorem 2, for more complex data structures and models, it may
be natural to use the stochastic order to stochastically quantify the positive asso-
ciation between the degree of the perturbation and the magnitude of Cook’s dis-
tance. Specifically, we consider two possibly overlapping subsets /1 and I with
P(1|M) > P(lz|M). Although CD(/1) may not be greater than CD(/,) for a
fixed dataset Y, CD(/1), as a random variable, should be stochastically larger than
CD(1) if M is the true model for Y. We make the following assumption.

ASSUMPTION A1l. For any two subsets 1 and I with P(I{|M) > P(l2| M),

(2.12) P(CD(I}) > t|M) = P(CD(1) > t| M)

holds for any ¢ > 0, where the probability is taken with respect to M.

Assumption Al is essentially saying that if M is the true data generator, then
CD(1) stochastically dominates CD(/l;) whenever P(I{|M) > P(l2|M). Ac-
cording to the definition of stochastic ordering [20], we can now obtain the fol-
lowing proposition.
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PROPOSITION 1. Under Assumption Al, for any two subsets 11 and I, with
P | M) > P(I| M), Cook’s distance satisfies

(2.13) E[h(CD(1))IM] = E[h(CD(12))|M]

and holds for all increasing functions h(-). In particular, we have E[CD(I1)| M] >
E[CD(I2)IM] and Qcpuy)(a|M) is greater than the «o-quantile of
Qcp) (| M) for any a € [0, 1], where Qcp(r)(a| M) denotes the a-quantile
of the distribution of CD(1) for any subset I.

Proposition 1 formally characterizes the fundamental issue of Cook’s distance.
Specifically, for any two subsets /1 and I, with P(I;| M) > P(I| M), CD(I}) has
a high probability of being greater than CD(I,) when M is the true data generator.
Thus, Cook’s distance for subsets with different degrees of perturbation are not
directly comparable. More importantly, it indicates that CD(/) cannot be simply
expressed as a linear function of P(/|M). Thus, the standard solution, which stan-
dardizes CD(/) by calculating the ratio of CD(I) over P(I|M), is not desirable
for controlling for the effect of P (1| M).

2.4. Scaled Cook’s distances. We focus on developing several scaled Cook’s
distances for /, denoted by SCD(/), to detect relatively influential subsets, while
accounting for the degree of perturbation P (I|M). Since we have characterized
the stochastic relationship between P (/| M) and CD(/) when M is the true data
generator, we are interested in reducing the effect of the difference among P (1| M)
for different subsets / on the magnitude of CD(/). A simple solution is to calcu-
late several features (e.g., mean, median, or quantiles) of CD(/) and match them
across different subsets under the assumption that M is the true data generator.
Throughout the paper, we consider two pairs of features including (mean, Std) and
(median, Mstd), where Std and Mstd, respectively, denote the standard deviation
and the median standard deviation. By matching any of the two pairs, we can at
least ensure that the centers and scales of the scaled Cook’s distances for different
subsets are the same when M is the true data generator.

We introduce two scaled Cook’s distance measures, called scaled Cook’s dis-
tances, as follows.

DEFINITION 1. The scaled Cook’s distances for matching (mean, Std) and
(median, Mstd) are, respectively, defined as

_ CD(I) — E[CD(I)|M]
SCD(I) = SICD(DIM] and
CD(I) — Qcp)(0.5|M)

Mstd[CD(1)|M] ’

where both the expectation and the quantile are taken with respect to M.

SCDy(1) =
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We can use SCD; (/) and SCD;(/) to evaluate the relatively influential level
for different subsets /. A large value of SCD(/) [or SCD; (/)] indicates that
the subset [ is relatively influential. Therefore, for any two subsets I; and I,
the probability of observing the event SCD(/1) > SCD(/) and that of the event
SCD(11) < SCD(1>) should be reasonably close to each other. Thus, the SCD(7)
are roughly comparable. Note that the scaled Cook’s distances do not provide a
“per unit” effect of removing one observation within the set /, whereas they mea-
sure the standardized influential level of the set I when M is true. Moreover,
the standardization in Definition 1 still implies that higher than average values of
CD(J) still correspond with high positive values of SCD(/), even though for some
deletions, it is possible for SCD(/) to be negative unlike CD(7).

The next task is how to compute E[CD(/)|M], Std[CD(1)|M], Mstd[CD(7)|
M] and Qcp(r)(0.5| M) for each subset / under the assumption that M is the
true data generator. Computationally, we suggest using the parametric bootstrap to
approximate the four quantities of CD(/) as follows:

Step 1. We use M= {p(Y|é)} to approximate the model M = {p(Y|0.)},
generate a random sample Y® from p(Y|é) and then calculate CD(I)®) =
Fi, M, Y?) for each s and each subset /.

Step 2. By repeating Step 1 S times, we can obtain a sample {CD(/)®) ;s =
1,..., S} and then we use its empirical mean CD(/) = Zle CD(1)®)/S to ap-
proximate E[CD(I)|M].

Step 3. We approximate Std[CD(/)| M], Qcp(r)(0.5| M) and Mstd[CD(1 )| M]
by using their corresponding empirical quantities of {CD(/)®):s=1,..., S}.

In this process, we have used Mto approximate M [24] and simulated data Y*
from M in the standard parametric bootstrap method. If Y truly comes from M,
then the simulated data Y* should resemble Y. Since 6 is a consistent estimate
of 0., E[Fi(I, M, Y)IM] ~ E[F1(I, M,Y)|M] and thus CD(/) is a consistent
estimate of E[F1(I, M, Y)|M]. Similar arguments hold for the other three quan-
tities of CD(7). In Steps 2 and 3, we can use a moderate S, say S = 100, in order to
accurately approximate all four quantities of CD(/). According to our experience,
such an approximation is very accurate, even for small n. See the simulation stud-
ies in Section 3.1 for details. However, for most statistical models with complex
data structures, it can be computationally intensive to compute 9’ for each Y*. We
will address this issue in Section 2.6.

As an illustration, we consider how to calculate SCD (/) for any subset / in the
linear regression model.

EXAMPLE 1 (Continued). In (2.11), since all CD(/) share 62, we replace
62 by of. Thus, we approximate CD(/) by CD,(I) = eTW*e/o*f, where & =
(e1,....&,)T ~N(0,021,) and

W. =0, — H)U; (L) — HI)_]HI(In(I) - HI)_1U1T(In — Hy).
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To compute SCD (1), we just need to calculate the two quantities E[CD.. (/)| M]
and Std[CD, (/)| M]. Since CD, (/) is a quadratic form, it can be shown that

E[CD,(D|M] = E{t[(Ly) — H;) ']Mx) = n(D),
Var[CD, (1)|M] = Var{tr[ (L, — H) ]| Mx]}
+ 2E{ul{(Lury — Hy) ™ Hi ][ Mx ),

where E[-|Mx] denotes the expectation taken with respect to X.

2.5. Conditionally scaled Cook’s distances. In certain research settings (e.g.,
regression), it may be better to perform influence analysis while fixing some co-
variates of interest, such as measurement time. For instance, in longitudinal data,
if different subjects can have different numbers of measurements and measure-
ment times, which are not covariates of interest in an influence analysis, it may be
better to eliminate their effect in calculating Cook’s distance. We are interested in
comparing Cook’s distance relative to P (/| M) while fixing some covariates.

To eliminate the effect of some fixed covariates, we introduce two conditionally
scaled Cook’s distances as follows.

DEFINITION 2. The conditionally scaled Cook’s distances (CSCD) for match-
ing (mean, Std) and (median, Mstd) while controlling for Z are, respectively, de-
fined as

CD(I) — E[CD(I)|M, Z
CSCD (1. 7) — (I) — E[CD{)| ]’
Std[CD(1)| M, Z]
CD(I) — Qcp(1)(0.5|M, Z)

Mstd[CD(I)|M, Z]

CSCDy(1,Z) =

where Z is the set of some fixed covariates in Y and the expectation and quantiles
are taken with respect to M given Z.

According to Definition 2, these conditionally scaled Cook’s distances can be
used to evaluate the relative influential level of different subsets / given Z. Similar
to SCD; (/) and SCD; (1), a large value of CSCD(/, Z) [or CSCD»({, Z)] indi-
cates a large influence of the subset [ after controlling for Z. It should be noted
that because Z is fixed, the CSCDy (I, Z) do not reflect the influential level of Z,
and the CSCDy (1, Z) may vary across different Z. The conditionally scaled Cook’s
distances measure the difference of the observed influence level of the set I given Z
to the expected influence level of a set with the same data structure when M is true
and Z is fixed.

The next problem is how to compute E[CD(I)|M,Z], Std[CD(I)|M, Z],
Qcp1)(0.5| M, Z) and Mstd[CD(/)| M, Z] for each subset I when M is the true
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data generator and Z is fixed. Similar to the computation of the scaled Cook’s dis-
tances, we can essentially use almost the same approach to approximate the four
quantities for CSCD1 (1, Z) and CSCD;(1, Z). However, a slight difference occurs
in the way that we simulate the data. Specifically, let Yz be the data Y with Z
fixed. We need to simulate random samples Y?, from M z ={p(Yz|Z, é)} and
then calculate CD(1)®) = Fy (I, Mz, (Y5,, Z,)) for each subset 1.

As an illustration, we consider how to calculate CSCD;(/, Z) for any subset /
in the linear regression model.

EXAMPLE 1 (Continued). We set Z = X to calculate CSCD;(I,Z). We
need to compute E[CD,(I)|M,Z] and Std[CD, (/)| M, Z]. Since CD,(I) is a
quadratic form, it is easy to show E[CD, (/)| M] = tr[(L;,;) — H)""1—n(I) and
Var[CD, () |M] = 2te[{(Ly(r) — Hp) ™' H; ).

2.6. First-order approximations. We have focused on developing the scaled
Cook’s distances and their approximations for the linear regression model. More
generally, we are interested in approximating the scaled Cook’s distances for a
large class of parametric models for both independent and dependent data.

We obtain the following theorem.

THEOREM 3. If Assumptions A2—AS in the Appendix hold and n(1)/n —
y €10, 1), where n(I) denotes the number of observations of 1, then we have the
following results:

(a) Let F,,(0) = —92log p(Y|0), £1(8) = dylog p(Y,|Y(11.0) and s;(8) =
—892 log p(Y;|Y[11,0), CD(I) can be approximated by

(2.14) CD(I) =£;8)T [F,(8) — s;(8)1"'F, (0)[F,(8) — s;(6)1£;(9);

(b) E[CD(I)|M]~ t({E[F,(@)|M] — E[s;@)|M} " Els;(O)IM]);
(© E[CD(IM,Z] ~ u({E[F,@)|M.Z] — Els;®)|M. 2]}~ E[s; ()]
M, Z)).

Theorem 3(a) establishes the first-order approximation of Cook’s distance for
a large class of parametric models for both dependent and independent data. This
leads to a substantial savings in computational time, since it is computationally
easier to calculate f; (é), F, (5) and s; (9) compared to CD(/). Theorem 3(b)
and (c) give an approximation of E[CD(I)|M] and E[CD(1)| M, Z], respectively.
Generally, it is difficult to give a simple approximation to Var[CD(/)|M] and
Var[CD(1)| M, Z], since it involves the fourth moment of f; (é), which does not
have a simple form.

Based on Theorem 3, we can approximate the scaled Cook’s distance measures
as follows.
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Step (i). We generate a random sample Y* from p(Y|Z, @) and calculate @(l )
based on the simulated sample Y* and fixed Z, denoted by CD(I)". Explicitly, to
calculate 613(1 )*, we replace Y in f; (9), F, (9), and 51(9) by Y*. The computa-
tional burden involved in computing CD(I)* is very minor.

Compared to the exact computation of the scaled Cook’s distances, we have
avoided computing the maximum likelihood estimate of 6 based on Y*, which
leads to great computatlonal savings in computing CD(I )Y for large S, say
S > 100. Theoretically, since 0 is a consistent estimate of 0., E [CD(I )|M] is a
consistent estimate of E[CD(/)|M]. Compared with reestimating 0 for each Y*,
a drawback of using 9 in calculating CD(I)* is that CD(1)* does not account for
the variability in 9. Similar arguments hold for the other three quantities of CD(/).

Step (ii). By repeating Step (i) S times, we can use the empirical quantities
of {615(1)5 :s =1,...,8} to approximate E[CD(/)|M, Z], Std[CD(/)|M, Z],
Qcp)(0.5|M, Z) and Mstd[CD(/)| M, Z]. Subsequently, we can approximate
CSCD(I,Z) and CSCDZ(I Z) and determme their magnitude based on CD(I )5,

For instance, let M| [CD(I )] and Std[CD(I )] be, respectively, the sample mean
and standard deviation of {CD(I)S :s=1,...,5}. We calculate

{CD(I) — M[CD()}

CSCD;(1,Z) = = = ,
Std[CD(1)]
~— _{CD()* — M[CD(D)]}

CSCD(1,Z)° =

Std[CD([))

We use CSCDy (1, Z) to approximate CSCD (7, Z) and then compare CSCD;(/,
Z) across different / in order to determine whether a specific subset [ is rela-

tively influential or not. Moreover, since CSCDl(I~ ,Z)* can be regarded as the
“true” scaled Cook’s distance when p(Y|Z, @) is true, we can either compare
CSCD (I, Z) with CSCD (I, Z)* for all subsets / and s or compare CSCD (1, Z)

with CSCD (1, Z)* for all s. Specifically, we calculate two probabilities as fol-
lows:

S
(2.15) Ps(l,Z2) = Z l(CSCDl(I, 7)° < CSCD;(I, Z))/S,
s=1

l(CSCDl(l 7)° <CSCD1(1 7))

(2.16) Pe(1,2)=Y_ Z S # D) ,

[ s=1

where #(i ) is the total number of all possible sets, and 1(-) is an indicator function
of a set. We regard a subset / as influential if the value of P4 (I, Z) [or Pp(l,Z))]
is relatively large. Similarly, we can use the same strategy to quantify the size of
CSCD»(1,Z), SCD{ (1) and SCD;(1).
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Another issue is the accuracy of the first-order approximation CD(I) to the
exact CD(/). For relatively influential subsets, even though the accuracy of the
first-order approximation may be relatively low, CD(/) can easily pick out these
influential points. Thus, for diagnostic purposes, the first-order approximation may
be more effective at identifying influential subsets compared to the true Cook’s
distance. We conduct simulation studies to investigate the performance of the first-
order approximation CD(/) relative to the exact CD(/). Numerical comparisons
are given in Section 3.

We consider cluster deletion in generalized linear mixed models (GLMM).

EXAMPLE 2. Consider a dataset, that is, composed of a response y;;, covariate
vectors X;;(p x 1) and ¢;;(py x 1), for observations j =1, ..., m; within clusters
i=1,...,n. The GLMM assumes that conditional on a p; x 1 random variable
b;, yij follows an exponential family distribution of the form [18]

(2.17) p(ijIbi) = expla(®) " [yijnij — b))+ c(ij, )},

where 7;; = k(xiTjﬂ +ciij,-) in which B = (B4, ..., ﬂp)T and k(-) is a known con-
tinuously differentiable function. The distribution of b; is assumed to be N (0, X),
where X = X (p) depends on a p> x 1 vector y of unknown variance components.
In this case, we fix all covariates X;; and ¢;; and all m; and include them in Z. For
simplicity, we fix (p, T) at an appropriate estimate (p, ) throughout the example.

We focus here on cluster deletion in GLMMs. After some calculations, the first-
order approximation of CD(/;) for deleting the ith cluster is given by

(2.18)  CD(I;) = 35;(B) T [F(B) — £: (B ' Fu(B)[F, (B) — £:(B)1 ™' 5 (B),
where I; = {(i, 1), ..., (i, m;)}, £; (B) is the log-likelihood function for the ith clus-
ter, f; (B) = —93¢;(B) and F,,(B) = X/, f;(B). Note that

0pti (B) ~ A1, — G (BIF(B)] 195 (B,) + G (BF (B D" 9L, (B,
J#i

Then, cglditional on all the covariates and {mq, .. .,mn}Ain Z, we can shgw
that E[CD([;)| M, Z] can be approximated by tr({E[F,(B)|M,Z] — E[f;(B)|
M, Zv]}_lE[f,- (B)I/\/l, Z]) when M is true. Moreover, we may approximate
Var[CD(/;)| M, Z] by using the fourth moment of dg¢;(B,). It is not straightfor-
ward to approximate Qcp(y;)(0.5| M, Z) and Mstd[CD(/;)| M, Z]. Computation-
ally, we employ the parametric bootstrap method described above to approximate
the conditionally scaled Cook’s distances CSCDy (I;, Z) and CSCD;(1;, Z).

3. Simulation studies and a real data example. In this section, we illustrate
our methodology with simulated data and a real data example. We also include
some additional results in the supplemental article [27]. The code along with its
documentation for implementing our methodology is available on the first author’s
website at http://www.bios.unc.edu/research/bias/software.html.
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3.1. Simulation studies. The goals of our simulations were to examine the
finite sample performance of Cook’s distance and the scaled Cook’s distances
and their first-order approximations for detecting influential clusters in longitu-
dinal data. We generated 100 datasets from a linear mixed model. Specifically,
each dataset contains n clusters. For each cluster, the random effect b; was first
independently generated from a N (0, crbz) distribution and then, given b;, the
observatior;s yij (j=1,...,m;;i =1,...,n) were independently generated as

Vij ™~ N(leﬁ + b;, o*yz) and the m; were randomly drawn from {1, ...,5}. The

covariates x;; were setas (1, u;, 1 j)T, among which 7;; represents time, and u; de-
notes a baseline covariate. Moreover, #;; = log(j) and the u;’s were independently
generated from a N (0, 1) distribution. For all 100 datasets, the responses were
repeatedly simulated, whereas we generated the covariates and cluster sizes only
once in order to fix the effect of the covariates and cluster sizes on Cook’s distance
for each cluster. The true value of 6 = (,BT, op, ay)T was fixed at (1,1,1,1, DT,
The sample size n was set at 12 to represent a small number of clusters.

For each simulated dataset, we considered the detection of influential clus-
ters [4]. We fit the same linear mixed model and used the expectation—maximization
(EM) algorithm to calculate 6 and é[ 1) for each cluster 1. We treated (o3, oy) as
nuisance parameters and 8 as the parameter vector of interest. We calculated the
degree of the perturbation P ({i}|. M) for deleting each subject {i} while fixing the
covariates, and then we calculated the conditionally scaled Cook’s distances and
associated quantities. Let x; be an m; x 3 matrix with the jth row being xl.T, ;- It
can be shown that for the case of fixed covariates, we have

3.1 P({i}|M) =0.5tr{x] R; (&) 'x; Eg[(B— BB — BT},
where Eg is taken with respect to p(B|B,., G;ﬁl) and R; (x) = oyzlml. + abzl®2 in

m; 2
which ¢ = (crbz, ayz)T and 1,,, is an m; x 1 vector with all elements equal to one.
We set Gn_ﬂ1 =[>7, xiTRi (@)~ 'x;]7! and substituted B8, by B

We carried out three experiments as follows. The first experiment was to evalu-
ate the accuracy of the first-order approximation to CD(/). The explicit expression
of CD([) is given in Example S2 of the supplementary document. We considered
two scenarios. In the first scenario, we directly simulated 100 datasets from the
above linear mixed model. In the second scenario, for each simulated dataset, we
deleted all the observations in clusters n — 1 and n and then reset (m1, by) = (1, 4)
and (m,, b,) = (5, 3) to generate y; j fori =1, n and all j according to the above
linear mixed model. Thus, the new first and nth clusters can be regarded as in-
fluential clusters due to the extreme values of by and b,,. Moreover, the number
va observations in these two clusters is unbalanced. We calculated CD(/) and
CD(1), the average CD(/), and the biases and standard errors of the differences
CD(I) — CD([) for each cluster {i} (Table 1).

Inspecting Table 1 reveals three findings as follows. First, when no influential
cluster is present in the first scenario, the average CD(/) is an increasing function
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TABLE 1
Selected results from simulation studies for n = 12 and the two scenarios: m;, P({i}| M), M, SD,
Mdif (x 10_2) and SDdif (x 10_1) of the three quantities CD(I), E[CD(I)| M, Z] and
Std[CD(1)| M, Z]. m; denotes the cluster size of subset {i}; P({i}| M) denotes the degree of
perturbation; M denotes the mean; SD denotes the standard deviation; Mdif and SDdif, respectively,
denote the mean and standard deviation of the differences between each quantity and its first-order
approximation. In the first scenario, all observations were generated from the linear mixed model,
while in the second scenario, two clusters were influential clusters and highlighted in bold. For each
case, 100 simulated datasets were used. Results were sorted according to the degree of perturbation
for each cluster

Scenario I Scenario II
m;  P{i}|M) M Mdif SD SDdif m; P{i}IM) M Mdif SD  SDdif
CcD(I)
1 0.10 0.11 0.01 0.09 0.03 1 0.08 0.37 1.01  0.18 0.18
2 0.11 0.12 0.32  0.12 0.15 2 0.11 0.10 0.08 0.09 0.12
2 0.11 0.15 1.24 0.18 0.64 1 0.11 0.08 0.02 0.11 0.02
2 0.13 0.18 0.87 0.19 0.36 2 0.13 0.13 0.08 0.12 0.12
2 0.15 0.17 0.25 0.19 0.20 2 0.16 0.13 —-0.13  0.12 0.08
3 0.16 0.23 0.55 0.19 0.50 2 0.20 0.20 0.08 0.19 0.12
2 0.19 026 —0.02 0.32 0.25 3 0.23 0.21 —-0.06 0.18 0.22
3 0.22 0.34 297 035 0.99 4 0.25 0.23 0.37 0.23 0.26
4 0.27 0.41 335 038 1.77 5 0.28 0.78 18.59  0.61 4.71
5 0.40 0.70 543  0.60 1.90 5 0.37 0.38 0.90 0.32 0.46
4 0.57 1.15 1.57 129 1.73 5 0.54 0.70 1.32  0.68 0.82
5 0.60 1.21 362 149 1.62 4 0.56 0.65 1.06  0.69 0.54
E[CD(I)|M, Z]
1 0.10 0.12 0.22  0.02 0.05 1 0.08 0.09 043 0.01 0.04
2 0.11 0.12 0.41 0.01 0.03 2 0.11 0.12 0.45 0.02 0.04
2 0.11 0.13 0.46  0.02 0.04 1 0.11 0.13 0.09 0.02 0.03
2 0.12 0.15 0.40 0.02 0.07 2 0.13 0.15 0.38  0.02 0.04
2 0.15 0.17 0.34  0.03 0.08 2 0.16 0.18 0.26  0.02 0.04
3 0.16 0.18 0.77  0.02 0.08 2 0.20 0.23 0.12  0.03 0.05
2 0.19 0.22 0.21 0.04 0.09 3 0.23 0.27 0.46 0.03 0.07
3 0.22 0.26 0.62 0.04 0.09 4 0.25 0.29 1.13  0.03 0.13
4 0.26 0.32 1.63  0.03 0.15 5 0.28 0.36 1.94 0.04 0.18
5 0.40 0.55 2.58 0.07 0.29 5 0.37 0.48 1.86  0.05 0.18
4 0.57 0.97 221  0.12 0.21 5 0.53 0.82 426 0.10 0.34
5 0.60 1.03 5.87 0.16 0.99 4 0.56 0.93 1.64 0.11 0.17
Std[CD(1)| M, Z)
1 0.10 0.18 1.48 0.04 0.20 1 0.08 0.13 1.05 0.04 0.22
2 0.11 0.14 1.16 0.03 0.10 2 0.11 0.14 1.18  0.03 0.12
2 0.11 0.15 1.37  0.03 0.16 1 0.11 0.18 0.78  0.04 0.10
2 0.13 0.18 1.72  0.05 0.35 2 0.13 0.18 1.15  0.03 0.13
2 0.15 0.21 2.02  0.05 0.25 2 0.16 0.23 1.28  0.04 0.14
3 0.16 0.19 2.05 0.03 0.25 2 0.20 0.30 1.07  0.06 0.16
2 0.19 0.29 236 0.07 0.24 3 0.23 0.31 1.72  0.06 0.22
3 0.22 0.30 2.55  0.07 0.32 4 0.25 0.30 1.96  0.05 0.42
4 0.26 0.35 2.84  0.06 0.39 5 0.28 0.39 4.06 0.09 0.66
5 0.40 0.58 2.13  0.11 0.71 5 0.37 0.50 2.67 0.09 0.52
4 0.57 1.16 1.17  0.18 0.55 5 0.53 0.89 0.60 0.14 0.68
5 0.60 1.14 —4.18 0.25 2.29 4 0.56 1.13 0.94 0.21 0.41
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of P(I| M), whereas it is only positively proportional to the cluster size n (/) with
a correlation coefficient of 0.83. This result agrees with the results of Proposition 1.
Second, in the second scenario, the average CD([) for the true “good” clusters is
positively proportional to P(I|M) with a correlation coefficient of 0.76, while
that for the influential clusters is associated with both P (/| M) and the amount
of influence that we introduced. Third, for the true “good” clusters, the first-order
approximation is very accurate and leads to small average biases and standard
errors. Even for the influential clusters, 613(1 ) is relatively close to CD(/). For
instance, for cluster {n}, the bias of 0.19 is relatively small compared with 0.78,
the mean of CD({n}).

In the second experiment, we considered the same two scenarios as the first
experiment. Specifically, for each dataset, we approximated E[CD(/)| M, Z] and
Std[CD(1)| M, Z] by setting S = 200 and using their empirical values, and cal-
culated their first approximations M| [613(1 )] and §E1[6]3(I )]. Across all 100
data sets, for each cluster I, we computed the averages of E[CD(I)|.M,Z]
and Std[CD(/)|M, Z], and the biases and standard errors of the differences
E[CD(I)|M, Z] — M[CD(I)] and Std[CD(1)|M, Z] — Std[CD(1)].

Table 1 shows the results for each scenario. First, in both scenarios, the av-
erage E[CD(/)|M,Z] is an increasing function of P(I|M), whereas it is only
positively proportional to the cluster size n(/) with a correlation coefficient
(CC) of 0.80. This is in agreement with the results of Proposition 1. The av-
erage of Std[CD(/)| M, Z] are positively proportional to m; (CC = 0.76) and
PU|M) (CC = 0.99). Second, for all clusters, the first-order approximations of
E[CD(I)|M,Z] and Std[CD(/)| M, Z] are very accurate and lead to small aver-
age biases and standard errors.

The third experiment was to examine the finite sample performance of Cook’s
distance and the scaled Cook’s distances for detecting influential clusters in lon-
gitudinal data. We considered two scenarios. In the first scenario, for each of the
100 simulated datasets, we deleted all the observations in cluster n and then reset
my, = 1 and varied b, from 0.6 to 6.0 to generate y,_ ; according to the above linear
mixed model. The second scenario is almost the same as the first scenario, except
that we reset m, = 10. Note that when the value of b,, is relatively large, for exam-
ple, b, = 2.5, the nth cluster is an influential cluster, whereas the nth cluster is not
influential for small b,,. A good case-deletion measure should detect the nth cluster
as truly influential for large b,,, whereas it does not for small b,,. For each data set,

we approximated CSCD; (I, Z), CSCD» (I, Z), CSCD (1, Z) and CSCD; (1, Z) by
setting S = 100. Subsequently, we calculated P4 (I, Z) and Pg(I,Z) in (2.15) and
Pc(1,Z) =} 1+, 1(CD(I) < CD({n}))/(n — 1). Finally, across all 100 datasets,
we calculated the averages and standard errors of all diagnostic measures for the
nth cluster for each scenario.

Inspecting Figure 1 reveals some findings as follows. First, deleting the nth
cluster with 10 observations causes a larger effect than that with 1 observation
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FI1G. 1. Simulation results from 100 datasets simulated from a linear mixed model in the two scenar-
ios. The first row corresponds to the first scenario, in which m1p = 1 and by varies from 0.6 to 6.0.
The second row corresponds to the second scenario, in which mio = 10 and by varies from 0.6
to 6.0. Panels (a) and (e) show the box plots of Cook’s distances as a function of byy; panels (b)
and (f) show the box plots of CSCD|(I,Z) as a function of byy; panels (c) and (g) show the box
plots of Pg(1,Z) as a function of byy; panels (d) and (h) show the mean curve of Pg(l,Z) based on
CSCD (1, Z) (red line) and the mean curve of Pc(I,Z) based on CD(I) (green line) as functions

of byp.

[Figure 1(a) and (e), (d) and (h)]. As expected, the distributions of CD({n}) and

P

CSCD; (1, Z) shift up as b, increases [Figure 1(a), (b), (e) and (f)]. Second, in
the first scenario, CD({n}) is stochastically smaller than most other CD(/)s, when
the value of b, is relatively small [Figure 1(d)]. However, in the second scenario,
CD({n}) is stochastically larger than most other CD(/)s [Figure 1(h)] even for
small values of b,,. Specifically, when m, = 1, the average Pc({n}, Z) is smaller
than 0.4 as b, = 0.6 and b,, = 1.2, whereas when m,, = 10, the average Pc({n},Z)
is higher than 0.75 even as b,, = 0.6. In contrast, in the two scenarios, the value of
Pp({n},Z) is close to 0.5 as b, = 0.6 [Figure 1(d) and (h)]. It indicates that the

cluster size does not have a big effect on the distribution of CSCD;(/, Z) [Fig-
ure 1(c) and (g)].

3.2. Yale infant growth data. The Yale infant growth data were collected to
study whether cocaine exposure during pregnancy may lead to the maltreatment of
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infants after birth, such as physical and sexual abuse. A total of 298 children were
recruited from two subject groups (cocaine exposed group and unexposed group).
One feature of this dataset is that the number of observations per children m; varies
significantly from 2 to 30 [21, 22]. The total number of data points is >/, m; =
3176. Following Zhang [26], we considered two linear mixed models given by
Vi,j = xl?: j B + ¢i,j, where y; ; is the weight (in kilograms) of the jth visit from
the ith subject, X j= (1, d,;j, (d,"j — 120)+, (dl‘,j — 200)+, (gi — 28)+, d,‘,j (gi —
28)*, (d;,j —60)T (g —28) ", (d;,j —490) T (g; —28) ™, sid; j, 5i(d; j —120) )7, in
which d; ; and g; (days) are the age of visit and gestational age, respectively, and
s; 1s the indicator for gender. In addition, we assumed &; = (¢; 1, ...,si,mi)T ~
Ny, (0, R; (o)), where a is a vector of unknown parameters in R; (o). We first
considered R; (o) = aoly; + all,?;?. We refer to this model as model M. Then,
it is assumed that variance and autocorrelation parameters are, respectively, given
by V(d) = exp(ao + a1d + ard?* + a3d?) and p(I) = ag + asl, where [ is the lag
between two visits. We refer to this model as model M.

We systematically examined the key assumptions of models M and M> as fol-
lows.

(i) We presented a cumulative residual plot and calculated the cumulative sums
of residuals over the age of the visit to test E[y; j|x; j] = Xl?:jﬁ [17], whose p-
value is greater than 0.543. It may suggest that the mean structure is reasonable.
The cumulative residual plot is given in Figure 2(b).

(ii) For model M, inspecting the plot of raw residuals r; j = y; j — xiT’ j ,3 against
age in Figure 2(c) reveals that the variance of the raw residuals appears to increase
with the age of visit. As pointed by Zhang [26], it may be more sensible to use
model M. Lett; = (74 1, ..., F,-,ml.)T = R; (&)~ /?r; be the vector of standardized
residuals of M, where r; = (r; 1, ..., r,-,mi)T. The standardized residuals under
M- do not have any apparent structure as age increases [Figure 2(d)].

(iii) Under each model, we calculated CD([/) for each child [4]. We treated 8 as
parameters of interest and all elements of & as nuisance parameters. For model M,
we obtained a strong Pearson correlation of 0.363 between Cook’s distance and
the cluster size. This indicates that the bigger the cluster size, the larger the Cook’s
distance measure. Figure 4(b) highlights the top ten influential subjects. Compared
with model M1, we observed similar findings by using CD(/) under model M5,
which were omitted for space limitations.

There are several difficulties in using Cook’s distance under both models M
and M» [3, 4, 7, 19]. First, cluster size varies significantly across children, and
deleting a larger cluster may have a higher probability of having a larger influ-
ence as discussed in Section 2.3. For instance, we observe (mjg5, CD({285})) =
(8,0.738) and (mo74,CD({274})) = (22,1.163). A larger CD({274}) can be
caused by a larger mo74 = 22 and/or influential subject 274, among others. Since
mo74 is much larger than mygs, it is difficult to claim that subject 274 is more
influential than subject 285. Second, there is no rule for determining whether a
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FI1G. 2. Yale infant growth data. Panel (a) presents the line plot of infant weight against age, in
which the observations of subject 269 are highlighted; panel (b) shows the cumulative residual curve
versus age, in which the observed cumulative residual curve is highlighted in blue; and panels (c)
and (d), respectively, present age versus raw residual and age versus standardized residual for cluster
deletion.

specific subject is influential relative to the fitted model. Specifically, it is unclear
whether the subjects with larger CD({i}) are truly influential or not. Third, inspect-
ing Cook’s distance solely does not seem to delineate the potential misspecification
of the covariance structure under model M. We will address these three difficul-
ties by using the new case-deletion measures.

(iv) Under each model, we calculated P({i}|. M) for deleting each subject {i}
for fixed covariates, and then we calculated the conditionally scaled Cook’s dis-
tances and associated quantities. We then used 1000 bootstrap samples to approx-
imate CSCD;(/, Z) and CSCD; (1, Z). Subsequently, we calculated P4 (I, Z) and
Pp(1,7Z) in (2.15).

We observed several findings. First, under model M, we observed a strong
positive correlation between P ({i}| M) and m; [Figure 3(a)]. Second, even though
mae9 = 12 is moderate, subject 269 has the largest degree of perturbation. Inspect-
ing the raw data in Figure 2(a) reveals that subject 269 is of older age during visits
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F1G. 3. Yale infant growth data. Panel (a) shows m; versus P(I| M), in which the ten subjects with
the largest values of degree of perturbation or cluster size are highlighted; panel (b) shows P(I|M1)
versus CD(I), in which the top ten influential subjects are highlighted; panel (c) shows P(I| M)
versus CSCD (1, Z), in which the top eleven influential subjects are highlighted; and panels (d), (e)
and (f), respectively, show P(I|M), CSCD (I, Z) and Pg(I,Z) for models M and M.

compared with other subjects. Third, we also observed a strong positive correla-
tion between P({i}|M) and Cook’s distance [Figure 3(b)], which may indicate
their stochastic relationship as discussed in Section 2.3. Fourth, we observed a
positive correlation between Cook’s distance and the conditionally scaled Cook’s
distance [Figure 3(b) and (c)], but their levels of influence for the same subject are
quite different. For instance, the magnitude of CSCD ({269}, Z) is only moder-
ate, whereas CD1 ({269}, Z) is the highest one. We observed similar findings under
model M and presented some findings in Figure 3(d) and (e).

We used Pp(I, Z) to quantify whether a specific subject is influential relative to
the fitted model M [Figure 3(f)]. For instance, since CD({246}) = 0.253, it is un-
clear whether subject 246 is influential or not according to CD, whereas we have
CSCD({246},Z) = 21.443 and Pp({246},Z) = 1.0. Thus, subject 246 is really
influential after eliminating the effect of the cluster size. Moreover, it is difficult to
compare the influential levels of subjects 274 and 285 using CD. All of the condi-
tionally scaled Cook’s distances and associated quantities suggest that subject 274
is more influential than subject 285 after eliminating the degree of perturbation
difference. We observed similar findings under model M, and omitted them due
to space limitations. See Figure 3(d) and (e) for details.
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We compared the goodness of fit of models M| and M3 to the data by using
the proposed case-deletion measures. First, inspecting Figure 3(d) reveals a strong
similarity between the degrees of perturbation under models M and M, for all
subjects. Second, by using the conditionally scaled Cook’s distance, we observed
different levels of influence for the same subject under M and M. For instance,
CSCD (1, Z) identifies subjects 246, 141, 109, 193 and 31 as the top five influen-
tial subjects under M, whereas it identifies subjects 274, 217, 90, 109 and 289 as
the top ones under M. Finally, examining Pg (I, Z) reveals a large percentage of
influential points for model M, but a small percentage of influential points for
model M>; see Figure 3(f) for details. This may indicate that model M outper-
forms model M. Furthermore, although we may develop goodness-of-fit statis-
tics based on the scaled Cook’s distances and show that model M, outperforms
model M, this will be a topic of our future research.

In summary, the use of the new case-deletion measures provides new insights in
real data analysis. First, P(I|M) explicitly quantifies the degree of perturbation
introduced by deleting each subject. Second, CSCDy (1, Z) for k = 1, 2 explicitly
account for the degree of perturbation for each subject. Third, Pp(I,Z) allows
us to quantify whether a specific subject is influential relative to the fitted model.
Fourth, inspecting Pp(I,Z) and CSCDy (I, Z) may delineate the potential mis-
specification of the covariance structure under model M.

4. Discussion. We have introduced a new quantity to quantify the degree of
perturbation and examined its properties. We have used stochastic ordering to
quantify the relationship between the degree of the perturbation and the magni-
tude of Cook’s distance. We have developed several scaled Cook’s distances to
address the fundamental issue of deletion diagnostics in general parametric mod-
els. We have shown that the scaled Cook’s distances provide important informa-
tion about the relative influential level of each subset. Future work includes devel-
oping goodness-of-fit statistics based on the scaled Cook’s distances, developing
Bayesian analogs to the scaled Cook’s distances, and developing user-friendly R
code for implementing our proposed measures in various models, such as survival
models and models with missing covariate data.

APPENDIX

The following assumptions are needed to facilitate the technical details, al-
though they are not the weakest possible conditions. Because we develop all results
for general parametric models, we only assume several high-level assumptions as
follows.

ASSUMPTION A2. 9[1] for any / is a consistent estimate of 6, € ©.
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ASSUMPTION A3. All p(Y[/0) are three times continuously differentiable
on ® and satisfy

log p(Y[1118) = log p(Y(1]10+) + A©O)T J,.111(8:)
—0.5A0)"F,.117(0.) A0) + Ri11(9),

in which |R(;1(8)| = 0,(1) uniformly for all § € B(0.,5on" /%) ={0:/nll® —
0.l < o}, where A@) =0 — 0., J, 11(0) = dglog p(Y[;110) and F,, 11(04) =
95 log p(Y(110).

ASSUMPTION A4. For any [ and Z, supeeB(g*’n—l/zso)n_l/an,[I](O) =
O, (1),

sup  |Fu(1)(0) — E[F;()| M, Z]| = 0, (Vn),
0€B(0s,n—1/280)

sup n | Fou1(0) — Fu (0] = 0, (1),
0,60’ €B(Os,n~1/280)

and 0 < infyepg, s00-1/2) Amin (1 Fo [11(0)) < SUPgepa, son-1/2) Amax (™! X
Fn’[I](B)) < Q.

ASSUMPTION AS5. Forany set / and Z,

sup J1(0) = 0,(vn(D)),

0eB(0,,n—1/280)

sup £ ()| = Op(n(1)),
0eB(By,n~1/28)

sup I1£:(8) — ETf1(0)IM, Z]|| = O, (Vn(D)).

0eB(6,n~1/28y)

REMARKS. Assumptions A2—-AS5 are very general conditions and are gener-
alizations of some higher level conditions for the extremum estimator, such as
the maximum likelihood estimate, given in Andrews [2]. Assumption A2 assumes
that the parameter estimates with and without deleting the observations in the sub-
set I are consistent. Assumption A3 assumes that the log-likelihood functions for
any / and Y|[;) admit a second-order Taylor’s series expansion in a small neigh-
borhood of 8,. Assumptions A4 and A5 are standard assumptions to ensure that
the first- and second-order derivatives of p(Y(;1|@) and p(Y[|Y{s], ) have appro-
priate rates of n and n; [2, 30]. Sufficient conditions of Assumptions A2—AS5 have
been extensively discussed in the literature [2, 30].

PROOF OF THEOREM 1. (Pa) directly follows from the Jensen inequality,
(2.6) and (2.7). For (Pb), if I is an empty set, then KL.(Y,#|/) = 0 and thus
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P |M) = 0. On the other hand, if P(/|M) = 0, then KL(Y,#|I) = 0 for al-
most every 6. Thus, by using the Jensen inequality, we have p(Y;|Y[1],0) =
p(Y1|Y[1), 0+) for all @ € ©. Based on the identifiability condition, we know that /
must be an empty set. Let /1.0 = I1 — I». It is easy to show that

p(YII Y, 0) = p(le’ Y11, 0) = P(Y12|Y[12], o)p(Y[Iz] AR 0)'
Thus, by substituting the above equation into (2.6), we have
PIM) =P(L|M)

p(X 1Y, 0)
p(Y11511Y(17, 05)

in which the second term on the right-hand side can be written as

+ [ p(016.. 200 p(YI6) g )aoay.

[ PO 20 (Y1l Vir1. 6)
Y Y. 0
x { / p(Y(1,)10) 10g( P 11,)1Yi1,). 6) ) A1, } d0dY,, >0,
120 VA1 AN
which yields (P.c). Based on the assumption of (P.d), we know that
p(Y11lY 111, 0) = p(Y1,,1Y (11, 0) = p(Y1,,1Y(1,1, 0)

for all . Thus, the second term on the right-hand side of (A.1) reduces to
P(I1.2] M), which finishes the proof of (P.d). [

PROOF OF THEOREM 2. (a) Let I3 = I\ I», I is a union of two disjoint

sets /3 and 1. Without loss of generality, H;, can be decomposed as
X, XIX)~IXT X, (XTX)~IXT
Hy =X (XXX = (150 T T ) ),

! X, (XTX)~ X7, X, (XTX)~ X,

Let A1 > - > A1 pu) =0and A2 1 > -+ > A2 4(1,) = 0 be the ordered eigen-
values of H;, and Hj,, respectively, where n([) denotes the number of observa-
tions in I for k = 1, 2. It follows from Wielandt’s eigenvalue inequality [13] that
A=Ay tforalll=1,...,n(lp). Fork =1, 2, we define FkAkaT as the spectral

decomposition of Hy, and hy = Iy, — Ak) " V2TFey = (it -y hina) s
where T’y is an orthnormal matrix and Ay = diag(Ak 1, ..., Ak n)). It can be
shown that for k =1, 2,
2 1 & Mj 2
hy ~N(0,0°1 and CD([;) = — “—hy ..
K~ N(0,0°Tuy) (k) = =3 /2::1 T el

Since f(x) =x/(1 — x) is an increasing function of x € (0, 1), this completes the
proof of Theorem 2(a).
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Note that CD(I) = (62)! Z';(:If Aj(1— )\j)_lhﬁ, where the A; are the eigen-
values of H; and h = (hq, ..., hn(l))T ~ N(O0, 021,,(1)). Moreover, the distribu-
tion of A is uniquely determined by H;. Combining h ~ N (0, azln(l)) with the
assumptions of Theorem 2(b) yields that CD(I) and CD(I’) follow the same dis-
tribution when n (1) = n(I’). Furthermore, we can always choose an I such that
n(l;) = n(l») and I C I,. Following arguments in Theorem 2(a), we can then
complete the proof of Theorem 2(b). [

PROOF OF THEOREM 3. (a) It follows from a Taylor series expansion and
Assumption A3 that

39 log p(Y(1118(11) = 0= 8 log p(Y(1116) + 87 log p(Y(1)18) (811 — 0).

where 8 = 171+ (1 — )8 for t € [0, 1]. Combining this with Assumption A4 and
the fact that dg log p(Y|60) = 9y log p(Y[1110) + 99 log p(Y;|Y[77.0) =0, we get

b1 — 0 = [~821og p(Y(1118)] "6 log p(Y(1)18)[1 + 0, (D]
(A.2) = —[—321og p(Y(1110)] " 00 log p(Y1|Y (13, )[1 4 0, (D)].

Substituting (A.2) into CD(I) = (8;; — )T F,(8)(8(;; — 6) completes the proof
of Theorem 3(a).
(b) It follows from Assumptions A2—-A4 that

0 — 0. =F,(0.) " dlog p(Y|0.)[1+0,(1)]

=F,(0.) " '[80log p(Y(1110.) + 39 log p(Y 1Y (1, 0:)][1 + 0, (D]

Let J;(0) = 99 log p(Y;|Y[1], 0). Using a Taylor series expansion along with As-
sumptions A4 and A5, we get

J1(8) = J1(8:) —s1(0,)(0 — 0.)[1 +0,(1)]
= J1(0,) — Els1(0.)|M1® — 0.)[1 +0p(1)]
= ({1, — Els; ()| MIF,(8.) "' }J1(8.)
— E[s1(0)|IMIF,(8,) " 99 log p(Y1110+))[1 + 0, (D)].
Since E[J;(0+)3 log p(Y(11160.)|M]=0,
E[J1(6)J;0)|M]
= E[s;(0.)|MIF,,(8,) " {F,(8,) — E[s;(0.)|M}[1 + 0,(D)].

It follows from Assumption A4 that for # in a neighborhood of 8., F,(#) and
F,(0.) — £;(0) can be replaced by E[F,,(6)|M] and E[F,(0,) — £;(0)|M], re-
spectively, which completes the proof of Theorem 3(b).

(c) Similarly to Theorem 3(b), we can prove Theorem 3(c). U

(A.3)
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SUPPLEMENTARY MATERIAL

Supplement to “Perturbation and scaled Cook’s distance”: (DOI: 10.1214/
12-A0S978SUPP; .pdf). We include two theoretical examples and additional re-
sults obtained from the Monte Carlo simulation studies and real data analysis.
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