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External information, such as prior information or expert opinions, can
play an important role in the design, analysis and interpretation of clinical
trials. However, little attention has been devoted thus far to incorporating
external information in clinical trials with binary outcomes, perhaps due to
the perception that binary outcomes can be treated as normally-distributed
outcomes by using normal approximations. In this paper we show that these
two types of clinical trials could behave differently, and that special care is
needed for the analysis of clinical trials with binary outcomes. In particular,
we first examine a simple but commonly used univariate Bayesian approach
and observe a technical flaw. We then study the full Bayesian approach using
different beta priors and a new frequentist approach based on the notion of
confidence distribution (CD). These approaches are illustrated and compared
using data from clinical studies and simulations. The full Bayesian approach
is theoretically sound, but surprisingly, under skewed prior distributions, the
estimate derived from the marginal posterior distribution may not fall be-
tween those from the marginal prior and the likelihood of clinical trial data.
This counterintuitive phenomenon, which we call the “discrepant posterior
phenomenon,” does not occur in the CD approach. The CD approach is also
computationally simpler and can be applied directly to any prior distribution,
symmetric or skewed.

1. Introduction. In pharmaceutical fields as well as many others, there is
great interest in conducting randomized trials with designs that can enable com-
bining external information, such as prior information or expert opinions, with
trial data to enhance the interpretation of the findings. In early landmark works
Spiegelhalter, Freedman and Parmar (1994) and Parmar, Spiegelhalter and Freed-
man (1994) provided an interesting illustration of integrating expert opinions with
data from cancer trials using a Bayesian framework. Parmar, Spiegelhalter and

Received June 2011; revised July 2012.
1Supported in part by NSF Grants DMS-11-07012, DMS-09-15139, SES-0851521 and NSA-

H98230-08-1-0104.
2Supported in part by NSF Grants DMS-10-07683, DMS-07-07053 and NSA-H98230-11-1-0157.
Key words and phrases. Bayesian method, combining information, confidence distribution, ex-

pert opinion, requentist method, discrepant posterior, prior distribution.

342

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/12-AOAS585
http://www.imstat.org


INCORPORATING EXTERNAL INFORMATION IN CLINICAL TRIALS 343

Freedman (1994) noted that the added flexibility to such trials to stop for efficacy,
futility or safety can greatly increase the efficiency of clinical research. Designs for
incorporating external information are also useful in drug development when a pi-
lot study, also known as a hypothesis generating study, is conducted with a sample
size that may be inadequate for detecting clinically meaningful treatment effects.
In this case, relevant information including trial results and expert opinions can be
used to help decision makers with whether to proceed with a larger confirmatory
study and, if so, how to design it.

Although the applications have drawn increasing interest in recent years, little
attention has been devoted to the special yet commonly seen clinical trials with
binary outcomes, partly due to an inaccurate common belief that little is new re-
garding the trials with binary outcomes. In this paper, motivated by a case study of
a clinical trial with binary outcomes in a migraine therapy, we develop and com-
pare statistical methods which can effectively combine information from clinical
trials of binary outcomes with information from surveys of expert opinions. The
results show that clinical trials with binary outcomes can behave quite differently.
Thus, special care is warranted for such trials.

The Bayesian paradigm has played a dominant role in combining expert opin-
ions with clinical trial data. Almost all methods currently used are Bayesian; see,
for example, Berry and Stangl (1996), Spiegelhalter, Abrams and Myles (2004),
Carlin and Louis (2009) and Wijeysundera et al. (2009). In the Bayesian paradigm,
as illustrated in Spiegelhalter, Freedman and Parmar (1994), a prior distribution is
first formed to express the initial beliefs concerning the parameter of interest based
on either some objective evidence or some subjective judgment or a combination
of the two. Subsequently, clinical trial evidence is summarized by a likelihood
function, and a posterior distribution is then formed by combining the prior dis-
tribution with the likelihood function. Although this general Bayesian paradigm
also applies to the special case of clinical trials with binary outcomes, the simple
univariate Bayesian approach developed in Spiegelhalter, Freedman and Parmar
(1994) for clinical trials with normally distributed outcomes cannot be applied di-
rectly to clinical trials with binary outcomes. The latter point is contrary to the
common belief which we elaborate below.

Univariate Bayesian approach.
Consider a clinical trial of binary outcomes with a treatment group and a con-

trol group. Denote by X1i ∼ Bernoulli(p1), for i = 1, . . . , n1, the responses from
the treatment group and by X0i ∼ Bernoulli(p0), for i = 1, . . . , n0, the responses
from the control group. Assume that the parameter of interest is the difference
of the success rates between the two treatments, δ ≡ p1 − p0, and its prior dis-
tribution π(δ) is formed based on some objective evidence and/or some subjec-
tive judgment. Let δ̂ = X̄1 − X̄0 and Ĉ2

d = X̄1(1 − X̄1)/n1 + X̄0(1 − X̄0)/n0,
where X̄1 = ∑n1

i=1 X1i/n1 and X̄0 = ∑n0
i=1 X0i/n0. Note that Ĉ2

d is an estimator
of C2

d = var(δ̂) = p1(1 − p1)/n1 + p0(1 − p0)/n0. A popular univariate Bayesian
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approach, as seen in Spiegelhalter, Freedman and Parmar [(1994), pages 360–361],
would then treat

�̂(δ|δ̂) = exp
{−1

2 log
(
2πĈ2

d

) − 1
2(δ − δ̂)2/Ĉ2

d

}
(1.1)

as the “likelihood function” of δ, and proceed to compute the posterior distribution
of δ, π̂(δ|data), according to

π̂(δ|data) ∝ π(δ)�̂(δ|δ̂).
When the prior π(·) is modeled as a normal distribution, the approach involves

an explicit posterior and is straightforward. Although this univariate Bayesian ap-
proach has been used in practice, it has in fact a theoretical flaw. Strictly speaking,
(1.1) is not a likelihood function of δ, even in the context of estimated likelihood
[see, e.g., Boos and Monahan (1986)]. In particular, in the clinical trial motioned
above, a conditional density function f (data|δ) solely depending on a single pa-
rameter δ = p1 − p0 does not exist, and, thus, it is not possible to find a “marginal
likelihood” of δ. Therefore, π(δ|data) ∝ π(δ)f (data|δ) is not well defined and
any univariate Bayesian approach focusing directly on δ is not supported by the
Bayesian theory.

The point above is alluded to in the argument made by Efron (1986) and
Wasserman (2007) that a Bayesian approach is not good for “division of labor”
in the sense that “statistical problems need to be solved as one coherent whole in
a Bayesian approach,” including “assigning priors and conducting analyses with
nuisance parameters.” This observation suggests that a sound Bayesian solution in
the current context is a full Bayesian model that can jointly model p0 and p1 or
their reparametrizations. Joseph, du Berger and Belisle (1997) presented such a full
Bayesian approach using (mostly) a set of independent beta priors for p0 and p1.
However, the paper focused mainly on the utility of the approach in sample size
determination rather than on its general performance in the context of clinical tri-
als with binary outcomes. In the present paper, in addition to the independent beta
priors, we broaden the scope of the full Bayesian approach to include three more
flexible priors, namely, independent hierarchical beta priors, dependent bivariate
beta (BIBETA) priors [Olkin and Liu (2003)] and dependent hierarchical bivariate
beta priors.

We also develop a Markov Chain Monte Carlo (MCMC) algorithm for imple-
menting these full Bayesian approaches, since most resulting posteriors do not
assume explicit forms. The full Bayesian approaches are theoretically sound, and
intuitively would have been expected to provide a systematic solution to the prob-
lems in our case study. However, a close examination of the situation with skewed
priors reveals a surprising phenomenon in which the estimate derived from the
posterior distribution may not be between those from the prior distribution and
the likelihood function of the observed data (details in Section 4.2). We shall re-
fer to this phenomenon as the “discrepant posterior phenomenon.” To the best of
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our knowledge, this discrepant posterior phenomenon has not been reported else-
where. This observation indicates that clinical trials of binary outcomes can behave
differently from the normal clinical trails studied in Spiegelhalter, Freedman and
Parmar (1994). It also shows an inherent difficulty in the modeling of trials with
binary outcomes, especially if p0 and p1 are potentially correlated. This discrepant
posterior phenomenon manifests itself in settings beyond binary outcomes, and it
has far reaching implications in Bayesian applications in general, as we discuss in
Section 5.

In addition to studying the full Bayesian approach, we also propose a new fre-
quentist approach for combining external information with clinical trial data. Efron
(1986) and Wasserman (2007) argued that a frequentist approach has “the edge of
division of labor” over a Bayesian approach. They illustrated this point by using
the example of population quantile, which can be directly estimated in a frequen-
tist setting by its corresponding sample quantile without any modeling effort or
involving other (nuisance) parameters. In our context, this indicates that we can
use a univariate frequentist approach to model directly the parameter of interest δ,
without having to model jointly the treatment effects (p0,p1). On the other hand,
it is clear that a standard frequentist approach is not equipped to deal with ex-
ternal information such as expert opinions, which are not actual observed data
from the clinical trials. To overcome this difficulty, we take advantage of the con-
fidence distribution (CD), which uses a sample-dependent distribution function to
estimate a parameter of interest [see, e.g., Schweder and Hjort (2002) and Singh,
Xie and Strawderman (2005)]. In particular, we use a CD to summarize external
information or expert opinions, and then combine it with the estimates from the
clinical trial. This alternative scheme can be viewed as a compromise between the
Bayesian and frequentist paradigms. It is a frequentist approach, since the param-
eter is treated as a fixed value and not a random entity. It nonetheless also has a
Bayesian flavor, since the prior expert opinions represent only the relative experi-
ence or prior knowledge of the experts but not any actual observed data. The CD
approach is easy to implement and can be a useful data analysis tool for the type
of studies considered in the present paper.

The main emphasis of the paper is on the study and comparison of the meth-
ods for incorporating expert opinions with clinical trial data in the binary outcome
setting, and not the methods for pooling together individual expert opinions. The
latter have been discussed extensively by Genest and Zidek (1986). The goal of
this research is to raise awareness of the complexity of the practice of incorpo-
rating external information. Although it draws attention to a difference between
Bayesian and non-Bayesian approaches in practice, it is not meant to either pro-
mote or criticize any of the Bayesian or frequentist approaches.

The rest of this section describes a pilot clinical study in a migraine therapy by
Johnson and Johnson, Inc. In Section 2 we develop full Bayesian approaches with
four different priors and implement the approaches through an MCMC algorithm.
In Section 3 we present the alternative approach of frequentist Bayes compromise



346 XIE, LIU, DAMARAJU AND OLSON

using CDs. In Section 4 we illustrate the approaches discussed in Sections 2 and 3
using the data presented in Section 1.1. We also conduct a simulation study to
compare the performance of these approaches in situations where the prior distri-
butions are skewed. Finally, we provide in Section 5 some concluding remarks and
discussions.

1.1. Application: The pilot study on migraine therapy, background and data.
Our data are collected from a recent clinical study on patients with migraine
headaches.3 The objective was to determine the potential impact of a preventive
migraine therapy, topiramate, on the therapeutic efficacy of the acute migraine
therapy, almotriptan.

The study consisted of a 6-week open-label phase followed by a randomized
double-blind phase that lasted 20 weeks. Patients received topiramate during the
open-label run-in period that enabled the selection for randomization of patients
who could tolerate a dosing regimen of 100 mg/day and who met the eligibility
criteria based on migraine rate. Those found eligible were randomly assigned to
receive topiramate (Treatment A) or placebo (Treatment B/Control). Throughout
the study, almotriptan 12.5 mg was used as an acute treatment for symptomatic
relief of migraine headaches. The patients recorded assessments of migraine activ-
ity, associated symptoms and other relevant details into an electronic daily diary
(Personal Digital Assistant [PDA]). The numbers of patients in the treatment and
the control groups are n1 = 59 and n0 = 68, respectively. The slight difference in
the group size reflects the dropout of a handful of patients during the double-blind
phase. The most common reason for these dropouts was subject choice/withdrawal
of consent. Few patients discontinued treatment due to limiting adverse event dur-
ing the double-blind phase.

The trial objectives and study design were presented at an investigator meet-
ing prior to the start of the study. At the meeting, following the design of Par-
mar, Spiegelhalter and Freedman (1994), the study sponsor sought the individual
opinions of each investigator expert regarding the expected improvement of Treat-
ment A over Treatment B for a series of clinical outcomes. For illustration we
focus on a specific outcome, pain relief at two hours (PR2) after dosing with al-
motriptan, one of 16 outcomes investigated in the trial. During the meeting, each
expert was asked to use the 12 intervals shown in Table 1 to assign a “weight of
belief,” based on his/her experience, in the difference in the percentage of patients
expected to achieve PR2 in the two treatment groups. In other words, each expert
was given 100 “virtual patients” to be assigned to one of the 12 possible intervals
of difference between the two treatments (from −20% to 20%) in Table 1. Table 1
shows the belief distributions for each of the 11 experts and the group mean. The

3Clinical trial NCT00210496 by Janssen-Ortho LLC (Johnson & Johnson, Inc.) Web link:
http://clinicaltrials.gov/ct2/results?term=NCT00210496.

http://clinicaltrials.gov/ct2/results?term=NCT00210496
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TABLE 1
Opinion survey of 11 experts on the treatment improvement δ

Expert opinions for achievement of pain relief at 2 hours (PR2)

Worse (%) Better (%)

Investigator 20+ 20 ∼ 17 16 ∼ 13 12 ∼ 9 8 ∼ 5 4 ∼ 0 0 ∼ 4 5 ∼ 8 9 ∼ 12 13 ∼ 16 17 ∼ 20 20+
1 5 5 10 30 30 15 5
2 3 7 20 25 20 15 7 3
3 10 15 20 20 20 10 5
4 2 3 5 5 50 20 10 5
5 5 10 15 15 30 20 5
6 10 20 30 30 10
7 5 20 50 20 5
8 5 50 40 5
9 5 5 20 30 20 10 10

10 5 15 15 20 15 15 10 5
11 5 10 30 25 15 10 5

Group mean 0.64 1.45 5.18 13.18 27.73 25.00 15.46 7.00 3.45 0.91

histogram in Figure 1 shows the group means of the 11 experts’ beliefs of the
improvement of Treatment A over Treatment B.

The histogram in Figure 1, derived from the arithmetic means in the last row
of Table 1, is to be used as a (marginal) prior in our Bayesian analysis for the im-
provement of Treatment A over Treatment B. This practice effectively assumes that
the heterogeneity of expert opinions could be averaged out by arithmetic means
[cf. Genest and Zidek (1986)]. A similar assumption is also used in Spiegelhal-
ter, Freedman and Parmar (1994) and the development of the frequentist approach
in Section 3. Further discussion on heterogeneity among experts can be found in
Section 5.

The goal of our project is to incorporate the information in Figure 1, solicited
from experts, with the data from the pilot clinical trial, and make inference about
the improvement of the treatment effect. Findings from the inference are intended
for generating hypotheses to be tested in future studies.

2. A full Bayesian solution: Methodology, theory and algorithm.

2.1. Summarize external/prior information using an informative prior distribu-
tion. Beta distributions are often conventional choices for modeling the prior of
the Bernoulli parameter p0 or p1. They are sufficiently flexible for capturing dis-
tributions of different shapes. In particular, we consider four forms of joint beta
distributions for the prior of (p0,p1).
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FIG. 1. Distribution of experts’ beliefs (group mean) on the difference in success rates between
topiramate and control in achieving pain relief at 2 hours in migraine headaches.

• Independent Beta prior. Joseph, du Berger and Belisle (1997) used independent
beta priors to summarize “pre-experimental information” about “two indepen-
dent binomial parameters” p0 and p1 as follows: π(p0,p1) = π(p0)π(p1) with
π(p0) ∼ BETA(q0, r0) and π(p1) ∼ BETA(q1, r1). Here, (q0, r0, q1, r1) are un-
known prior parameters (hyperparameters) which can be estimated using the
method of moments, following Lee (1992) and Joseph, du Berger and Belisle
(1997). Specifically, for our clinical study, the average treatment effect and its
standard deviation, μd and σd , can be obtained (estimated) from the mean and
standard deviation of the histogram of Figure 1. Based on previous clinical tri-
als [cf. Silberstein et al. (2004) and Brandes et al. (2004)], the average effec-
tiveness μ0 of Treatment B and its standard deviation σ0 can also be obtained.
We can estimate the prior parameters (q0, r0, q1, r1) by solving the equations
μ0

set= E(p0) = q0/(q0 + r0), μ0 + μd
set= E(p1) = q1/(q1 + r1), σ 2

0
set= var(p0) =

q0r0/{(q0 + r0)
2(q0 + r0 + 1)} and σ 2

d − σ 2
0

set= var(p1) = q1r1/{(q1 + r1)
2(q1+

r1 + 1)}.
• Independent hierarchical Beta prior. Gelman et al. [(2004), Chapter 5] sug-

gested that hierarchical priors are more flexible and can avoid “problems of
over-fitting” in Bayesian models. We modify their approach to reflect the in-
formative prior in our problem setting with two sets of independent Bernoulli
experiments. Specifically, we still model the prior of (p0,p1) independently
with π(p0,p1) = π(p0)π(p1), but each π(pi), for i = 0,1, assumes two levels
of hierarchies as follows:

pi |qi, ri ∼ BETA(qi, ri),

ξi = qi

qi + ri
∼ BETA(αi, βi) and ηi = qi + ri ∼ GAMMA(αi + βi).

Here, ξi is the mean and ηi is the “sample size” of BETA(qi, ri), follow-
ing Gelman et al. (2004), and GAMMA(t) refers to the standard gamma dis-
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tribution whose shape parameter is t and scale parameter is 1. Again, we
use the method of moments to estimate the unknown parameters in this (hy-
per) prior distribution. In this case, the first two marginal moments of pi are
E(pi) = αi/(αi + βi) and var(pi) = αi/{(αi + βi)(α0 + β0 + 1)}[αi + βi +∫ {(x + 1)−1xαi+βi e−x/
(αi + βi)}dx], for i = 0,1. The prior parameters

(α0, β0, α1, β1) are obtained by solving the equations μ0
set= E(p0), μ0 + μd

set=
E(p1), σ 2

0
set= var(p0) and σ 2

d − σ 2
0

set= var(p1).
• Dependent bivariate Beta (BIBETA) prior. Although most of the analysis in

Joseph, du Berger and Belisle (1997) was based on the independent beta prior,
a dependent beta prior, with π(p0) and π(p1|p0) = π(p0,p1)/π(p0) both be-
ing beta distributions, was considered in a numerical example there. Joseph,
du Berger and Belisle (1997) commented that “it is often desirable to allow
dependence between p0 and p1.” This point is particularly relevant to our
case study, since almotriptan is used in both groups. However, the constraint
E(p1) = E(p0), required in the formulation in Joseph, du Berger and Belisle
(1997), does not fit our case. Instead, we use a more flexible bivariate beta dis-
tribution (BIBETA), introduced in Olkin and Liu (2003), to model (p0,p1) in
our prior function. This BIBETA distribution ensures that the marginal prior
distributions of p0 and p1 are both beta distributions. More importantly, it also
allows modeling the correlation between p0 and p1 in the range [0,1]. This BI-
BETA distribution, with parameters q0, q1 and r , has a nice latent structure,
that is, p0 = U/(U + W) and p1 = V/(V + W), where U,V and W are stan-
dard gamma random variables with respective shape parameters q0, q1 and r . It
follows that the joint density (prior distribution) of p0 and p1 is

π(p0,p1) ∝ p
q0−1
0 p

q1−1
1 (1 − p0)

q1+r−1(1 − p1)
q0+r−1

(1 − p0p1)q0+q1+r
.

We obtain the prior parameter values (q0, q1, r) by the method of mo-
ments, solving equations μ0

set= E(p0) = q0/(q0 + r), μd
set= E(p1 − p0) =

q1/(q1 + r)−q0/(q0 + r) and σ 2
d +μ2

d

set= E(p1 −p0)
2 = {q0(q0 +1)}/{(q0 +r)

(q0 + r +1)}+{q1(q1 + 1)}/{(q1 + r)(q1 + r + 1)}−23F2(q0 +1, q1 +1, q0 +
q1 + r;q0 + q1 + r + 1, q0 + q1 + r + 1;1). Here 3F2(·) denotes a hypergeo-
metric function, which can be calculated using the software Mathematica, as
mentioned in Olkin and Liu (2003).

• Dependent hierarchical BIBETA prior. We also consider a hierarchical BIBETA
prior in which we assign hyperprior distributions on the parameters of the BI-
BETA distribution:

(p0,p1)|q0, q1, r ∼ BIBETA(q0, q1, r),

q0 ∼ GAMMA(α0), q1 ∼ GAMMA(α1) and

r ∼ GAMMA(β).
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The second level of the hyperprior model implies that ξi = qi/(qi + r) ∼
BETA(αi, β) and ηi = qi + r ∼ GAMMA(αi + β), for i = 0,1, which matches
the conventional parameterization of hierarchical beta priors. This hierarchical
BIBETA prior is more flexible than the regular BIBETA distribution. To ob-
tain the prior parameter values (α0, α1, β), we solve equations μ0

set= E(p0),
μd

set= E(p1 − p0) and σ 2
d

set= var(p1 − p0). Here, the marginal means of p0 and
p1 are simply E(p0) = α0/(α0 + β) and E(p1) = α1/(α1 + β). The marginal
variance var(p1 − p0) = E{var(p1 − p0|q0, q1, r)} + var{E(p1 − p0|q0, q1, r)}
involves three integrations which can be obtained by numerical integration.

2.2. Summarize trial data of binary outcomes as a likelihood function. For the
clinical trial with binary outcomes, the likelihood function of (p0,p1) is

�(p0,p1|n0, X̄0, n1, X̄1) ∝ p
n0X̄0
0 p

n1X̄1
1 (1 − p0)

n0(1−X̄0)(1 − p1)
n1(1−X̄1).(2.1)

2.3. Combine prior information and trial data as a posterior distribution. Fol-
lowing the Bayes formula, each of the four prior distributions can be incorpo-
rated with the likelihood function (2.1) to produce a joint posterior distribution of
(p0,p1),

π(p0,p1|n0, X̄0, n1, X̄1) ∝ π(p0,p1)�(p0,p1|n0, X̄0, n1, X̄1).(2.2)

The marginal posterior distribution for the parameter of interest δ(≡ p1 − p0) is
then

π(δ|n0, X̄0, n1, X̄1) =
∫ min(−δ+1,1)

max(0,−δ)
f (p0,p0 + δ|n0, X̄0, n1, X̄1) dp0,(2.3)

from which exact Bayesian inferences for δ can be drawn.
In the case where the prior is modeled by two independent beta distributions, the

posterior distribution (2.2) is simply a product of two independent beta distribu-
tions, BETA(n0X̄0 +q0, n0(1− X̄0)+ r0) and BETA(n1X̄1 +q1, n1(1− X̄1)+ r1).
However, in the other three cases both (2.2) and (2.3) are not of any known form
of distributions and thus are difficult to manipulate. To this end, we propose a
Metropolis–Hastings algorithm to simulate random samples from the posterior
distributions (2.2) and (2.3). See Appendix I [Xie et al. (2013)] for the proposed
Metropolis–Hastings algorithm.

The resulting marginal posterior density of δ in (2.3) incorporates the prior ev-
idence of expert opinions on the treatment improvement δ with the evidence from
clinical data. The full Bayesian approaches are theoretically sound and should pro-
vide a systematic solution to our problem in the Bayesian paradigm. However, as
observed in Section 4.2, in the case of a skewed prior, the approaches may lead
to the discrepant posterior phenomenon in that the posterior distributions of δ can
yield an estimate that is not between the two estimates derived from the corre-
sponding prior distribution and the likelihood evidence! Further examination sug-
gests that this phenomenon is quite general. See Section 4.2 for details.
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3. A frequentist Bayes compromise: A CD approach. In this section we
use the so-called confidence distribution (CD) to develop a new approach for in-
corporating expert opinions with the trial data of binary outcomes. This approach
follows frequentist principles and treats parameters as fixed nonrandom values. It
provides an attractive alternative to Bayesian methods. In Section 3.1 we provide
a definition and a brief review of the CD concept. In Sections 3.2–3.4 we develop
the proposed CD approach. This approach can be simply outlined as follows: use
a CD to summarize the prior information or expert opinions (Section 3.2), use an-
other CD (often from a likelihood function) to summarize the observed data from
the clinical trial (Section 3.3), and then combine these two CDs into one CD (Sec-
tion 3.4). This combined CD can be used to derive various inferences. Its role in
frequentist inference is similar to that of a posterior distribution in Bayesian infer-
ence. This development provides yet another example in which a CD can provide
useful statistical inference tools for problems where frequentist methods with de-
sirable properties were previously unavailable. Bickel (2006) gives a similar devel-
opment for normal clinical trials using an objective Bayes argument. The review
article by Xie and Singh (2012) contains further discussion.

3.1. A brief review of confidence distribution (CD). The CD concept is a sim-
ple one. For practical purposes, a CD is simply a distribution estimator for a param-
eter of interest. More specifically, instead of the usual point estimators or interval
estimators (i.e., confidence intervals), CD uses a distribution function to estimate
the parameter. The development of the CD has a long history; see, for example,
Fisher (1930), Neyman (1941) and Lehmann (1993). But its associated inference
schemes and applications have not received much attention until recently; see, for
example, Efron (1998), Schweder and Hjort (2002, 2003, 2012), Singh, Xie and
Strawderman (2001, 2005, 2007), Lawless and Fredette (2005), Tian et al. (2011),
Xie, Singh and Strawderman (2011) and Singh and Xie (2012). Although the CD
approach is closely related to Fisher’s fiducial approach, as seen in the classical
literature, the new CD developments are purely frequentist tools involving no fidu-
cial reasoning. Further discussion of this point as well as the relations between
CD-based inference and fiducial and Bayesian inferences can be found in the com-
prehensive review by Xie and Singh (2012).

The following CD definition is formulated in Schweder and Hjort (2002) and
Singh, Xie and Strawderman (2005) under the framework of frequentist inference.
Singh, Xie and Strawderman (2005) demonstrated that this new version is consis-
tent with the classical CD definition, and it is easier to use in practice. In the defini-
tion, θ (fixed/nonrandom) is the unknown parameter of interest, � is its parameter
space, Xn = (X1, . . . , Xn)

T is the sample data set, and X is the corresponding
sample space.

DEFINITION A. A function Hn(·) = Hn(Xn, ·) on X × � → [0,1] is a con-
fidence distribution (CD) for a parameter θ , if it meets the following two require-
ments: (R1) For each given Xn ∈ X , Hn(·) is a continuous cumulative distribution
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function; (R2) At the true parameter value θ = θ0, Hn(θ0) ≡ Hn(Xn, θ0), as a func-
tion of the sample Xn, follows the uniform distribution U [0,1].

The function Hn(·) is an asymptotic confidence distribution (aCD), if the
U [0,1] requirement holds only asymptotically, and the continuity requirement on
Hn(·) is dropped. Also, when it exists, hn(θ) = H ′

n(θ) is called a CD density or
confidence density.

The CD is a function of both the parameter and the random sample. It is also a
sample-dependent distribution function on the parameter space, following require-
ment R1. Conceptually, it estimates the parameter by a distribution function. As
an estimation instrument, it is not much different from a point estimator or a con-
fidence interval. For example, for point estimation, any single point (a real value
or a statistic) can, in principle, be an estimate for a parameter, and we often im-
pose additional restrictions to ensure that the point estimator has certain desired
properties, such as unbiasedness, consistency, etc. The two requirements in Def-
inition A play roles similar to those restrictions. Specifically, R1 suggests that a
sample-dependent distribution function on the parameter space can potentially be
used as an estimate for the parameter. The U [0,1] requirement in R2 ensures that
the statistical inferences (e.g., point estimates, confidence intervals, p-values) de-
rived from the CD have desired frequentist properties.

Like a posterior distribution function, a CD contains a wealth of information
for inference. It is a useful device for constructing all types of frequentist statis-
tical inferences, including point estimates, confidence intervals and p-values. For
instance, it is evident from requirement R2 that intervals obtained from a confi-
dence distribution such as (H−1

n (α1),H
−1
n (1−α2)) can always maintain the nom-

inal level of 100(1 − α1 − α2)% for coverage of θ . See Section 4 of Xie and
Singh (2012) and references therein for more details. Also, the CD concept is
rather general. In fact, recent research has shown that Definition A encompasses
a wide range of existing examples, including most examples in the classical de-
velopment of Fisher’s fiducial distributions, bootstrap distributions, significance
functions [p-value functions, Fraser (1991)], standardized likelihood functions,
and certain Bayesian prior and posterior distributions; see, for example, Schweder
and Hjort (2002), Singh, Xie and Strawderman (2005, 2007) and Xie and Singh
(2012).

Two examples of CDs which are relevant to the exposition of this paper are
provided in Appendix II [Xie et al. (2013)]. Further, Singh, Xie and Strawderman
(2005) and Xie, Singh and Strawderman (2011) developed a general method for
combining CDs from independent studies, which is utilized in Section 3.4.

3.2. Summarize external/prior information using a CD. A key task in our CD
approach in this paper is to construct a CD which summarizes the treatment im-
provement δ, using only the information obtained prior to the clinical trial. In the
following few paragraphs we use a set of modeling arguments to justify that the
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distribution underlying the histogram in Figure 1 is a CD for the prior information.
Some of these arguments are similar to those used in Genest and Zidek (1986)
for Bayesian approaches, and our concluded prior CD matches in form the prior
distribution suggested by Spiegelhalter, Freedman and Parmar (1994). This match
of our prior CD with the commonly used Bayesian prior allows a comparison of
the CD approach and the Bayesian approach on an equal footing. Note that what
we show here is only one of many possible modeling approaches to achieve our
purpose. We will not dwell on this topic since the main goal of the paper is to study
and compare inference approaches of incorporating expert opinions with clinical
trial data.

Example A.2 in Appendix II [Xie et al. (2013)] shows that an informative prior
could be viewed as a CD, provided that a sample space of the prior knowledge
or past experiments can be defined. In the same spirit, we assume that the expert
opinions are based on past knowledge or experiments about the improvement δ

(the knowledge could be from experience or from similar, or informal, or even
virtual experiments, but no actual data are available). This assumption ensures an
informative prior and allows us to have a prior CD for the improvement δ. In par-
ticular, let Y0 be a statistic (with the sample realization y0) that summarizes the
information on δ gathered from past experience or experiments. Let δ̂(Y0) be an
estimator of δ and also let F(t) = P {δ̂(Y0) − δ ≤ t} be the cumulative distribution
function of (δ̂(Y0) − δ). We assume for simplicity that F(t) does not involve un-
known nuisance parameters or, if it does, that they are replaced by their respective
consistent estimates (in this case the development here holds only asymptotically).
The prior knowledge then gives rise to the following CD (or asymptotic CD) for δ:

H0(δ) = 1 − F
(
δ̂(y0) − δ

)
,(3.1)

since the two requirements in Definition A hold for H0(δ). For illustration, con-
sider the case in which {δ̂(Y0) − δ}/s0 → N(0,1), where s2

0 is an estimate
of var(δ̂(Y0)). In this case, (3.1) is H0(·) = 
({· − δ̂(y0)}/s0). Equivalently,
N(δ̂(y0), s

2
0) is a distribution estimate of δ.

In practice, the realization y0 of the prior trials is unobserved or only vaguely
perceived. We rely on a survey of expert opinions to recover this prior information
and H0(δ), as in our case study in Section 1.1. For simplicity, we assume that
the I experts in the survey are randomly selected from a large pool of experts on
the subject matter. We also assume that the experts are randomly exposed to some
pre-existing experiments or knowledge, which in fact resembles a bootstrapping
procedure. Denote by Y∗

i the summary statistic of the pre-existing knowledge on δ

which the ith expert is exposed to and upon which his/her opinion is based. It
follows that Y∗

i is a bootstrap copy of Y0. Following Example 2.4 of Singh, Xie
and Strawderman (2005), a CD for δ from the bootstrap sample Y∗

i is

H ∗
0,i (δ) = 1 − P

{
δ̂
(
Y∗

i

) − δ̂(y0) ≤ δ̂(Y0) − δ|Y0
}
.(3.2)
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This H ∗
0,i (·) is usually the same as H0(·) with probability 1 under some mild con-

ditions, such as those required for standard bootstrap theory.
However, the function H ∗

0,i(δ) only summarizes the prior knowledge which the
ith expert is exposed to. We need to associate it with his/her “reported” opinion in
the survey table such as in Table 1. Let us define, from the ith row of Table 1, an
(empirical) cumulative distribution function

H ∗∗
0,i (δ) =

12∑
k=1

g∗∗
i,k1(δ≥Lk),

where 100g∗∗
i,k is the kth number reported in the ith row of Table 1, Lk is the lower

bound of the kth interval and 1(·) is the indicator function. This H ∗∗
0,i (δ) is the

“reported” distribution for the improvement δ by the ith expert.
In the ideal case, if the “reported” expert opinion faithfully recorded the “true”

expert opinion and the “true” expert opinion truly reflects the “true” prior knowl-
edge, H ∗

0,i (δ) and H ∗∗
0,i (δ) would be the same. But, there are often variations in

reality. A detailed discussion on how to model such variations is provided in Sec-
tion 5 as a concluding remark. We proceed with the popular “arithmetic pool-
ing” approach, which is also articulated in Spiegelhalter, Freedman and Parmar
(1994). An underlying assumption of arithmetic pooling is that the average of
the “observed” expert opinions is an unbiased representation of the “true” prior
knowledge. In our case, this is equivalent to assuming the additive error model,
H ∗∗

0,i (δ) = H ∗
0,i(δ) + ei such that I−1 ∑I

i=1 ei ≈ 0 uniformly in δ, where ei = ei(δ)

is defined as the difference between H ∗∗
0,i (δ) and H ∗

0,i(δ) and is viewed as a random
error for both the discrepancies between the “true” prior knowledge, the “true” ex-
pert opinion and the “reported” opinion of the ith expert. Under this error model,
where the heterogeneous deviation among experts are “averaged out,” it follows
that

H0(δ) ≈ I−1
I∑

i=1

H ∗∗
0,i (δ) ≈

12∑
k=1

ḡk1(δ≥Lk),(3.3)

where 100ḡk = 100I−1 ∑I
i=1 g∗∗

i,k are the group means reported in the last row of
Table 1. From (3.3), the (standardized) histogram in Figure 1, that is, fhist(δ) =∑12

k=1 {ḡk/(Lk+1 − Lk)} 1(Lk+1>δ≥Lk), is clearly a suitable approximation for the
underlying confidence density function h0(δ) = H ′

0(δ). Here, the word “standard-
ized” refers to scaling the histogram so that its area is 1. In our calculations in
Section 4, we have used L13 = 0.24 as the upper bound of the 12th interval.

3.3. Summarize clinical trial data as a CD. The task to summarize the clinical
trial results into a CD is relatively easier. The maximum likelihood estimator of δ

is δ̂ = X̄1 − X̄0 with variance C2
d = var(δ̂) = p1(1 − p1)/n1 + p0(1 − p0)/n0. An

estimator of C2
d is Ĉ2

d = X̄1(1 − X̄1)/n1 + X̄0(1 − X̄0)/n0. If both ni’s tend to ∞,
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we have (δ̂ − δ)/Ĉd → N(0,1). Therefore, an asymptotic CD for the parameter δ

from the clinical trial is

HT (δ) = 

(
(δ − δ̂)/Ĉd

)
.(3.4)

In other words, the distribution N(δ̂, Ĉ2
d) can be used to estimate δ. An alternative

approach is to use the profile likelihood function of δ. Specifically, let �prof(δ) be
the log profile likelihood function of δ, and let �∗

n(δ) = �prof(δ) − �prof(δ̂). Follow-
ing Singh, Xie and Strawderman (2007), we can show that

HT (δ) =
∫ δ

−1
hT (θ) dθ with hT (θ) = e�∗

n(θ)

∫ 1
−1 e�∗

n(θ) dθ
∝ e�prof(δ)(3.5)

is an asymptotic CD for δ. The two HT (·) above are asymptotically equivalent
when the ni’s tend to ∞.

3.4. Combine prior information and trial data as a combined CD. We can
incorporate the prior CD H0(δ) with the CD HT (δ) from the clinical trial us-
ing a general CD combination method developed by Singh, Xie and Strawderman
(2005). Xie, Singh and Strawderman (2011) showed that this general method and
its extension can provide a unifying framework for most information combination
methods used in current practice, including both the classical approach of com-
bining p-values and the modern model-based (fixed and random effects models)
meta-analysis approach. In our context, we are combining two CDs. Specifically,
we let Gc(t) = P(gc(U1,U2) ≤ t), where U1 and U2 are independent U[0,1] ran-
dom variables, and gc(u1, u2) is a continuous function from [0,1] × [0,1] to R

which is monotonic (say, increasing) in each coordinate. Then,

H(c)(δ) = Gc

{
gc

(
H0(δ),HT (δ)

)}
(3.6)

is a combined CD for δ which contains information from both expert opinions and
the clinical trial. One simple choice is

gc(u1, u2) = w1

−1(u1) + w2


−1(u2),(3.7)

with weights w1 = 1/σ̂d and w2 = 1/Ĉd , where σ̂d is an estimate of the standard
deviation of H0(δ) (specifically, σ̂d is the standard deviation of the histogram in
Figure 1 in our application, and it is also an estimate of the standard deviation
of δ̂ in the normal case). In this case, Gc(t) can be expressed as 
(t/{(1/σ̂ 2

d +
1/Ĉ2

d)1/2}), and thus gives rise to the following combined CD for δ: H(c)(δ) =

({
−1(H0(δ))/σ̂d + 
−1(HT (δ)) /Ĉd}/{(1/σ̂ 2

d + 1/Ĉ2
d)1/2}).

When both H0(δ) and HT (δ) are normal (or asymptotically normal) CDs, the
normal combination in (3.7) is the most efficient in terms of preserving Fisher
information. In nonnormal cases, Singh, Xie and Strawderman (2005) studied sev-
eral choices of the function gc and their Bahadur efficiency. But it remains an
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open question what choice of gc is most efficient in preserving Fisher information
in a general nonnormal setting. Although we use the simple normal combination
in (3.7) in this paper mostly for simplicity, our experience with the numerical stud-
ies has shown this combination to be quite adequate in most applications. In fact, in
many nonnormal cases, it incurs very little loss of efficiency in terms of preserving
Fisher information from both H0(δ) and HT (δ).

In a Bayesian approach, it is a conventional practice to fit a prior density curve
to the histogram in Figure 1. Although this step is not needed in the proposed
CD approach, we may sometimes also fit a density function to fhist(δ). For ex-
ample, we may fit a normal curve to the histogram of Figure 1 by matching its
first two moments, say, mean μ̂d and variance σ̂ 2

d . In this case, we have a nor-
mal CD from the expert opinions H0(δ) ≈ 
((δ − μ̂d)/σ̂d). Incorporating it with
HT (δ) in (3.4), we have the combined CD H(c)(δ) = 
((δ − δ̃)/C̃d) or N(δ̃, C̃2

d),

where δ̃ = (δ̂/Ĉ2
d + μ̂d/σ̂ 2

d )/(1/Ĉ2
d + 1/σ̂ 2

d ) and C̃2
d = (1/Ĉ2

d + 1/σ̂ 2
d )−1. This

combined CD turns out to be the same as the posterior distribution function ob-
tained from the univariate Bayesian approach described in the Introduction when
the normal prior π(δ) ∼ N(μ̂d, σ̂ 2

d ) is used. Because Bayes’s formula requires
that we know f (data|δ) in the univariate Bayesian approach and this conditional
density function f (data|δ) does not exist in our clinical setting, we have argued
that the univariate Bayesian approach is not supported by Bayesian theory. The
CD development, interestingly, provides theoretical support for using the posterior
distribution N(δ̃, C̃2

d) from a non-Bayesian point of view if the prior distribution
of expert opinions can be approximated by a normal distribution. In this case, the
univariate Bayesian approach can also produce a result that “makes sense,” and
practically we can use either the CD approach or the univariate Bayesian approach.
But this statement is not true in general.

4. Application: Numerical results and comparisons. We now provide nu-
merical studies to illustrate and compare the Bayesian and CD approaches dis-
cussed in Sections 2 and 3. In Section 4.1 we focus on the data from the migraine
pain study outlined in Section 1.1. In Section 4.2 we simulate a skewed distribution
of expert opinions and combine the simulated prior information with the clinical
trial data.

4.1. Normal priors: A case study of the migraine pain data. For the outcome
PR2, the clinical data report that 31 out of 68 patients in the control group and
33 out of 59 patients in the treatment group achieved pain relief at 2 hours. Our
goal is to incorporate the expert inputs reported in Figure 1 with these observed
outcomes.

We apply the full Bayesian approach described in Section 2 to analyze the PR2
data, using each of the four beta priors for (p0,p1). The numerical results are
reported in Figures 2(a)–(d) and also in the first 12 rows of Table 2. The dot-
ted lines in Figures 2(a)–(d) indicate the marginal prior density functions, and the
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FIG. 2. Outcomes of data analysis from the migraine pain data.

dashed lines indicate the (standardized) profile likelihood function of δ based only
on the clinical trial data. The solid lines in Figures 2(a)–(d) are the marginal pos-
terior distributions of δ. They are obtained by using the density estimation func-
tion density(·) in the R software and from 1000 Metropolis–Hasting samples of
δ∗ = p∗

1 − p∗
0 . In each case and for each of the 1000 replications, the Metropolis–

Hastings algorithm is iterated t = 25,000 times (burn-in). The acceptance rates are
on average 0.0379, 0.0381, 0.0480 and 0.0485, respectively, in (a) to (d). For the
independent beta prior, the exact formula of the posterior distribution is available,
and it is plotted in Figure 2(a) as the dash-dot broken curve (it is barely visible
in the plot, since it is almost identical to the solid curve). The close agreement
of these two curves for the posterior distribution indicates that the MCMC chain
of the Metropolis–Hastings algorithm has generally converged with t = 25,000 in
this case.

In applying the CD approach, we use both the raw histogram in Figure 1 and
the N(μ̂d, σ̂ 2

d ) distribution to approximate the prior CD of expert opinions. Fig-
ures 2(e)–(f) and the last six rows of Table 2 contain numerical results. The dotted
lines in Figures 2(e)–(f) indicate the prior CDs, the dashed lines indicate the profile
likelihood function of δ based only on the clinical trial data, and the solid lines are
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TABLE 2
Numerical results from incorporating expert opinions on PR2 (summarized in Figure 1) with

clinical data on PR2: mode, median, mean, I80%, I90% and I95% of the marginal prior,
(normalized) profile likelihood function and marginal posterior of the parameter δ. Here, I80%,
I90% and I95% denote the interval [100α%-tile, 100(1 − α)%-tile] for α = 10%, 5% and 2.5%,
respectively. Included in the comparison are four full Bayesian approaches and two approaches

based on confidence distributions (CDs)

Mode Median Mean I80% I90% I95%

Bayesian approaches
Ind Beta prior Prior 0.049 0.047 0.048 −0.037 0.130 −0.060 0.153 −0.080 0.173

Likelihood 0.104 0.104 0.103 −0.007 0.214 −0.043 0.251 −0.062 0.269
Posterior 0.069 0.070 0.071 0.000 0.138 −0.015 0.156 −0.029 0.174

Hierarchical Prior 0.048 0.047 0.048 −0.036 0.130 −0.059 0.154 −0.080 0.175
Beta prior Likelihood 0.104 0.104 0.103 −0.007 0.214 −0.043 0.251 −0.062 0.269

Posterior 0.082 0.071 0.070 0.000 0.143 −0.021 0.159 −0.037 0.171

Bi-Beta prior Prior 0.040 0.044 0.048 −0.029 0.125 −0.050 0.151 −0.069 0.174
Likelihood 0.104 0.104 0.103 −0.007 0.214 −0.043 0.251 −0.062 0.269
Posterior 0.093 0.091 0.091 0.015 0.165 −0.004 0.190 −0.025 0.209

Hierarchical Prior 0.043 0.045 0.048 −0.028 0.127 −0.049 0.154 −0.068 0.178
Bi-Beta prior Likelihood 0.104 0.104 0.103 −0.007 0.214 −0.043 0.251 −0.062 0.269

Posterior 0.082 0.086 0.087 0.013 0.162 −0.01 0.189 −0.031 0.207

CD approaches
CD with Prior CD 0.020 0.060 0.048 −0.023 0.142 −0.068 0.145 −0.070 0.182

histogram prior Likelihood 0.104 0.104 0.103 −0.007 0.214 −0.043 0.251 −0.062 0.269
Comb. CD 0.060 0.065 0.058 0.013 0.141 −0.022 0.145 −0.025 0.182

CD with Prior CD 0.048 0.048 0.048 −0.034 0.132 −0.058 0.156 −0.078 0.177
normal prior Likelihood 0.104 0.104 0.103 −0.007 0.214 −0.043 0.251 −0.062 0.269

Comb. CD 0.068 0.068 0.068 0.001 0.135 −0.018 0.154 −0.035 0.171

for the combined CDs for δ.
In this particular example, all six approaches (four Bayesian and two CD ap-

proaches) seem to yield similar posterior or combined CD functions, and thus sim-
ilar statistical inferences, regardless of which approach is used. Although the six
marginal posterior or combined CD distributions are slightly different from one
another, the difference appears to all fall within the expected estimation error of
the density curves. This result is not surprising, since, although skewed, the degree
of skewness of the histogram in Figure 1 does not appear to be great enough to
render the normal approximation invalid. In fact, in this case, such a result is ex-
pected to hold if the central limit theory is in place for the clinical data of binary
outcomes. It is worth noting here that the Bayesian approach implemented through
an MCMC method is more demanding computationally.

4.2. Skewed priors: A simulation study. The outcome in the previous subsec-
tion begs the question of whether there would be a significant difference among the
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FIG. 3. Simulated prior distribution of δ = p1 − p0 using BIBETA(6,20,2) distribution.

approaches if the distribution of expert opinions were unambiguously skewed, so
that the normal approximation is clearly not valid. Conventional wisdom suggests
that full Bayesian approaches based on beta priors, though computationally more
intensive, would have advantages due to their flexibility in capturing distributions
of various shapes. The CD approaches, allowing skewed priors, may also work.
However, the numerical results reveal a surprising finding in the full Bayesian ap-
proaches.

In this simulation study, we again use the observed clinical data on PR2, but
replace Table 1 and Figure 1 of expert opinions with their simulated counterparts,
assuming that the underlying prior distribution function of (p0,p1) is a bivariate
beta distribution, BIBETA(6,20,2). The marginal means of the BIBETA(6,20,2)

distribution are Ep0 = 6/(6 + 2) = 0.75 and Ep1 = 20/(20 + 2) ≈ 0.90. Thus, the
simulated prior represents a treatment effect improvement on average about 75% to
90%, which are similar to those of the real trial in Section 4.1. Specifically, we sim-
ulate responses of 100 patients for each of the 11 experts from BIBETA(6,20,2),
tally the results in the format of Table 1 (not shown), and then plot them as a his-
togram in Figure 3. For a direct visual comparison, Figure 3 includes the curve
of the BIBETA(6,20,2) density. Also plotted in Figure 3 is, as a common ap-
proach to fitting a skewed distribution, the following fitted log-normal density

φ({log(δ)− log(μ̂d − c)}/{1 + σ̂ 2
d /(μ̂d − c)2}1/2 − 1

2

√
1 + σ̂ 2

d /(μ̂d − c)2)/{δ(1 +
σ̂ 2

d /(μ̂d − c)2)1/2}. Here, μ̂d and σ̂d are the mean and the standard deviation com-
puted from the histogram, and c is a constant used to capture the shift of the log-
normal distribution from 0.

We apply the same four full Bayesian approaches used in Section 4.1 to in-
corporate the simulated expert opinions represented in Figure 3 with the clin-
ical trial data on PR2. The four sets of prior parameters used in these four
approaches are (q0, r0, q1, r1) = (14.66,4.88,46.81,4.68), (α0, β0, α1, β1) =
(30.19,10.06,96.43,9.43), (q0, q1, r) = (6,20,2) and (α0, α1, β) = (17.88,

59.60, 5.96), respectively. In the third approach, we directly use the true set of
prior parameters (q0, q1, r) = (6,20,2); in the other three, the prior parameters
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are obtained by the method of moments outlined in Section 2. In the simulation
example, the Metropolis–Hasting algorithm is again iterated t = 25,000 times
(burn-in), and it is repeated 1000 times to obtain 1000 independent Metropolis–
Hasting samples of (p∗

0,p∗
1) in each case. The acceptance rates are on average

0.0019, 0.0027, 0.0057 and 0.0036, respectively.
We also apply two CD combination approaches to incorporate the simulated

expert opinions in Figure 3 with the clinical trial data on PR2. Similar to that
in Section 4, the first CD approach directly uses the raw histogram in Figure 3.
The second CD approach, in order to have a direct comparison with the Bayesian
approach using the underlying prior BIBETA(6,20,2), combines the underlying
marginal density function of δ with the CD from the clinical trial data. Of course, in
reality we do not know the underlying prior distribution or the underlying marginal
density function of δ. Thus, the second CD approach has only theoretical value.
Without relying on the underlying CD prior, we also consider the CD approach
which combines the fitted log-normal distribution in Figure 3 with the CD from
the clinical trial data. However, since the log-normal curve is evidently a poor fit
for the histogram in Figure 3, the result for this CD approach, though not too far
off, does not seem well justified and is thus omitted.

Figures 4(a)–(d) show the results on the improvement δ using the full Bayesian
approaches, and Figures 4(e)–(f) show the results using the CD combination ap-
proaches. Figure 4 adopts the same notation and symbols used in Figure 2. Again,
for the independent beta prior, the posterior density from the algorithm closely
matches the one using its exact formula (dashed-dotted line), indicating that the
MCMC chain of the Metropolis–Hasting algorithm has generally converged in this
case. Also, we report in Table 3 the numerical results from the six approaches: the
mode, median, mean and confidence/credible intervals of the marginal priors, the
profile likelihood function and the marginal posteriors of δ.

The CD approaches perform exactly as anticipated. However, examining the
modes of the three curves in each of Figures 4(a)–(d), we notice that the mode
of the marginal posterior distribution (solid curve) lies to the right of the peaks
of both the marginal prior distribution (dotted curve) and the profile likelihood
function (dashed curve). The numerical results in Table 3 also confirm that the
mode, median and mean of the marginal posterior distributions of δ from all four
full Bayesian approaches are much larger than their counterparts from the corre-
sponding marginal priors and profile likelihood functions. This discrepant poste-
rior phenomenon is counterintuitive! For instance, if we use the means as our point
estimators, we would report from Figure 4(c) that the experts suggest about 15.9%
improvement and the clinical evidence suggests about 10.3% improvement but,
incorporating them together, the overall estimator of the treatment effect is 20.1%,
which is bigger than either that reported by the experts or that suggested by the
clinical data. This result is certainly not easy to explain to clinicians or general
practitioners of statistics. In any event, it seems worthwhile to investigate further
and see what ramifications this intriguing phenomenon may have.
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FIG. 4. Outcomes of data analysis from simulated data with a skewed prior.

To further examine the phenomenon, we compare the percentiles of the marginal
priors, the profile likelihood function and the marginal posterior distributions of
the treatment effect δ in Table 3. In each of the four Bayesian approaches, the
95% posterior credible interval lies inside the corresponding 95% interval from
the prior and has substantial overlap with the corresponding 95% interval from
the profile likelihood. But this is not always the case at the 80% and 90% levels,
where several posterior credible intervals do not lie within the boundaries of the
corresponding intervals from the priors and the likelihood functions. The outcome
of whether the posterior credible interval lies within the boundaries of the other two
depends on the choice of the credible level. Thus, using credible intervals as our
primary inferential instrument cannot completely avoid the discrepant posterior
phenomenon either.

To better understand this phenomenon, we plot in Figures 5(a)–(d) the contours
of the joint prior distribution π(p0,p1), the likelihood function of (p0,p1) and
the joint posterior distribution of (p0,p1) for each of the four full Bayesian ap-
proaches. We show that certain projections of Figures 5(a)–(d) lead to the marginal
distributions and plots in Figures 4(a)–(d). As marked in Figure 5, the center
(mode) of each contour plot is on a line δ = p1 − p0 (or p1 = p0 + δ). Varying δ

in δ = p1 − p0 produces a family of parallel lines, all making a 45o angle with the
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TABLE 3
Numerical results from incorporating the simulated expert opinions (summarized in Figure 3) with

clinical data on PR2: the mode, median, mean, I80%, I90% and I95% of the marginal prior,
(normalized) profile likelihood function, and marginal posterior of the parameter δ. Here, I80%,
I90% and I95% denote the interval [100α%-tile, 100(1 − α)%-tile] for α = 10%, 5% and 2.5%,

respectively. The prior parameters in the four full Bayesian approaches are
(q0, r0, q1, r1) = (14.66,4.88,46.81,4.68), (α0, β0, α1, β1) = (30.19,10.06,96.43,9.43),

(q0, q1, r) = (6,20,2) and (α0, α1, β) = (17.88, 59.60, 5.96), respectively

Mode Median Mean I80% I90% I95%

Bayesian approaches
Independent Prior 0.128 0.153 0.159 0.033 0.297 0.003 0.340 −0.023 0.379

Beta prior Likelihood 0.104 0.104 0.103 −0.007 0.214 −0.043 0.251 −0.062 0.269
Posterior 0.211 0.212 0.212 0.120 0.306 0.089 0.330 0.066 0.346

Hierarchical Prior 0.145 0.152 0.159 0.031 0.295 −0.001 0.337 −0.027 0.375
Beta prior Likelihood 0.104 0.104 0.103 −0.007 0.214 −0.043 0.251 −0.062 0.269

Posterior 0.214 0.212 0.212 0.122 0.302 0.094 0.329 0.078 0.348

Independent Prior 0.095 0.140 0.159 0.042 0.306 0.027 0.360 0.017 0.407
Bi-Beta prior Likelihood 0.104 0.104 0.103 −0.007 0.214 −0.043 0.251 −0.062 0.269

Posterior 0.202 0.203 0.201 0.112 0.288 0.084 0.315 0.061 0.339

Hierarchical Prior 0.120 0.146 0.159 0.056 0.281 0.039 0.326 0.028 0.366
Bi-Beta prior Likelihood 0.104 0.104 0.103 −0.007 0.214 −0.043 0.251 −0.062 0.269

Posterior 0.232 0.225 0.222 0.138 0.305 0.116 0.329 0.101 0.340

CD approaches
CD with Prior CD 0.075 0.125 0.159 0.025 0.275 −0.025 0.325 −0.025 0.375

histogram Likelihood 0.104 0.104 0.103 −0.007 0.214 −0.043 0.251 −0.062 0.269
prior Comb. CD 0.100 0.110 0.118 0.035 0.200 0.000 0.225 −0.005 0.250

CD with Prior CD 0.095 0.140 0.159 0.042 0.306 0.027 0.360 0.017 0.407
marginal Likelihood 0.104 0.104 0.103 −0.007 0.214 −0.043 0.251 −0.062 0.269
Bi-Beta prior Comb. CD 0.099 0.099 0.119 0.026 0.191 0.007 0.209 −0.011 0.246

horizontal axis. The projections of the three distributions along these parallel lines
onto the interval of possible values of δ, −1 < δ < 1, lead to the plots of marginal
distributions in Figures 4(a)–(d). The yellow curves in (a) are a posterior contour
plot from the exact formula. Although the contour plots of the posterior distribu-
tions sit between those of the prior distributions and the likelihood function, their
projected peaks (modes) are more to the upper-left than those of the marginal pri-
ors and the profile likelihood function. Further investigation indicates that this is a
genuine mathematical phenomenon which holds for all four Bayesian approaches
and not merely an aberration due to some special circumstances. In fact, when the
center (mode) of a posterior distribution is not in the interval joining the two cen-
ters (modes) of the joint prior and likelihood functions, as is often the case with
skewed distributions (and even sometimes with nonskewed distributions), there al-
ways exists a linear direction, say, ap0 + bp1 with some coefficients a and b, along



INCORPORATING EXTERNAL INFORMATION IN CLINICAL TRIALS 363

FIG. 5. Contour plots: joint prior distribution (in blue), joint likelihood function (in black) and es-
timated posterior distribution (in red) of (p0,p1). These two-dimensional distributions are projected
along the 45o lines of δ = p1 − p0 onto the interval of possible values of δ, −1 < δ < 1, leading to
Figures 4(a)–(d). The yellow curves in (a) are a posterior contour plot from the exact formula.

which the marginal posterior fails to fall between the marginal prior and likelihood
functions of the same parameter. Reparametrization, if done carefully, such as con-
sidering joint distribution of (δ, θ) = (p1 −p0,p1 +p0) or others, may sometimes
help hide the discrepant posterior phenomenon on the δ direction, but cannot elim-
inate it systematically. We have found no discussion of such a geometric finding
on marginalization in the Bayesian literature. See further discussion in Section 5.

5. Conclusions and additional remarks. To incorporate expert opinions in
the analysis of a clinical trial with binary outcomes in a meaningful way, we have
developed and studied several bivariate full Bayesian approaches as well as a CD
approach. We show that both the Bayesian and the proposed CD approaches may
provide viable solutions. Although the paper focuses on expert opinions in pharma-
ceutical studies, the methodologies developed here can be applied to incorporating
other types of priors or external information, for example, historical knowledge.
These methodologies should also be useful in many other fields, including finance,
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social science studies and even homeland security, where prior knowledge, expert
opinions and historical information are much valued and need to be incorporated
with observed data in an effective and justifiable manner.

In this paper we have examined and compared both Bayesian and CD ap-
proaches. Although there does not exist the usual theoretical platform for a di-
rect comparison on efficiency or lengths of intervals, the comparison can be sum-
marized in three aspects: empirical results, computational effort and theoretical
consideration. The empirical findings from Figure 2 show that, as long as the his-
togram of the expert opinions can be well approximated by a normal distribution,
all approaches considered in this paper perform comparably, in terms of the poste-
rior distribution or the combined CD and their corresponding inferences. However,
if the histogram is skewed, the full Bayesian approach may produce the discrepant
posterior phenomenon, which is difficult to avoid in theory and difficult to explain
in applications. The CD approach avoids such a phenomenon.

In terms of the computational effort, the bivariate full Bayesian approach is
demanding since it requires running a large-scale simulation using an MCMC al-
gorithm, while the proposed CD approach is both explicit and straightforward to
compute. In addition, the CD approach can directly incorporate the histogram of
expert opinions without an additional effort of curve fitting.

Theoretically, since it is not possible to find a “marginal” likelihood of δ [i.e.,
a conditional density function f (data|δ)], any univariate Bayesian approach fo-
cusing on the parameter of interest δ is not supported by Bayesian theory. A full
Bayesian solution is to jointly model (p0,p1) [or a reparameterization of the pair
(p0,p1)] and, subsequently, make inferences using the marginal posterior of δ.
The full Bayesian approaches developed in the paper follow exactly this procedure
and are theoretically sound. The proposed CD approach is developed strictly under
the frequentist paradigm and is also theoretically sound. Unlike the full Bayesian
approaches, the CD approach can focus directly on the parameter of interest δ with-
out the additional burden of modeling other parameters or the correlation between
p0 and p1, and thus appears to have some advantage in this application.

A surprising finding in this research is the discrepant posterior phenomenon oc-
curring in the full Bayesian approaches under skewed priors. Although it may be
mitigated if the prior is only slightly skewed or is in accordance with the likeli-
hood function, the phenomenon is intrinsically mathematical. How much skew-
ness is required to produce the phenomenon depends on all elements involved,
including shapes and locations of both the likelihood and the prior. The reactions
to this phenomenon we have encountered thus far fall roughly into two groups.
One group views the discrepant posterior as a mathematical truth and, if one has
faith in the choice of the prior, one should proceed to make inference using this
marginal posterior, even though the outcome is counterintuitive. The other worries
about the counterintuitive result and would try to find alternative approaches of a
good operating characteristic for the particular problem at hand, even at the cost of
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abandoning the mathematically solid full Bayesian approach in favor of less rigor-
ous approaches such as the univariate Bayesian approach described in Section 1.
In any case, the lesson learned from the Bayesian analysis here is that the choice
of the prior really matters and it needs to be in some agreement with the likelihood
function, which is similar in spirit to what was referred to as “model dependent”
in Berger (2006). We also consider this a manifestation of an inherent difficulty
in modeling accurately the joint effects of the two treatments as reflected in p0
and p1 and their correlation. This difficulty illustrates again the complexity of the
practice of incorporating external information in trials with binary outcomes.

The discrepant posterior phenomenon is caused by “marginalization,” but it is
different from the “marginalization paradox” discussed in Dawid, Stone and Zidek
(1973) and Berger (2006). In particular, the marginalization paradox in Dawid,
Stone and Zidek (1973) refers to the phenomenon that the marginal posterior of
π(θ |data) obtained from the joint prior π(θ,φ) and its full model f (data|θ,φ)

can sometimes be quite different (“incoherent”) from the posterior π(θ |data) ob-
tained by applying the Bayes formula directly to its marginal prior π(θ) and
marginal model f (data|θ), even though the marginal prior π(θ) and marginal
model f (data|θ) are consistent (“coherent”) with the joint prior π(θ,φ) and the
full model f (data|θ,φ). Here, φ represents nuisance parameters. This paradox is
different from what we observed here. In our example, it is not possible to have
the marginal model f (data|θ), and the discrepant posterior phenomenon in the
full Bayesian approach is that the estimate derived from the marginal posterior
π(θ |data) may not be between the estimates from the marginal prior π(θ) and the
profile likelihood function �(θ |data). This is counterintuitive in practical applica-
tions.

It is worth noting that the discussion and implications of the discrepant poste-
rior phenomenon extend beyond the setting of binary outcomes to any multivariate
setting involving skewed distributions. As long as the center (mode) of a poste-
rior distribution is not in the interval joining the centers (modes) of the joint prior
and the likelihood function, there always exists a direction along which the cen-
ter (mode) of the marginal posterior fails to fall between the centers (modes) of
marginal prior and the profile likelihood function. This phenomenon has implica-
tions in the general practice of Bayesian analysis. For instance, many researchers
in machine learning and other fields routinely draw conclusions solely based on
marginal posterior distributions without checking (or it is very difficult to check)
the validity of such conclusions. The discrepant posterior phenomenon suggests
that further care is needed.

Many methods have been introduced to model “reported” expert opinions, ac-
count for their potential errors and heterogeneity, and subsequently pool them;
see Genest and Zidek (1986) for an excellent review of this topic. In particular,
Spiegelhalter, Freedman and Parmar (1994) described “arithmetic and logarithm
pooling” as the “two simplest methods” for pooling expert opinions, and articu-
lated a “strong preference” “for arithmetic pooling to obtain an estimated opinion
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of a typical participating clinician.” The underlying assumption of arithmetic pool-
ing is that the average of the “observed” expert opinions is an unbiased representa-
tion of the “true” prior knowledge. This assumption naturally facilitates the addi-
tive error model used in Section 3.2 for summarizing “reported” expert opinions in
a CD. Clearly, the modeling principle and development we used to summarize the
expert opinions in a CD are similar in spirit to those discussed in Genest and Zidek
(1986) and Spiegelhalter, Freedman and Parmar (1994) for Bayesian approaches.

The modeling framework developed in Section 3.2 is sufficiently flexible and
can be modified to accommodate various ways of aggregating expert opinions.
In particular, it can incorporate weighting schemes to develop a robust method
against extreme expert opinions, introduce additional terms to reflect biased opin-
ions or additional uncertainties, or use the geometric mean as a way to pool the
expert opinions. Some of these extensions (e.g., the robust method) by themselves
could be attractive choices to produce priors in the context of traditional Bayesian
approaches. Due to space limitations, we will not pursue these extensions in this
paper.

In a different direction, we have also considered modeling the survey data of
expert opinions using a traditional random effects approach. In such a model, we
provide a regression model for the responses of the 100 “virtual patients” of each
expert (as described in Section 1.1) and add a random effect term to account for the
expert-to-expert variation. However, it seems nontrivial to overcome the technical
difficulty in making the modeling process free of the number (100) of “virtual
patients.” In fact, this difficulty led us to the bootstrap argument in Section 3.2,
in which we mimic a potential model of expert exposure to pre-existing experi-
ments. Clearly, there remain many challenging issues in modeling the survey data
of expert opinions, even for the seemingly simple binary setting.
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SUPPLEMENTARY MATERIAL

Appendix: MCMC algorithm and CD examples (DOI: 10.1214/
12-AOAS585SUPP; .pdf). Appendix I contains a Metropolis–Hastings algorithm
used in Section 2. Appendix II presents two CD examples that are relevant to the
exposition of this paper.

http://dx.doi.org/10.1214/12-AOAS585SUPP
http://dx.doi.org/10.1214/12-AOAS585SUPP
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