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BAYESIAN ANALYSIS OF DYNAMIC ITEM RESPONSE MODELS
IN EDUCATIONAL TESTING1

BY XIAOJING WANG, JAMES O. BERGER AND DONALD S. BURDICK

University of Connecticut, Duke University and MetaMetrics, Inc.

Item response theory (IRT) models have been widely used in educational
measurement testing. When there are repeated observations available for in-
dividuals through time, a dynamic structure for the latent trait of ability needs
to be incorporated into the model, to accommodate changes in ability. Other
complications that often arise in such settings include a violation of the com-
mon assumption that test results are conditionally independent, given abil-
ity and item difficulty, and that test item difficulties may be partially speci-
fied, but subject to uncertainty. Focusing on time series dichotomous response
data, a new class of state space models, called Dynamic Item Response (DIR)
models, is proposed. The models can be applied either retrospectively to the
full data or on-line, in cases where real-time prediction is needed. The models
are studied through simulated examples and applied to a large collection of
reading test data obtained from MetaMetrics, Inc.

1. Introduction.

1.1. Background. Item response theory (IRT) models are frequently used in
modeling dichotomous data from educational tests, since they allow separate as-
sessment of the ability of examinees and effectiveness of the test items. A typical
one-parameter IRT model is of the form

Pr(Xil = 1|θi, dl) = F(θi − dl),(1.1)

where θi indicates the ability of the ith person; dl indicates the difficulty of the
lth test item; the item response variable Xil could be either 0 or 1, corresponding
to whether the lth test item taken by the ith person is answered correctly or not;
and the item characteristic curve, F(·), is a cumulative distribution function (c.d.f.)
from a continuous distribution. When F(·) is the standard logistic c.d.f., the one-
parameter IRT model (1.1) becomes the famous Rasch model

Pr(Xil = 1|θi, dl) = exp(θi − dl)

1 + exp(θi − dl)
.(1.2)

If F(·) = �(·), where �(·) is the standard normal c.d.f., then

Pr(Xil = 1|θi, dl) = �(θi − dl)(1.3)
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defines the one-parameter Normal Ogive or Probit model. We will focus on the
former model in the paper, for reasons to be discussed later, although analysis of
the Probit model is actually easier and can be done with a simplified version of the
methodology developed here.

The development of item response theory from the classical point of view owes
much to the pioneering work of Lord (1953), Rasche (1961) and their colleagues.
Among the many noteworthy contributions are Andersen (1970) and Bock and
Lieberman (1970).

In classical IRT, it is assumed that the Xil are independent, given the person’s
ability θi and the difficulty levels dl . This is often referred to as the local inde-
pendence assumption. There are situations in which this assumption is violated.
One such is computer adaptive testing, wherein the selection of the next test item
typically depends specifically on the previous questions and answers.

The situation is less clear with what is studied herein, MetaMetrics’ educational
assessment program called Computer Adaptive Instruction and Testing (CAIT).
With CAIT, a test pool of articles is selected for the student based on an estimate
of his/her current ability; the student selects an article from this pool and the test
questions (described later) are then generated before reading commences. Thus,
in the environment of the CAIT, the possible violation in the local independence
would arise from sources such as article selection by the student and test questions
related to the same article so that overall understanding of the article could affect
all answers; in this paper, such possible effects will be called test effects. Other
factors that could cause violation of the local independence include health status
and emotional status of the student on a given day; these will be referred to as daily
effects. In the MetaMetrics scenario, there had been no previous demonstration of
the violation of the local independence through the presence of test effects or daily
effects, and there was a considerable interest in establishing such presence for
possible enhancement of current models.

Pioneering papers that addressed the local dependence were Stout (1987, 1990),
who introduced the essential dimensionality and the essential independence of a
collection of test items, and Gibbons and Hedeker (1992), who considered the con-
ditional dependence within identified subsets of items by allowing random effects
in the analysis. More recent work in this direction is testlet response theory mod-
eling, proposed by Bradlow, Wainer and Wang (1999). They defined the testlet as
a subset of items; for example, they defined a reading comprehensive section in
the SAT as the testlet. They then modified the classic IRT models by including a
random effect term to represent the common factor affecting the responses in the
testlet. Another approach to handle the local dependence is by the introduction
of Markov structure, such as Jannarone (1986) where the conjunctive IRT kernel
was introduced. A more recent paper concerned is Andrich and Kreiner (2010),
where they modified the Rasch model by allowing the conditional probability of a
response to an item to depend on the answer of a previous item.
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For the modeling in this paper, the random effect approach will be followed.
Indeed, two levels of random effects will be introduced to model the daily effects
and test effects, respectively.

Another essential generalization of the IRT model lies in their applicability to
analyze longitudinal data, that is, to deal with scenarios in which an individual is
tested repeatedly over time; then, the interest typically centers on the growth of an
ability of the individual. Embretson (1991) and Marvelde et al. (2006) presented
a multidimensional Rasch model to represent the change of an ability as an initial
ability and one or more modifiabilities. Based on the belief that a person’s abil-
ity growth would be increasing over time, Albers et al. (1989), Tan et al. (1999)
and Johnson and Raudenbush (2006) used linear or polynomial regression of the
time variable to measure the growth of an ability; their analysis required the same
time span and testing points for all examinees. Martin and Quinn (2002) modeled
the transition of a voting preference as a first-order Markov process, where they
assumed voting preference changes from the previous time point to a new point
by a random shock; this work did not incorporate a time trend. Park (2011) sup-
posed that changes in a voting preference were subject to discrete agent-specific
regime changes and modeled the indicator of the preference regime changes as a
first-order Markov process. Bartolucci, Pennoni and Vittadini (2011) analyzed test
scores in mathematics observed over 3 years for public and private middle school
students by a multilevel latent Markov Rasch model, where they described the dy-
namic transition of different levels of the individual ability also via a first-order
Markov process.

Our approach to the longitudinal issue is based on a new class of dynamic lin-
ear models (DLM’s) [see West and Harrison (1997) for background on DLM’s].
The literature on DLM’s or state space models, in the framework considered here
of longitudinal binomial data, includes, for example, Carlin and Polson (1992),
Fahrmeir (1992) and Czado and Song (2008) and the last three papers mentioned
in the previous paragraph. Our models are distinguished from the literature by si-
multaneously allowing for the following features: (i) observations at variable and
irregular time points; (ii) continuously changing ability, but with incorporation of
knowledge concerning trends (e.g., increasing ability over time) in a nondogmatic
way (thus accommodating, say, a drop in reading ability over a summer vacation);
(iii) an analysis that is either individual or hierarchical across a group of individ-
uals, the latter allowing for “borrowing strength” in estimates of certain overall
parameters; (iv) either a retrospective analysis based on the full data or a real-time
analysis and prediction for an individual based on the data to date.

Moreover, we consider the case in which the test item difficulties are nominally
specified, as in CAIT, where the test items are often computer-generated and have
theoretically determined difficulties. The actual item difficulties are quite uncer-
tain, however, this uncertainty is also accommodated in our analysis. Previous pa-
pers that introduced random effects for item parameters include Sinharay, Johnson
and Williamson (2003) and DeBoeck (2008).
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1.2. Testbed application. The model developed in this paper is motivated by
CAIT testing, as developed by MetaMetrics Inc. The main applied goals are as
follows:

• The original goal is to assess the appropriateness of the local independence as-
sumption for this type of data. This evolves into the goal of better understanding
the nature of the daily and test effects.

• A second goal is to understand the growth in ability of students, by retrospec-
tively producing the estimated growth trajectories of their latent abilities in the
study.

• A third goal is to enable on-line prediction of one’s ability (based solely on data
obtained up to that point), to enable a better assignment of reading materials to
match his/her ability and to enable teachers to better assist students.

The data considered is from a school district in Mississippi and consisted of
1983 students who registered over two years in a CAIT reading test program con-
ducted by MetaMetrics Inc. The students were in different grades and entered and
left the program at different times between 2007 and 2009. Individuals took tests
on different days and had different time lapses between tests. Because of the long
periods of testing, a fully adaptive model accommodating continual changes in
ability is needed.

The data was generated during sessions in which a student read an article se-
lected from a large bank of available articles. The articles in this bank had been
assigned text complexity measured in Lexiles, using the Lexile Receptive Ana-
lyzer �, a software developed by MetaMetrics Inc. to evaluate the semantic and
syntactic complexity of a text. The Lexile measure represents either an individual’s
reading ability or the complexity of a text. The scale for Lexiles ranges from 0 to
1800, with 0 indicating no reading ability and 1800 being the maximum.

A session begins like this: a student selects from a generated list of articles hav-
ing Lexile complexities in a range targeted to the current estimate of the student’s
ability. For the selected article, a subset of words from the article are eligible to
be clozed, that is, removed and replaced by a blank. The computer, following a
prescribed protocol, randomly selects a sample of the eligible words to be clozed
and presents the article to the student with these words clozed. When a blank is en-
countered while reading the article, the student clicks it and then the true removed
word along with three incorrect options called foils is presented. As with the tar-
get word, the foils are selected randomly according to a prescribed protocol. The
student selects a word to fill in the blank from the four choices and an immediate
feedback is provided in the form of the correct answer.

The dichotomous items produced by this procedure are called “Auto-Generated-
Cloze” items. They are single-use items generated at the time of an encounter
between a student and an article. If another student selects that same article to
read, a new set of target words and foils is selected. Although it is not strictly
impossible for an individual item to be taken by more than one student, such an



130 X. WANG, J. O. BERGER AND D. S. BURDICK

occurrence is highly improbable. As a consequence, it is not feasible to obtain
data-based estimates of item calibration parameters.

Instead, the difficulties of the items generated for an encounter between a stu-
dent and an article can be modeled as a sample from an ensemble of item diffi-
culties associated with the article. The text complexity in Lexiles provides a theo-
retical value for the ensemble mean. An estimated student ability in combination
with assumptions about the ensemble allows calculation of a predicted success rate
for the encounter. A comparison of the observed success rate with predicted, ag-
gregated over many encounters, provides a basis for assessing the viability of the
assumptions incorporated into the model. The predicted success rates in Table 1
in Stenner (2010) include the assumption that the mean of the ensemble of item
difficulties for an article is given by its theoretical text complexity. The agreement
with observed success rates supports that assumption.

Although MetaMetrics data is typically presented in Lexile units, there is a sim-
ple linear transformation from Lexiles to logit units. We will utilize the more com-
mon logit units for all data and results in this paper. Note that this also motivates
the use of the logistic IRT model in this paper—to preserve compatibility with the
MetaMetrics data.

1.3. Preview. Because of the complexity of the model considered (and of the
testbed data set), as well as the need to incorporate prior information into the
model, the analysis will be carried out using Bayesian methodology and Markov
chain Monte Carlo (MCMC) computational techniques. A side benefit of using
these methodologies is that all uncertainties in all quantities are combined in
the overall assessment of inferential uncertainty. The MCMC procedure utilizes
a novel combination of Gibbs sampling together with a block sampling scheme
involving forward filtering and backward sampling.

In Section 2 we formally describe the proposed models to capture the dynamic
changes in a person’s ability as well as the local dependence between item re-
sponses. Section 3 presents the MCMC strategy to carry out the statistical infer-
ence. Section 4 tests the methodology on some simulated examples (where the
truth is known). Section 5 applies the proposed models to the MetaMetrics data
set. Section 6 draws conclusions from both statistical and psychological sides, and
points out some directions for future studies.

2. Dynamic item response (DIR) models. This section formally introduces
the proposed one-parameter DIR model. Although the focus is on generalizing
one-parameter IRT models, it would be straightforward to similarly generalize
two-parameter or three-parameter IRT models.

2.1. The observation equation in DIR models. In a typical one-parameter IRT
model (1.1), the index of the item response Xil indicates the correctness of the ith
person’s answer to the lth question in a single test. Consider the more involved
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situation in which the individual completes a series of tests within a given day
and over different days. Thus, the item response variable is Xi,t,s,l , which corre-
sponds to the correctness of the answer of the lth item in the sth test on the t th
day taken by the ith person. Here, i = 1, . . . , n; t = 1, . . . , Ti ; s = 1, . . . , Si,t ; and
l = 1, . . . ,Ki,t,s .

Likewise, let di,t,s,l represent the difficulty level of the lth item in the sth test at
the t th day taken by the ith person. As described in the Introduction, we model the
test difficulties as being nominally specified, but with uncertainty. Thus, we write

di,t,s,l = ai,t,s + εi,t,s,l,(2.1)

where ai,t,s indicates the ensemble mean difficulty for the items in the sth test
taken by the ith person on the t th day, and εi,t,s,l is the random deviation from this
ensemble mean difficulty for the lth item within the sth test. In the scenario we
consider, the value of ai,t,s is assumed to be known, from the theoretical analysis
of text complexity, while it is assumed that εi,t,s,l is a normal distribution with zero
mean and specified variance σ 2 from the test design in the CAIT testing, which is
denoted as εi,t,s,l ∼ N (0, σ 2).

As mentioned in the Introduction, we will also incorporate a term of daily ran-
dom effects, ϕi,t , as well as a term of test random effects, ηi,t,s , to account for
the possible local dependence factors when person i takes several tests during
day t . It is assumed that ϕi,t ∼ N (0, δ−1

i ) and, letting ηi,t = (ηi,t,1, . . . , ηi,t,Si,t
)′

denote the vector of test random effects on day t for individual i, that ηi,t ∼
NSi,t

(0, τ−1
i I|∑Si,t

s=1 ηi,t,s = 0), with differing and unknown precision parameters
δi and τi for each individual i. Here I is an Si,t × Si,t identity matrix. The multi-
variate normal distribution for ηi,t is actually a singular multivariate normal dis-
tribution because it is conditioned on the sum of the day’s test effects being zero,
done to remove any possibility of confounding with the daily random effects. (In
analysis and computation, this singular multivariate normal distribution is replaced
by the corresponding lower-dimensional nonsingular multivariate normal distribu-
tion.)

Finally, at the observation level, the dichotomous test data is modeled as

Pr(Xi,t,s,l = 1|θi,t , ai,t,s , ϕi,t , ηi,t,s, εi,t,s,l)

= F(θi,t − di,t,s,l + ϕi,t + ηi,t,s)

= F(θi,t − ai,t,s + ϕi,t + ηi,t,s + εi,t,s,l),

where θi,t represents the ith person’s ability on day t ; we are thus assuming that
a person’s ability is constant over a given day, although there could be random
fluctuations captured by the ϕi,t and ηi,t,s . Letting F(·) be the logistic c.d.f., as
previously discussed, results in

Pr(Xi,t,s,l = 1|θi,t , ai,t,s , ϕi,t , ηi,t,s, εi,t,s,l)
(2.2)

= exp(θi,t − ai,t,s + ϕi,t + ηi,t,s + εi,t,s,l)

1 + exp(θi,t − ai,t,s + ϕi,t + ηi,t,s + εi,t,s,l)
.
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2.2. The system equation in DIR models. As mentioned in the Introduction,
both parametric growth models and Markov chain models have been utilized in
contexts similar to that of this paper. Here we combine these ideas, through a
generalization of dynamic linear models, to model an individual’s ability growth
trajectory over time. The proposed model is

θi,t = θi,t−1 + ci(1 − ρθi,t−1)�
+
i,t + wi,t ,(2.3)

which has three terms, modeling how current ability, θi,t for the ith person on the
t th day, relates to past ability and other factors. The first term is simply ability at
the previous time point, θi,t−1.

The second term is a parametric growth model. Here ci can be thought of as
the average growth rate of the ith person’s ability over time and �+

i,t is the time
lapse between the person’s t th test day and (t − 1)th test day but truncated by a
pre-specified maximum time interval �Tmax , that is, �+

i,t = min{�i,t ,�Tmax}; thus,
ci�

+
i,t would reflect the ability growth over the given time interval if the growth

was indeed linear. However, this growth is truncated at �Tmax (chosen herein to
be 14 days), reflecting the fact that, when on vacation, the student’s ability may
not be growing. Furthermore, the growth rate often declines as ability increases
(indeed ability typically eventually plateaus), so that a linear growth model is of-
ten unsuitable when θi,t becomes large. The “correction factor,” −ρθi,t−1 in (2.3),
compensates for this effect, slowing down the linear growth as the ability level
becomes larger. ρ is the parameter controlling the rate of this adjustment, and
could be known or unknown. In our testbed example, ρ is known, based on exper-
iments conducted at MetaMetrics [Hanlon et al. (2010)]. In principle, ρ should be
individual-specific, but it is distinguishable from ci only as the individual’s ability
level is reaching maturation; our investigation of ability growth in the testbed data
focuses on early age students, so only the ci are made individual-specific.

As in all dynamic linear models, the third term, wi,t in (2.3), represents the ran-
dom component of the change in the ith person’s ability on the t th day. We assume
it is N (0, φ−1�i,t ), where φ is unknown. Note that this presumes that the random
component of a person’s ability change has the variance proportional to the time
period between test days. Note, also, that we suppose that φ is common across
individuals. The reason for this is clear from (2.2), in which ϕi,t ∼ N (0, δ−1

i ) have
individual-specific δi ; there would be a substantial risk of confounding in the like-
lihood between δi’s and φ−1�i,t if the time lapse between tests for the student
were equally spaced.

It is possible to rewrite (2.3) as a first-order Markov process, and this is ben-
eficial for computational reasons. Indeed, letting λi,t = θi,t − ρ−1 and gi,t =
1 − ciρ�+

i,t , the system equation (2.3) becomes

λi,t = gi,tλi,t−1 + wi,t ,(2.4)

where wi,t ∼ N (0, φ−1�i,t ), and this is in the form of a standard dynamic linear
model. (Note that ci and φ need to be known for this reduction.)
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2.3. DIR model summary. To sum up, the one-parameter DIR model is con-
structed in two levels as follows:

System equation: θi,t = θi,t−1 + ci(1 − ρθi,t−1)�
+
i,t + wi,t ,

Observation equation: Pr(Xi,t,s,l = 1|θi,t , ai,t,s , ϕi,t , ηi,t,s, εi,t,s,l)

= exp(θi,t − ai,t,s + ϕi,t + ηi,t,s + εi,t,s,l)

1 + exp(θi,t − ai,t,s + ϕi,t + ηi,t,s + εi,t,s,l)
,

where wi,t ∼ N (0, φ−1�i,t ), εi,t,s,l ∼ N (0, σ 2), ϕi,t ∼ N (0, δ−1
i ), ηi,t ∼

NSi,t
(0, τ−1

i I|∑Si,t

s=1 ηi,t,s = 0), and �+
i,t = min{�i,t ,�Tmax}, with the ai,t,s , ρ,

�i,t , �Tmax and σ being known and θi,t , ci , φ, δi and τi being unknown.

3. Statistical inference for DIR models. In this section the Bayesian meth-
ods that will be used for statistical inference in DIR models are described. Compu-
tation is based on a Gibbs sampling scheme, in conjunction with forward filtering
and backward sampling.

3.1. Prior distributions for the unknown parameters. Prior distributions in a
Bayesian analysis must be specified carefully, but they can be either evidence-
based priors, reflecting scientific knowledge of the system under study, or they can
be objective priors, reflecting a lack of such knowledge but possessing good overall
properties—for example, good frequentist properties [see, e.g., Berger (2006)];
a mix of both will be used in the analysis herein. Specification of evidence-based
priors is, of course, context dependent and, here, will be done within the context
of the MetaMetrics testbed application.

A natural choice of the prior distribution for an individual’s initial latent ability,
θi,0, is

θi,0 ∼ N (μGji
, VGji

),

where μGji
and VGji

are the mean and the variance, on a logit scale, of the pop-
ulation (j ) to which the individual i belongs—for instance, the individual’s grade
in school for the testbed application. For the average growth rate ci in system
equation (2.3), the natural objective prior is a constant prior (since ci is a linear
parameter), but we constrain ci to be positive, reflecting the belief that there is a
positive learning rate; thus, we choose the prior

π(ci) ∝ I (ci > 0) for all i.

Although φ is a scale parameter, it occurs at the system-level of the two-stage
model and, hence, the usual scale objective prior (1/φ) would result in an improper
posterior; the computationally simplest adjustment is to use π(φ) = 1/φ3/2, which
does result in a proper posterior. Similarly, for the scale parameters δi and τi we uti-
lize the objective priors π(δi) = 1/δ

3/2
i and π(τi) = 1/τ

3/2
i . A natural alternative
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would be to try to “borrow information” across individuals, by utilizing gamma
hyperpriors for the δi’s and τi’s. This complicates the computation, however, and
does not seem necessary for the testbed application.

3.2. Posterior distribution. To facilitate the use of Gibbs sampling techniques
in computation, we utilize a mixture of normals representation of the logistic dis-
tribution. From Andrews and Mallow (1974), if Y has a logistic distribution with
location parameter 0 and scale π2/3 (L(0, π2

3 )), one can write the density as

f (y) = e−y

(1 + e−y)2 =
∫ ∞

0

[
1√
2π

1

2ν
exp

{
−1

2

(
y

2ν

)2}]
π(ν) dν,(3.1)

where ν has the Kolmogorov–Smirnov (K–S) density

π(ν) = 8
∞∑

α=1

(−1)(α+1)α2ν exp
{−2α2ν2}

, ν ≥ 0.(3.2)

Note that the density in square brackets in (3.1) is N (0,4ν2). By using the idea of
data augmentation from Tanner and Wong (1987), we consider the latent variable
Yi,t,s,l for each response variable Xi,t,s,l , where Yi,t,s,l ∼ N (θi,t − ai,t,s + ϕi,t +
ηi,t,s + εi,t,s,l,4ν2

i,t,s,l) and define Xi,t,s,l = 1 if Yi,t,s,l > 0 and Xi,t,s,l = 0 oth-
erwise. It is then easy to show that Pr(Xi,t,s,l = 1|θi,t , ai,t,s , ϕi,t , ηi,t,s, εi,t,s,l) =
exp(θi,t −ai,t,s +ϕi,t +ηi,t,s +εi,t,s,l)/(1+exp(θi,t −ai,t,s +ϕi,t +ηi,t,s +εi,t,s,l)),
so that the introduction of the latent variables Yi,t,s,l will not alter the model (ex-
cept that there are now formally many more unknown parameters).

As εi,t,s,l
i.i.d.∼ N (0, σ 2), it can be marginalized out in the distribution of Yi,t,s,l ,

resulting in Yi,t,s,l ∼ N (θi,t − ai,t,s + ϕi,t + ηi,t,s,4ν2
i,t,s,l + σ 2). Therefore, the

one-parameter DIR models (2.2) and (2.3) can be rewritten, with latent variables
{Yi,t,s,l}, as

θi,t = θi,t−1 + ci(1 − ρθi,t−1)�
+
i,t + wi,t ,(3.3)

Yi,t,s,l = θi,t − ai,t,s + ϕi,t + ηi,t,s + ξi,t,s,l,(3.4)

νi,t,s,l ∼ K–S distribution,(3.5)

where wi,t ∼ N (0, φ−1�i,t ), ϕi,t ∼ N (0, δ−1
i ), ηi,t ∼ NSi,t

(0, τ−1
i I|∑Si,t

s=1 ηi,t,s =
0), and ξi,t,s,l ∼ N (0,ψ−1

i,t,s,l) with ψ−1
i,t,s,l = 4ν2

i,t,s,l + σ 2.
Define θ = (θ1, . . . , θn)

′, where θi = (θi,0, θi,1, . . . , θi,Ti
)′ for i = 1, . . . , n; c =

(c1, . . . , cn)
′ and τ = (τ1, . . . , τn)

′; Y = {Yi,t,s,l}, ν = {νi,t,s,l} and X = {Xi,t,s,l}
for l = 1, . . . ,Ki,t,s , s = 1, . . . , Si,t , t = 1, . . . , Ti and i = 1, . . . , n; ϕ = {ϕi,t }
for t = 1, . . . , Ti , i = 1, . . . , n; η = {ηi,t,s} for s = 1, . . . , Si,t , t = 1, . . . , Ti and
i = 1, . . . , n and η∗

i,t = (ηi,t,1, . . . , ηi,t,Si,t−1)
′. Then the joint posterior density of

θ , Y , c, τ , ϕ, η, ν and φ given the data X, in the one-parameter DIR model, is
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proportional to

π(θ,Y, c, τ, ϕ, η, ν,φ|X)

∝
{

n∏
i=1

π(θi,0)π(ci)π(δi)π(τi)

}
π(φ)

{
n∏

i=1

Ti∏
t=1

Si,t∏
s=1

Ki,t,s∏
l=1

π(νi,t,s,l)

}

×
{

n∏
i=1

Ti∏
t=1

Si,t∏
s=1

Ki,t,s∏
l=1

(
I {Yi,t,s,l > 0}I {Xi,t,s,l = 1}

+ I {Yi,t,s,l ≤ 0}I {Xi,t,s,l = 0})

×
√

ψi,t,s,l

2π
(3.6)

× exp
(
−ψi,t,s,l(Yi,t,s,l − θi,t + ai,t,s − ϕi,t − ηi,t,s)

2

2

)

× I

{
ηi,t,Si,t

= −
Si,t−1∑
s=1

ηi,t,s

}}

×
{

n∏
i=1

Ti∏
t=1

(
τi

2π

)(Si,t−1)/2

exp
(
−τiη

∗′
i,t�

−1
i,t η∗

i,t

2

)}

×
{

n∏
i−1

Ti∏
t=1

√
δi

2π
exp

(
−δiϕ

2
i,t

2

)}

×
{

n∏
i=1

Ti∏
t=1

√
φ

2π�i,t

exp
(
−φ{θi,t − θi,t−1 − ci(1 − ρθi,t−1)�

+
i,t }2

2�i,t

)}
,

where

�−1
i,t =

⎛
⎜⎜⎜⎝

2 1 · · · 1
1 2 · · · 1
...

...
. . .

...

1 1 · · · 2

⎞
⎟⎟⎟⎠

(Si,t−1)×(Si,t−1)

,

and I (Z ∈ A) is the indicator function equal to 1 if the random variable Z is con-
tained in the set A; π(θi,0), π(ci), π(δi), π(τi), π(φ) are the priors specified in
the previous subsection, and π(νi,t,s,l) is the K–S density defined at the begin-
ning of this subsection. This is a proper posterior under very mild conditions; see
Appendix C.

3.3. Computation. Computation is done by a MCMC scheme that samples
from the posterior (3.6) via a block Gibbs sampling scheme, utilizing the forward
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filtering and backward sampling algorithm at a key point. The steps of the algo-
rithm are given in Appendix A.

From the MCMC samples, statistical inferences are straightforward. For exam-
ple, an estimate and 95% credible interval for the latent ability trait θi,t can be
formed from the median, 2.5%, and 97.5% empirical quantiles of the correspond-
ing MCMC realizations. In examples, these will be graphed as a function of t so
that the adaptive nature of the model is apparent.

4. Simulated examples. In this section a simulated example is used to illus-
trate the inferences from the proposed one-parameter DIR models and to study
their properties, primarily from a frequentist perspective.

The simulation examines the model’s behavior for multiple individuals taking
a series of tests that are scheduled during different time periods. In particular,
suppose there are 10 individuals and each individual has taken tests on 50 different
days. Thus, n = 10 and Ti = 50, for i = 1, . . . ,10. During each distinctive test
day, the individual takes four tests; thus, Si,t = 4 for t = 1, . . . ,50, i = 1, . . . ,10.
Each test consists of 10 items, so that Ki,t,s = 10 for s = 1, . . . ,4, t = 1, . . . ,50
and i = 1, . . . ,10. For the ith person, the time lapse between two different tests is
assumed to be a function of the t th day, that is, �i,t = 10+ t , for i = 1, . . . ,10, t =
1, . . . , Ti/2 and �i,t = t − 10, for t = Ti/2, . . . , Ti . Finally, the unknown values of
parameters in the models are chosen as follows:

• φ = 1/0.02182, and the corresponding standard deviation of the random com-
ponent wi,t in system equation (2.3) is 0.0218

√
�i,t .

• c = (0.0055,0.0065,0.0026,0.0037,0.0061,0.0047,0.0035,0.0043,0.0039,
0.0015)′, where each element in the vector c corresponds to the ith person’s
average growth rate, respectively, for i = 1, . . . ,10.

• δ = (2.0408,1.3333,1.8182,1.2346,1.5873,1,2.2222,1.0526,1.1494,2)′ ,
where each element in the vector δ corresponds to the precision parameter of
daily random effects for the ith person, respectively, i = 1, . . . ,10.

• τ = (4,3.1250,4.3478,2.7027,3.7037,2.8571,4,2.2222,9.0909,4.5455)′ ,
where each element in the vector τ corresponds to the precision parameter of
test random effects for the ith person, respectively, i = 1, . . . ,10.

According to the observation equation (2.2), we then simulated values for the un-
known variables and set the test difficulties, ai,t,s , to be θi,t + ζ , where ζ is a
random variable with uniform distribution on (−0.1,0.1). The values of εi,t,s,l

were drawn from N (0,0.73332) and the value of 0.7333 is used in the test design
for MetaMetrics. Finally, we chose ρ = 0.1180, which is the value estimated by
MetaMetrics in their studies [Hanlon et al. (2010)].

From dichotomous data obtained from the simulation, the Bayesian machinery
from Section 3 was used in estimating the model parameters in (2.2) and (2.3). Fig-
ure 1 shows estimates of the ability trajectory for the 1st, 3rd, 5th and 9th individu-
als. The red dots in the figures correspond to the estimated posterior median of the
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FIG. 1. Estimated and actual ability trajectories of 4 individuals from the simulated data.

ability θi,t at the t th day for the ith person, and the red dashed lines give the 2.5%
and 97.5% quantile trajectories of θi,t , for t = 1, . . . ,50. The black dots are the real
abilities at the t th day for the ith person in the simulation. The third trajectory is
typical of what is expected in terms of increasing ability, and is smoothly handled
by the Bayesian machinery. The other three trajectories are highly nonmonotonic;
the Bayesian estimates err in trying to be increasing (as they are designed to do),
but do adapt to the nonmonotonicity when the evidence becomes strong enough.

One method of evaluating the success of the inferential scheme is to evaluate the
percentage of time that the true ability, θi,t , is contained in the 95% credible inter-
val of estimated ability for each individual. For the ten individuals, these estimated
coverages were 100%, 100%, 99%, 99%, 100%, 100%, 94%, 100%, 100% and
91%, which produce an overall estimated coverage of 98.3%. Thus, while the in-
ferential method is Bayesian, it seems to be yielding sets that have good frequentist
coverage.

To summarize the results for the ci ’s, τ
−1/2
i ’s and δ

−1/2
i ’s , we compare their

true values with the corresponding estimated values in Figure 2. In these plots,
the black bar represents the 95% credible interval of the posterior distribution.
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FIG. 2. 95% credible intervals of ci ,
1√
τi

and 1√
δi

, for i = 1, . . . ,10 with the simulated data.

The blue plus stands for the estimated posterior median and the red cross is the
true value in the simulation. Moreover, the estimated posterior median of φ−1/2 is
0.0315 and its 95% credible interval is [0.0148,0.0484]. Note that the true values
of the ci ’s, τ

−1/2
i ’s, δ

−1/2
i ’s and φ are all contained in the 95% credible intervals

except τ
−1/2
9 ; thus, the empirical coverage for these parameters is 96.77%.

5. MetaMetrics testbed. In this section we apply the DIR model to the
testbed MetaMetrics data. A sample of 25 individuals from the data base of stu-
dents in certain elementary schools in Mississippi is considered here; the differing
characteristics of the students are described in Appendix B. The primary focus is
study of the goals mentioned in Section 1.2.

5.1. Retrospective estimation of ability growth. First consider retrospective es-
timation of the reading ability for an individual, utilizing all the data recorded for
that individual. Figure 3 presents the resulting growth trajectories for the 3rd, 12th,
17th and 25th individuals studied. In Figure 3 the red dots are the posterior median
estimates of each individual ability and the red dashes correspond to the 2.5% and
97.5% quantiles of the posterior distributions of the abilities, while the green dots
correspond to estimates of an individual’s abilities obtained by solving the equa-
tion that the expectation of expected score for a person’s ability is equivalent to the
observed score; these can roughly be thought of as the raw test scores put on the
same scale as the θi,t . The most interesting feature of these growth trajectories is
that, while indeed there typically does appear to be overall growth in ability, this
growth need not be monotone. In particular, when there is a large time gap between
subsequent tests, the ability appears to drop for some individuals. One natural ex-
planation is that, during vacations, a student may not read and could actually lose
ability. Another possible explanation is that the student has become less adept at
implementation of CAIT after a long break.
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FIG. 3. Retrospective estimates of ability trajectories of 4 individuals from the MetaMetrics data.

Figure 4 gives the summaries of the posterior distributions of the standard devi-
ations of test random effects, τ

−1/2
i ’s, the standard deviations of the daily random

effects, δ
−1/2
i ’s, and the average growth rates, ci ’s, for i = 1, . . . ,25. Moreover,

the estimated posterior median of φ−1/2 is 0.0612 and its 95% credible interval is
[0.0477,0.0757].

Figures 4(a) and (b) show that the standard deviations of two random effects are
almost all quite large with 95% credible intervals well separated from zero. Recall
that these were included in the model to account for a possible lack of the local
independence; the evidence is thus strong that the local independence is, indeed,
not tenable for this data and that both types of random effects are present. The
consistency of the standard deviations of the random effects across individuals is
somewhat surprising, but lends credence to the notion that random effect modeling
of the local dependence is fruitful.

5.2. On-line estimation of ability growth. In on-line estimation of reading
ability, essentially the same model is used, but, at each time point, only the data
up to that time is utilized. Instead of having φ−1/2 unknown, however, we utilize
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FIG. 4. 95% credible intervals of the τ
−1/2
i s, δ

−1/2
i ’s and ci ’s with the MetaMetrics data set.

φ−1/2 = 0.0612, the estimate arising from the retrospective analysis; φ−1/2 cannot
be effectively estimated in an on-line mode.

Applying the Bayesian methodology yields on-line posterior median ability es-
timates, as well as the 2.5% and 97.5% quantiles of the posterior distribution of
abilities for the 25 individuals being studied; these are the purple dots and and
dashed purple lines in Figure 5, shown for the 3rd, 12th, 17th and 25th individu-
als. Again, the green dots show the raw score estimates of each individual ability at
each time point, and the red dots are the retrospective estimates discussed earlier.
In these figures we also include, as blue dots, the ability estimates obtained from
the current methodology of MetaMetrics, which is a partial Bayesian procedure.

As expected, the on-line ability estimates are much more variable than the ret-
rospective estimates. Sometimes, the on-line estimates seem to be somewhat more
variable than the current MetaMetrics estimates (the blue dots). This is because at
each online estimation point, the current methodology of MetaMetrics uses a very
tight prior (arising from the previous data) for the student’s ability.
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FIG. 5. On-line estimates of ability trajectories of 4 individuals from the MetaMetrics data.

While we do not know the truth here, it is plausible that the retrospective red
dots are our best guesses as to the true abilities, and we can then judge how well
the various on-line procedures are doing relative to these best guesses. Our on-
line estimates are generally closer to these retrospective estimates than the current
MetaMetrics estimates (the 12th individual being the interesting exception). In
fact, the average mean squared error of our on-line estimates relative to the retro-
spective estimates is 0.0851, while the average mean squared error of the current
MetaMetrics estimates is 0.1311.

If we do view the retrospective estimates (red dots) as surrogates for the truth,
it is interesting to see how often these fall outside the on-line uncertainty bands
(purple lines). This happened very rarely; individual 17 in Figure 5 was one case
in which this sometimes happened. One final observation from Figure 5 is that the
current MetaMetric estimates usually are lower than our on-line estimates of the
person’s reading ability.

6. Conclusions and generalizations. The evidence of violation of the local
dependence assumption in CAIT situations is generally strong, and use of test and
daily random effects to model the local dependence seems to be necessary and suc-
cessful. Embedding a dynamic linear model framework for an individual’s ability
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trajectory within the logistic IRT structure provides a powerful and individually
adaptive method for dealing with longitudinal testing data.

The retrospective DIR model analysis seems excellent for assessing actual abil-
ity trajectories and, hence, is of considerable use in understanding population be-
havior, such as the frequently observed drops in ability after a long pause in testing.
The on-line DIR analysis provides real-time ability estimates for assignments of
material at the right difficulty level and other possible educational goals.

A key advantage of the Bayesian framework adopted is that uncertainty in all
unknowns can be built into the model (e.g., uncertainty in the difficulty of the ran-
dom test items), and uncertainty of the estimates is available for all inferences.
Also, prior information (e.g., knowledge about ability distributions over the popu-
lation and knowledge that general growth in ability is expected) can be built into
the analysis, in a nondogmatic fashion that allows the data to overrule the prior.

Many extensions are possible, such as the already mentioned extension to two-
parameter and three-parameter IRT models. If one also had data for individuals
over a period of many years—including years near the maturation point in one’s
reading ability—it would be possible to include individual-specific ρi in the model.

APPENDIX A: THE MCMC COMPUTATION

The MCMC scheme that will be used to sample from the posterior (3.6) is a
block Gibbs sampling scheme, utilizing the forward filtering and backward sam-
pling algorithm at a key point. Because of the block Gibbs sampling scheme, we
need only specify the conditional distributions of a block of variables given the
data and other unknown variables.

A.1. Sampling Y: Truncated normal distribution sampling. Given θ , ϕ, η

and ν, the latent variables {Yi,t,s,l} are sampled from

Yi,t,s,l ∼ N+
(
θi,t − ai,t,s + ϕi,t + ηi,t,s,ψ

−1
i,t,s,l

)
if Xi,t,s,l = 1,

Yi,t,s,l ∼ N−
(
θi,t − ai,t,s + ϕi,t + ηi,t,s,ψ

−1
i,t,s,l

)
if Xi,t,s,l = 0,

where N+ means the normal distribution truncated at the left by zero, while N− is
the normal distribution truncated at the right by zero and ψ−1

i,t,s,l = 4ν2
i,t,s,l + σ 2.

Sampling from truncated normals is fast and easy.

A.2. Sampling θ : Forward filtering and backward sampling. The la-
tent ability vector θi = (θi,0, . . . , θi,Ti

), for each individual, is typically high-
dimensional with highly correlated coordinates, so sampling of the variables would
appear to be highly challenging. To overcome this roadblock, the proposed model
is transformed so that θi could be block sampled—within a Gibbs sampling step
conditional on the other parameters—by the highly efficient forward filtering and
backward sampling algorithm.
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To see this, consider φ, c, Y , ϕ, η and ν as given (the Gibbs sampling step).
Define Zi,t,s,l = Yi,t,s,l + ai,t,s − ϕi,t − ηi,t,s − ρ−1 and utilize the formulation
of the model in (2.4). Then, the (conditional) one-parameter DIR model fits the
framework of dynamic linear models [West and Harrison (1997)], that is,

System equation: λi,t = gi,tλi,t−1 + wi,t ,

Observation equation: Zi,t,s,l = λi,t + ξi,t,s,l,

where wi,t ∼ N (0, φ−1�i,t ), ξi,t,s,l ∼ N (0,ψ−1
i,t,s,l) with ψ−1

i,t,s,l = 4ν2
i,t,s,l + σ 2.

As indicated in West and Harrison (1997), the forward filtering and backward sam-
pling algorithm to block update each vector θi proceeds as follows.

Since λi,0 = θi,0 − ρ−1 and θi,0 ∼ N (μGj
,VGj

), the conditional prior for λi,0

is λi,0 ∼ N (μGj
− ρ−1,VGj

). Define information available on the t th day for the
ith person as

Di,t = {gi,q, φ,ψ,ϕ,η, c,Zi,q,1,1, . . . ,Zi,q,Si,q ,Ki,q,Si,q
}tq=1.

We claim that the posterior distribution of λi,t is then

λi,t |Di,t ∼ N (μi,t , Vi,t ),(A.1)

which can be verified by induction as follows. Assume that, on the (t − 1)th day,
the posterior of λi,t−1, given Di,t−1, is N (μi,t−1,Vi,t−1). And it is easy to see
this assumption is true when t = 1. Then, from the system equation, it is easy to
establish that λi,t |Di,t−1 ∼ N (di,t ,Ri,t ) is a prior for λi,t , where di,t = gi,tμi,t−1
and Ri,t = g2

i,tVi,t−1 + φ−1�i,t . Therefore, we have

Pr(λi,t |Di,t ) ∝ Pr(λi,t |Di,t−1)

Si,t∏
s=1

Ki,t,s∏
l=1

Pr(Zi,t,s,l|λi,t )

∝ exp
{
−R−1

i,t (λi,t − di,t )
2

2

}

×
{ Si,t∏

s=1

Ki,t,s∏
l=1

exp
{
−ψi,t,s,l(Zi,t,s,l − λi,t )

2

2

}}
.

Then, at the t th day, the posterior distribution of λi,t is as (A.1), where μi,t =
Vi,t (R

−1
i,t di,t + ∑Si,t

s=1
∑Ki,t,s

l=1 ψi,t,s,lZi,t,s,l) and Vi,t = (
∑Si,t

s=1
∑Ki,t,s

s=1 ψi,t,s,l +
R−1

i,t )−1.
The above updating procedure is called forward filtering and after it is complete

and all quantities, that is, μi,t and Vi,t are saved, we can begin the backward sam-
pling of λi,t . For the time t = Ti , we sample λi,t directly from N (μi,T ,Vi,T ). As
the time from t = (Ti − 1) to 0, at each time we draw λi,t from

λi,t |λi,t+1,Di,t ∼ N (hi,t ,Hi,t ),



144 X. WANG, J. O. BERGER AND D. S. BURDICK

where hi,t = Hi,t (V
−1
i,t μi,t + φgi,t+1�

−1
i,t+1λi,t+1) and Hi,t = (φg2

i,t+1�
−1
i,t+1 +

V −1
i,t )−1. This follows from

Pr(λi,t |λi,t+1,Di,t ) ∝ Pr(λi,t |Di,t )Pr(λi,t+1|λi,t ,Di,t )

∝ exp
{
−V −1

i,t (λi,t − μi,t )
2

2

}

× exp
{
−φ�−1

i,t+1(λi,t+1 − gi,t+1λi,t )
2

2

}
.

Thus, for t = 0, . . . , Ti , we set θi,t = λi,t + ρ−1 and each vector θi is sampled as a
whole block, noticing that

Pr(θi |Di,Ti
) = Pr(θi,Ti

|Di,Ti
)Pr(θi,Ti−1|θi,Ti

,Di,T −1) · · ·Pr(θi,0|θi,1,Di,0).

A.3. Sampling c: Truncated normal distribution sampling. When θ and φ

are given, the full conditional distribution of ci is the truncated normal distribution

ci ∼ N+
(∑Ti

t=1(1 − ρθi,t−1)(θi,t − θi,t−1)�
+
i,t�

−1
i,t∑Ti

t=1(�
+
i,t (1 − ρθi,t−1))2�−1

i,t

,

1

φ
∑Ti

t=1(�
+
i,t (1 − ρθi,t−1))2�−1

i,t

)
.

A.4. Sampling η: Multivariate normal distribution sampling. When θ , ϕ,
τ , Y and ν are given, if Si,t > 1, then the full conditional distribution of η∗

i,t is the
multivariate normal distribution

η∗
i,t ∼ NSi,t−1

((
AT

i,t�
−1
ψi,t

Ai,t + τi�
−1
i,t

)−1
AT

i,t�
−1
ψi,t

Y ∗
i,t ,

(
AT

i,t�
−1
ψi,t

Ai,t + τi�
−1
i,t

)−1)
,

where Y ∗
i,t = (Yi,t,1,1 − θi,t + ai,t,1 − ϕi,t , . . . , Yi,t,1,Ki,t,1 − θi,t + ai,t,Ki,t,1 −

ϕi,t , . . . , Yi,t,Si,t ,Ki,t,Si,t
− θi,t + ai,t,Ki,t,Si,t

− ϕi,t )
′, �−1

ψi,t
= diag((ψi,t,1,1, . . . ,

ψi,t,Si,t ,Ki,t,Si,t
)′),

Ai,t =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1Ki,t,1 0 · · · 0
0 1Ki,t,2 · · · 0
...

...
. . .

...

0 0 · · · 1Ki,t,Si,t−1

−1Ki,t,Si,t
−1Ki,t,Si,t

· · · −1Ki,t,Si,t

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(
∑Si,t

s=1 Ki,t,s )×(Si,t−1)

,

where 1K is a K-dimensional column vector with each element being 1 and

ηi,t,Si,t
= −∑Si,t−1

s=1 ηi,t,s . When Si,t = 1, ηi,t,Si,t
= 0.
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A.5. Sampling τ : Gamma distribution sampling. When η is given, the full
conditional distribution of τi is the gamma distribution

τi ∼ Ga

(∑Ti

t=1 Si,t − (Ti + 1)

2
,

∑Ti

t=1 η∗′
i,t�

−1
i,t η∗

i,t

2

)
.

A.6. Sampling ϕ: Normal distribution sampling. When θ , η, δ, Y and ν are
given, the full conditional distribution of ϕi,t is the normal distribution

ϕi,t ∼ N
(∑Si,t

s=1
∑Ki,t,s

l=1 ψi,t,s,l(Yi,t,s,l − θi,t + ai,t,s − ηi,t,s)∑Si,t

s=1
∑Ki,t,s

l=1 ψi,t,s,l + δi

,

1∑Si,t

s=1
∑Ki,t,s

l=1 ψi,t,s,l + δi

)
.

A.7. Sampling δ: Gamma distribution sampling. When ϕ is given, the full
conditional distribution of δi is the gamma distribution

δi ∼ Ga

(
Ti − 1

2
,

∑Ti

t=1 ϕ2
i,t

2

)
.

A.8. Sampling φ: Gamma distribution sampling. When θ, c is given, the
full conditional distribution of φ is the gamma distribution

φ ∼ Ga

(∑n
i=1 Ti − 1

2
,

∑n
i=1

∑Ti

t=1 �−1
i,t (θi,t − θi,t−1 − ci(1 − ρθi,t−1)�

+
i,t )

2

2

)
.

A.9. Sampling ν: Metropolis–Hastings sampling. Given Y , θ , ϕ and η, the
full conditional distribution of νi,t,s,l is proportional to

π(νi,t,s,l|Y, θ,ϕ, η) ∝
√√√√ 1

σ 2 + 4ν2
i,t,s,l

× exp
{
−(Yi,t,s,l − θi,t + ai,t,s − ϕi,t − ηi,t,s)

2

2(σ 2 + 4ν2
i,t,s,l)

}
,

which is not in closed form. So we shall resort to a Metropolis–Hastings scheme to
sample this distribution. A suitable proposal for sample ν is the K–S distribution
itself. Thus, we first sample ν from the K–S distribution whose density is defined
in (3.2). Then, we let

ν
(M)
i,t,s,l =

{
ν∗, with probability min(1,LR),

ν
(M−1)
i,t,s,l , otherwise,
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where, given Y , θ , ϕ and η,

LR =
√√√√σ 2 + 4(ν

(M−1)
i,t,s,l )2

σ 2 + 4(ν∗)2 exp
{
−(Yi,t,s,l − θi,t + ai,t,s − ϕi,t − ηi,t,s)

2

2

×
(

1

σ 2 + 4(ν∗)2 − 1

σ 2 + 4(ν
(M−1)
i,t,s,l )2

)}
,

and M indicates the M th iteration step in MCMC.

A.10. Implementation. The Gibbs sampling starts at A.1, with initial values
for θ(0), c(0), φ(0), ϕ(0), η(0), δ(0), τ (0) and ν(0), and then loops through A.9 un-
til the MCMC has converged. The initial values chosen in the applications were
θ(0) = �0, c(0) = �0, φ(0) = 1, ϕ(0) = �0, η(0) = �0, δ(0) = �1, τ (0) = �1 and ν(0) = �1,
where we used “�a” here to indicate that each element of the corresponding vector
or set has the same value “a”. The convergence was evaluated informally by look-
ing at trace plots, and was found to obtain at most after 30,000 of 50,000 iterations
in the examples.

APPENDIX B: CHARACTERISTICS OF 25 STUDIED INDIVIDUALS

Twenty-five individuals from the MetaMetrics data base are studied in detail;
the characteristics of the data for these individuals are described in Table 1.

APPENDIX C: POSTERIOR PROPRIETY

THEOREM 1. Suppose n ≥ 2 and, for i = 1, . . . , n, Ti ≥ 2 and Si,t ≥ 2 for at
least two days t ∈ {1, . . . , Ti} with at least two of the tests on each of the two days
having at least one 0 and one 1 observation. Then the posterior density of the DIR
model is proper.

We first give some needed lemmas that may be of independent interest for prov-
ing posterior propriety in other logistic modeling scenarios. Proofs of these lemmas
are given in Appendix A of Wang (2012).

LEMMA 2. For any three real numbers x, ε1 and ε2,

ex+ε1

1 + ex+ε1
× 1

1 + ex+ε2
≤ e−|x|+|ε1|+|ε2|.

LEMMA 3. For θi ∈ (−∞,∞), i = 1,2,∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

τ−1/2e−τ(η2
1+η2

2)e−(|θ1+η1|+|θ1−η1|+|θ2+η2|+|θ2−η2|) dτ dη1 dη2

≤ Ke−(|θ1|+|θ2|),
with some constant K .
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TABLE 1
Characteristics of the 25 considered individuals from the MetaMetrics data

Total tests Days Max. tests/days Range of items/test Max. gap Grade

No. 1 147 73 8 4–25 105 4
No. 2 162 64 9 3–17 102 2
No. 3 118 77 4 3–21 87 2
No. 4 93 53 4 5–25 147 2
No. 5 114 89 3 6–25 109 2
No. 6 157 57 29 4–20 116 2
No. 7 153 63 7 4–20 97 2
No. 8 60 50 5 3–24 168 6
No. 9 135 53 7 4–24 93 2
No. 10 137 54 6 4–17 219 1
No. 11 214 100 11 3–18 108 2
No. 12 113 76 4 4–16 45 2
No. 13 95 65 4 4–14 113 2
No. 14 116 57 6 5–17 107 2
No. 15 155 71 9 4–20 107 1
No. 16 247 76 13 3–19 113 2
No. 17 254 76 12 3–18 107 2
No. 18 304 53 31 3–12 49 2
No. 19 167 83 5 3–23 58 2
No. 20 101 68 9 4–23 117 2
No. 21 88 58 9 3–23 110 2
No. 22 220 96 8 2–23 104 3
No. 23 80 66 6 2–25 93 6
No. 24 105 60 6 6–24 62 3
No. 25 218 74 12 3–25 113 2

LEMMA 4. For θi ∈ (−∞,∞), i = 1,2,∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

δ−1/2e−(δ/2)(ϕ2
1+ϕ2

2)e−(|θ1+ϕ1|+|θ2+ϕ2|) dδ dϕ1 dϕ2 ≤ K

1 + |θ1| ,
with some constant K .

LEMMA 5. For T ≥ 2,∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

1

φ3/2 · 1

1 + |√B(c)/φz + A(c)|e
−z2/2

× 1

1 + |√B ′(c′)/φz′ + A′(c′)|e
−z′2/2 dzdz′ dc dc′ dφ < ∞,

where

A(c) = μGj

T∏
t=1

(
1 − cρ�+

t

) +
T∑

t=1

c�+
t

T∏
i=t+1

(
1 − cρ�+

i

)
,
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B(c) =
T∑

t=1

�t

T∏
i=t+1

(
1 − cρ�+

i

)2 + φVGj

T∏
t=1

(
1 − cρ�+

t

)2
,

A′(c′) = μGj

T∏
t=1

(
1 − c′ρ�+

t

) +
T∑

t=1

c′�+
t

T∏
i=t+1

(
1 − c′ρ�+

i

)
,

B ′(c′) =
T∑

t=1

�t

T∏
i=t+1

(
1 − c′ρ�+

i

)2 + φVGj

T∏
t=1

(
1 − c′ρ�+

t

)2
,

and we have dropped the label i in the subscripts for �i,t , ci , μGji
and VGji

.

LEMMA 6. For T ≥ 2,∫ ∞
0

∫ ∞
−∞

1

1 + |√B(c)/φz + A(c)| exp
{
−z2

2

}
dzdc < ∞,

with A(c) and B(c) defined in Lemma 5.

PROOF. In proving posterior propriety, it is easiest to work with the posterior
density without the data augmentation, namely,

π(θ, c, τ, η, ε,φ|X)

∝
{

n∏
i=1

1√
2πVGji

exp
(
−(θi,0 − μGji

)2

2VGji

)
I{ci≥0}

1

τ
3/2
i

1

δ
3/2
i

}
1

φ3/2

×
{

n∏
i=1

Ti∏
t=1

Si,t∏
s=1

Ki,t,s∏
l=1

1√
2πσ

exp
(
−ε2

i,t,s,l

2σ 2

)}{
n∏

i=1

Ti∏
t=1

√
δi

2π
exp

(
−δiϕ

2
i,t

2

)}

×
{

n∏
i=1

Ti∏
t=1

(
τi

2π

)(Si,t−1)/2

exp
(
−τiη

∗′
i,t�

−1
i,t η∗

i,t

2

)}
(C.1)

×
{

n∏
i=1

Ti∏
t=1

Si,t∏
s=1

Ki,t,s∏
l=1

exp[Xi,t,s,l(θi,t − ai,t,s + ϕi,t + ηi,t,s + εi,t,s,l)]
1 + exp(θi,t − ai,t,s + ϕi,t + ηi,t,s + εi,t,s,l)

× I

{
ηi,t,Si,t

= −
Si,t−1∑
s=1

ηi,t,s

}}

×
{

n∏
i=1

Ti∏
t=1

√
φ

2π�i,t

exp
(
−φ{θi,t − θi,t−1 − ci(1 − ρθi,t−1)�

+
i,t }2

2�i,t

)}
.

Noting that

exp[Xi,t,s,l(θi,t − ai,t,s + ϕi,t + ηi,t,s + εi,t,s,l)]
1 + exp(θi,t − ai,t,s + ϕi,t + ηi,t,s + εi,t,s,l)

≤ 1,
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an upper bound on the posterior density can be found by dropping all terms except
the 0 and 1 test observations in the assumed tests for each individual. Utilizing
Lemma 2 for each pair of observations 0 and 1 then results in the following upper
bound on the posterior density (C.1):

1

φ3/2

{
n∏

i=1

1√
2πVGji

exp
(
−(θi,0 − μGji

)2

2VGji

)
I{ci≥0}

1

τ
3/2
i

1

δ
3/2
i

}

×
{

n∏
i=1

Ti∏
t=1

Si,t∏
s=1

Ki,t,s∏
�=1

1√
2πσ

exp
(
−ε2

i,t,s,l

2σ 2

)}{
n∏

i=1

Ti∏
t=1

√
δi

2π
exp

(
−δiϕ

2
i,t

2

)}

×
{

n∏
i=1

Ti∏
t=1

(
τi

2π

)(Si,t−1)/2

exp
(
−τiη

∗′
i,t�

−1
i,t η∗

i,t

2

)}

×
{

n∏
i=1

Ti∏
t=1

Si,t∏
s=1

I

{
ηi,t,Si,t

= −
Si,t−1∑
s=1

ηi,t,s

}}

×
{

n∏
i=1

exp
(−|θi,ti + ϕi,ti + ηi,ti ,m| + |ai,ti ,m| + |εi,ti ,m,k| + |εi,ti ,m,k′ |)(C.2)

× exp
(−|θi,ti + ϕi,ti + ηi,ti ,m

′ | + |ai,ti ,m
′ | + |εi,ti ,m

′,h| + |εi,ti ,m
′,h′ |)

× exp
(−|θi,t ′i + ϕi,t ′i + ηi,t ′i ,r | + |ai,t ′i ,r | + |εi,t ′i ,r,q | + |εi,t ′i ,r,q ′ |)

× exp
(−|θi,t ′i + ϕi,t ′i + ηi,t ′i ,r ′ | + |ai,t ′i ,r | + |εi,t ′i ,r ′,g| + |εi,t ′i ,r ′,g′ |)

}

×
{

n∏
i=1

Ti∏
t=1

√
φ

2π�i,t

exp
(
−φ{θi,t − θi,t−1 − ci(1 − ρθi,t−1)�

+
i,t }2

2�i,t

)}
.

Ignoring multiplicative constants, and integrating out all the εi,t,s,l , (C.2) has an
upper bound of

1

φ3/2

{
n∏

i=1

1√
2πVGji

exp
(
−(θi,0 − μGji

)2

2VGji

)
I{ci≥0}

1

τ
3/2
i

1

δ
3/2
i

}

×
{

n∏
i=1

Ti∏
t=1

√
δi

2π
exp

(
−δiϕ

2
i,t

2

)}

×
{

n∏
i=1

Ti∏
t=1

(
τi

2π

)(Si,t−1)/2

exp
(
−τiη

∗′
i,t�

−1
i,t η∗

i,t

2

)}
(C.3)
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×
{

n∏
i=1

Ti∏
t=1

Si,t∏
s=1

I

{
ηi,t,Si,t

= −
Si,t−1∑
s=1

ηi,t,s

}}

×
{

n∏
i=1

exp
{−|θi,ti + ϕi,ti + ηi,ti ,m|} exp

{−|θi,ti + ϕi,ti + ηi,ti ,m
′ |}

× exp
{−|θi,t ′i + ϕi,t ′i + ηi,t ′i ,r |

}
exp

{−|θi,ti′ + ϕi,ti′ + ηi,t ′i ,r ′ |}
}

×
{

n∏
i=1

T∏
t=1

√
φ

2π�i,t

exp
(
−φ{θi,t − θi,t−1 − ci(1 − ρθi,t−1)�

+
i,t }2

2�i,t

)}
.

We only consider here the “least information” case in which Si,ti = Si,ti′ = 2;
the more general case can be done similarly. Then ηi,ti ,m = −ηi,ti ,m

′ , ηi,ti′ ,r =
−ηi,ti′ ,r ′ , exp (−τiη

∗′
i,ti

�−1
i,ti

η∗
i,ti

/2) = exp (−τiη
2
i,ti ,m

), and exp(−τiη
∗′
i,ti′ ×

�−1
i,ti′ η

∗
i,ti′ /2) = exp (−τiη

2
i,ti′ ,r ). Using this in (C.3) and integrating out all other

η except for ηi,ti ,m and ηi,ti′ ,r and all ϕ except for ϕi,ti and ϕi,t ′i , results in the
expression

1

φ3/2

{
n∏

i=1

1√
2πVGji

exp
(
−(θi,0 − μGji

)2

2VGji

)
I{ci≥0}

}

×
{

n∏
i=1

1

δ
3/2
i

δi

2π
exp

(
−δiϕ

2
i,ti

2

)
exp

(
−

δiϕ
2
i,t ′i

2

)
· 1

τ
3/2
i

× τi

2π
exp

(−τi

(
η2

i,ti ,m
+ η2

i,t ′i ,r
))

× exp
{−(|θi,ti + ϕi,ti + ηi,ti ,m| + |θi,ti + ϕi,ti − ηi,ti ,m|)}

× exp
{−(|θi,t ′i + ϕi,t ′i + ηi,t ′i ,r | + |θi,t ′i + ϕi,t ′i − ηi,t ′i ,r |

)}}

×
{

n∏
i=1

Ti∏
t=1

√
φ

2π�i,t

exp
(
−φ{θi,t − θi,t−1 − ci(1 − ρθi,t−1)�

+
i,t }2

2�i,t

)}
.

Next integrate out over τi , ηi,ti ,m and ηi,t ′i ,r using Lemma 3, resulting in the upper
bound (again ignoring multiplicative constants)

1

φ3/2

{
n∏

i=1

1√
2πVGji

exp
(
−(θi,0 − μGji

)2

2VGji

)
I{ci≥0}

}

×
{

n∏
i=1

1

δ
3/2
i

δi

2π
exp

(
−δiϕ

2
i,ti

2

)
exp

(
−

δiϕ
2
i,t ′i

2

)
(C.4)
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× exp
{−(|θi,ti + ϕi,ti | + |θi,t ′i + ϕi,t ′i |

)}}

×
{

n∏
i=1

Ti∏
t=1

√
φ

2π�i,t

exp
(
−φ{θi,t − θi,t−1 − ci(1 − ρθi,t−1)�

+
i,t }2

2�i,t

)}
.

Next integrate out δi , ϕi,ti and ϕi,t ′i using Lemma 4. The resulting upper bound
on (C.4) is

1

φ3/2

{
n∏

i=1

1√
2πVGji

exp
(
−(θi,0 − μGji

)2

2VGji

)
I{ci≥0} · 1

1 + |θi,t ′i |
}

×
{

n∏
i=1

Ti∏
t=1

√
φ

2π�i,t

exp
(
−φ{θi,t − θi,t−1 − ci(1 − ρθi,t−1)�

+
i,t }2

2�i,t

)}
.

Integrating out all the θi,t except the θi,t ′i results in the expression

1

φ3/2

{
n∏

i=1

I{ci≥0} · 1

1 + |θi,t ′i |
}

×
{

n∏
i=1

√√√√ φ
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×
(

1
/( t ′i∑

t=1
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(C.5)

+ φVGji
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1 − ciρ�+
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))1/2

× exp
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2
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.

Finally, defining

zi =
√

φ(θi,t ′i − Ai(ci))√
Bi(ci)

,
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using Lemma 6 to integrate out all θi,t ′i and ci , except for two individuals, and then
using Lemma 5 for the remaining variables of (C.5), it follows that the integral is
finite, completing the proof. �
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