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The Euler-Maruyama scheme is known to diverge strongly and numer-
ically weakly when applied to nonlinear stochastic differential equations
(SDEs) with superlinearly growing and globally one-sided Lipschitz continu-
ous drift coefficients. Classical Monte Carlo simulations do, however, not suf-
fer from this divergence behavior of Euler’s method because this divergence
behavior happens on rare events. Indeed, for such nonlinear SDEs the clas-
sical Monte Carlo Euler method has been shown to converge by exploiting
that the Euler approximations diverge only on events whose probabilities de-
cay to zero very rapidly. Significantly more efficient than the classical Monte
Carlo Euler method is the recently introduced multilevel Monte Carlo Eu-
ler method. The main observation of this article is that this multilevel Monte
Carlo Euler method does—in contrast to classical Monte Carlo methods—not
converge in general in the case of such nonlinear SDEs. More precisely, we
establish divergence of the multilevel Monte Carlo Euler method for a family
of SDEs with superlinearly growing and globally one-sided Lipschitz contin-
uous drift coefficients. In particular, the multilevel Monte Carlo Euler method
diverges for these nonlinear SDEs on an event that is not at all rare but has
probability one. As a consequence for applications, we recommend not to use
the multilevel Monte Carlo Euler method for SDEs with superlinearly grow-
ing nonlinearities. Instead we propose to combine the multilevel Monte Carlo
method with a slightly modified Euler method. More precisely, we show that
the multilevel Monte Carlo method combined with a tamed Euler method
converges for nonlinear SDEs with globally one-sided Lipschitz continuous
drift coefficients and preserves its strikingly higher order convergence rate
from the Lipschitz case.

1. Introduction. We consider the following setting in this introductory sec-
tion. Let T € (0,00), d,m € N:={1,2,...}, let (,F,P) be a probability
space with a normal filtration (F;);¢[0,7] and let £: Q2 — R? be an Fy/B(R?)-
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measurable mapping with E[||§||H§d] < oo for all p € [1,00). Moreover, let

w:R? — R? be a smooth globally one-sided Lipschitz continuous function with
at most polynomially growing derivatives, and let o : R — R?*” be a smooth
globally Lipschitz continuous function with at most polynomially growing deriva-
tives. In particular, we assume that there exists a real number ¢ € (0, co) such that
(x =y, 1(x) = p(M)ga < cllx = yligg and o (x) = o (W)llgaxn < cllx = yllga for
all x, y € RY. These assumptions ensure the existence of an up to indistinguishabil-
ity unique adapted stochastic process X : [0, T'] x 2 — R? with continuous sample
paths solving the stochastic differential equation (SDE)

(D dX; = pu(X;)dt + o (X;) dWy, Xo=§

for t € [0, T']; see, for example, Alyushina [1], Theorem 1 in Krylov [28] or The-
orem 2.4.1 in Mao [30]. The function w is the drift coefficient, and the function o
is the diffusion coefficient of the SDE (1). Our goal in this introductory section is
then to efficiently compute the deterministic real number

2) E[f(XD)],

where f:R? — R is a smooth function with at most polynomially growing deriva-
tives. Note that this question is not treated in the standard literature in computa-
tional stochastics (see, e.g., Kloeden and Platen [27] and Milstein [33]) which
concentrates on SDEs with globally Lipschitz continuous coefficients rather than
the SDE (1). The computation of statistical quantities of the form (2) for SDEs
with nonglobally Lipschitz continuous coefficients is an important aspect in finan-
cial engineering, in particular, in option pricing. For details the reader is refereed
to the monographs Lewis [29], Glasserman [10], Higham [16] and Szpruch [40].

In order to simulate the quantity (2) on a computer, one has to discretize both
the solution process X : [0, T] x Q — R of the SDE (1) as well as the underlying
probability space (€2, F, P). The simplest method for discretizing the SDE (1) is
the Euler method (a.k.a. Euler—Maruyama method). More formally, the Euler ap-
proximations YnN Q>R ne {0,1,..., N}, N € N, for the SDE (1) are defined
recursively through Yév ;=& and

T
3) YN =Y +u())- vt o (V) Wasnyr/n — War/n)

for all n € {0, 1, ..., N} and all N € N. Convergence of Euler’s method both in
the strong as well as in the numerically weak sense is well known in the case of
globally Lipschitz continuous coefficients i and o of the SDE; see, for exam-
ple, Section 14.1 in Kloeden and Platen [27] and Section 12 in Milstein [33]. The
case of superlinearly growing and hence nonglobally Lipschitz continuous coef-
ficients of the SDE is more subtle. Indeed, Theorem 2.1 in the recent article [22]
shows in the presence of noise that Euler’s method diverges to infinity both in
the strong and numerically weak sense if the coefficients of the SDE grow su-
perlinearly; see Theorem 2.1 below for a generalization hereof. In this situation,
Theorem 2.1 in [22] also proves the existence of events Qy € F, N € N, and of
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real numbers 6, ¢ € (1, o0) such that P[Qy] > 0—N") and IYJ{\/(a))l > @) for all
w € 2y, N € N. Clearly, this implies the divergence of absolute moments of the
Euler approximation, that is, limy_, o E[|Y 1{,\’ |P]=o0 forall p € (0, c0).

The classical method for discretizing expectations is the Monte Carlo Euler
method. Let erv’k:Q —>RY ne {0,1,..., N}, N € N, for k € N be suitable in-
dependent copies of the Euler approximations (3); see Section 3 for the precise
definition. The Monte Carlo Euler approximation of (2) with N € N time steps and
N? Monte Carlo runs (see Duffie and Glynn [6] for more details on this choice) is
then the random real number

1 (2

) m( f¥y ’k))-
k=1

Convergence of the Monte Carlo Euler approximations (4) is well known in the
case of globally Lipschitz continuous coefficients © and o; see, for example, Sec-
tion 14.1 in Kloeden and Platen [27] and Section 12 in Milstein [33]. Recently,
convergence of the Monte Carlo Euler approximations (4) has also been estab-
lished for the SDE (1). More formally, Corollary 3.23 in [21] (which generalizes
Theorem 2.1 in [20]) implies

=0

1 (M
) lim |E[f(X7)] — —5 (Y £
N—o0 N =1

P-almost surely; see also Theorem 3.1 below. The Monte Carlo Euler method is
thus strongly consistent (see, e.g., Nikulin [37], Cramér [2] or Appendix A.l in
Glasserman [10]) for the SDE (1). The reason why convergence (5) of the Monte
Carlo Euler method does hold although the Euler approximations diverge is as fol-
lows. The events Qy, N € N, on which Euler’s method diverges (see Theorem 2.1
below) are rare events and their probabilities decay to zero faster than any poly-
nomial in N as N — oo; see Lemma 2.6 in [23] for details. Therefore, for large
N e N the event Qy is too unlikely to occur in any of N?> Monte Carlo simulations
in (4).

Considerably more efficient than the Monte Carlo Euler method are the so-
called multilevel Monte Carlo Euler methods in Giles [8]; see also Creutzig et
al. [3], Dereich [4], Giles [7], Giles, Higham and Mao [9], Heinrich [13, 14], Hein-
rich and Sindambiwe [15] and Kebaier [24] for related results. In this method,
time is discretized through the Euler method and expectations are approximated
by the multilevel Monte Carlo method. More formally, let YnN Lk R4,
ne{0,1,...,N}, NeN, forl e Ny:={0,1,2,...} and k € N be suitable in-
dependent copies of the Euler approximations (3); see Section 6 for the precise
definition. Then the multilevel Monte Carlo Euler approximations for the SDE (1)
which we investigate in this article are defined as

1 N Lok log, (N) 21 N/zl o Ik 2= |k
© I S (X 0 - )
k=1 k=1

=1
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for N € {21, 2223, .. .}. Clearly, there are also other multilevel Monte Carlo meth-
ods than (6); see, for example, Giles [8] for more details. For simplicity, we refer
to (6) as the multilevel Monte Carlo Euler method throughout this article. In the
case of globally Lipschitz continuous coefficients of the SDE (1), this method
has been shown to converge significantly faster to the target quantity (2) than the
Monte Carlo Euler method (4). More precisely, in the case of globally Lipschitz
continuous coefficients p and o, the multilevel Monte Carlo Euler method (6) con-

verges with order %— while the Monte Carlo Euler method converges with order

%— with respect to the computational effort; see Section 1 in Giles [8] or Creutzig

et al. [3] for details. In the general setting of the SDE (1) where © does not need
to be globally Lipschitz continuous, convergence of the multilevel Monte Carlo
Euler method (6) remained an open question.

The convergence (5) of the Monte Carlo Euler method, and the fact that Euler’s
method diverges on very rare events only, shaped our first guess that the multi-
level Monte Carlo Euler method should converge too. However, convergence of
the multilevel Monte Carlo Euler method fails to hold in the general setting of
the SDE (1). To prove this, it suffices to establish nonconvergence for one coun-
terexample which we choose to be as follows. Let d =m =1, let u(x) = —x7,
o(x) =0, f(x) =x? for all x € R and let £ : Q — R be standard normally dis-
tributed. Clearly, this choice satisfies the assumptions of the SDE (1) and the
SDE (1) thus reduces to the random ordinary differential equation

(7) dXt:—thdt, XO:S

for ¢t € [0, T']. The main observation of this article is that the approximation error
of the multilevel Monte Carlo Euler method for the SDE (7) diverges to infinity.
More formally, Theorem 4.1 below implies

1 N

) 21 1 1,0,k\2

Nh_r)nOO E[(X7)7] N Z(Yl )
logz(N)GN =

(®) log, (N) 7l Ny L1 k\2 =1 7 k\2
2 AR
_ Z N(Z(YZI )" = (V) )> =
=1 k=1

P-almost surely. Note that the multilevel Monte Carlo Euler method diverges on
an event that is not rare but has probability one. Thus—in contrast to classical
Monte Carlo simulations—the multilevel Monte Carlo Euler method is very sen-
sitive to the rare events on which Euler’s method diverges in the sense of The-
orem 2.1 below. To visualize the divergence (8), Figure 1 depicts four random
sample paths of the approximation error of the multilevel Monte Carlo Euler
method (6) for the SDE (7) with T =1 and shows explosion even for small val-
ues of N e {2!,22,23,...}. We emphasize that we are only able to establish the
divergence (8) for the simple SDE (7). Even in this simple case, the proof of the
divergence (8) is rather involved and requires precise estimates on the speed of di-
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FI1G. 1. Four sample paths of the approximation error of the multilevel Monte Carlo Euler approx-
imation (6) for the SDE (7) for N € (21,22, ..., 2} with T = 1.

vergence of Euler’s method for the random ordinary differential equation (7) on an
appropriate event of instability; see below for an outline.

Comparing the convergence result (5) for the Monte Carlo Euler method and
the divergence result (8) for the multilevel Monte Carlo Euler method reveals a re-
markable difference between the classical Monte Carlo Euler method and the new
multilevel Monte Carlo Euler method. The classical Monte Carlo Euler method
applies both to SDEs with globally Lipschitz continuous coefficients and to SDEs
with possibly superlinearly growing coefficients such as our SDE (1). The multi-
level Monte Carlo Euler method, however, produces often completely wrong val-
ues in the case of SDEs with superlinearly growing nonlinearities. This is par-
ticularly unfortunate as SDEs with superlinearly growing nonlinearities are very
important in applications; see, for example, [29, 40, 41] for applications in fi-
nancial engineering. We recommend not to use the multilevel Monte Carlo Euler
method for applications with such nonlinear SDEs.

Nonetheless, the multilevel Monte Carlo method can be used for SDEs with
nonglobally Lipschitz continuous coefficients when being combined with a
strongly convergent numerical approximation method. For example, in [23] the
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following slight modification of the Euler method (3) is proposed. Let Z,Ilv Q-
R,ne{0,1,...,N}, N € N, be defined recursively through Z(I)V :=¢& and
(ZNy.T/N
O) Zin=2 4y ?/N". ||u<é,4V)||Rd 0 (Z0)Wosyr/n = War /)
forall n € {0,1,..., N — 1} and all N € N. Following [23] we refer to this nu-
merical approximation as a tamed Euler method. Additionally, let Z ,]ZV Lk Q5 R,
ne{0,1,...,N}, N e N, forl € Ng and k € N be independent copies of the tamed
Euler approximations (9). In Theorem 6.2 below we then prove convergence of
the multilevel Monte Carlo tamed Euler method for all locally Lipschitz continu-
ous test functions on the path space whose local Lipschitz constants grow at most
polynomially. In particular, Theorem 6.2 below implies the existence of finite ran-
dom variables C, : 2 — [0, 00), ¢ € (0, %), such that

N
’E[f(XT)] - % > f(zy™)

o) o1 (N2 720k 22070 1k
(10) -2 (Zf — /( zan”))‘
=1
<7C8
= Na/2=o

for all N € {21,22,23,...} and all & € (0, 1) P-almost surely. To sum it up, the
classical Monte Carlo Euler method converges [see (5)], the new multilevel Monte
Carlo Euler method, in general, fails to converge [see (8)] and the new multilevel
Monte Carlo tamed Euler method converges and preserves its striking higher con-
vergence order from the Lipschitz case [see (10)]. Thus, concerning applications,
the message of this article is that the multilevel Monte Carlo Euler method (6)
needs to be modified appropriately when being applied to SDEs with superlinearly
growing nonlinearities. This is a crucial difference to the classical Monte Euler
method which has been shown to converge for such SDEs and which does not
need to be modified. However, when modified appropriately [see, e.g., (9)], the
multilevel Monte Carlo method preserves its strikingly higher convergence order
from the global Lipschitz case and is significantly more efficient than the classical
Monte Carlo Euler method, even for such nonlinear SDEs. Thereby, this article
motivates future research in the construction and the analysis of “appropriately
modified” numerical approximation methods.

For the interested reader, we now outline the central ideas in the proof of (8). For
this we use the random variables £/¥: 2 — R, [ € Ny, k € N, defined by &'k :=
Yy""* for all M € N, I € Ny, k € N. Then we note for every M, k € N, [ € Ny and
every w € 2 that |Y,f”'l*k(a))| is strictly increasing inn € {0, 1, ..., M} if and only
if |§l’k(a))| = |Y(§W’l’k(w)| > 2M)YAT7=1/4 1t turns out that |Y,f”’l’k(a))| increases
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inn €{0,1, ..., M} double exponentially fast for all w € {|£"F| > QM) V/4T—1/4},
[ € Ng and all k, M € N; see Lemma 4.4 and Corollary 4.7 below for details.
A central observation in our proof of the divergence (8) is then that the be-
havior of the multilevel Monte Carlo Euler method is dominated by the highest
level that produces such double exponentially fast increasing trajectories. More
precisely, a key step in our proof of (8) is to introduce the random variables
Ly:Q—{1,2,....1d(N)}, N e {2!,22,23, ..}, by

Ly :=max<{1}U {l e{1,2,...,1d(N)}:
(1D N
Jk € {1,2,..., ?}EZH > 21/4T_1/4})

for all N e {2',22,23,...}. Using the random variables Ly, N € {2!,22,23 ..},
we now rewrite the multilevel Monte Carlo Euler method in (8) as

gl 1,0,k\2 o) 1 (N/2 201,k 2 20-D 1 k2
(12) N};(Yl”) + 12; N(};(Yzz”) —(Yzan”))

= X yxmty

1€{0,1,....Jogy (N)} ' k=1

I#Ly—1,Ly
(13) /
2 L e
- > N > Yooy )
le{1.2, . log, (N} 1Y k=1
1%Ly
Ly-1
2(Ly=h N/CZLD 2END [y —1,k\2
(14) +— D )
k=1
L
7Ly N/@2"N) DL Lo ged
(15) + T (YzLN’ N )
k=1
L
7LN N/Q25N) SN [ ked
(16) — T Z (YZ(LN—D’ N )
k=1

for all N € {2!,22,23,...}. Due to the definition of Ly, N € {2!,22,23,.. .},
it turns out that the asymptotic behavior of the multilevel Monte Carlo Euler
method (12) is essentially determined by the three sums in (14)—(16); see inequal-
ity (63), estimate (70) and inequalities (75), (76) in the proof of Theorem 4.1 for
details. In order to investigate these three summands, we—roughly speaking—
quantify the value of the largest summand in each of the three sums in (14)—(16).
For this we introduce the random variables 7y : 2 — [0, o0) and Oy : 2 — [0, 00)
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for N € {2!,22,23, .. } by

(17) = max] g1 e ke [1,2,.
Ny = maxj & eR:ke 220 STy
and
N
e Ly—1,k .
(18) QN—maX{ISN |€Rk€{1,2,,m}}

for all N e {21,22, 23,...}. Using the random variables ny: 2 — [0, 00) and
Oy : Q2 — [0,00) for N € {21, 22 23 .. .} we then distinguish between three dif-
ferent cases [see inequality (63), inequality (70) and inequalities (75), (76) below].
First, on the events {ny > 2UNTD/AT=1/4) ¢ F N e (21,22, 23, ..}, the middle
sum in (15) will be positive with large absolute value and will essentially deter-
mine the behavior of the multilevel Monte Carlo Euler approximations (12); see
estimate (63) for details. Second, on the events {ny < 2LN+D/AT=1/4y {ny <
Oy} € F, N € {21,22,23, ..}, the sum in (14) will be positive with large abso-
lute value and will essentially determine the behavior of the multilevel Monte
Carlo Euler approximations (12); see inequality (70) for details. Finally, on the
events {ny < 2UNTDAT=V4 N (ny > 0y} € F, N e {21,2%2,23, ..}, the sum
in (16) will be negative with large absolute value and will essentially determine
the behavior of the multilevel Monte Carlo Euler approximations (12); see in-
equalities (75) and (76) for details. This very rough outline of the case-by-case
analysis in our proof of (8) also illustrates that the multilevel Monte Carlo Euler
approximations (12) assume both positive (first and second case) as well as neg-
ative values (third case) with large absolute values. We add that this case-by-case
analysis argument in our proof of (8) requires that the probability that the random
variables ny and 6y are close to each other in some sense must decay rapidly to
zeroas N e {2!,2%,23, ...} goes to infinity; see inequality (117) below. We verify
the above decaying of the probabilities in Lemma A.5 below which is a crucial
step in our proof of (8). Additionally, we add that the level Ly is approximately of
order log(log(NN)) as N goes to infinity; see Lemma A.1 for the precise assertion.
In view of the above case-by-case analysis of the multilevel Monte Carlo Euler
method, we find it quite remarkable to observe that the essential behaviour of the
multilevel Monte Carlo Euler method in (8) is determined by the levels around the
order log(log(N)) as N goes to infinity.

The remainder of this article is organized as follows. Theorem 2.1 in Section 2
slightly generalizes the result on strong and weak divergence of the Euler method
of Hutzenthaler, Jentzen and Kloeden [22]. Convergence of the Monte Carlo Euler
method is reviewed in Section 3. The main result of this article, that is, divergence
of the multilevel Monte Carlo Euler method for the SDE (7), is presented and
proved in Section 4. We believe that the multilevel Monte Carlo Euler method di-
verges more generally and formulate this as Conjecture 5.1 in Section 5. Section 6
contains our proof of almost sure and strong convergence of the multilevel Monte
Carlo tamed Euler method for all locally Lipschitz continuous test functions on the
path space whose local Lipschitz constants grow at most polynomially.
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2. Divergence of the Euler method. Throughout this section assume that the
following setting is fulfilled. Let 7" € (0, 00), let (€2, F, P) be a probability space
with a filtration (F;);¢(0,7) and let W : [0, T'] x € — R be a one-dimensional stan-
dard (F;)sef0,71-Brownian motion. Additionally, let £ : 2 — R be an Fo/B(R)-
measurable mapping and let 1, o : R — R be two B(R)/B(R)-measurable map-
pings. We then define the Euler approximations YnN Q—>R,ne{0,1,...,N},
N e N, recursively by Yé\] =& and

T
(19) YN =N ) ~ +0 (YY) Wasnyr/n — War/n)

forall n € {0,1,..., N — 1} and all N € N. The following theorem generalizes
Theorem 2.1 in Hutzenthaler, Jentzen and Kloeden [22].

THEOREM 2.1 (Strong and weak divergence of the Euler method). Assume
that the above setting is fulfilled, and let o, c € (1,00) be real numbers such
that \u(x)| + |o(x)]| = @ for all x € R with |x| > c. Moreover, assume that
Plo (§) # 0] > 0 or that there exists a real number B € (1, 00) such that P[|§| >

x] > ﬁ(_)‘ﬂ) for all x € [1, 00). Then there exists a real number 0 € (1, 00) and
a sequence of nonempty events Qy € F, N € N, such that P[QyN] > 0N and
|Y,{,V(a))| > c(@+1)/2)%) for all w € Qn and all N € N. In particular, the Euler
approximations (19) satisfy limy_ o E[|Y1{>’|”] = o0 forall p € (0, 00).

Theorem 2.1 immediately follows from Lemmas 2.2 and 2.3 below. More re-
sults on Euler’s method for SDEs with possibly superlinearly growing nonlineari-
ties can, for example, be found in [11, 12, 34, 35] and in the references therein.

LEMMA 2.2 (Tails of YV, N € N). Assume that the above setting is fulfilled
and let Plo (&) #£ 0] > 0. Then there exists a real number B € (1, 00) such that

IP’[|Y1N| > x| > ﬂ(_(Nx)ﬂ)forallx €[1,00) and all N € N.

PROOF. By assumption we have P[|o(§)| > 0] > 0. Therefore, there exists a
real number K € (1, oo) such that

1
(20) z?::IP’[]G(E)\ > 6]+ T|u@) sK] € (0, o).

Moreover, we have

P[[Y{"] = x]
=7l +n@)5 +o@wr| =]

> P[lo @) Wr/n| — €] = T|n(€)] > x]
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1
zP[Ia@ﬂ > eI+ TIR®)| < K.

o (E)Wr | — [E] = T|u(@)| zx}

1 1
ZP[|G(‘§)| = X’ 1§] + T|M(§)’ <K, E|WT/N| - K Zx:|

for all x € [1, 00) and all N € N. Definition (20) and Lemma 4.1 in [22] therefore
show

1 1
PYY| > x] > P[|a(s)| > 4 T @) < K} -P[E|WT/N| _K zx}

= -P[T 2 \Wr| =T V2N"2K (x + K)]

> cexp(~T'NK*(x + K)?) > -exp(—4T 'K*(Nx)?)

v ?
4T 4JT
) 4T—IK4 (*(NX)Z) 4T71K4 4ﬁ (_Z(N-x)z)

= D o (it IV
4T k)
for all x € [1, oo) and all N € N. This completes the proof of Lemma 2.2. [J

LEMMA 2.3. Assume that the above setting is fulfilled and let o, c € (1, 00)

be real numbers such that | (x)| + |o (x)| > @for all x € Rwith |x| > c¢. More-
over, assume that there exist real numbers Ng € {0, 1,2, ...}, B € (1, 00) such that
PYY | = x] > BN for all x € [1,00) and all N € NN {No, No+1,...}.
Then there exists a real number 0 € (1,00) and a sequence of nonempty events
Qnv € F, N e NN {No, No + 1,...}, such that P[Qn]> 0N and YN ()] >

c((@t+D/2)") forall we Qu and all N € NN {Ng, No + 1, ...}. In particular, the
Euler approximations (19) satisfy limy_ o IE[|Y11\\,'|1’] = oo forall p € (0, 00).

PROOF. Define real numbers ry € [0, 00), N € N, by

INc\ 2/ (@=D
2D ry = max(c, (—) )
T
for all N € N. We also use the function sgn: R — R defined by sgn(x) :=1 for
all x € [0, o0) and by sgn(x) := —1 for all x € (—oo, 0). Furthermore, we define

events Qy € F, N e NN {Ng, No+ 1, ...}, by

N-1
Qp = ( ﬂ {a) € Q:sgn(u(Y,fV(a)))G(Y,iv(w)D

n=~Ny

T
(22) X (W1 /v (@) — War/n (@) = ﬁ})

N
N{we QY ()| = (ry) @ FHD/270)
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for all N € N N {Ng,No + 1,...}. In particular, the definition of
(2N¥) NeNN{Ng, No+1,...} implies

T
w(¥, (@) - v o (YN (@) (Wasnr/n (@) — War/n (@)
(23) T
= N|“(erv(w))| + o (VY @)] - [Wansnyr /v (@) — War v ()]

foralln € {Ng,No+1,...,.N—1}, we Qyandall N e NN {Ng, No+1,...}.
In the next step let N € NN {Ng, No+ 1, ...} and w € Qp be arbitrary. We then
claim

(24) [V (@)] = (ry) (D20

foralln € {Ng, No+1, ..., N}. We now show (24) by induction on n € { Ny, No +
1,..., N}. The base case n = Ny follows from definition (22) of Q. For the in-
duction step assume that (24) holds for one n € {Ng, No+ 1,..., N — 1}. In par-
ticular, this implies

(25) YN (@) = rp) DD >y > 0> 1
Moreover, definition (19), the triangle inequality and equation (23) yield
T
V@] = |u(Y @) - 5+ o (1 @) - (Wars /v (@) = War v (@)
~ |7 ()]
r N N
= N’M(Yn (@) + o (Y, (@)] - [Wausrnr/n (@) — War /v (@)]
M AO]

T
> (kY @) + o (5 @) — 7Y @)

’

and the estimate | (x)| 4+ |o (x)| > @ for all x € R with |x| > ¢, inequality (25)
and definition (21) therefore show

T T
@]z Y @[ = 1Y @) = @) = [ @)
T -
=11 @) (N @)« )

T _
> |erv(w){(a+l)/2<m(m)(a Dn/2 1) > |Y,fv(w)|(°‘+l)/2.

The induction hypothesis hence yields

+1)/2 n +1)/2 (n+1)
|Y;ﬁl(a’)| > |yr{\/(w)|(0‘ )/ > ((rN)(((a+1)/2) ))(“ )/ — (,,N)(((a+1)/2) ).
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Inequality (24) thus holds for all n € {Ng, No+1,..., N}, w € Qy and all N €
NN {Ng, No+ 1, ...}. In particular, we obtain

(26) 1YY ()] = (ry) (@ D/2Y) 5 (@+D/DY)

forall w € Qu and all N € NN {Np, No+ 1, ...}. Additionally, Lemma 4.1 in [22]
yields

]E[l{Sgn(M(Y,{V)-G(Y,{V))'(W(n+1)T/N—WnT/N)Z%} |‘7:"T/N]

T T
(27) = ]P)|:(W(n+1)T/N — Wur/n) = N} = P[WT/N > N}

~T/N
ZP[T—I/ZWT . /1] LT
N 8v'N

P-almost surely foralln € {0, 1,..., N — 1} and all N € N. Therefore, we obtain

N (((@+1)/2)N0) —1)2 T\
Ploy] = BYY | > () I (P[r2wr = 1)

N
S gyt 2"0m) (IP’[T—WWT =N %D

-T/N N
Zﬂ(_(N,N)«(aH)/z)NOﬂ)) ' (e / ﬁ)
8V N
> T 'IB(f(NrN)(((aH)/Z)NOﬂ)) ‘ < JT >N
- 8N

for all N e NN {Ng, No + 1, ...}. This shows the existence of a real number 0 €
(1, co) such that

(28) Ply] =6
forall N e NN {Ng, Ngo + 1, ...}. Combining (26) and (28) finally gives
lim E[|YY]P]> lim E[lg,|Y}|?]> lim (P[Qy]- P (@tD/2™)
N—o0 N—o0 N—o0
> lim (9<—N9) . C<p~<<a+1>/2)N)) — 0o
~ N—>oo

for all p € (0, 00). This, (26) and (28) then complete the proof of Theorem 2.1.
a

3. Convergence of the Monte Carlo Euler method. The Monte Carlo Eu-
ler method has been shown to converge with probability one for one-dimensional
SDEs with superlinearly growing and globally one-sided Lipschitz continuous
drift coefficients and with globally Lipschitz continuous diffusion coefficients;
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see [20]. The Monte Carlo Euler method is thus strongly consistent (see, e.g.,
Nikulin [37], Cramér [2] or Appendix A.l in Glasserman [10]) for such SDEs.
After having reviewed this convergence result of the Monte Carlo Euler method,
we complement in this section this convergence result with the behavior of mo-
ments of the Monte Carlo Euler approximations for such SDEs. More precisely,
an immediate consequence of Theorem 2.1 is Corollary 3.2 below which shows
for such SDEs that the Monte Carlo Euler approximations diverge in the strong
LP-sense for every p € [1, 00). We emphasize that this strong divergence result
does not reflect the behavior of the Monte Carlo Euler method in a simulation
and it is presented for completeness only. Indeed, the events on which the Euler
approximations diverge (see Theorem 2.1) are rare events, and their probabilities
decay to zero very rapidly; see, for example, Lemma 4.5 in [20] for details. This is
the reason why the Monte Carlo Euler method is strongly consistent and thus does
converge according to [20]; see also Theorem 3.1 below and Corollary 3.23 in [21].

Throughout this section assume that the following setting is fulfilled. Let T €
(0, 00), let (€2, F, P) be a probability space with a normal filtration (F;);¢[0,7], let
wk. [0,T] x 2 — R, k € N, be a family of independent one-dimensional standard
(F1)te[0,71-Brownian motions and let & k:@—>R,keN,bea family of indepen-
dent identically distributed F/B(R)-measurable mappings with E[|£!|”] < oo for
all p € [1, 00). Moreover, let 4,0 : R — R be two B(R)/B(R)-measurable map-
pings such that there exists a predictable stochastic process X :[0, T] x 2 — R
which satisfies fOT (X)) + o (Xs)|2ds < oo P-almost surely and

t t
(29) Xi=g'+ [ nxods+ [ ocx)aw!

P-almost surely for all ¢ € [0, T']. The drift coefficient p is the infinitesimal mean
of the process X and the diffusion coefficient o is the infinitesimal standard devi-
ation of the process X. We then define a family Y,,fvvk Q—>R,ne{0,1,...,N},

N, k € N, of Euler approximations by Yév L. £k and

T
30) Yy =R p(r V). vt o (V"5 - (Whnyr v — War/n)

foralln e {0,1,..., N — 1} and all N, k € N. For clarity of exposition we recall
the following convergence theorem from [20]. Its proof can be found in [20].

THEOREM 3.1 (Strong consistency and convergence with probability one of
the Monte Carlo Euler method). Assume that the above setting is fulfilled, let
W, o, f R — R be four times continuously differentiable and let c € [0, c0) be a
real number such that (x —y) - (n(x) — n(y) < clx —y|*, o (x) —o (y)| < clx —y|
and |n® ()| + o@D @)+ | fP @) < c(1 + |x|°) for all x € R. Then there exist
finite F /B([0, 00))-measurable mappings C.: 2 — [0, 00), € € (0, 1), such that

1 y Nk Ce
31 ‘[f(Xr) Nz(Zf )’ =)

k=1
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forall N e N and all ¢ € (0, 1) P-almost surely.

In contrast to pathwise convergence of the Monte Carlo Euler method for SDEs
with globally one-sided Lipschitz continuous drift and globally Lipschitz continu-
ous diffusion coefficients (see Theorem 3.1 above for details), strong convergence
of the Monte Carlo Euler method, in general, fails to hold for such SDEs which
is established in the following corollary of Theorem 2.1, that is, in Corollary 3.2.
As mentioned above we emphasize that Corollary 3.2 does not reflect the behavior
of the Monte Carlo Euler method in a practical simulation because the events on
which the Euler approximations diverge (see Theorem 2.1) are rare events, and
their probabilities decay to zero very rapidly; see Lemma 4.5 in [20] for details.

COROLLARY 3.2 (Strong divergence of the Monte Carlo Euler method). As-
sume that the above setting is fulfilled and let a,c € (1,00) be real numbers
such that |u(x)| + |o(x)| > @ for all x € R with |x| > c¢. Moreover, assume
that Plo (1) # 0] > 0 or that there exists a real number B € (1, 00) such that
Pllg!| > x] > ﬁ(_xﬂ)for all x € [1, 00). Moreover, let f:R — R be B(R)/B(R)-
measurable with f(x) > %|x|1/c —c forall x e R. Then

} — oo

PROOF. The triangle inequality, Jensen’s inequality and the estimate f(x) >
%|x|1/c — ¢ for all x e R give

(32) NILI“OOEH [f(Xp)] - (Z £ )

forall p €1, 00).

H [f(XD)] - (Z £y )

LP(R)

Nk

- E[[f(xn]

LP(Q:R)

2

(33)
- mE[zf )| Bl 0 = EL 03] - Bl )

1 ¢
= —-E[lry "] = e —E[| £ (X7)]]

o

forall N e Nand all p € [1, 0c0). Combining (33) and Theorem 2.1 then shows (32)
in the case E[| f(X7)|] < co. In the case E[| f(XT)|] = oo, the estimate f(x) >
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—c for all x € R shows E[f(X7)] = 0o, and this implies (32) in the case
E[| f(XT1)|] = 0o. The proof of Corollary 3.2 is thus completed. []

4. Counterexamples to convergence of the multilevel Monte Carlo Euler
method. Theorem 4.1 below establishes divergence with probability one of the
multilevel Monte Carlo Euler method (6) for the SDE (7). This, in particular,
proves that the multilevel Monte Carlo Euler method is in contrast to the clas-
sical Monte Carlo Euler method not consistent (see, e.g., Nikulin [37], Cramér [2]
or Appendix A.l in Glasserman [10]) for the SDE (7).

Throughout this section assume that the following setting is fulfilled. Let T, o €
(0, 00), let (Q, F,P) be a probability space and let £&/%:Q — R, I € Ng, k € N,
be a family of independent normally distributed F/B(R)-measurable mappings
with mean zero and standard deviation 6. Moreover, let X : [0, T] x £ — R be the
unique stochastic process with continuous sample paths which fulfills the SDE

(34) dX, =—X)dt, Xo=¢

for t € [0, T]. We then define a family of Euler approximations YN Lk Q> R,
ne{0,1,...,N}, NeN,leNy,keN,by Y2 '* =gk an

Lk s T
(35) A A I

forallne{0,1,...,N—=1}, NeN,l eNpandall k € N.

THEOREM 4.1 [Main result of this article: Divergence with probability one of
the multilevel Monte Carlo Euler method for the SDE (34)]. Assume that the
above setting is fulfilled. Then

0.k ) o N2 2 lk y20 DLk p
(36) lim NZ y! |”+Z Z} Yoy " 1P)| =00
1d(17)20N k=1 =1

P-almost surely for all p € (0, 00).
The proof of Theorem 4.1 is postponed to Section 4.2 below.

4.1. Simulations. We illustrate Theorem 4.1 with numerical simulations. To
this end we observe that the exact solution of the random ordinary differential
equation (87) satisfies

§

37 X = aEne

for all r € [0, 1]. The real number E[(X )2] can then be computed approximatively
by numerical integration or by the Monte Carlo method. Figure 1 depicts four ran-
dom sample paths of the approximation error of the multilevel Monte Carlo Euler
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approximations in the case T =1 and ¢ =1 in (87) where E[(X1)?] ~ 0.28801
(calculated with the integrate-function of R). The sample paths clearly di-
verge even for small N € {21, 22 23, ...}. For some other SDEs, however, path-
wise divergence does not emerge for small N e {2!,22,23,...}. For example, let
us choose a standard deviation as small as & = 0.1 in (34) where T = 1. Here
the exact value satisfies E[(X 1)2] ~ 0.009971 (calculated with the integrate-
function of R). Then sample paths of the multilevel Monte Carlo Euler approxima-
tion seem to converge even for reasonably large N € {2', 22,23, .. }; see Figure 2
for four sample paths. So the sample paths of the multilevel Monte Carlo Euler
method for some SDEs first seem to converge, but diverge as N € {2!,2%,23, ..}
becomes sufficiently large. To see this in a plot, we tried different values of o and
found sample paths in case of o = % and 7 =1 which first seem to convergence
to the exact value E[ (X )2] ~ (0.09248 (calculated with the integrate-function
of R) but diverge for larger values of N € {21, 22 23 . .}; see Figure 3 for four
sample paths.

4.2. Proof of Theorem 4.1. First of all, we introduce more notation in order
to prove Theorem 4.1. Let y,’lv’x eR,ne{0,1,...,N}, NeN, x € R, be defined

S - MLMC Euler _2 MLMC Euler
g 10 i Order line 1/2 10 e Order line 1/2
C
.0
T 107 107
£
x
o
g 10° 10°°
<
10° 10° 10° 10° 10° 10°
N N
S MLMC Euler - MLMC Euler
Y oo Order line 172 107, oo Order line 1/2
C
i)
T 107
£
x
o
g 10°
<
10° 10° 10° 10° 10° 10°
N N

FI1G. 2. Four sample paths of the approximation error of the multilevel Monte Carlo Euler approx-
imation in (36) where T = 1,6 =0.1, p=2and N € {2',22,...,2%2}.
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105 1017
o MLMC Euler MLMC Euler
g v Order line 172 v Order line 1/2
C
Ke)
T
S
x
o
o
<
10°
10°
6] 10% MLMC Euler MLMC Euler
g v Order line 1/2 tirrin Order line 1/2
C
Ke)
T 10"
£
X
o
Q o
g— 10
-5
10 0 4 8 0 4 8
10 10 10 10 10 10
N N

F1G. 3. Four sample paths of the approximation error of the multilevel Monte Carlo Euler approx-
imation in (36) where T = 1,6 =, p=2and N € (2!,22,...,222).

recursively through yév *:=x and
N, 5 T 4 T
(38) == g = yﬁ”x(l — ()" N)

foralln e {0,1,...,N —1}, N e Nand all x € R and let p € (0, c0) be fixed for
the rest of this section. This notation enables us to rewrite the multilevel Monte
Carlo Euler approximation in (36) as

1 & ok ) o N/2 2 1k 20-1) 1 k
N;|Y1’ ’ |p+ ; N};”Yzl” |p_|Y2(1—1)” |p)

1d(N) 51 N/2! (V) 57 N/2!

2L 1k 20-D 1 k
(39) = ZZO N};Wy |p_ IX: ﬁ];“/z(l—l) |p

(V) 51 N/2! (V) 57 N/2

| gk 2= gLk
:2:_22‘))21g ’p_Z_Z’y(l—n ’
o No? NS

=1
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for all N € {2!,22,23,...}. Additionally, let Ly : 2 — {1,2,...,1d(N)} be de-
fined as

Ly:= max({l} U {l e{l,2,....1d(N)}:
v N

forevery N € {21, 22 23 . .}. Furthermore, define ny : Q2 — [0, 00) and Oy : 2 —
[0, o0) by

N
. Ly.k .
41) nN._max{|§ |leR:ke 1,2,...,—2LN}}
and
N
. (Ly—1),k .
42) eN._max{|g VDK Rk e 1’2"“’42@—1)”

for every N € {2',22,23,...}. Moreover, we define the mappings [-], || :R —
Z by [x]:=min{z € Z:z > x} and by |x] :(=max{z € Z:z < x} for all x € R.
Additionally, we fix a real number 6 € (0, %) for the rest of this section. In the next
step the following events are used in our analysis of the multilevel Monte Carlo
Euler method. Let A, A, A, A € 7, N € {21,22,23, ..}, be defined by

(43) AY =Ly < |21dE*T?In(V)) |},

A = {az €{0,1,2,...,1d(N)}:

(44) N
| elk I-1)/4—1/4
<3ke{1,2,...,?}.|5 | > 20=D/AT /N)},
AQ = {3 eN, [21dE T2 In(N)) | <1 <1d(N) +1:

(45)

QAT <y < 2UAT=1/4(1 4 5827y

_2(Ly-1)

46) AR ={lnv — x| <4 Dy

forall N e {2',22,23, .. ). Additionally, define Ny € {2!,2%,23,.. .} and N : Q —
21,22,23, ..} U {00} by Ny := 2exptéa 2 T712)+65T2] 4 q by

(47) N1 (o) := min({oo} U {n € {No, 2' Ny, 2*No, ...} :Ym € {n,2'n, 2°n, .. .} :
w¢g AV UADUAD UADY

for all w € 2. Next we prove a few lemmas that we use in our proof of Theo-
rem 4.1.
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LEMMA 4.2 (Dynamics for small initial values). Assume that the above set-
ting is fulfilled. Then we have |y,{lv’x| < |x| < (%)1/4 forall n € {0,1,...,N},
x| > (B4 and all N € N.

PROOF. Fix N e Nand |x| < (ZTN)V“. We prove Iy,iv’xl < |x| by induction on
n€{0,1,..., N}. The base case n = 0 is trivial. For the induction stepn — n + 1,
note that the induction hypothesis implies

T

N, 4

(48) [V =!y,iv’x!-‘1—ﬁ(y,iv”‘) ‘s\y,iv’x\s|x|
foralln € {0, 1,..., N — 1}. This completes the proof of Lemma 4.2. [J

LEMMA 4.3 (Dynamics for large initial values). Assume that the above setting
is fulfilled. Then we have Iy,]lv’x| > x| > (ZTN)1/4f0r allne{0,1,...,N}, |x| >
(ZTN)I/4 and all N € N. In particular, we have

x T 4
“9) el = b (O = 1)
foralln€{0,1,...,N — 1}, |x| > (3)V* and all N € N.

PROOF. Fix N e Nand |x]| > (ZTN)I/“. We prove |y,11V*x| > |x| by induction on
ne{0,1,..., N}. The base case n = 0 is trivial. For the induction stepn — n + 1,
note that the induction hypothesis implies

, T 4 T A
il =] | O = 1] =l (G 0t = 1)
(50

> [yN¥| > x|

for all n € {0, 1,..., N — 1}. This completes the induction. Assertion (49) then
immediately follows by taking absolute values in (38). [

LEMMA 4.4 (Growth bound for large initial values). Assume that the above
setting is fulfilled. Then we have

T\ /4 T\ /4 5™
s (5) b1=((5) )
orallne{0,1,...,N}, |x| > C)Y* and all N € N.

T

PrROOF. Fix N € N and |x| > (ZTN)I/A'. We prove (51) by induction on n €
{0,1,..., N}. The base case n = 0 is trivial. For the induction step n — n + 1,
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note that Lemma 4.3 and the induction hypothesis imply

Z 1/4| N,x|_ Z 1/4| N,x| Z( N,x)4_1 - Z 1/4| N,x| 5
N yn+] - N yn N yn — N yn

= (<(§)1/4|x|)(5”))5 _ ((%)”‘*m><5w“>

foralln € {0, 1, ..., N — 1}. This completes the proof of Lemma 4.4. [J

(52)

LEMMA 4.5 (Monotonicity). Assume that the above setting is fulfilled. Then
we have

(53) v = |
foralln e{0,1,..., N}, all x,y € R satisfying |x| > |y|, |x| > (ZTN)I/4 and all
N eN.

PROOF. Fix N e Nand x, y € R with |x| > |y], |x| > (&¥)!/4. We prove (53)
by inductionon n € {0, 1, ..., N}. The base case n = 0 is trivial. For the induction
step n — n + 1, note that Lemma 4.3 and the induction hypothesis imply

T 4 T 4
el = I (o1 = 1) = ) (ot = 1)

> [y

(54) T
4 N,
N|yrll\/,y| _1‘:|yn+)1)

foralln € {0, 1, ..., N — 1}. This completes the proof of Lemma 4.5. [J

LEMMA 4.6 (Dynamics of multiples of the initial value). Assume that the
above setting is fulfilled. Then we have

(55) [y M = MOy
foralln € {0,1,...,N}, |x| > (3)V/4 M €[1,00) and all N € N.

PRrROOF. Fix N € N. We prove (55) by induction on n € {0, 1, ..., N}. The
base case n = 0 is trivial. For the induction step n — n + 1, note that Lemma 4.3
and the induction hypothesis imply

T 4
L= o (g e 1)

n T n
66 =M (Y 1)

n T n 4 5N (n+1)
= M| L) = M) = Oy

foralln €{0,1,..., N —1}, x| > (3)*and all M € [1, 00). This completes the
proof of Lemma 4.6. [
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COROLLARY 4.7. Assume that the above setting is fulfilled. Then we have
N5 = MO RN YA foralln € (0,1, ..., N}, x| = M(3X)V4 M €1, 00) and
all N e N.

1/4
PROOF. Lemmas 4.5, 4.6 and |y, "/ 7| = (2X)1/4 imply

1/4
N, N.MQN/T)V/* 5| N, 2N/ T)V/* st (2N
57 }yn X}Z‘yn GN/D) |ZM( )‘yn GN/T) |:M( )<T)
foralln € {0,1,..., N}, |x| = M(ﬂ)l/“, M €[1,00) and all N € N. This com-
T
pletes the proof of Corollary 4.7. [J

LEMMA 4.8. Assume that the above setting is fulfilled. Then we have

AN (A=r)N
(58) vz () e

forall |x] = (B)V4(1 +5™)), N e Nand all r € (0, 00).

PROOF.  We apply the inequality 1 + z > exp(5) for all z € [0, 2]. Noting that
5N) <1 <2forall NeNandall r € (0, 00), we infer from Corollary 4.7

2NN\ /4 N 2NN /4 1 s™)
|J’11\\f”x| zZ (?) (1 —|-5(_r]\’))(5 ) = (T) [exp(ES(_’N))]

- (%ff)l/4x/gd“”N)
T

for all |x| > (ZTN)I/“(I + 5N N e N and all r € (0, 00). This completes the
proof of Lemma 4.8. [J

(59)

LEMMA 4.9 (Almost sure finiteness of N1). Assume that the above setting is
fulfilled. Then P[N1 < oo] = 1.

The proof of Lemma 4.9 is postponed to the Appendix. We now present the
proof of Theorem 4.1. It makes of use of Lemma 4.9.

PROOF OF THEOREM 4.1. Fix p € (0, co) throughout this proof. Our proof
of Theorem 4.1 is then divided into four parts. In the first part we analyze the be-
havior of the multilevel Monte Carlo Euler approximations on the events {ny >
QUENED/AT=IAY NN, < N} = {w € Q:nn(w) > 2EN@FDAT=1/4 N () <
N} for N e {2!,22,23,...}; see inequality (63). In the second part of this proof
we concentrate on the events {8y > nn} N {ny < 2ENVEDAT=1/H N (N, < N} for
N € {2',22,23,..}; see inequality (70). In the third part of this proof we investi-
gate the events {2EN/4T =14 < on 1N {0y < nnviN{ny < 2ENTD/AT=I/A AN, <
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N} for N e {21, 22,23 .. .} [see inequality (75)] and in the fourth part we an-
alyze the behavior of the multilevel Monte Carlo Euler approximations on the
events {2ENV/AT=14 > 00y N {0y < ny) N {py < 2ENVHDAT=1/4 NN < N)
for N e {2',22,23, ...} [see inequality (76)]. Combining all four parts [inequal-
ities (63), (70), (75) and (76)] and Lemma 4.9 will then complete the proof of
Theorem 4.1 as we will show below. In these four parts we will frequently use

(60) (N < N)S(A) N (AR N(AF) N (AR

forall N € {2',22,23,..}.

We begin with the first part and consider the events {ny > 2(LNTD/AT=1/4) 0
{N1 < N} for N € {21, 22 23, ...}. Note that Lemma 4.5, the inequalities
ny = 2ENEDATA 4 5320y on (> 20NFEDAT=14) 0 (N < N)
[see (45)] and |&"*| < 20=D/AT1/AN on {N) < N} for all k € {1,2,..., &},
le{l,2,...,1d(N)} [see (44)] and the definition (40) of Ly imply

1d(N) 1 N/2! 14(N) 51 N/2!

Z Z| ol Slk Z Z!y;g 11)) %-lk
=1

)
2LN 2LN,77N Ly 21 N/2 = 1) lk Id(N) 21 N/2 S=1) Elk
27|y2LN Z Z|y2<l ) - Z Z|y2<l )
= 1 1= LN+1
(61)
2LN 2LN 2LN+D 7y 1/4 (] 5(-025EN)
> v o ( /T)*( )|p
N
1d(N)
2(1 1) (2(1 l)/T)l/4N 2(171),(2]/7‘)1/4 p
- Z Yau-n | Z b’z(z—l) ‘
=1 I=Ly+1

on {ny > 2EN+D/AT=1/4y N [N < N} and Lemmas 4.8, 4.4 and 4.2 hence yield

1d(N) 51 N /2 1d(N) 51 N/2!

Z Z| QZslk Z Z‘y;(ll ll))é;lk

p

>
- N T

L -1 4 _
_ZNi(z( >),,/ NPT _
o T
> N~lr—r/4. exp( 5= ‘mLN)
2

2(Ln—=1)\ p/4 (Ly—1) 2ld(N) \ p/4
—LN( . ) NS ))—ld(N)< - )

1 (2 . 2LN)1/4\/E(5(18)2LN)

1d(N)

21 p/4
(7)

l=LN+1
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on {ny > 2ENHDAT=1/4y N (N| < N} forall N € {2!,2%,23, .. .}. Therefore, we
obtain

1d(N) A7 N/2! 1d(N) ~; N/2!
2 I glk 2 -1 g lk
2: E:b’zé 2: §:|y§(, )
=1

> NP/ exp<2 51— 5)2LN>

_1)))

(L
(62) _1d(N)NPATP/A . NPSC Yy 1d(N)NP/AT—P/4

> TP/4. eXp(z 5(1=8)2"N ln(N)>
T P/4. N(l+p/4+p,5(2(LN*1)))

on {ny > 2ENTD/AT=1/4y N {N| < N} and the estimate 25V > 52/T In(N) on
{N1 < N} [see (43)] hence shows

AW) 51 N/2 ) élk AW) 51 N/2' o S”‘
Z Z|y Z Z|y2(1 D
=1
> inf [exp< 5(1=9x) ln(N))
x€[62+/T In(N),00) 2

(63)
- exp<1n(N)<1 + % +p- 5’6/2))] TP/

>r(N)- TP/

on {ny > 2ENED/AT=1/H (N, < N} forall N € {21,22,23, ...} where r: N —
R is a function defined by

r(N) := inf [exp( -5(1=9)) ln(2N))
x€[62V/T In(N),00) 2

- exp(ln(N)(l + % +p- 5x/2>>]
forall N e N.

In the next step we analyze the behavior of the multilevel Monte Carlo Euler
approximations on the events {0y > ny} N{ny < 2ENTD/AT=1/4y N (N < N} for
N € {2',22,23,...}. To this end note that Lemma 4.5, the inequalities Oy > (1 +
4250 ny on By = v} N (N1 < NY [see (46)] and [§04] < 20-D/AT=1/4N
on {N; < N} forall ke{l,2,..., %}, le{l1,2,...,1d(N)} [see (44)] and the
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definition (40) of Ly imply
1d(N) 51 Ny2! (V) 57 N/2!

l’ Lk Z(I_I)vél’k p
Z_Zb’%g |p_Z_Z|y(1—1> |
=0 N k=1 2 =1 N k=1 2
I 2an-1g 2LN-D),
= N|y2<LN—1> NP - Y- "
Ly—1 o7 N/2! 1d(N) A7 N/2
2 20-1) glk 2 20-1) glk
- Z N Z |y2(1—1) : |p - Z N Z |y2(1—1> ¢ |p
=1 k=1 I=Ly+1"" k=1
1, 2un-1 42Ny 2Ly,
> N|y2(LN*‘> (+ )nN|p _ | - 77N|1)
Ly—1 1d(N)
2(]—1), 2(1—1) T 1/4N 2(1—1)’(21 T)1/4
- Z ’)’2(1—1)( /D |p_ Z ‘)’2(1—1) / }p
=1 I=Ly+1

on {0y > nn} N {ny <2UENVTDAT=I4 N IN < N} for all N € {2,2%,23,.. ).
Lemmas 4.5, 4.4 and 4.2 therefore show

1d(N) 1 N/2! 1d(N) 57 Ny2!

l’ Lk 2(171)’%-l,k P
Z_Zb’z’g |p—Z—Z|y<z-n |
i N i 2 = Nia 2

1 2(LN71)7(1+4(72(LN71)))7] » 2EN=D pyip 1 2EN=D v
(64) Zﬁ’yz(LNq) N| —\y2<LN,1) N‘ +ﬁ‘y2(LN71) N
Ln—1  5(=1)\ p/4 -1 WAN) 5L\ p/4
2 )
_ N@sCT (_)
> () > (7
=1 I=Ly+1

on {Oy > nn} N {ny < 2ENHDAT=U4 A (N; < N} for all N € {21,22,23,...}.
By definition of ny and of Ly we have ny > 2LN/AT=1/4 on {N; < N}
[see (43)] for all N € {2!,2%,23,...}. Consequently we get the inequality ny >
QLNAT A 45325V on (N} < N} [see (45)] forall N € {21,22,23,.. ).
Lemmas 4.6 and 4.5 hence yield

1d(N) ~; N/2! 1d(N) A N/2!

2 2 glk 2 Q=1 glk
> g b= X X el
=0 " k=1 k=1

=1

2(Ly—1

1 oLy, (p-5CENTD)y 2(Ly-1)
- 1 4 42587 (p _ 1) JIN | P
> <—2N( + ) |y
(65)

Ly—1
+ 1 2(LN—l)’(zLN/T)1/4(1+5(—52( N )))|P

ﬁb’z@,\,—l)

2(Ln—=2)\ p/4 (Ly—2) 2ld(N) \ p/4
—LN( . ) NS ))—ld(N)< - )




on {Oy > nn} N {ny < 2ENHDAT=14 N (N; < N} for all N € {2!,22,23,.
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Lemma 4.8 and Ly < 1d(N) therefore imply

on {Oy > nn} N {ny < 2ENHDAT=I/4 (N < N} for all N € {2!,22,23, ..

1d(N) 5l N2 1d(N) ol Ny2!

| £l (-1 lk
ZE: EE:} vl ZE: 2£:|y§a n &
=1

1 L eIN—D)
> 1 2(—2 N) (p-5 )_ 1)
> (—2N( + ) |y

1 /2Ln\P/4 @
L 5((1=8)2(N
+2N( ) exP(z

2Ly P/4 QN )
—ld(N)( - ) NP3 ) —1d

2(LN71),TIN|P
2(Ly—=1

1))>

(N)NP/4T—P/4

1937

"

).

The inequalities 1 < Ly <1d(N) and 1 + 2 > exp(2C*~D) for all x € [0, co0)

hence give

(66)

on {0y > nn} N {ny <2UENHDAT=I/4 A (N] < N} for all N € {21,22,23,.
This shows

1d(N) 51 N/2!

1d(N) 57 N/2!

i lk (-1 glk
2y L DI Z%« 0l
=0 k=1

=1

1 L (Ly=1)
> (__. 2(—2 N-1) ,5(2 N7V
(2N exp( p )
1 (Ly—1)
((1=8)2N=Y)
toONTIA eXp(z > )

_21dN)NPATPA L N SE )

1d(N) 7l N/2! 1d(N) ol Ny2!

2N

l

=0

1 elk (I-1) £lk
2_:|2€ Z Z|y§<, 1)é

=1

1 P (5 @EN=D) D)2
={aw P23 1)

1 (Ly-1
((1=8)2%N~1)
+ —F INTPIA exp(2 5 )

_p/A | g p/atp s

1 po(5\@D 2(Ly—
>\zo-expl 5| Iy
2N 2 \4 2Nt

1>|y2(LN—1)

Do p
D

” NN (P

Y
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+  inf [exp(% L 5((1=0)x) _ 1n(2N)>

xe[2EN=D 00)
— exp(ln(N)(l + g +p- SX/Z))] TP/
on {Oy > ny} N {ny < 2ENVTDAT=14 (N < N} forall N € {21,22,23, ..}
and, using the estimate 2(LN=D) > c_rzﬁln(N) on {N1 < N} [see (43)],
(V) 57 N2 () 57 Ny2!

1’ Lk 2(171)’51,/( p
Z_ZUZIS }p_Z_ZU(l—l) |
=0 N k=1 g N k=1 2

=1

. i.ex P § (&2/T In(N)) i |2(LN7])377N|P
=\2n p ) 4 Yowy-1

+ inf [exp(ﬁ L 5(1=8)0) _ ln(2N)>
x€[62/T In(N),00) 2

(67)

— exp(ln(N)(l + g +p- 5’“/2))] TP/

on {0y > nn} N {ny <2ENVTDAT=1/4 (N < N} for all N € {2',2%2,23,.. ).
It follows from

. 1 p 52 /T

T P NG Tln(5/4))) _
that there exists an N, € {21, 22,23, ...} such that
(69) % exp(g . N@T ‘“(5/4”) 120

for all N € [N, 00). Using this, we deduce from (67)

1d(N) A7 N/2! 1d(N) A N/2!

2 2 glk 2 201 gk )
DRI D DR B Ve
=0 N k=1 > N k=1 2

=1

1 5 (Ly—=1)
(70) > (ﬁ . exp<§ . N(azﬁln(5/4))> . 1>|y§(L]\A]/l)’nN|p n r(N) . T_p/4
> r(N) . T_P/4

on {8y > ny} N {ny < 2ENEDAT=1/4y (N < N} for all N € {N», 2! N,
22Ny, ..

Next, we analyze the behavior of the multilevel Monte Carlo Euler approx-
imations on the events {2LN/AT—1/4 < gy < py < 2ENTDAT=1/4 N (N <
N} for N e {2!,22,23,..}. Note that Lemma 4.5 and the inequality |$1*k| <
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2U=D/4T=1/4N on {N; < N} for all k € {1,2,..., %}, 1€{0,1,2,...,1d(N)}
[see (44)] imply

1d(N) 7 N/2! 1d(N) ~; N/2!
2 2 gk 2 201 glk
DB B PR U D) B
=0 N k=1 2 =1 N k=1 g
1d(N) A7 N/2! 1d(N) A N/2!
2 20=1) glk 2 2l glk
=D ﬁZ’J’ga—né =Y Nbezzé P
I=1 " k=1 1=0 " k=1
!
1 pay-n, 2LN-D g Ly—2 ol N/2 o gk
> _|y2(LN71> 77N|P - |y2(LN71) N‘p - Z N Z |y21 : ‘P
N =0 N k=1

(71)
1d(N) 5l N2

I gLk
- Z N Zb’;g |p
k=1

l:LN =
1, an-n Ly-1) 1 Ly-D
JIN | P 2NTU 0N p 25NV N p
> - N
5N Yy 1 = Yy N+ 2N|y2<LN—1) }

Ly—2 1d(N)
21’(2(1—1) T)1/4N 21’(2(14-1) T)l/4
IR L DI P
=0

I=Ly
on {2ENAT=14 < gy < py < 2UENTD/AT=1/4 A (N < N} for all N e {21, 22,

23 ...}. Therefore Lemma 4.5, the inequality ny > (1 + 4(_2@,\,71)))01\/ on {Oy <
nn} N{N1 < N} [see (46)] and Lemma 4.2 result in

1d(N) 51 N/2! 1d(N) 51 N/2!

17 Lk 2([71)’$l.k p
Z_Zb)zlf V’—Z—Z}ya-n |
i Nio 2 = N4 2

(Ly—1) _
U N DT Y 2N =D gy p

1
p
72) = 2N|y2<LN71) Yowy-n | +ﬁ|y2(1~1\,71>
Ly—2 1d(N
N o TVAN (N) o+ p/4
=0 =Ly

on {2INATV4 < gy < py < 2ENTDAT=U4 N (N < N} for all N €
{21,22,23,...}. Lemmas 4.6, 4.5 and the estimate ny > 2Ln/AT—1/4
(1 +552¥") on {Ny < N} [see (43) and (45)] and Lemma 4.4 hence yield

1d(N) o1 N /2 1d(N) 1 N/2!

l’ 1.k 2(1—1)75‘;[,/( p
Z_Z’yzls |p_Z_Z|y(1—l> |
- Nio 2 N = 2

=1

1 —2(Ln-D (p~5(2(LN_1))) 2ELN=D gy p
= (g +47) )
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1 2N @R T s2bvhy

2N P2tn Y

Ly—2

N
s (2?)" N@SCY _opianyNPAT P/
=0

on {2EN/AT=V4 < 9y < py < 2UN+D/AT=1/4 N (N| < N} for all N € {2},22,
23, ...}. Therefore Lemma 4.8 implies

+

1d(N) ol N2 1d(N) 1 Ny2!

z z|2 z zw;éf el

1 oL 5eEND) 2Ly-1 g
> 1 2( 2EN ) (p ) 1) ON | P
- (2N( ) |y ‘

Islk

2(Ly=1)

1 /2kn\P/4 p (Ly—1)
I P s-stn >>
+ ZN( ) exp<2

(73)

21N NPAT AN S

on {2LN/4T_1/4 <Oy <nny < 2(LN+1)/4T_1/4} N{N;y <N} forall N € {21, 22,
23,...}). The inequality 1 + 2% > exp(2—*~D) for all x € [0, co) hence shows

1d(N) 1 N/2! 1d(N) 1 N/2!

| 1.k (l 1) £,k
Z Z|2§ Z Zlyza 1>s
=1

74) = (% .exp(z(—ZLN—l) p- 5(2(LN—1))) _ 1){y2(LN_1)’9N|p

HLy-1)

1
toNTIA ONTP/4

on {2EN/AT=14 < gy < py < 2UNHD/AT=1/4 A (N| < N} for all N € {21, 22,
23,...}. Consequently

(LN—2)
- ex p(2 5= —8)2¢N - 1))> _T—P/4, N(l+p/4—+—p~5(2 )

1d(N) 51 N/2! 1d(N) 51 N/2!

! lk 1—1 1,k
Z Z!yz Tr-X Z|y§<(z b
=1

(Ly-1)
- 1 P 5\ 2N )] 2(LN—1)’9N|p
=\anv P24 ~ ) Paen-n

+ inf [exp(2 5(1=0)x) 1n(2N)>

xe[2EN—D 00)

- exp(ln(N)(l + % +p- 5x/2>>] TP
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on 2ENAT=V4 < gy < py < 2ENED/AT=1/4y N (N < N} for all N € {21, 22,
23,...}. The estimate 2(t8 =D > 62\/Tln(N) on {N; < N} [see (43)] therefore
implies

(V) 57 N/2! Id(N) 51 N2

l glk 201 gLk
Z_ZU%E |p_Z_Z|y<l—1> |‘
= Nio ? N = 2

=1

1 p /5 (62T In(N)) 2Ly-D gy 1 p
= (3 o(5-(3) )=

+ inf [exp(g 5U=0x) ]n(2N))
x€[627/T In(N),00) 2

- exp(ln(N)(l + % +p- 5x/2>)} TP/

on {2ENAT=1/4 < gy < py < 2UNTD/AT=1/4 A (N < N} for all N e {21, 22,
23 ...}. Finally, we obtain
(V) 57 N/2! 1d(N) 51 N/2!

17 1,k 2(171)751,1{ p
Z_szlg = = > e |
S NS SND?

1 p 52 2Ly-D g _
75 > (ﬁ .exp<5 NG ﬁln(5/4>>> _ 1)|y2@,ﬁl)’ S|P r(N) - TP

>r(N) TP/

on {2LNAT=V4 < 9y < py < 2ENHDAT=U4y A (N] < N} for all N e
{N2,2'N», 22N>, .. .}.

Finally, we analyze the behavior of the multilevel Monte Carlo Euler approxi-
mations on the events {fy < 2LV/AT=1/4 {0y < ny < 2UENED/AT=A ANy <
N} for N e {2!,2%,23,...}. Note that Lemma 4.5 and the inequality |£/¥| <
20=D/4T=1/4N on {N; < N} for all k € {1,2,...,%}, 1 €{0,1,...,1d(N)}
[see (44)] imply

1d(N) A N/2! 1d(N) 7 N/2!
2 o gk 2 20-1 glk
Do 2 = = D
1=0 N k=1 2 =1 N k=1 ?
1d(N) A N/2! 1d(N) A7 N/2!
2 20=1) glk 2 ol gk
=D M-S LD DD Db
=1 k=1 1=0 k=1
) )
1 iy, Ly=2 51 N/2 o sl d(N) 51 N/2 o sl
= = =Ly— =
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2EN=D LN /) 414552V )> 2, @=D/T)VAN | p
- N|y2(LN—1) Z } |
1d(N)
22l p
- Z Yo |
I=Ly—1

on {Oy < 2LNAT=1 Ny < ny < 2UENHD/AT=1/4M N (N < N} for all N €
(21,22,23, ...} and, applying Lemmas 4.8, 4.5, 4.4 and 4.2,

1d(N) 51 N/2! 1d(N) 1 N/2!

| &1,k (-1 1.k
Z Z’Zé Z Z|y§(l 1;5
=1

1/4 - Ly—2 4
> l (ZL_N) / \/5(5“"”2(” P Nx: (21);7/ N(p.5(2’>)
T NI\ T

1d(N)

=0
2.0l\P/4
e ( T >

I=Ly—1

>N-lr—r/4 -exp<§ .5(1—5)2(LN—1)> _ LN(

(2 . 21d(N)>p/4

2(Ln—=2) )P/4N(p.5(2(LN2>))
—1d(N)

on {Oy < 2INAT=1/3 N {oy < ny < 2UNHDAT=1/4 A (N| < N} for all N €
{21, 22 23 . .}. Therefore, we obtain

(V) 57 Ny2! . lk Id(N) 51 N2

2y lez -2 N Zlﬁffllf”&lk
=1

>N-lr—r/4. exp(2 5(1-86)20N - ”)

— Id(N)NP/AT—P/%. N(P-5(2(LN72)))

o (2"

=T eXp( 5=t 1n(N)>_T—P/4.N(1+P/4+p~5(2(LN2)))
2
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on {Oy < 2ENAT=UH N {oy < ny < 2ENTD/AT=1/4y A {N| < N} and hence,
using 2D > 52/T In(N) on {N| < N},

1d(N) 1 N/2! 1d(N) 51 Ny2!

l’ 1.k 2(/—1)’%-[,/( p
Z_Zb’zls |p_Z_Z|y<l—l> |
- Nio 2 N = 2

=1

> inf |:exp(£ 5= _ 1n(2N))
x€[62/T In(N),00) 2
(76)

— exp(ln(N)(l + g +p- 5x/2>):| .7 P/

=r(N)- T~ P/*

on {Oy < 2ENAT=1H Ny < ny < 2ENED/AT=I/H N (N < N} for all N €
{21,22,23, ...
Combining (63), (70), (75) and (76) then shows

(V) 57 Ny2! 1d(N) 51 Ny2!

I gl 20-1) gl
Z_Zb’zls 7= = > |
i N =2

=1

(77) >r(N) T P/*

on {N; < N} forall N € {N,, 21Ny, 22N, .. .}. Equation (39) and inequality (77)
imply

IO Lok ) o1 /2 2 1.k 20-D 1 &
‘N 2 @+ Y N Y (@) = Y @)])
k=1 I=1 k=1
1d(N) A7 N/2! 1d(N) A N/2!
2 1 £lk 2 (1) glk
(78) = Z N Z |y§1’é (w)|p - Z N Z |)’§(171)’S (w)|p
1=0 k=1 =1 k=1

>r(N)- TP/

forall N € {N;(w),2' - Nj(w), 2% Ni(w), ...} N[N3, 00) and all @ € {N; < oo}.
The fact limp _, oo ¥ (V) = o0 therefore shows
lim

L& Lok
Jim 12 1 @)
d(N)eN' k=1

(79)
1d(N) ol N/2!

1 ((E))]
+ Y S @) - v @)
=1 N k=1

for all w € {N] < 00}. Hence, Lemma 4.9 finally yields

=00

L o SN2 20-1 1
(30) Nh_)moo NZ}YI’ P+ Z N Z(}Yzl” |p_|Y2<l—1)” ”)
e k=1 = Yz

=0
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P-almost surely. This completes the proof of Theorem 4.1. [J

5. Divergence of the multilevel Monte Carlo Euler method. Motivated by
Figure 4 below and by the divergence result of the multilevel Monte Carlo Eu-
ler method in Section 4, we conjecture in this section that the multilevel Monte
Carlo Euler method diverges with probability one whenever one of the coeffi-
cients of the SDE grows superlinearly; see Conjecture 5.1. Whereas divergence
with probability one seems to be quite difficult to establish, strong divergence is
a rather immediate consequence of the divergence of the Euler method in The-
orem 2.1 above. We derive this strong divergence in Corollary 5.2 below. For
practical simulations the much more important question is, however, consistency
and inconsistency, respectively; see, for example, Nikulin [37], Cramér [2], Ap-
pendix A.1 in Glasserman [10] and also Theorem 4.1 above and Conjecture 5.1
below.

Throughout this section assume that the following setting is fulfilled. Let T €
(0, 00), let (€2, F, IP) be a probability space with a normal filtration (F;);¢[0,7], let
WLk 10, TIxQ —> R, € Np, k € N, be a family of independent one-dimensional
standard (F;);c[0,77-Brownian motions and let gk Q >R, 1eNy, keN,bea
family of independent identically distributed Fy/B(R)-measurable mappings with
E[|§0’1|P] < oo forall p € [1, 00). Moreover, let i, 0 : R — R be two continuous
mappings such that there exists a predictable stochastic process X : [0, T]x Q — R
which satisfies [OT | (Xs)| + o (Xs)|?ds < oo P-almost surely and

t t
(81) x,:s°’1+f0 ,u(Xs)ds+/0 o (Xy)dwo!

P-almost surely for all ¢ € [0, T]. The drift coefficient p is the infinitesimal
mean of the process X and the diffusion coefficient ¢ is the infinitesimal stan-
dard deviation of the process X. We then define a family of Euler approximations
YNIE Q>R ne{0,1,...,N}, NeN,leNg, keN,by ¥Y''*:= gk and

N.Lk T 1,k 1k
Y, = YRR (YR - N +o (Y. (W(n+1)T/N - WnT/N)

forallne{0,1,...,N—1}, NeN,l e Npandall k € N.

CONJECTURE 5.1 (Divergence with probability one of the multilevel Monte
Carlo Euler method). Assume that the above setting is fulfilled and let «, c €
(1, 00) be real numbers such that @ < |u@)| + lox)| <cl|x| for all x € R
with |x| > c. Moreover, assume that Plo (€ 0.1y # 0] > 0 or that there exists a real
number B € (1, 00) such that IP’[lSO’lI >x]> ,B(_xﬁ)for all x € [1, 00). Moreover,
let f:R— R be B(R)/B(R)-measurable with 1|x|'/¢ — ¢ < f(x) < c(1 + |x[°)
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for all x € R. Then we conjecture

lim |E[f(X7)]
N—o0
1d(N)eN

(82

Y y-0%) ) o1 (N2 2’lk 20k
I = 3 T - 03 ) <
N3 =1

P-almost surely.

To support this conjecture, we ran simulations for the stochastic Ginzburg—
Landau equation given by the solution (X;);¢[0,1] of

(83) dX,=(2X, — X2)dt +2X,dW;, Xo=1

for all ¢ € [0, 1]. Its solution is known explicitly (e.g., Section 4.4 in [27]) and is
given by

exp(2W;)
J1+2 f3 exp(dWy) ds

(84) X, =

for t € [0, 1]. We used this explicit solution to compute E[(X1)?] ~ 0.8114. Fig-
ure 4 shows four sample paths of the approximation error of the multilevel Monte
Carlo Euler method for the Ginzburg—Landau equation (83). Only finite values of
the sample paths are plotted. The next corollary is an immediate consequence of
Theorem 2.1 above.

COROLLARY 5.2 (Strong divergence of the multilevel Monte Carlo Euler
method). Assume that the above setting is fulfilled and let o, c € (1, 00) be real
numbers such that @ < |ux)|+lox)| <clx|€ forall x € R with |x| > ¢. More-
over, assume that P[o (€%1) # 0] > 0 or that there exists a real number B € (1, 00)
such that P! > x1> B for all x € [1, 00). Additionally, let f:R — R be
B(R)/B(R)-measurable with %|x|1/c —c< f(x) <c(+|x|) forall x € R. Then
we obtain

N
lim EH [F (X)) = — 32 £(r)-0%)
N—oo Nk:l
1d(N)eN
(85)

1d(N) A7 /N/2! p
2 lek p20 0Lk
Z (Zf - (2(1 n) =00
I=1

forall p €[1, 00).
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FI1G. 4.  Four sample paths of the approximation error of the multilevel Monte Carlo Euler approx-
imation for the Ginzburg—Landau equation (83).

PROOF. First of all, note that the assumption E[|%!|7] < oo for all p €
[1, 00), the continuity of u, o : R — R, the inequality |u(x)| 4 |o (x)] < c|x|¢ for
all x € R with |x| > ¢ and the estimate | f(x)| < c¢(1 4+ |x|¢) for all x € R imply
IE[|f(Y11\\,[’O’1)|] < oo for all N € N. Therefore, we obtain

y 0k ) o1 (N2 Zlk 201 1 k N,0,1
4 > 1 2 (X - o3 ) | <eoy )

for all N € {2!,22,23, .. }. The estimate f(x) > 1|x|!/¢ — ¢ for all x € R and
Theorem 2.1 hence give

10k kKN) N2 2 lk 20-D 1 k
lim IE|: Zf )+ Z (Z fy" —f(Yz(H)” )):|
=1

1, N,0,1(1/c _
z E(ngnooEHYN | ]) —c=00.
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In the case E[| f(X7)|] < 00, the triangle inequality and Jensen’s inequality then
yield

lim E[f(XT)]
N—o00
Id(N)eN
1 1d(N) 21

u IOk N2 2’1k 2“ D1k
I = (3 A0 - )

k:l =1

i Lok & N2 lek 20-D) 1 k
(86) Z/\}EnooE[ﬁZf(Ylw)_Z (Zf (2<1 1 )):|

1d(N)eN k=1 I=1

LP(S4R)

—E[|f(X1)]]
=

for all p € [1, 00). This shows (85) in the case E[|f(X7)|] < oo. In the case
E[| f(X7)|] = 0o, the estimate f(x) > —c for all x € R shows E[f(X7)] = o0
and this implies (85) in the case E[| f (X7)|] = oo. The proof of Corollary 5.2 is
thus completed. [J

6. Convergence of the multilevel Monte Carlo tamed Euler method. In
this section we combine the multilevel Monte Carlo method with a tamed Euler
method. We aim at path-dependent payoff functions. Therefore, we consider piece-
wise linear time interpolations of the numerical approximations, which have con-
tinuous sample paths and which are implementable. Theorem 6.1 shows that these
piecewise linear interpolations of the tamed Euler approximations converge in the
strong sense with the optimal convergence order according to Miiller-Gronbach’s
lower bound in the Lipschitz case in [36]. Theorem 6.2 then establishes almost
sure and strong convergence of the multilevel Monte Carlo method combined with
the tamed Euler method. The payoff function is allowed to depend on the whole
path. We assume the payoff function only to be locally Lipschitz continuous and
the local Lipschitz constant to grow at most polynomially.

Throughout this section assume that the following setting is fulfilled. Let T €
(0, 00), let (2, F,P) be a probability space with a normal filtration (F;):¢[0,7],
let d,m €N, let Wi :[0,T] x @ — R™, [ € Ny, k € N, be a family of inde-
pendent standard (F;)e0,77-Brownian motions and let 5”‘ ‘Q — R4, [ € Ny,
k € N, be a family of independent identically distributed Fy/B(R?)-measurable
mappings with E[[|£%!|2,] < oo for all p € [1, 00). Here and below we use the

Euclidean norm || x||g» := \/xlz —{—x% +---+x7 for all x = (x1, x2,...,x,) € R"
and all n € N. Moreover, let :RY — R be a continuously differentiable and
globally one-sided Lipschitz continuous function whose derivative grows at most
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polynomially and let o = (0j j)ic(1,2,....d}, je(1,2,...,m} ‘R4 — RI*M pe a globally
Lipschitz continuous function. More formally, suppose that there exists a real num-
ber ¢ € [0, 00) such that (x — y, £ (x) — w(¥))ga < cllx = Yligas I @)l gay <
c(1+ ||x||1‘§d) and [[o(x) — oWl n ray < cllx — yllge forall x, y € R?. Here
and below we use x| := (Zfl=1 Ixi1$)1/? and (x, y)ga 1= Zl‘.;lx,- - y; for all
x=(x1,x,..., %), y=01,...,Yd) € R4, Then consider the SDE

(87) dX; =pu(X)dt +oX)dw)',  Xo=¢

for t € [0, T]. Under the assumptions above, the SDE (87) is known to have a
unique solution. More formally, there exists an up to indistinguishability unique
adapted stochastic process X : [0, T] x  — R? with continuous sample paths ful-
filling

t t
(88) X ="+ [ ds+ [ ot awd

P-almost surely for all ¢ € [0, T']; see, for example, Theorem 2.4.1 in Mao [30].
The drift coefficient w is the infinitesimal mean of the process X and the dif-
fusion coefficient o is the infinitesimal standard deviation of the process X. In
the next step we define a family of tamed Euler approximations Y, Lk Q — RY,

ne{O,1,...,N},NeN,leNo,keN,byYév’lsk:gl,kand

N Lk Nk YN T/N
Yo=Y NIk
1+ |u(Yy ") - T/N||ga

Lk Lk
+ U(YnN’l’k)(W(n+1)T/N — Wyr/n)

forallne{0,1,..., N—1}, N e N,l € Ny and all k € N. In order to formulate our
convergence theorem for the multilevel Monte Carlo tamed Euler approximations,
we now introduce piecewise continuous time interpolations of the time discrete
numerical approximations (89). More formally, let YNLE 0, TIx Q—>RY, N e
N, I € Ny, k € N, be a family of stochastic processes with continuous sample paths
defined by

(89)

Nk uNik, E=nT/N) - Nk Nk
Y=Y, W(Yn+1 -Y,")

tN Nk INN N1k

forall # € (%, “£DT) ne{0,1,...,N -1}, NeN,l eNypand all k € N.

The following corollary is a direct consequence of Hutzenthaler, Jentzen and
Kloeden [23] and Miiller-Gronbach [36]; see also Ritter [38]. It asserts that the
piecewise linear approximations Y, N € N, converge in the strong sense to the

exact solution. The convergence order is % except for a logarithmic term.

(90)
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COROLLARY 6.1 (Strong convergence of the tamed Euler method). Assume
that the above setting is fulfilled. Then there exists a family R, € [0,00), p €
[1, 00), of real numbers such that

ALY 1/p V1+1d(N)
1) (IEL s[lépT]”X, 12]) " < Ry N

forall N e Nandall p e[l,0).

The convergence rate N —1/2(1 +1d(N))Y/? for N € N obtained in (91) is sharp
according to Miiller-Gronbach’s lower bound established in Theorem 3 in [36] in
the case of globally Lipschitz continuous coefficients; see also Hofmann, Miiller-
Gronbach and Ritter [18].

PROOF OF COROLLARY 6.1. Let YV :[0,T]x Q — R?, N € N, be stochastic
processes defined by

N,0,1
SN 01, m@,7)-(@t—nT/N) 0. 0.1
vV =y VOl — o (VYO (W = Wi y)
L+ |u¥n ") - T/Nllga
for all r € [1F, “+DT 5 € 0, 1,. — 1} and all N € N. Theorem 1.1 in [23]

then shows the existence of a famlly I? p €10,00), p €[l,00), of real num-

bers such that || sup, o7 1 X — ~tN||RdI|LP(Q;]R) < % for all N € N and all
p €[1, 00). The triangle inequality hence yields

| sup %, = 7V

1€[0,T] LP(S:R)

92)

YN N 0,1 H
R

for all N e Nand all p € [1, c0). Moreover, we have
”?tN YN 0! ”Rd
0,1 0,1
= o (O WP = Wi

tN 0,1 0,1
93) - (7 - n)O(Yano’])(W(n—H)T/N - WnT/N)

R4

0.1 0,1
<|o(vy )”L(R’" rey | Wi = Wor N

tN 0.1 0,1
- (7 - n)(W(n-H)T/N - WnT/N) -
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forall r € (%L, “*DT 1 € {0, 1,. — 1} and all N € N. Combining (92), (93)
and Holder’s 1nequahty then gives

” S[ISPT] ” X; — ”Rd HLP(Q R)

Ep
< £+
VN

> 0,1

max sup H wo
n€f0,1,...N=1} te[nT/N,(n+1)T/N]

tN 0.1 0.1
- (7 - n)(W(n—H)T/N — W7 /)

0,1
- WnT/N

(94)

<—+/ .
MeN

max sup |B;' —1- B
ne{l,2,...N}elo, 1]| ' :

R™ I L2P (Q;R)

max V0 + o O] 1 e o)

nef0,1,. L2 (;R)

X

L2P(;R)

forall N € Nandall p € [1, 0o) where 8" :[0, 1] x 2 — R, n € N, is a sequence of
independent one-dimensional standard Brownian motions. Moreover, Theorem 1.1
in [23], in particular, implies

(95) sup
MeN

max [y MO0,

<0
ne{0,1,...,M} LP(2;R)

for all p € [1, o0). Additionally, Corollary 2 in Miiller-Gronbach [36] (see also
Ritter [38]) shows
1/2

96) sup ((1+1d(N))~
NeN

max sup |B —t- B}

) <o
ne{0,1,.. N}IE[O 1] LP(Q2;R)

for all p € [1, 0c0). Combining (94), (95) and (96) finally completes the proof of
Corollary 6.1. [J

PROPOSITION 6.2 (Strong consistency, converence with probability one and
strong convergence of the multilevel Monte Carlo tamed Euler method). Assume
that the above setting is fulfilled, let ¢ € [0, 00) and let f:C([0, T], RY) —> R
be a function from the space of continuous functions C ([0, T1, R?) into the real
numbers R satisfying

| f) - f(w)HC([O,T],]Rd)

C(l + ”v”E([O,T],]Rd) + ||w”CC"([O’T]’Rd))”U - w”C([O,T]’]Rd)
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forall v,w e C(]0, T], R?). Then there exists a family C), € [0, 00), p €[1, 00),
of real numbers such that

| N (V) 51 N/2! ; ) P\ l/p
(98) __Zf(y]()k Z (nyZlk ( 2 lk))‘ :|>
Nk:l =1
3/2
¢, (1 +1d(N))

JN

for all N € {21,2%,23, ..} and all p €[l,00). In pamcular there are finite
F/B([0, 00))- measurable mappings Cg Q — [0, 00), ¢ € (0, 2) such that

A 1d(N) 51 Ny2! l )
E[f(X)] N Z f(Yl’O’k) Z (Z f Y2 lk (YZ ,l,k)>‘
(99) ) k=1 =1
Ce
< —_—
= N1/2-¢)

forall N e Nandall € € (0, %) P-almost surely.

The convergence rate N~ '/2(1 4-1d(N))3/? for N € N obtained in (98) is the
same as in Remark 8 in Creutzig et al. [3]. For numerical approximation results
for SDEs with globally Lipschitz continuous coefficients but under less restric-
tive smoothness assumption on the payoff function, the reader is referred to Giles,
Higham and Mao [9] and Dérsek and Teichmann [5]. Moreover, numerical ap-
proximation results for SDEs with nonglobally Lipschitz continuous and at most
linearly growing coefficients can be found in Yan [43], for instance.

PROOF OF PROPOSITION 6.2. The triangle inequality gives
1d(N) <N/2’

N
HE[f(X)] - % Z f(Yl’O’k) Z Z f Y2’ I, k ( 2(1 1) A, k))
k=1

=1 LP(Q:R)
< [E[fX)]-E[f (V)] |_|_ FIION] — f(PLOK)
k=1 LP(%R)
1d(N) 51 N/2! 1 .
+ Z Z Y2 ’O’])] _E[f(yz ,0,])]
k=1

f(Y2 lk)+f( 2<’ '>11<))

LP(;R)
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forall N € {21, 2223, .. .} and all p € [1, c0) and the Burkholder—Davis—Gundy
inequality in Theorem 6.3.10 in Stroock [39] shows the existence of real numbers
K, €[0,00), p € [1, 00), such that

1d(N) 5 (N/zl

N
H f(X) IZfYIOk Z ny2llk ( 2<1 1>lk)>
N4

=1

LP(2;R)

E[lf O — £+ ﬁ\\ﬁ[f(fl’o’l)] ~ O] Lumy

W) 5172 g

+l§ﬁ

2|E[f (¥ ON] —E[£ (7201

— 5l —A(—1)
— 2O+ r (72 ’O’I)HLP(Q;R)

for all N € {21,2%2,23,...} and all p € [1,00). In the next step estimate (97),
Holder’s inequality and the triangle inequality show

1d(N) 51 (N/zl

N
H]E[f(X)] - % Z f(?l’o’k) Z Z f Yzl 1, k ( 2(1 1) A, k))
k=1

=1

LP(2;R)

0,1
<c(l+ ”X”cLzC(Q;C([O,T],Rd)) + v ||L2C(Q;C([O,T],Rd)))

- 2K -
<X =YY b geqorirey + T;Hf(yl’o’l)”LP(Q;R)
N ld(ZN) 2(1/2+1)Kp
= YN

and Corollary 6.1 and again estimate (97) hence give

=5l -1
f(Yz ’O’l)_f(Yz OI)HLP(Q R)’

1d(N) ol (N /2!

N
E[f(X)] - i Z f(f’l’o’k) Z Z f YZI ) k (Y2<’*”,l,k)
= I=1
JT+1dN)

< 2cR2(1 + EZ%H?M’O’I HCLZc(Q;C([O,T],Rd))> JN

LP(2:R)

2K -
+ TA’;Hf(YLO’I)HLP(Q;R)

W) 5(1/242) . ¢

+ P14 sup [YMOLC,,. .
; i ( MeNH I 2re e cto.71R)

— Al =H(-1)
x |y*01 —y? ’0’1||L2p(Q;C([0,TLRd))
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for all N € {21, 2223, .. .} and all p € [1,00). The triangle inequality, again
Corollary 6.1 and the estimate || f(v)|l¢(0,71.re) < 2¢ + [1F O)llco.71.re)) (A +

||v||§§(+[0”” gay) for all v € C([0, T1, RY) then yield

1 N 1d(N) 2 N/2! ] .
k=1

=1 LP(;R)
- /1 +1d(N)
<2cRy(1+ sup yMote, o =
( MEN“ 72 (Q,C([O,T],Rd))> VN
> +1
+2K,(2c+ || £(0) ”C([O,T],Rd))(l +[rho! H(Lcﬁ<f+)1>(sz c([0,T], Rd)))\/T
5M,0,1 ¢
+ CKpR2p<1 + Asllle%” Y ” LZPC(Q;C([O,T],Rd))>
1d(N) 20/243) /1 +1d(2h)
x (-D/2 /N
= 2 N
and finally
1Y 0y @ o1 N2 2 Lky 201 k
H [FX] =5 2 = 3 (ZfY Y ”))
k=1 =1 LP(Q2;R)

) (14 1d(N))3/?
< 26R2<1 + Ailé%” yMol ||CL2C(Q;C([0,T],Rd))> T

> 1
+ 2KP(2C + ”f(()) ”C([O,T],Rd))(1 + ”YLQ1 H(chj(_cll)(g;c([()’]‘],Rd)))

y (1 +1d(N))3/?
VN

. (1+1d(N))*/2
+ 12cKpR2p<1 + ;Il;%“YM,O,l HEZI’C(Q;C([O,T],REI))>—

VN

for all N e {2',22,23,...} and all p € [1, c0). This shows (98). Inequality (99)
then immediately follows from Lemma 2.1 in Kloeden und Neuenkirch [26]. This
completes the proof of Proposition 6.2. [J

It is well known that the multilevel Monte Carlo method combined with the
(fully) implicit Euler method converges too. The following simulation indicates
that this multilevel Monte Carlo implicit Euler method is considerably slower than
the multilevel Monte Carlo tamed Euler method. We choose a multi-dimensional
Langevin equation as an example. More precisely, we consider the motion of a
Brownian particle of unit mass in the d-dimensional potential £||x||4 — %||x||2,
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Langevin equation with additive noise

10" ¢
-1

10

-2

| '@ Multilevel Monte Carlo implicit Euler
10" f| —e— Multilevel Monte Carlo tamed Euler
i1 Order line 1/2

Root mean square approximation error

1 1

-2

10 10° 10° 10
Runtime in seconds

FIG.5. Root mean square approximation error for the uniform second moment E[sup; (o, 17 | X1 ||2]
of the exact solution of (100) as function of the runtime both for the multilevel Monte Carlo implicit
Euler method and for the multilevel Monte Carlo tamed Euler method.

x € R?, with d = 10. The corresponding force on the particle is then x — [|x||? - x
for x € R4, More formally, let T =1, m =d =10, £ = (0,0,...,0), u(x) =
x — ||lx||> - x, for all x € R, and let o (x) = I be the identity matrix for all x € R?.
Thus the SDE (87) reduces to the Langevin equation

(100) dX, = (X, — | X, 2- X)) di +dWD', Xo=¢
for ¢ e~[0, 1]. Then the implicit Euler scheme for the SDEN(IOO) is given by map-
pings ?,7:9—) RY. ne {0,1,..., N}, N € N, satisfying fév =& and

= 4 T 4 = =
oy vy, =vy+ N VT VA e Y+ (W(()r;-]&-l)T/N - Wr?’T]/N)
foralln €{0,1,..., N — 1} and all N € N. Note that we used the MATLAB func-
tion fsolve(. ..) in our implementation of the implicit Euler scheme (101).
Figure 5 displays the root mean square approximation error of the mul-
tilevel Monte Carlo implicit Euler method for the uniform second moment
E[sup;epo, 17 11 X+ 2] of the exact solution of (100) as function of the runtime when

N € (23,25, ...,2'8}. In addition Figure 5 shows the root mean square approxi-
mation error of the multilevel Monte Carlo tamed Euler method for the uniform
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second moment E[sup,e[m] X, ||2] of the exact solution of (100) as function of
the runtime when N € {25, 200 ..., 225}. We see that both numerical approxima-
tions of the SDE (100) apparantly converge with rate close to % Moreover the
multilevel Monte Carlo implicit Euler method was considerably slower than the
multilevel Monte Carlo tamed Euler method. This is presumably due to the addi-
tional computational effort which is required to determine the zero of a nonlinear
equation in each time step of the implicit Euler method (101). More results on
implicit numerical methods for SDEs can be found in [17, 19, 31, 32, 40-42], for
instance.

APPENDIX: PROOF OF LEMMA 4.9

Before the proof of Lemma 4.9 is presented, a few auxiliary results (Lem-
mas A.1-A.5) are established.

LEMMA A.1. Assume that the setting described in Sections 4 and 4.2 is ful-
filled. Then we have

0
(102) > P[AS)] < oo
n=1
PROOF. The definition (40) of Ly, N € {2!,22,23, ...}, and independence of
gLk 1 e Ny, k € N, imply

N
PAD] = p[w €N, [21d(52T"2In(N)) | <1 <1d(N) Vk € {1’ 2 ?} :

£k < 21/4T—1/4]

1d(N) N/2!

— 1_[ 1_[ ]P)H;g_l,k| S21/4T—1/4]

I=(21d(62V/T In(N))] k=1

1d(N) N/ZI
_ 1—[ (PHSO,1’ < 21/4T—1/4])
[=|21d(52/T In(N))
1d(N) 1
_ 1—[ (1— P[5‘1{§0*1| - 21/45—1T—1/4])N/2

1=|21d(52v/T In(N))]
for all N € {Ny, 2! No, 2°Np, . ..}. The inequality
Pl %! > x] =2 P[61e%! > x]

(103) 2/00 Ly >2/x L ey
= e e
X A/ 27 Y= X A/ 2 Y
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2 3 =322/ - * /3 —(3/4)x*
X = —xle = (V3= V2)e ¥/
\/27r< \/g ) ﬁ( )

>
_ 2
JT(/3+42) 76
for all x € [0, oo) therefore yields
1d(N) 1/4 1/2 N/2!
12 3 2
Pl < 1 . <__. ))
[AN] = [ 6614 “P\74 2T

1=[21d(52/T In(N)) |
2121d(G VT In(N))] /4

3. 2121d@2VTIn(N))J/2 \ N/21219C7VTIn0)]
con( =)

| 3.2[21d@E*VT In(N))]/2
65T 1/% 'eXp<_ 452JT >)

1 3. 2ld@*VT In(N))
<{1-—". —
—< 65 T1/4 exP( 462JT ))

N /21214G VT In(N)))

(104)
N /21214G2VT In(N)))

N/221d(52«/71n(N))

1 exp<_3 -62ﬁ1n(N)>>
452T

N /2140 VT In(N))?)

65 T1/4"

1 3

1 N/(G2VT In(N))?
=(1——— N3
665 T1/4

forall N € {No, 2! Ny, 22Ny, ...}. Next we estimate 1 —x < exp(—x) forall x € R
to get

o0
1 1 1
YoBA]= Y PIAYI+ Y Pl4Y]
n=1 Ne(21,22,23,..} Ne(21,22,23,...}
N<Ny N=>Ny

1 3
-3/
<No+ > (1 — AN
Ne(21,22,23,..}
N=>Ny

4) N/(&2J/TIn(N))?
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o0
1 —3/4
<No+ Y_ [exp(—65T1/4 N /)}

N=Ny

N/(@G2VT In(N))?

9] N1/4
= N — .
ot &, <o~ <

This completes the proof of Lemma A.1. [J

LEMMA A.2. Assume that the setting described in Sections 4 and 4.2 is ful-
filled. Then we have

(105) 3 P[AS)] < oo

n=1

PROOF. Subadditivity of the probability measure P and the inequality
Plo— g% > x] < %exp(—%) for all x € (0,00) (e.g., Lemma 22.2 in [25])
imply

> N
IP[A})]:IP[HZe {0,1,2,...,1d(N)} Tk e {1,2,..., ?}:

£k > 2(1_1)/4T_1/4N}

1d(N) N/2!

< Z Z P[Ez,k{ > 2(1*1)/4T’1/4N]
1=0 k=1
dN) p

_ Z a .PHSO,I{ > 2(1’1)/4T’1/4N]
1=0 2

(106)

2(=1)/4 N
_ Nl =—11£0.1
ek P[“ 1= }

AN) o G174 2(=1)/2 p2
= g o HU-DjAN eXp<_ 252T1/2 )

=X >—17/4 P\ “o=a712

AN = 71/4 < 2—1/2N2>
1=0

N?
_ —~1/471/4 I\
= (ld(N)+1)62"/*T exp< 23/262T1/2>
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forall N € {21, 2223 .. .}. Summing over N € {21, 2223 .. .} results in

Z]P’ [AS)]

n=1

(107) 5
N
< Z (ld(N) + 1)0_'21/4T1/4 CXP(—W> < 00,
2325211/
Ne(21,22,23,...}

and this completes the proof of Lemma A.2. [

LEMMA A.3. Let (2, F,P) be a probability space, and let Z:2 — R be a
standard normally distributed F | B(R)-measurable mapping. Then

(108) P[|Z] <x +y||Z| = x] < 5xy
for all x €[}, 00) and all y € [0, c0).
PROOF. Monotonicity of the exponential function yields

Plx<|Z|<x+y]=2-Plx<Z <x+y]

(109)
_ 2/ YL 2y e
x \/2 W27
for all x,y € [0,00). Apply the standard estimate P[|Z| > x] > ; jfo%

exp(— 2) for all x € (0, 00) (e.g., Lemma 22.2 in [25]), inequality (109) and

1+ T3 forallxe[z,oo)toget

Plx <|Z| <x+y]
P[|Z] > x]
(2//27)ye 12
T (/1 +x2))(2//27) exp(—x2/2)

_
BT

P[IZ| <x+yllZ| > x] =

forall x € [%, oo) and all y € [0, 00). This completes the proof of Lemma A.3. [

LEMMA A.4. Assume that the setting described in Sections 4 and 4.2 is ful-
filled. Then we have

(110) Y P[AS)] < 00
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PROOF. Let K :Ny x Ny x Q — N U {oo} be defined as
(111) K (v,1) ;= min({k € N: [g"¥| = 2//4T7 714} U {00})
for all v,/ € Np. Inserting definition (45) we get

P[AQ ] =P[3 €N, |21d(3%T"2In(N)) | <1 <1d(N) +1:

ATV <y < 2AT1A(1 4 502070y

1d(N)+1 .
< Z P[21/4T_1/4§77N <2z/4T—1/4(1+5(—a-2 ))]
1=|21d(62V/T In(N))]
1d(N)+1
< 3 P[3ve(1,2,...,1dm)} 214

1=[21d(52/T In(N))

112 < vk| _ol/4p—1/4(1 (—5.20-1)
( ) - ke{l,gl.?.?(N/zv}{g | < ( +5 )]

1d(N)+1 1d(N)

< 3 Z]P’HEIke{1,._,,;\7_0}:|;§v,k|221/4T_1/4}

I1=[21d(52/T In(N))] V=1
N _
N {Vk c {1’ o 5} . |$U,k| < 21/4T*1/4(1 + 5(*3-2(1 1)))}:|

1d(N)+1 1d(N)

= > yrlfken=g]

1=121d(52V/T In(N))] v=1
N {|§-U,K(v,l)| <2l/4T*1/4(1 +5(5,2(11>))}}

for all N € {Ny, 2! No, 2> Ny, . ..}. The method of rejection sampling hence results
in

1d(N)+1 1d(N)

P[AY] < ) S P[[gvKED| < olAT1A () 453200,
1=[21d(52V/T In(N))] V=1
K(v,1) < 0]
1d(N)+1 1d(N)
= > S OP[E0Y < 24T A (14502

1=[21d(G2/T In(N)) | v=1

(113) |€0,1| Z21/4]«71/4]
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1d(N)+1 1/4 (=8:2071)
251 +5
= X 1d<N>-P[\c‘r‘ls°’1\ <= o :
[=|21d(524/T In(N)) | ’
21/4
—_140,1
[z |25T1/4]

for all N € {Ny, 21Ny, 22Ny, . . .}. In order to apply Lemma A.3, we note that
ol/4 2|_21d(62ﬁln(N))J/4 2(21d(&2ﬁ1n(N))—1)/4

oTI/A4 = oT1/4 = oT1/A4
21d(52ﬁ1n(N))/2
(114) T T ST/l
_ YeXWTIn(N)  /In(N) _ VI _ 1
T oTVUA/4 T al/A = 9l/4 T o

foralll e NN[[21d(G2T/?In(N))], o0) andall N € {2!,2%2,23,...}. Lemma A.3
applied to the standard normally distributed variable 5 ~1£%! thus leads to

i ld(NV)+1 1/4 1/4  g(—8-20-D)
2 2% .5
(3)
]P’[AN]Sld(N) E 5'6T1/4 . ST/ }
L1=|21d(62+/T In(N)) |
_ 1d(N)+1 21/2 —6/220)
=1d(N) E 5. Erays -5 }
L1=|21d(62+/T In(N)) |
r 1d(N)+1 1d(N)+1) 3
2 _ 1dGE 2T In(N))—1)
Lo s(=8/22 )
(115) <Id(N) E 5 Sa7i2 5 }

Li=(21d(52/T In(N)) |

2 10N —5§/4- =2 T In(N 2
< (1d(N))* - Py . §(=8/4-@>VT In(N))*)
=g 4

for all N € {No, 2! No, 22Ny, ...}. Summing over N € {2!,22,23 ..} results in
o0
3 3 3

SPAR]= > BAP]+ X AR
n=1

Ne{21,2223, .} Ne{21,2223 .}
N <Ny N>Nyp

10N (_ 864T(ln(N))2)

(116)

o

10 4

A (3=864T In(N)/4)

=No+ ) =5 N < 00.
N=Ny

This completes the proof of Lemma A.4. [J
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LEMMA A.5. Assume that the setting described in Sections 4 and 4.2 is ful-
filled. Then we have

(117) S P[AS)] < oo

PROOF. First of all, define a filtration .7:"ZN, 1€{0,1,...,1d(N) — 1}, through
(118) FY :=o0q(t"*, keN,ve {IldN) =L IdN) =1 +1,...,1d(N)})

for all [ € {0,1,...,1d(N) — 1} and every N e {2',22,23,...} where oq(-) de-
notes the smallest sigma-algebra generated by its argument. Moreover, define
an F/B(R)-measurable mapping ZN :Q2—{0,1,...,1d(N) — 1} through ZN =
Id(N) — Ly forevery N € (21,22,23,...}. Next observe that the identity

=1d(N) —

=1d(N) —max({l}U {l e{l,2,....1d(N)}:
Tk {1,2,..., %} g > 21/4T_1/4}>

=min({ld(N) —1}u {z €{0,1,...,1d(N) — 1}:

dk 1,2 N :
(S , ,...,W .

1)Lk 2(ld(N)—l)/4T—l/4})

for every N € {2~1, 22,23,...} shows that Ly is a stopping time with respect
to the filtration FV, I € {0,1,...,1d(N) — 1}, for every N e {2!,22,23 ..},
Consequently, the sigma-algebras .7:"£/ ={AeF:(Vl€{0,1,...,1d(N)}: AN
N
{Ly =1} € FV)) for N € {2!,22,23, ...} are well-defined. By definition (118)
the random variables £4¥ 1 k e N, are independent of ]:"év for every N €
N
(21,2223, ...}. Indeed, observe that (118) shows that

1d(N)—1
P[{glv—1k e A Z Pl{efv—1 R e Al n BN {Ly =1}]
1d(N)—1 3
(119) = > PHgMMTR e Ay (BN{Ly =1})]
1=0 PV

eFN
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1d(N)—1
= > PN Al P[BN{Ly =1}]
=0
1d(N)—1
=P[e% e A]( Y P[BN{Ly :1}])
=0

=P[e"! € A]-P[B]

forall A € B(R), B € f-g ,keNandall N € {2!,22,23,...}. Next we note that
N

ny 2 — [0, 00) is ]}g’ /B(R)-measurable for every N € {21, 22 23 .. .}. Indeed,
N
observe that

oy <edN{Ly =1}

= {max{{éLN’k| eR:ke {122%” <c}m{ZN=1}
(120) N
= {max{|§ld(N)_l’k\ eR:ke {1,2,...,W” <c}ﬂ@=l}

eFN

eFN
e FN
forallceR,1€{0,1,...,1d(N) — 1} and all N € {2!,22,23,...}. In the next

step we observe that (119), ~(120), the fact that Ly:Q — {1,2,...,1d(N)} is
measurable with respect to F év for all N € {21, 22 23 . .} and the inequality
N

P[1E%Y — x| < e] < P[|EY!| < 2¢] <2e6~! for all x € R and all € € (0, c0)
show

_2(Ly=D — _ ~
P[0y — ny| <43 D20 mDAT AN EY ]

SIP’[EIke {12%}
g1k — | < 4(—2<LN—1>)2(LN—1)/4T_1/4N|j:_£,N]
(121) N/@END) L ~
< kg P[50 1K) — | <42 )2(LN_1)/4T‘1/4N|f£VN]
N

_oLy-D _ B -
= sy ElIE [ = nw| <472 Data b= £

2
B R BV G i DY S Vs i 2N
—20n-D = 5T 1/4202N)
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P-almost surely for all N e {2',22,23,...}. Now we apply inequality (121) to
obtain

4 2 1
[ ( ) ( ( )) ( ( ))C]
<P[{Iny — x| <47 Dy} 0 fny < 2B AT ANY A (A) ]
(122) <P[{lny —6n| <42 2V DATANY A (AD)]
=E[1

(Ly—=D
e Ellny —6y] <4C2 D20V DAT N EY ]

< E|:]l M - 271\]2}
(AN FT1/492EN)
forall N € {21, 22 23 . .}. Next we observe that
oLy > 2L21d(52T1/21n(N))J - 2(21d(&2T1/21n(N))—1)

(123)
= 1 Q@00 _ 1547 (In(N))>

on (AY)¢ forall N e {21,22,23, .. }. Inserting (123) into (122) results in

4AN? }
& T 1/42((1/2)64T (In(N))?)

PAY 0 (A0) N (40) ] < B[,

2N? In(2) _

_ 251 T_1/4N(2—1n(2)&4Tln(N)/Z)

(124)

A

for all N € {2',22,23,...}. Combining (124), Lemmas A.1 and A.2 then shows

o0

4 4 2 D¢

ZP [AS] = D" P[AS) N (AS)° N (A5))]
n=1

4 2 Dyeve
+ZP [AS) N ((AS) N (AS))]

IA
Mg

(125) P[ASY N (AD) N (AD) ] + Z]P’ AP U A
n=1 n=1
- 4 1 4T1
< Z 45'_1T_1/ N(2— n(2)c"T In(N)/2)
N=1
> 2 > 1
+Y PIAS]+ Y PlAS)] < 00
n=1 n=1

This completes the proof of Lemma A.5. [
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We now present the proof of Lemma 4.9. It makes use of Lemmas A.1-A.5
above.

PROOF OF LEMMA 4.9. Combining the subadditivity of the probability mea-
sure P and Lemmas A.1, A.2, A.4 and A.5 shows

ZP (AD UAD UAD LAY

(126) n=t

<Z]P’ [AS)] +Z]P’ [AS)] +Z]P’ [AS)] +Z]P’ [AS)] <

The lemma of Borel—Cantelh (e.g. Theorem 2.7 in [25]) therefore implies
(127) P[limsup(A5’ U AS U AT U AS) | =0.
n—oo

Hence, we obtain

P[N; < 00] = ]P’Ha) € Q:3n e Ny, 2' No, 2% Ny, ...} :

4
Vm e {n,21n,22n,...}:a)¢ UA,(,;)”

i=1
(128) :]P’[{weQ:HneN:Vme{n,n—l—l,...}:
= ]P’[liminf(A(l) U A@) U A(3) U A" ] =1
n—oo
This completes the proof of Lemma 4.9. [
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