
The Annals of Applied Statistics
2013, Vol. 7, No. 1, 102–125
DOI: 10.1214/12-AOAS574
© Institute of Mathematical Statistics, 2013

VARYING COEFFICIENT MODEL FOR MODELING DIFFUSION
TENSORS ALONG WHITE MATTER TRACTS1

BY YING YUAN, HONGTU ZHU, MARTIN STYNER,
JOHN H. GILMORE AND J. S. MARRON

St. Jude Children’s Research Hospital, University of North Carolina at Chapel
Hill, University of North Carolina at Chapel Hill, University of North Carolina at

Chapel Hill and University of North Carolina at Chapel Hill

Diffusion tensor imaging provides important information on tissue struc-
ture and orientation of fiber tracts in brain white matter in vivo. It results
in diffusion tensors, which are 3 × 3 symmetric positive definite (SPD) ma-
trices, along fiber bundles. This paper develops a functional data analysis
framework to model diffusion tensors along fiber tracts as functional data in
a Riemannian manifold with a set of covariates of interest, such as age and
gender. We propose a statistical model with varying coefficient functions to
characterize the dynamic association between functional SPD matrix-valued
responses and covariates. We calculate weighted least squares estimators of
the varying coefficient functions for the log-Euclidean metric in the space
of SPD matrices. We also develop a global test statistic to test specific hy-
potheses about these coefficient functions and construct their simultaneous
confidence bands. Simulated data are further used to examine the finite sam-
ple performance of the estimated varying coefficient functions. We apply our
model to study potential gender differences and find a statistically significant
aspect of the development of diffusion tensors along the right internal capsule
tract in a clinical study of neurodevelopment.

1. Introduction. Diffusion Tensor Imaging (DTI), which measures the ef-
fective diffusion of water molecules, can provide important information on the
microstructure of fiber tracts and the major neural connections in white matter
[Basser, Mattiello and LeBihan (1994a, 1994b)]. It has been widely used to assess
the integrity of anatomical connectivity in white matter. In DTI, a 3 × 3 symmet-
ric positive definite (SPD) matrix, called a diffusion tensor (DT), and its three
eigenvalue-eigenvector pairs {(λk,vk) :k = 1,2,3} with λ1 ≥ λ2 ≥ λ3 are esti-
mated to quantify the degree of diffusivity and the directional dependence of water
diffusion in each voxel (volume pixel). Multiple fiber tracts in white matter can
be constructed by consecutively connecting the estimated principal directions (v1)
of the estimated DTs in adjacent voxels [Basser et al. (2000)]. Subsequently, some
tensor-derived scalar quantities, such as fractional anisotropy (FA) and mean diffu-
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sivity (MD), are commonly estimated along these white matter fiber tracts for each
subject. Specifically, MD = (λ1 + λ2 + λ3)/3 describes the amount of diffusion,
whereas FA describes the relative degree of anisotropy and is given by

FA =
√√√√3{(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2}

2(λ2
1 + λ2

2 + λ2
3)

.(1.1)

In the recent DTI literature, there is an extensive interest in developing fiber-
tract based analysis for comparing DTIs in population studies [Goldsmith et al.
(2011), Goodlett et al. (2009), O’Donnell, Westin and Golby (2009), Smith et al.
(2006), Yushkevich et al. (2008), Zhu et al. (2010, 2011)]. The reason is that the
region-of-interest (ROI) method primarily computes averages of diffusion proper-
ties in some manually drawn ROIs, generates various summary statistics per ROI,
and then carries out statistical analysis on these summary statistics. This method
suffers from identifying meaningful ROIs, particularly the long curved structures
common in fiber tracts, the instability of statistical results obtained from ROI anal-
ysis, and the partial volume effect in relative large ROIs [Zhu et al. (2011)]. The
fiber-tract based analysis usually consists of two major components, including DTI
atlas building and a follow-up statistical analysis [Goodlett et al. (2009), Smith
et al. (2006), Zhu et al. (2010)]. The DTI atlas building is primarily to extract DTI
fibers and to establish DTI fiber correspondence across all DTI data sets from dif-
ferent subjects. The key steps of the DTI atlas building include DTI registration,
atlas fiber tractography and fiber parametrization. Finally, we get a set of individual
tracts with the same corresponding geometry but varying DTs and diffusion prop-
erties. Some statistical approaches have been developed for the analysis of scalar
tensor-derived quantities along fiber tracts [Goldsmith et al. (2011), Goodlett et al.
(2009), Smith et al. (2006), Yushkevich et al. (2008), Zhu, Li and Kong (2010),
Zhu et al. (2010, 2011)], but little has been done on the analysis of whole DTs
along fiber tracts, which is the focus of this paper.

There is a growing interest in the DTI literature in developing statistical methods
for the direct analysis of DTs in the space of SPD matrices [Dryden, Koloydenko
and Zhou (2009)]. Schwartzman, Mascarenhas and Taylor (2008) proposed para-
metric models for analyzing SPD matrices and derived the distributions of several
test statistics for comparing differences between the means of the two (or multi-
ple) groups of SPD matrices. Kim and Richards (2011) developed a nonparametric
estimator of the density function of a random sample of SPD matrices. Zhu et al.
(2009) developed a semiparametric regression model with SPD matrices as re-
sponses and covariates in a Euclidean space. Barmpoutis et al. (2007) and Davis
et al. (2010) developed nonparametric methods, including tensor spline methods
and local constant regression, to interpolate diffusion tensor fields. However, no
one has ever developed statistical methods for functional analysis of DTs along
fiber tracts.

In this paper, we propose a varying coefficient model for DT-valued functions
(VCDF). We use varying coefficient functions to characterize the varying asso-
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ciation between diffusion tensors along fiber tracts and a set of covariates. Here,
the varying coefficients are the parameters in the model which vary with loca-
tion. Since the impacts of the covariates of interest may vary spatially, it would
be more sensible to treat the covariates as functions of location instead of con-
stants, which leads to varying coefficients. In addition, we explicitly model the
within-subject correlation among multiple DTs measured along a fiber tract for
each subject. To account for the curved nature of the SPD space, we employ the
log-Euclidean framework in Arsigny (2006) and then use a weighted least squares
estimation method to estimate the varying coefficient functions. We also develop a
global test statistic to test hypotheses on the varying coefficient functions and use
a resampling method to approximate the p-value. Finally, we construct a simul-
taneous confidence band to quantify the uncertainty of each estimated coefficient
function and propose a resampling method to approximate its critical points. To the
best of our knowledge, this is the first paper for developing a statistical framework
for modeling functional manifold-valued responses with covariates in Euclidean
space.

There are several advantages of the analysis of DTs over the analysis of scalar
diffusion properties along fiber tracts. The first one is that it can avoid the sta-
tistical artifacts, including biased parameter estimates and incorrect test statistics
and p-values for hypotheses of interest, created by comparing the biased diffusion
properties along fiber bundles. This is because the real DT data estimated from
the diffusion weighted images (DWIs) using weighted least squared methods are
almost unbiased [Zhu et al. (2007b)], whereas the diffusion properties, which are
nonlinear and linear functions of three eigenvalues of DT data, may be substan-
tially different from the true diffusion properties [Anderson (2001), Pierpaoli and
Basser (1996), Zhu et al. (2007b)]. In addition, as shown in Yuan et al. (2012),
directly modeling DTs along fiber bundles as a smooth SPD process allows us to
incorporate a smoothness constraint to further reduce noise in the estimated DTs
along the fiber bundles. This leads to the further reduction of noise in estimated
scalar diffusion properties along the fiber bundles and less biased estimators of
diffusion properties as shown in Figure 4 in Section 3. Moreover, the sole use of
diffusion properties, which ignores the directional information of DT, can decrease
the statistical power in detecting the difference in DTs oriented in different direc-
tions.

The rest of the paper is organized as follows. Section 2 presents VCDF and
related statistical inference. Section 3 examines the finite sample performance of
VCDF via a simulation study. Section 4 illustrates an application of VCDF in a
clinical study of neurodevelopment. Section 5 presents concluding remarks.

2. Data and methods.

2.1. Early brain development study of white matter tracts. We consider 96
healthy infants (36 males and 60 females) from the neonatal project on early brain
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development led by Dr. Gilmore at the University of North Carolina at Chapel Hill.
The mean gestational age of these infants is 245.6 days with SD: 18.5 days (range:
192–270 days). A 3T Allegra head only MR system was used to acquire all the
images. The system was equipped with a maximal gradient strength of 40 mT/m
and a maximal slew rate of 400 mT/(m · msec). The DTIs were obtained by us-
ing a single shot EPI DTI sequence (TR/TE = 5400/73 msec) with eddy current
compensation. The six noncollinear directions at the b-value of 1000 s/mm2 with
a reference scan (b = 0) were applied. The voxel resolution was isotropic 2 mm,
and the in-plane field of view was set to 256 mm in both directions. To improve
the signal-to-noise ratio of the DTIs, a total of five repetitions were acquired and
averaged.

We processed the DTI data set as follows. We used a weighted least squares es-
timation method [Basser, Mattiello and LeBihan (1994a), Yuan et al. (2008), Zhu
et al. (2007b)] to construct the diffusion tensors. We used a DTI atlas building
pipeline [Goodlett et al. (2009), Zhu et al. (2010)] to register DTIs from multiple
subjects to create a study-specific unbiased DTI atlas, to track fiber tracts in the
atlas space, and to propagate them back into each subject’s native space by us-
ing registration information. Then, we calculated DTs and their scalar diffusion
properties at each location along each individual fiber tract by using DTs in neigh-
boring voxels close to the fiber tract. Since the description of the DTI atlas building
has been described in detail [Goodlett et al. (2009), Zhu et al. (2010)], we do not
include these image processing steps here for the sake of simplicity. Figure 1(a)
displays the fiber bundle of the right internal capsule fiber tract (RICFT), which
is an area of white matter in the brain. The internal capsule, which lies between
the lenticular and caudate nuclei, consists of a group of myelinated fiber tracts in-
cluding axons of pyramidal and extrapyramidal upper motor neurons that connect
the cortex to the cell bodies of lower motor neurons. Although the internal capsule
ends within the cerebrum, the axons that pass through it continue down through

FIG. 1. (a) The fiber bundle of the right internal capsule fiber tracts in the atlas space. (b) The
ellipsoidal representations of full tensors along a representative right internal capsule fiber tract ob-
tained from each of 10 selected subjects, colored with fractional anisotropy (FA) values. The rainbow
color scheme is used with red corresponding to low FA value and purple corresponding to high FA
value.
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brain stem and spinal cord. It was found that neonatal microstructural develop-
ment of the internal capsule tract correlates with severity of gait and motor deficits
[Rose et al. (2007)]. Figure 1(b) presents DTs along a representative RICFT ob-
tained from each of 10 subjects, in which each DT is geometrically represented by
an ellipsoid. In this ellipsoidal representation, the lengths of the semiaxes of the
ellipsoid equal the square root of the three eigenvalues of a DT, while the three
eigenvectors define the direction of the three axes.

Our final data set includes DTs and diffusion properties sampled along the
RICFT and a set of covariates of interest from all n = 96 subjects. Specifically,
let Sym+(3) be the set of 3 × 3 SPD matrices and xj ∈ [0,L0] be the arc length of
the j th point on the RICFT relative to a fixed end point for j = 1, . . . , nG, where
L0 is the longest arc length and nG is the number of points on the RICFT. For
the ith subject, there is a diffusion tensor at the j th point on the RICFT, denoted
by Si(xj ) ∈ Sym+(3), for i = 1, . . . , n. Let zi be an r × 1 vector of covariates of
interest. In this study, we have two specific aims. The first one is to compare DTs
along the RICFT between the male and female groups. The second one is to de-
lineate the development of fiber DTs across time, which is addressed by including
the gestational age at MRI scanning as a covariate. Finally, our real data set can be
represented as {(zi; (x1, Si(x1)), . . . , (xnG

, Si(xnG
))) : i = 1, . . . , n}.

2.2. Varying coefficient model for SPD matrix-valued functional data. In this
section we present our VCDF. The code for VCDF written in Matlab along with
its documentation and a sample data set will be freely accessible from http://www.
bios.unc.edu/research/bias/software.html. To make the code easily accessible, we
developed a Graphical User Interface (GUI), also freely downloadable from the
same website.

To proceed, we need to introduce some notation. Let Sym(3) be the set of 3 ×
3 symmetric matrices with real entries. For any A = (akl) ∈ Sym(3), we define
vecs(A) = (a11, a21, a22, a31, a32, a33)

T to be a 6 × 1 vector and

vec(A) = (a11, a12, a13, a21, a22, a23, a31, a32, a33)
T

to be a 9 × 1 vector. Let Ivecs(·) be the inverse operator of vecs(·) such that
Ivecs(vecs(A)) = A for any A ∈ Sym(3). The matrix exponential of A ∈ Sym(3) is
given by exp(A) = ∑∞

m=0 Am/m! ∈ Sym+(3). For any 3 × 3 SPD matrix S, there
is a logarithmic map of S, denoted as log(S) = A ∈ Sym(3), such that exp(A) = S.
Let a⊗2 = aaT for any vector or matrix a.

Since the space of SPD matrices is a curved space, we use the log-Euclidean
metric [Arsigny (2006)] to account for the curved nature of the SPD space. Specifi-
cally, we take the logarithmic map of the DTs Si(x) ∈ Sym+(3) to get log(Si(x)) ∈
Sym(3), which has the same effective dimensionality as a six-dimensional Eu-
clidean space. Thus, we only model the lower triangular portion of log(Si(x)) as
follows:

vecs
(
log

(
Si(x)

)) = B(x)zi + ui(x) + εi (x),(2.1)

http://www.bios.unc.edu/research/bias/software.html
http://www.bios.unc.edu/research/bias/software.html
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where B(x) is a 6 × r matrix of varying coefficient functions for characterizing
the dynamic associations between Si(x) and zi , ui(x) is a 6 × 1 vector char-
acterizing the within-subject correlation between the log-transformed DTs, and
εi (x) is a 6 × 1 vector of measurement errors. It is also assumed that εi (x)

and ui(x) are independent and identical copies of SP(0,�ε) and SP(0,�u), re-
spectively, where SP(0,�) denotes a stochastic process with mean 0 and co-
variance matrix function �(x, x′) for any x, x′ ∈ [0,L0]. Let 1(·) be an indi-
cator function. Assume that εi (x) and εi (x

′) for x �= x′ are independent and,
thus, �ε(x, x′) = �ε(x, x)1(x = x′). It follows that the covariance structure of
vecs(log(Si(xj ))), denoted by �S(x, x′), is given by

�S

(
x, x′) = �u

(
x, x′) + �ε(x, x)1

(
x = x′).(2.2)

Model (2.1) is a multivariate varying coefficient model with a 6×1 vector response
and, thus, it can be regarded as a generalization of univariate varying coefficient
models, which have been widely studied and developed for longitudinal, time se-
ries and functional data [Fan, Yao and Cai (2003), Fan and Zhang (1999, 2008)
Wang, Li and Huang (2008), Wu and Chiang (2000)].

2.3. Weighted least squares estimation. Before estimating the varying coeffi-
cient functions in B(x), we need to introduce a few facts about the log-Euclidean
metric for the space of SPDs [Arsigny (2006)]. The use of the log-Euclidean met-
ric results in classical Euclidean computations in the domain of matrix logarithms.
Particularly, under the log-Euclidean metric, the geodesic distance between S1 and
S2 in Sym+(3) is uniquely given by

d(S1, S2) =
√

tr
[{

log(S1) − log(S2)
}⊗2]

,(2.3)

which equals the Euclidean distance between log(S1) and log(S2) in Euclidean
space Sym(3). However, there is a subtle, but important, difference between re-
garding S(x) as a single point in Sym+(3) and treating log(S(x)) as a vector in
Euclidean space. By regarding S(x) as a point in Sym+(3), we treat all elements
of S(x) as a single unit and use a single bandwidth to smooth DTs. In contrast, by
treating log(S(x)) as a vector in Euclidean space, traditional smoothing methods
smooth each element of log(S(x)) independently [Fan and Gijbels (1996), Wand
and Jones (1995), Wu and Zhang (2006)].

We use the local linear regression method and the weighted least squares esti-
mation to estimate B(x) [Fan and Gijbels (1996), Ramsay and Silverman (2005),
Wand and Jones (1995), Welsh and Yee (2006), Wu and Zhang (2006), Zhang and
Chen (2007)]. Since the local linear regression method adapts automatically at the
boundary points [Fan and Gijbels (1992)], it is ideal for dealing with DTs and
scalar diffusion properties along fiber tracts with two ends (see Figure 1). Let h(1)

be a given bandwidth, Ḃ(x) = dB(x)/dx be a 6 × r matrix, and Ir be the r × r

identity matrix. Using Taylor’s expansion, we can expand B(xj ) at x to obtain

B(xj ) ≈ B(x) + Ḃ(x)(xj − x) = Bh(1) (x)
{
Ir ⊗ yh(1) (xj − x)

}
,(2.4)
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where yh(xj − x) = (1, (xj − x)/h)T and Bh(1) (x) = [B(x),h(1)Ḃ(x)] is a 6 × 2r

matrix. Based on (2.1) and (2.4), B(xj )zi can be approximated by Bh(1) (x){Ir ⊗
yh(1) (xj − x)}zi . For a fixed bandwidth h(1), we can calculate a weighted least
squares estimate of Bh(1) (x), denoted by B̂h(1) (x) = [B̂(x;h(1)), h(1)Ḃ(x;h(1))],
by minimizing an objective function given by

n∑
i=1

nG∑
j=1

Kh(1) (xj − x)

(2.5)
× d

(
log

(
Si(xj )

)
, Ivecs

(
Bh(1) (x)

{
Ir ⊗ yh(1) (xj − x)

}
zi

))2
,

where Kh(1) (·) = K(·/h(1))/h(1) is rescaling of the kernel function K(·), such as
the Gaussian or uniform kernel [Fan and Gijbels (1996), Wand and Jones (1995)].
The explicit form of B̂(x;h(1)) can be found in Appendix C.

We pool the data from all n subjects and develop a cross-validation method
to select an estimated bandwidth h(1), denoted by ĥ

(1)
e . Let B̂(x;h(1))(−i) be the

weighted least squares estimator of B(x) for the bandwidth h(1) based on the obser-
vations with the ith subject excluded. We define a cross-validation score, denoted
by CV1(h

(1)), as follows:

CV1
(
h(1)) = (nnG)−1

n∑
i=1

nG∑
j=1

d
(
log

(
Si(xj )

)
, Ivecs

(
B̂

(
x;h(1))(−i)zi

))2
.(2.6)

We select ĥ
(1)
e by minimizing CV1(h

(1)). In practice, within a given range of h(1),
the value of ĥ

(1)
e can be approximated by computing CV1(h

(1)) through a series
of h(1). Finally, we can calculate a weighted least squares estimate of B(x), de-
noted by B̂e(x) = B̂(x; ĥ(1)

e ).

2.4. Smoothing individual functions and estimating covariance matrices. To
simultaneously construct the individual function ui (x), we also employ the local
linear regression method. Let u̇i (x) = dui (x)/dx. Taylor’s expansion of ui (xj )

at x gives

ui(xj ) ≈ ui(x) + u̇i(x)(xj − x) = Ui(x)yh(2) (xj − x),(2.7)

where Ui(x) = [ui(x), h(2)u̇i(x)] is a 6×2 matrix. For each fixed x and each band-
width h(2), the weighted least square estimator of Ui(x), denoted by Ûi(x;h(2)) =
[ui(x;h(2)), h(2)u̇i(x;h(2))], can be calculated by minimizing an objective func-
tion given by

nG∑
j=1

Kh(2) (xj − x)d
(
log

(
Si(xj )

)
, Ivecs

(
B̂e(xj )zi + Ui(x)yh(2) (xj − x)

))2
.

Let Ri be an nG × 6 matrix with the j th row vecs(log(Si(xj ))) − B̂e(xj )zi and
S be an nG × nG smoothing matrix with the (i, j)th element K̃0

h(2) (xj − xi, xi),
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where K̃0
h(2) (·, ·) is the empirical equivalent kernel [Fan and Gijbels (1996)]. It can

be shown that
(
ûi(x1), . . . , ûi(xnG

)
)T = SRi.(2.8)

We pool the data from all n subjects and select an estimated bandwidth of
h(2), denoted as ĥ

(2)
e . We define a generalized cross-validation score, denoted by

GCV(h(2)), as follows:

GCV
(
h(2)) = n−1

∑n
i=1 tr{(Ri − SRi)

⊗2}
{1 − n−1 tr(S)}2 .(2.9)

We select ĥ
(2)
e by minimizing GCV(h(2)). Like the bandwidth selection in Sec-

tion 2.3, the value of ĥ
(2)
e can be approximated by computing GCV(h(2)) through

a series of h(2). Finally, by substituting ĥ
(2)
e into (2.8), we can calculate a weighted

least squares estimate of ui(x), denoted by ûi,e(x).

After obtaining ûi,e(x), we can estimate the mean function u(x) and the covari-
ance function �u(x, x′). Specifically, we estimate u(x) and �u(x, x′) by using
their empirical counterparts based on the estimated ûi,e(x) as follows:

ûe(x) = n−1
n∑

i=1

ûi,e(x) and �̂u
(
x, x′) = (n − 6)−1

n∑
i=1

ûi,e(x)ûi,e

(
x′)T .

We construct a nonparametric estimator of the covariance matrix �ε(x, x) as
follows. Let ε̂i (xj ) = vecs(log(Si(xj ))) − B̂e(xj )zi − ûi,e(xj ) be the estimated
residuals for i = 1, . . . , n and j = 1, . . . , nG. We consider the kernel estimate of
�ε(x, x) given by

�̂ε
(
x, x;h(3)) = (n − 6)−1

n∑
i=1

nG∑
j=1

Kh(3) (xj − x)ε̂i (xj )
⊗2

∑nG

j=1 Kh(3) (xj − x)
.(2.10)

We pool the data from all n subjects and select an estimated bandwidth of h(3),

denoted as ĥ
(3)
e . Let �̃ε(xj , xj ) = (n − 6)−1 ∑n

i=1 ε̂i(xj )ε̂i(xj )
T be an estimate

of �ε(xj , xj ) and �̂ε(x, x;h(3))(−i) be the leave-one-out weighted least squares
estimator of �̂ε(x, x). We define a cross-validation score, denoted by CV2(h

(3)),
as follows:

(nnG)−1
n∑

i=1

nG∑
j=1

tr
{[

ε̂i (xj )
⊗2 − �̂ε

(
xj , xj ;h(3))(−i)]⊗2

�̃ε(xj , xj )
−1}

.

We select h(3) by minimizing CV2(h
(3)). In practice, within a given range of h(3),

the value of ĥ
(3)
e can be approximated by computing CV2(h

(3)) through a series
of h(3). Finally, by substituting ĥ

(3)
e into (2.10), we can calculate a weighted least

squares estimate of �ε(x, x), denoted by �̂ε,e(x, x).
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2.5. Asymptotic properties. We will use the following theorems to make sta-
tistical inference on varying coefficient functions. The detailed assumptions of
these theorems can be found in Appendix A and their proofs are similar to those
in Zhu, Li and Kong (2010). Thus, we omit them for the sake of space. We need
some notation. Let B̈(x) = d2B(x)/dx2 and G(0,�) be a Gaussian process with
zero mean and covariance matrix function �(x, x′) for any x, x′ ∈ [0,L0].

THEOREM 1. If the assumptions (C1)–(C6) in the Appendix A hold, then
√

n
{
vec

(
B̂

(
x;h(1))−B(x)−0.5u2B̈(x)h(1)2[

1+op(1)
])

:x ∈ [0,L0]} ⇒ XB(x),

where ⇒ denote weak convergence of a sequence of stochastic processes, XB(·)
follows a Gaussian process G(0,�u ⊗ �−1

z ), and �z is the limit of n−1 ∑n
i=1 z⊗2

i

as n → ∞.

Theorem 1 establishes weak convergence of B̂(x;h(1)) as a stochastic process
indexed by x ∈ [0,L0] and forms the foundation for constructing a global test
statistic and simultaneous confidence bands for {B(x) :x ∈ [0,L0]}.

THEOREM 2. If the assumptions (C1)–(C7) in the Appendix A hold, then

sup
(x,x′)∈[0,L0]2

∣∣�̂u
(
x, x′;h(3)) − �u

(
x, x′)∣∣ = op(1).

Theorem 2 shows the uniform convergence of �̂u(x, x′;h(3)). This is useful for
constructing global and local test statistics for testing the covariate effects.

2.6. Hypothesis tests. In neuroimaging studies, many scientific questions of
interest require the comparison of fiber bundle diffusion tensors along fiber bundles
across two (or more) diagnostic groups and the assessment of the development of
fiber bundle diffusion tensors along time. Such questions can often be formulated
as linear hypotheses of B(x) as follows:

H0 :C vec
(
B(x)

) = b0(x) for all x vs. H1 :C vec
(
B(x)

) �= b0(x),(2.11)

where C is a c × 6r matrix of full row rank and b0(x) is a given c × 1 vector of
functions.

We propose both local and global test statistics. The local test statistic can
identify the exact location of a significant location on a specific tract. At a given
point xj on a specific tract, we test the local null hypothesis

H0(xj ) :C vec
(
B(xj )

) = b0(xj ) v.s. H1(xj ) :C vec
(
B(xj )

) �= b0(xj ).

We use a local test statistic Tn(xj ) defined by

Tn(xj ) = nd(xj )
T {

C
(
�̂u(xj , xj ) ⊗ �̂−1

z
)
CT }−1 d(xj ),(2.12)
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where �̂z = n−1 ∑n
i=1 z⊗2

i and d(x) = C vec(B̂e(x) − bias(B̂e(x))) − b0(x). Fol-
lowing Fan and Zhang (2000), a smaller bandwidth leads to a smaller value of
bias(B̂e(x)). Moreover, according to our simulation studies below, we have found
that the effect of dropping bias(B̂e(x)) is negligible and, therefore, we drop it from
now on.

To test the null hypothesis H0 :C vecs(B(x)) = b0(x) for all x, we propose a
global test statistic Tn defined by

Tn =
∫ L0

0
Tn(x) dx.(2.13)

Let GC(·) be a Gaussian process with zero mean and covariance matrix function
�C(x, x′), which is the limit of

{
C

(
�̂u(x, x) ⊗ �̂−1

z
)
CT }−1/2{

C
(
�̂u

(
x, x′) ⊗ �̂−1

z
)
CT }

× {
C

(
�̂u

(
x′, x′) ⊗ �̂−1

z
)
CT }−1/2

.

It follows from Theorem 1 that
√

n{C(�̂u(x, x) ⊗ �̂−1
z )CT }−1/2 d(x) converges

weakly to GC(x). Therefore, it follows from the continuous mapping theorem that
as both n and nG converge to infinity, we have

Tn ⇒
∫ L0

0
GC(x)T GC(x) dx.(2.14)

Based on the result (2.14), we develop a wild bootstrap method to approximate
the p-value of Tn. The detailed steps of the wild bootstrap method are given in
Appendix B.

2.7. Confidence band. Based on model (2.16), we construct a confidence band
for S(B(x), z) = exp(Ivecs(B(x)z)) ∈ Sym+(3) over x ∈ [0,L0] for a fixed z.
Specifically, at a given significance level α, we construct a simultaneous confi-
dence region in the space of SPD matrices for each z based on the critical value
Cz(α) such that

P
(
d
(
S
(
B(x), z

)
, S

(
B̂(x), z

)) ≤ Cz(α) for all x ∈ [0,L0]) = 1 − α.(2.15)

Note that d(S(B(x), z), S(B̂(x), z)) =
√

tr([Ivecs({B̂e(x) − B(x)}z)]⊗2). By us-
ing Theorem 1, we have that as n → ∞,

√
nd

(
S
(
B(x), z

)
, S

(
B̂(x), z

)) ⇒
√

tr
[{

Ivecs
(
XB(x)z

)}⊗2]
.

We develop an efficient resampling method [Kosorok (2003), Zhu et al. (2007a)]
to approximately draw random samples from {XB(x) :x ∈ [0,L0]}, denoted by
{XB(x)(g) :x ∈ [0,L0]} for g = 1, . . . ,G. The detailed steps of such a resam-
pling method can be found in Appendix C. Subsequently, we can calculate
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√
tr[{Ivecs(XB(x)(g)z)}⊗2] for all g and use them to approximate Cz(α) for any

given α.
Moreover, for B(x) = (βkl(x)), we can construct confidence bands for its in-

dividual varying coefficient function βkl(x) for all (k, l), k = 1, . . . ,6 and l =
1, . . . , r . Specifically, at a given significance level α, we construct a confidence
band for each βkl(x) such that

P
(
β̂

L,α
kl (x) < βkl(x) < β̂

U,α
kl (x) for all x ∈ [0,L0]) = 1 − α,(2.16)

where β̂
L,α
kl (x) and β̂

U,α
kl (x) are the lower and upper limits of the confidence band.

Let ekl be a 6r × 1 vector with the (l − 1)r + kth element equal to 1 and all others
equal to 0. It follows from Theorem 1 and the continuous mapping theorem that

sup
x∈[0,L0]

∣∣√n
{
β̂kl,e(x) − βkl(x)

}∣∣ ⇒ sup
x∈[0,L0]

∣∣eT
klXB(x)

∣∣.

We define the critical point Ckl(α) to satisfy P(supx∈[0,L0] |eT
klXB(x)| ≤ Ckl(α)) =

1 − α. Thus, a 1 − α simultaneous confidence band for βkl(x) is given by(
β̂kl,e(x) − Ckl(α)√

n
, β̂kl,e(x) + Ckl(α)√

n

)
.(2.17)

Similar to Cz(α), the critical point Ckl(α) can be approximated as the 1 − α em-
pirical percentile of supx∈[0,L0] |eT

klXB(x)(g)| for all g = 1, . . . ,G.

3. Simulation study. We conducted a Monte Carlo simulation study to exam-
ine the finite sample performance of VCDF. At each point xj along the RICFT, the
noisy diffusion tensors are simulated according to the following model:

Si(xj ) = exp
(
Ivecs

(
B(xj )zi + τi ûi (xj ) + τi(xj )ε̂i (xj )

))
,(3.1)

where τi and τi(xj ) were independently generated from a N(0,1) random gen-
erator for i = 1, . . . , n and j = 1, . . . , nG. Specifically, we set n = 96, nG = 112
and zi = (1,Gi ,Gagei ) for i = 1, . . . ,96, where Gi and Gagei , respectively, de-
note gender and gestational age. To mimic real imaging data, we applied our pro-
posed VCDF method to DTs along the RICFT from all 96 infants in our clin-
ical data to estimate B(x) by B̂e(x), ui (x) by ûi,e(x) via (2.8), and εi (x) by
ε̂i (x) = vecs(log(Si(x)) − B̂e(x)zi − ûi,e(x)). The curves of the varying coeffi-
cient functions of B̂e(x) are presented in Figure 5. According to our real data
analysis in Section 4, the gestational age effect is significant for our clinical data.
So we fixed all functions in B(x) at their corresponding functions in B̂e(x) ex-
cept that the third column of B(x), denoted by (β13(x), . . . , β63(x))T , was set as c

times the third column of B̂e(x) where c is set at different values in order to study
the Types I and II error rates of our global test statistic in testing the gestational
age effect. Figure 2(a) displays the simulated diffusion tensors along the RICFT at
c = 1.
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FIG. 2. Ellipsoidal representations of the true (a), simulated (b) and estimated (c) (based on three
covariates) and (d) (based on two covariates) diffusion tensors along the RICFT, colored with their
FA values. The rainbow color scheme is used with red corresponding to low FA value and purple
corresponding to high FA value. Each set of 3 rows in (a)–(d) represents one tract of 112 DTs and
the three rows are read from left to right in the top row, right to left in the middle row and then left to
right in the bottom row. (e) Mean geodesic distances between the estimated and true diffusion tensors
(green solid line based on three covariates and blue dash-dotted line based on two covariates) along
the RICFT.

We have five aims in this simulation study. The first aim is to investigate the con-
sequence of missing an important covariate. According to our real data analysis in
Section 4, the Gage effect is significant, whereas the gender effect is not signif-
icant. We fitted two VCDF models, including three-covariate (intercept, gender
and gestational age) and two-covariate (intercept and gender) models to smooth
the DTs along the RICFT, and compare their performance in reconstructing the
true DTs along the RICFT. Note that the two-covariate model does not include
Gagei as a covariate. Figure 2 presents the estimated diffusion tensors using the
three-covariate model [Figure 2(c)] and the two-covariate model [Figure 2(d)]. In-
specting Figure 2(e) reveals that the three-covariate model leads a smaller mean
geodesic distance between the true and estimated DTs compared with the two-
covariate model. Thus, the three-covariate model outperforms the two-covariate
one in recovering the true DTs along the RICFT.

The second aim is to investigate the finite sample performance of the global
test statistic Tn based on the whole DT. In neuroimaging studies, some scientific
questions require the assessment of the development of diffusion tensors along
fiber tracts across time. We formulated the questions as testing the null hypothesis
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FIG. 3. Simulation study: Types I and II error rates as functions of c. Rejection rates of Tn based
on the wild bootstrap method are calculated at six different values of the effect size c for sample size
96 at the (a) 0.05 and (b) 0.01 significance levels using DTs, FA values, MD values, and joint values
of FA and MD.

H0 :β13(x) = · · · = β63(x) = 0 for all x along the RICFT. We first fixed c = 0 to
assess the Type I error rates for Tn, and then we set c = 0.2,0.4,0.6, 0.8 and 1.0
to examine the Type II error rates for Tn at different effect sizes.

We applied the estimation procedure of VCDF to the noisy DTs along the
RICFT. We approximated the p-value of Tn by using the wild bootstrap method
with G = 1000 described in Appendix B. For each c, we set the significance level α

at both 0.05 and 0.01 and used 3000 replications to estimate the rejection rate
of Tn. At a fixed α, if the Type I rejection rate is smaller than α, then the test is
conservative, whereas if the Type I rejection rate is greater than α, then the test is
anticonservative, or liberal. Figure 3 presents the rejection rates of Tn across all
effect sizes at the two significance levels (α = 0.05 or 0.01) by using full diffusion
tensors. It is observed that Type I error rates are well maintained at the two sig-
nificance levels. In addition, the statistical power for rejecting the null hypothesis
increases with the effect size and the significance level, which is consistent with
our expectation.

The third aim is to demonstrate the power gain in using DTs compared with
the sole use of diffusion properties. For each simulated diffusion tensor at c =
0.2,0.4,0.6,0.8 and 1.0, we calculated its three eigenvalues λ1, λ2 and λ3 and
two well-known scalar diffusion properties MD and FA. To compare the power of
our method based on DTs with other methods based on scalar diffusion properties,
we applied an existing method for the analysis of diffusion properties in Zhu et al.
(2011) to three different scenarios: (i) FA, (ii) MD and (iii) (FA, MD). Then we
tested the gestational age effect in each scenario. Inspecting Figure 3 reveals that
the statistical power for rejecting the null hypothesis increases with the effect size
and the significance level in all scenarios. Moreover, compared with the sole use
of diffusion properties, the use of DT dramatically increases the statistical power
for rejecting the null hypothesis.

The fourth aim is to demonstrate the accuracy gain in estimating scalar diffu-
sion properties along fiber tracts by directly modeling the DTs using VCDF. We
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FIG. 4. Plot of the MAB’s of the estimated FA’s (a) and MD’s (b) using two methods A and B based
on 3000 replications. The method A, which uses VCDF by directly modeling DT’s, outperforms the
method B in terms of smaller biases in estimating FA and MD values.

compared two different methods for estimating FA’s and MD’s, here referred to
as method A and method B, respectively. The method A first applies VCDF to
estimate DT’s and then calculates the FA or MD curve based on the estimated
DT’s. The method B first calculates the FA’s or MD’s from all SPD matrices and
then uses varying coefficient methods in Euclidean space to estimate the FA’s or
MD’s. We examined the finite sample performance of methods A and B by using
the Mean Absolute Biases (MAB) across all 112 locations, which is defined by

MABY,j = 96−1
96∑
i=1

∣∣∣∣∣3000−1
3000∑
s=1

Ŷsij − Yij

∣∣∣∣∣,(3.2)

where Ŷsij is the estimator of Yij , which can be the estimated FA or MD value at
the j th location for the ith subject and the sth simulation. Figure 4 reveals that
method A has the smaller biases in estimating FA and MD values and the biases
are negligible compared with those obtained using method B. This indicates the
potential large improvement gained by directly modeling DT data over method B.

The fifth aim is to examine the coverage probabilities of the simultaneous con-
fidence bands for all varying coefficient functions βkl(x) in B(x) and S(B(x), z).
We only considered the generated diffusion tensor data at c = 1. We constructed
the 95% and 99% simultaneous confidence bands for all βkl(x). Following Fan and
Zhang (2000), we used a smaller bandwidth with a shrinkage factor 6 to improve
the accuracy of the confidence bands.

Table 1 summarizes the empirical coverage probabilities based on 3000 repli-
cations for α = 0.01 and 0.05. The coverage probabilities are quite close to the
prespecified confidence levels. Figure 5 presents typical critical values of 95%
simultaneous confidence regions for vectors of coefficient functions βk·(x) =
(βk1, . . . , βkr)

T , k = 1, . . . ,6. Figure 6 summarizes the empirical coverage proba-
bilities for S(B(x), z) based on 3000 replications at α = 0.01 and 0.05. The cov-
erage probabilities are quite close to the expected confidence levels.
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TABLE 1
Simulated coverage probabilities for varying coefficient functions in B(x) = (βkl(x)) based on 3000

replications at the significance levels α = 0.01 and 0.05

α = 0.05 α = 0.01

Intercept Gender Gage Intercept Gender Gage
l = 1 l = 2 l = 3 l = 1 l = 2 l = 3

β1l (x) 0.9497 0.9420 0.9387 0.9867 0.9837 0.9810
β2l (x) 0.9440 0.9443 0.9383 0.9843 0.9907 0.9857
β3l (x) 0.9457 0.9383 0.9400 0.9870 0.9833 0.9807
β4l (x) 0.9480 0.9457 0.9400 0.9880 0.9870 0.9850
β5l (x) 0.9437 0.9350 0.9350 0.9870 0.9873 0.9823
β6l (x) 0.9473 0.9400 0.9403 0.9860 0.9827 0.9797

FIG. 5. Typical 95% simultaneous confidence bands for varying coefficient functions βkl(x). The
solid, dotted and dash-dotted curves are, respectively, the true curves, the estimated varying coeffi-
cient functions and their 95% confidence bands.
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FIG. 6. Simulated coverage probabilities for D(z, β(x)) based on 3000 simulations for α = 0.05
(solid lines with diamond markers) and α = 0.01 (solid lines with circle markers), (a) for female
(b) for male at different gestational ages, respectively.

4. Analysis of the right internal capsule fiber tract. We have two specific
aims for the analysis of the right internal capsule fiber tracts. The first one is to
compare DTs along the RICFT between the male and female groups. The second
one is to delineate the development of fiber DTs across time. To achieve these
two aims, we fitted VCDF to DTs along the RICFT with gestational age at MRI
scanning and gender as covariates. We applied the estimation procedure in Sec-
tion 2 to estimate B(x), �u(·, ·) and �ε(·, ·). Then, we constructed the global test
statistics Tn and the local test statistics Tn(xj ) to test the gender effect and the
gestational age effect based on DTs along the RICFT. The p value of Tn was ap-
proximated by using the resampling method with G = 5000 replications. Finally,
we constructed the 95% simultaneous confidence bands for the varying coefficient
functions βkl(x).

To test the gender and gestational age effects, we calculated the local test statis-
tics Tn(xj ) and their corresponding p values across all points on the RICFT. It
is shown in Figure 7(a) that most points do not have − log10(p) values greater
than 1.3 for testing the gender effect. Then, we also computed the global test
statistic Tn = 797.65 and its associated p-value p = 0.3934, indicating no gen-
der effect. Inspecting Figure 7(b) reveals that the − log10(p) values of Tn(xj ) for
testing the gestational age effect are extremely significant in the middle part of the
RICFT. The global gestational age effect was also found to be highly significant
with Tn = 5271.7 and its p-value p < 10−6. It indicates that DTs along the RICFT
are significantly associated with the gestational age, even though there is no gender
difference among DTs along the RICFT. In order to investigate the development of
DTs across the gestational age, we chose a location at arclength = 61.02 and ob-
served that the diffusion tensors become anisotropic and their sizes become smaller
as gestational age increases [Figures 7(b) and (c)]. Recall that the three eigenval-
ues of a DT reflect the magnitude of the diffusion of water molecules along three
directions parallel to its three eigenvectors and that MD reflects the total mag-
nitude of the diffusion of water molecules. To show the decreasing trend of DT,
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FIG. 7. (a) The − log10(p) values of test statistics Tn(xj ) for testing gender or gestational age
effect of diffusion tensors on the right internal capsule tract, which shows no significant gender effect
and significant gestational age effect.The ellipsoidal representations of (b) raw and (c) smoothed
diffusion tensors changing with the gestational age at one location (at arclength = 61.02) on the right
internal capsule tract with significant gestational age effect, colored with FA values. The rainbow
color scheme is used with red corresponding to low FA value and purple corresponding to high FA
value. The plots of three eigenvalues (d), FA (e) and MD (f) values at that location.

we also plotted the curves of all three eigenvalues and MD values in Figures 7(e)
and (g), respectively, both of which explicitly show that the first eigenvalue does
not change much, whereas the second, third eigenvalues and MD values decrease
with the gestational age. In addition, it is observed from 7(f) that FA increases with
gestational age, which indicates that DTs become more anisotropic as gestational
age increases.

Figure 8 presents the estimated varying coefficient functions along with their
95% simultaneous confidence bands. In Figure 8 all simultaneous confidence
bands contain the horizontal line crossing (0,0) for the gender effect, whereas
the horizontal line is out of the 95% simultaneous confidence band for β43(x),
which indicates the significant gestational age effect. This agrees with our previ-
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FIG. 8. 95% simultaneous confidence bands for coefficient functions. The solid curves are the esti-
mated coefficient functions and the dashed curves are the 95% confidence bands. The thin horizontal
line is the line crossing the origin.

ous analysis results based on the global and local test statistics for the gender and
gestational age effects.

Finally, Figure 9 presents the 95% critical values for S(B(x), z) and the es-
timated S(B(x), z) along the RICFT across gestational age for female and male
groups, respectively. Inspecting Figure 9 reveals that the variation of S(B(x), z) is
larger on the two boundary points (especially on the right side) and smaller in the
middle. In addition, the apparent trend of DT’s changing with gestational age is
shown at arc-length = 61.02 for both female and male groups.

5. Discussion. In this paper we have developed a functional data analysis
framework, VCDF, for modeling diffusion tensors along fibber bundles in the Rie-
mannian manifold of SPD matrices under the log-Euclidean metric with a set of
covariates of interest. The most important characteristic of our method is that it is
formulated based on the whole diffusion tensors instead of the DT derived scalar
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FIG. 9. The 95% critical values for S(B(x), z) across gestational ages for female (a) and male (b)
groups, respectively. The ellipsoidal representation of the estimated S(B(x), z) along the right inter-
nal capsule tract across gestational ages for female (c) and male (d) groups, respectively, colored
with FA values. The rainbow color scheme is used with red corresponding to low FA value and purple
corresponding to high FA value. The displayed four rows from the top to the bottom correspond to
DTs at arclength 0,31.22,61.02,80.92 and 116.47. Specifically, the third row shows the apparent
trend of DT’s changing with gestational age for both female and male groups.

quantities and, thus, it can directly handle diffusion tensors. In addition, VCDF
can characterize the dynamic association between functional DT-valued responses
and covariates by using a set of varying coefficient functions. Compared with the
methods based on DT derived quantities, such as FA and MD, our method shows
the apparent superiority in estimating DT derived quantities compared with those
based on DT derived quantities (Figure 4). One reason is that the DT data which
is estimated from DWIs is almost biased, whereas the DT derived quantities are
linear and nonlinear functions of eigenvalues of DT data, which are very differ-
ent from the ground truth. The other reason is that directly modeling DTs along
fiber bundles as a smooth SPD process allows us to incorporate a smoothness con-
straint to further reduce noise in the estimated DTs along the fiber bundles. This
leads to the further reduction of noise in estimated scalar diffusion properties along
the fiber bundles. In addition, our method has the greater statistical power in de-
tecting the effect of covariates of interest as is shown in Figure 3. One reason
is that VCDF is less biased in parameter estimation. The other one is that our
method accounts for all information contained in the DTs along the fiber bun-
dles.

Several major issues remain to be addressed in future research. All fiber-tract-
based methods including VCDF are only applicable to these prominent white mat-
ter tracts and do not account for the uncertainties of tracking these fiber tracts. It is
important to develop new statistical methods to appropriately account for such un-
certainties in fiber-tract analysis especially for inconspicuous fiber tracts. VCDF is
based on the second-order diffusion tensor. It may be interesting to extend VCDF
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to the analysis of high angular resolution diffusion imaging (HARDI), which is
important for resolving the issue of fiber crossing [Assemlal et al. (2011)]. Fur-
thermore, it would be of great interest to extend VCDF to longitudinal studies
and family studies. Finally, we have treated DTs along fiber tracts as functional
responses; it would be interesting to treat DTs along fiber tracts as varying covari-
ate functions to predict a scalar outcome (e.g., diagnostic group) [Goldsmith et al.
(2011)].

APPENDIX A: ASSUMPTIONS

ASSUMPTION C1. εi (x) and ui (x) are identical and independent copies
of SP(0,�ε) and SP(0,�u), respectively. εi (x) and εi (x

′) are independent
for any x �= x′ ∈ [0,L0]. εi (x) and ui(x

′) are independent for any x, x′ ∈
[0,L0]. Moreover, with probability one, the sample path of ui(x) has contin-
uous second-order derivative on [0,L0] and E[supx∈[0,L0] ‖ui (x)‖r1

2 ] < ∞ and
E{supx∈[0,L0][‖u̇i(x)‖2 + ‖üi(x)‖2]r2} < ∞ for all r1, r2 ∈ (2,∞), where ‖ · ‖2
is the Euclidean norm.

ASSUMPTION C2. All components of B(x) and �ε(x, x) have continuous
second-order derivatives on [0,L0]. The fourth moments of εi (x) are continu-
ous on [0,L0]. All components of �u(x, x′) have continuous second-order partial
derivatives with respect to (x, x′) ∈ [0,L0]2. Moreover, �ε(x, x) and �u(x, x) are
positive for all x ∈ [0,L0].

ASSUMPTION C3. The points X = {xj , j = 1, . . . , nG} are independently
and identically distributed with density function π(x), which has the bounded
support [0,L0]. For some constants πL and πU ∈ (0,∞) and any x ∈ [0,L0],
πL ≤ π(x) ≤ πU and π(x) has continuous second-order derivative.

ASSUMPTION C4. The kernel function K(t) is a symmetric density function
with a compact support [−1,1] and is Lipschitz continuous.

ASSUMPTION C5. The covariate vectors zi are independently and identically
distributed with Ezi = μz and E[‖zi‖4

2] < ∞ and that E[z⊗2
i ] = �Z is invertible.

ASSUMPTION C6. Both n and nG converge to ∞, h(1) = o(1), nGh(1) → ∞,
and h(1)−1| logh(1)|1−2/q1 ≤ n

1−2/q1
G , where q1 ∈ (2,4).

ASSUMPTION C7. E[‖εi (xj )‖q2
2 ] < ∞ for some q2 ∈ (4,∞), max(h(2),

h(3)) = o(1), nG(h(2) + h(3)) → ∞, (h(2))−4(logn/n)1−2/q2 = o(1), and
(h(3))−2(logn/n)1−2/q2 = o(1).
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APPENDIX B: WILD BOOTSTRAP METHOD

We develop the four key steps of the wild bootstrap method for approximating
the p-value of Tn as follows.

Step (i): Use the weighted least squares estimation to fit model (2.1) under
the linear constraint specified in H0, which yields B̂∗

e (xj ). Calculate û∗
i,e(xj )

according to (2.8) and ε̂∗
i,e(xj ) = vecs(log(Si(xj ))) − B̂e(xj )

∗zi − û∗
i,e(xj ) for

i = 1, . . . , n and j = 1, . . . , nG.
Step (ii): Generate a random sample τ

(g)
i and τi(xj )

(g) from a N(0,1) random
generator for i = 1, . . . , n and j = 1, . . . , nG and then construct

Ŝi(xj )
(g) = exp

(
Ivecs

(
B̂∗

e (xj )zi + τ
(g)
i û∗

i,e(xj ) + τi(xj )
(g)ε̂∗

i,e(xj )
))

.

Then, based on Ŝi(xj )
(g), we recalculate B̂e(x)(g), and d(x)(g) = CB̂e(x)(g) −

b0(x). We compute

T(g)
n =

∫ L0

0
Tn(x)(g) dx,

Tn(xj )
(g) = nd(xj )

(g)T {
C

(
�̂u(xj , xj ) ⊗ �̂−1

z
)
CT }−1 d(xj )

(g)

for j = 1, . . . , nG.

Step (iii): Aggregate the results of Step (ii) over g = 1, . . . ,G to obtain
{T (g)

n,max = max1≤j≤nG
Tn(xj )

(g) :g = 1, . . . ,G} and calculate p(xj ) = G−1 ×∑G
g=1 1(T

(g)
n,max ≥ Tn(xj )) for each xj . The p(xj ) is the corrected p-value at the

location xj .
Step (iv): Aggregate the results of Step (ii) over g = 1, . . . ,G to obtain

{T(g)
n :g = 1, . . . ,G} and calculate p = G−1 ∑G

g=1 1(T(g)
n ≥ Tn). If p is smaller

than a prespecified significance level α, say, 0.05, then we reject the null hypothe-
sis H0.

APPENDIX C: RESAMPLING METHOD FOR APPROXIMATING
GAUSSIAN PROCESS

Recall that Bh(1) (x) = [B(x),h(1)Ḃ(x)] in (2.4) is a 6 × 2r matrix. It can be
shown that B̂h(1) (x)T is given by

�
(
h(1), x

)−1
n∑

i=1

nG∑
j=1

Kh(1) (xj − x)
[
zi ⊗ yh(1) (xj − x)

]
vecs

(
log

(
Si(xj )

))T
,(C.1)

where �(h(1), x) = ∑n
i=1

∑nG

j=1 Kh(1) (xj − x)[z⊗2
i ⊗ yh(1) (xj − x)⊗2]. Thus, we

can obtain B̂(x;h(1)) as follows:

B̂
(
x;h(1)) = [

Ir ⊗ (1,0)
]
B̂h(1) (x).(C.2)
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To approximately simulate from the Gaussian process XB(·), we develop a re-
sampling method as follows:

• Based on B̂(xj ;h(1)), we calculate r̂i (xj ) = vecs(log(Si(xj ))) − B̂(xj ;h(1))zi

for i = 1, . . . , n and j = 1, . . . , nG.
• For g = 1, . . . ,G, we independently simulate {τ (g)

i : i = 1, . . . , n} from N(0,1).
• For g = 1, . . . ,G, we calculate a stochastic process XB(x)(g) given by

√
n
[
Ir ⊗ (1,0)

]
�

(
h(1), x

)−1
n∑

i=1

τ
(g)
i

nG∑
j=1

Kh(1) (xj −x)Ci

(
xj −x;h(1))r̂i,l(xj )

T ,

where Ci(xj − x;h(1)) = [zi ⊗ yh(1) (xj − x)] is a 2r × 1 vector.
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