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WEAK APPROXIMATIONS FOR WIENER FUNCTIONALS

BY DORIVAL LEÃO AND ALBERTO OHASHI1

Universidade de São Paulo, and Universidade Federal da Paraiba
and Insper Institute

In this paper we introduce a simple space-filtration discretization scheme
on Wiener space which allows us to study weak decompositions and smooth
explicit approximations for a large class of Wiener functionals. We show
that any Wiener functional has an underlying robust semimartingale skele-
ton which under mild conditions converges to it. The discretization is given
in terms of discrete-jumping filtrations which allow us to approximate nons-
mooth processes by means of a stochastic derivative operator on the Wiener
space. As a by-product, we provide a robust semimartingale approximation
for weak Dirichlet-type processes.

The underlying semimartingale skeleton is intrinsically constructed in
such way that all the relevant structure is amenable to a robust numerical
scheme. In order to illustrate the results, we provide an easily implementable
approximation scheme for the classical Clark–Ocone formula in full general-
ity. Unlike in previous works, our methodology does not assume an underly-
ing Markovian structure and does not require Malliavin weights. We conclude
by proposing a method that enables us to compute optimal stopping times
for possibly non-Markovian systems arising, for example, from the fractional
Brownian motion.

1. Introduction. Discretization methods for stochastic systems have always
been a topic of great interest in stochastic analysis and its applications. Since the
pioneering work of Wong and Zakai we know that not every choice of discretiza-
tion procedure leads to good stability properties of elementary processes such as
Itô integrals and related stochastic equations. See, for example, the works [3, 12,
25, 28, 33] and other references therein.

In order to get those convergence results, one has to assume suitable compact-
ness arguments which allow one to exchange the limits. On the one hand, one may
interpret such assumptions as simple technical arguments imposed on the system
to get the desirable robustness. On the other hand, Graversen and Rao [22] have
shown a close relation between finite energy and the existence of Doob–Meyer-
type decompositions. More recently, Coquet et al. [10] has proved the uniqueness
of such decompositions by means of the so-called weak Dirichlet processes.

The classical Graversen–Rao theorem can be proved by means of compact-
ness arguments on predictable compensators of simple time-discretizations of the
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original process. In general, approximating sequences arising from such compact-
ness arguments are not intrinsically constructed and are not suitable for numerical
schemes in nonstandard cases arising from non-Markovian and nonsemimartingale
systems.

The primary goal of this work is to describe readable structural conditions on a
given optional process adapted to the Brownian filtration (henceforth abbreviated
by Wiener functional) so that one can construct an explicit, robust and feasible
approximating skeleton of smooth semimartingales. In order to illustrate the basic
idea, let us assume that a Wiener functional X has an abstract representation

Xt = X0 +
∫ t

0
Hs dBs + Nt,(1.1)

where B is the standard Brownian motion under its natural filtration F, N can be
a nonsemimartingale F-optional process and H is a progressive process which is
completely unknown a priori. The main problem addressed in this paper is the fol-
lowing one: Construct an explicit and simple sequence of Fk-special semimartin-
gales given by

Xk = X0 +
∫

Hk dAk + Nk, Fk ⊂ F,

where Hk is fully based on the information generated by the pair (X,B) such that

Hk → H, Ak → B,

∫
Hk dAk →

∫
H dB,

(1.2)
Nk → N, Fk → F as k → ∞.

The main difficulty in answering this question comes from the fact that when
X is very rough, the joint convergence of (Hk,

∫
Hk dAk) to (H,

∫
H dB) in gen-

eral will not hold since H has no a priori path regularity. Similarly, N can be very
irregular in such a way that Nk → N will not hold either. A similar type of prob-
lem was addressed by Jacod, Meleard and Protter [25] in a pure martingale and
Markovian setup at a fixed terminal time 0 < T ≤ ∞. In [25], they have provided
reasonable explicit expressions for Hk when B and N are replaced by orthogonal
square-integrable martingales w.r.t. an arbitrary filtration. More explicit expres-
sions were obtained by imposing an underlying Markovian structure. In this paper,
we are interested in somehow more irregular objects arising from non-Markovian
and nonsemimartingale systems restricted to the Wiener space.

In order to study Wiener functionals of type (1.1), an abstract theory is devel-
oped based on an underlying smooth semimartingale skeleton induced by a suit-
able sequence of stopping times which measures the instants when the Brownian
motion hits some a priori levels. More precisely, from a given Brownian motion B

we shall define inductively a sequence of stopping times

T k
n := inf

{
T k

n−1 < t < ∞;|Bt − BT k
n−1

| = 2−k}, n ≥ 1,
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which induces an embedded semimartingale structure of the form

δkXt := X0 +
∞∑

n=1

E
[
XT k

n
|Gk

n

]
1{T k

n ≤t<T k
n+1}, 0 ≤ t ≤ T ,

for a suitable family (Gk) of discrete-time filtrations. By the very definition, δkX

should be interpreted as a space-filtration discretization scheme.
In this work, we prove that under mild conditions which are similar in nature

to weak Dirichlet-type processes, δkX induces a robust skeleton (Ak,
∫

Hk dAk,

Nk,Fk) which realizes (1.2) in suitable topologies. Beyond that, and more impor-
tantly for applications, the skeleton is amenable to a feasible numerical analysis
by means of perfect simulations of the first-passage times of the Brownian motion
(see Burq and Jones [8]).

The second part of this article is devoted to the application of our abstract results
to the pure martingale case. To illustrate the techniques developed in this paper,
we present a step-by-step simulation method for the Clark–Ocone formula in full
generality. Recall that if Y ∈ L2(FT ), then

Y = E[Y ] +
∫ T

0
E[DsY |Fs]dBs,

where D stands for the Gross–Sobolev derivative on the Gaussian space of the
Brownian motion. The process E[DY |F ] has great importance in mathematical fi-
nance because it is the fundamental quantity for the hedging problem in a complete
Brownian-based market (see, e.g., [32]). However, the practical implementation of
the Clark–Ocone formula is still an open problem mainly because DtY is only
amenable to numerical schemes in very particular cases such as elliptic systems
where the Malliavin weights can be efficiently used. See, for example, [4, 20, 21,
27] for a complete discussion on this matter.

In this article, we propose a rather different approach based on the sequence of
stochastic ratios

E[Y |Gk
n] − E[Y |Gk

n−1]
BT k

n
− BT k

n−1

; k,n ≥ 1.(1.3)

Unlike in previous works (see, e.g., [17, 18]), the approximation scheme given
in (1.3) is intrinsic and it is rather explicit without imposing smoothness in the
sense of Malliavin calculus and no underlying Markovian structure is assumed (see
also, e.g., [1, 21]). Moreover, no functional pathwise smoothness is required in the
approximation of E[DY |F ] (see Dupire [19] and Cont and Fournie [9] for some
results in this direction). More importantly for applications, E[DY |F ] is the limit
of functionals of (1.3) which are fully described by the sequences of smooth i.i.d.
stopping times (T k

n −T k
n−1)n≥1 and the Bernoulli variables (BT k

n
−BT k

n−1
)n≥1. This

makes our approximation explicit and easily implementable for a very large class
of payoffs. Based on (1.3), we present a step-by-step simulation method for the
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Clark–Ocone formula. To the best of our knowledge, the proposed methodology is
the only one capable of simulating E[DY |F ] for arbitrary square-integrable FT -
random variables.

In the last part of the article, we illustrate our discretization scheme with op-
timal stopping problems arising in non-Markovian systems. We propose an algo-
rithm fully based on our discretization scheme which allows us to simulate value
functions and the optimal stopping times for continuous Wiener functionals arising
in genuinely non-Markovian cases such as, for example, the fractional Brownian
motion.

The remainder of the article is structured as follows. In Section 2, we fix the
notation and we give some preliminary results regarding the pre-limit sequence
and its basic properties. In Section 3, we establish the convergence of the semi-
martingale skeleton. Section 4 is devoted to the stochastic derivative. In Section 5,
a step-by-step algorithm to simulate the Clark–Ocone formula is presented. Sec-
tion 6 presents an optimal stopping time algorithm based on the discretization
scheme developed in this article.

2. Preliminaries. In this section we fix the basic notation and framework that
we use in this paper and present some elementary results concerning our approx-
imation scheme. Throughout this paper we are given the usual stochastic basis
(�,F, F ,P) of the standard Brownian motion B starting from 0, where � is the
set C(R+;R) := {f : R+ → R continuous;f (0) = 0}, F is the completed Borel
sigma algebra, P is the Wiener measure on � and F := (Ft )t≥0 is the usual P-
augmentation of the natural filtration generated by the Brownian motion. We de-
note by O the optional sigma algebra with respect to F.

For each positive integer k, we define T k
0 = 0 a.s. and

T k
n := inf

{
T k

n−1 < t < ∞;|Bt − BT k
n−1

| = 2−k}, n ≥ 1.(2.1)

One should notice that (T k
n )n≥0 is an exhaustive sequence of F-stopping times for

every k where {T k
n −T k

n−1}∞n=1 is an i.i.d. sequence. Next we consider the following
family of random variables:

σk
n :=

⎧⎪⎪⎨
⎪⎪⎩

1; if BT k
n

− BT k
n−1

= 2−k and T k
n < ∞,

−1; if BT k
n

− BT k
n−1

= −2−k and T k
n < ∞,

0; if T k
n = ∞.

(2.2)

We then define the following sequence of step processes as

Ak
t :=

∞∑
n=1

2−kσ k
n1{T k

n ≤t}, 0 ≤ t < ∞; k ≥ 1.

For each k ≥ 1, let (F k
t )t≥0 be the natural filtration generated by {Ak

t ;0 ≤ t <

∞}. One should notice that (F k
t )t≥0 is a discrete-type filtration (see, e.g., [23],
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page 321) in the sense that

F k
t =

∞⋃
i=0

(
Gk

i ∩ {
T k

i ≤ t < T k
i+1

})
, t ≥ 0,(2.3)

where Gk
0 := {�,∅} and Gk

n := F k
T k

n
= σ(T k

1 , . . . , T k
n , σ k

1 , . . . , σ k
n ). Moreover,

since Gk
n = σ(Ak

s∧T k
n
; s ≥ 0) then Gk

n and F k
t coincide up to P-null sets on

{T k
n ≤ t < T k

n+1}. In other words, (F k
t )t≥0 is a jumping filtration (e.g., [26]) with

jumping sequence given by (T k
n )n≥1 for each k ≥ 1. With a slight abuse of notation

we write F k
t to denote its P-augmentation satisfying the usual conditions, where

Fk := (F k
t )t≥0. We also denote by Ok and P k the optional and predictable sigma

algebras, respectively, with respect to Fk .
In this work, the Fk-dual predictable and optional projections of a real-valued

measurable process Y will be denoted by [Y ]p,k and [Y ]o,k , respectively. We also
denote by [X,Y ] and 〈X,Y 〉 the usual quadratic variation and predictable bracket
of a pair of semimartingales, respectively. The usual jump of a process is denoted
by �Yt = Yt − Yt− where Yt− is the left-hand limit of a càdlàg process Y . We set
Y0− = Y0 for convenience. Moreover, if T and S are stopping times, then [[T ,S]],
[[T ,S[[ and ]]T ,S]] will denote the usual stochastic intervals. From now on we fix
a terminal time 0 < T < ∞.

We now give some elementary properties of our discretization scheme.

LEMMA 2.1. For each k ≥ 1, {Ak
t ;0 ≤ t ≤ T } is an Fk-martingale with lo-

cally integrable variation such that

sup
0≤t≤T

∥∥Bt − Ak
t

∥∥∞ ≤ 2−k,(2.4)

where ‖ · ‖∞ denotes the usual norm on the space L∞(P). Moreover, Fk is a quasi
left-continuous filtration and it supports only martingales of bounded variation.

PROOF. The estimate (2.4) and the locally integrable variation property are
immediate consequences of the definitions. For the martingale property we notice
from (2.3) that we can write

F k
t =

{ ∞⋃
n=0

An ∩ [
T k

n ≤ t < T k
n+1

];An ∈ Gk
n, n ≥ 0

}
, t ≥ 0,

where Ak
s = BT k

n
on [T k

n ≤ s < T k
n+1] for each n ≥ 1. In this case, the usual optional

stopping theorem gives the representation (see also Remark 2.2)

E
[
BT |F k

t

] = Ak
t a.s., 0 ≤ t ≤ T ,

and therefore we may conclude that Ak is an Fk-martingale. For the second part,
we notice that since T k

1 is an absolutely continuous random variable and Ak is a
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point process, then in this case it is well known that Fk is a quasi left-continuous
filtration. The fact that every Fk-martingale has bounded variation is a consequence
of [26]. �

In the sequel, we denote by π the usual projection of R+ × � onto �. For
any measurable sets D and A we write D − A to denote D ∩ Ac, where Ac is the
complement of the set A. Moreover,

∨
k≥0 Ak denotes the sigma-algebra generated

by
⋃

k≥0 Ak for a sequence of classes {Ak;k ≥ 0}.

LEMMA 2.2. The natural filtration of Ak satisfies the following properties:

(i) {Fk;k ≥ 1} is an increasing family of sigma-algebras such that Ft =∨
k≥0 F k

t for every t ≥ 0.
(ii) The sequence of filtrations Fk converges weakly to F.

(iii) For every O ∈ O there exists a sequence Ok ∈ Ok such that

Ok ⊂ O ∀k ≥ 1 and P
[
π(O) − π

(
Ok)] → 0 as k → ∞.

PROOF. It is straightforward to check that F k
t ⊂ F k+1

t for every k and t ≥ 0.
Moreover, each cylinder set of the form {b1 < Bt ≤ b2} can be approximated by{

b1 + 2−k < Ak
t ≤ b2 − 2−k}

⊂ {b1 < Bt ≤ b2}(2.5)

⊂ {
b1 − 2−k < Ak

t ≤ b2 + 2−k} a.s.

for k large enough, thus proving part (i). To prove part (ii) we only need to show
that for each B ∈ FT the sequence of martingales E[1B |F k· ] converges in probabil-
ity to E[1B |F·] on the space of càdlàg functions equipped with the usual Skorohod
topology. But this is a simple application of [11], Proposition 4. Now let us fix an
arbitrary 0 < t ≤ T . From (2.5) we know that for any cylinder set restricted on
[0, t] we may find two sequences (Dk

i )k≥1, i = 1,2, such that

Dk
1 ⊂ D ⊂ Dk

2(2.6)

for k large enough, where Dm
1 ⊂ Dm+1

1 and Dm
2 ⊃ Dm+1

2 ;m ≥ 1. From (2.4) it
follows that

max
{
P

[
D − Dk

1
];P

[
Dk

2 − D
]} → 0 as k → ∞.(2.7)

In fact, by a standard monotone class argument one can easily show that any set in
Ft satisfies the above property. Now recall that O = σ(C) where

C = {
E × {0} :E ∈ F0

} ∪ {[s, t) × E : s < t; s, t ∈ Q+ ∩ [0, T ],E ∈ Fs

}
.

From (2.6) and (2.7) it follows that for each � ∈ C , there exist sequences Ok
i

i = 1,2 so that Ok
1 ⊂ � ⊂ Ok

2 with k large enough and

max
{
P

[
π(�) − π

(
Ok)];P

[
π

(
Ok) − π(�)

]} → 0 as k → ∞.
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In order to recover any optional set in O, we shall apply a routine argument
based on the section theorem (see, e.g., [23], Theorem 4.5) so we omit the details.
The proof of the lemma is complete. �

In the remainder of this paper, we will adopt the following terminology.

DEFINITION 2.1. We say that a real-valued process X is a Wiener functional
if it is optional w.r.t. the Brownian filtration F and E|XT k

n
| < ∞ for every k,n ≥ 1.

We now embed a given Wiener functional X into a sequence of Fk quasi-left
continuous bounded variation processes as

δkXt := X0 +
∞∑

n=1

E
[
XT k

n
|Gk

n

]
1{T k

n ≤t<T k
n+1}, 0 ≤ t ≤ T .(2.8)

REMARK 2.1. The convergence δkX → X is just a matter of path regularity.
In fact, as a consequence of [11], Theorem 1, we know that if a given Wiener
functional X has continuous paths, then

E
[
X·|F k·

] → X·, δkX· → X·
uniformly in probability as k → ∞.

REMARK 2.2. The usual optional stopping theorem implies that any F-
martingale M with M0 = 0 a.s. admits the representation

δkMt = E
[
MT |F k

t

]
, 0 ≤ t ≤ T .(2.9)

In particular, Ak = δkB .

Next, our goal is to establish an explicit decomposition for the embedded semi-
martingale skeleton (δkX)k≥1 in terms of a discrete-type derivative.

2.1. The approximate decomposition. In this section, we obtain an explicit
Doob–Meyer decomposition for δkX. At first, one should notice that {δkXt : 0 ≤
t ≤ T } is an Fk-adapted process with locally integrable variation for each k ≥ 1.
Moreover, there exists a unique Fk-predictable process Nk,X with locally inte-
grable variation such that

δkXt − X0 − N
k,X
t =: Mk,X

t , 0 ≤ t ≤ T ,(2.10)

is an Fk-local martingale. The process Nk,X is the Fk-dual predictable projection
of δkXt − X0 which can be taken with continuous paths because Fk is quasi left-
continuous.

Next we aim at characterizing the elements of the decomposition (2.10). One
should notice that since Fk is not a completely continuous filtration [see (2.2)],
then Ak cannot have a strong predictable representation.



WEAK APPROXIMATIONS FOR WIENER FUNCTIONALS 1667

REMARK 2.3. Since Ak is a quasi left-continuous martingale and a step
process, then it has the so-called optional representation (see, e.g., [23], Theo-
rem 13.19 and Example 13.9). That is, every Fk-local martingale starting from
zero is represented by an optional integral w.r.t. Ak .

In the remainder of this paper, we make use of the optional stochastic integra-
tion w.r.t. Ak . We refer the reader to [15, 23] for all details about optional integrals
used in this paper. We just want to mention here that since the filtration Fk is
quasi left-continuous, then the related optional integrals admit the usual opera-
tional properties of stochastic integrals with predictable integrands (see, e.g., [15],
Remark 35, page 346). In this work, we denote by

∮ t
0 Ys dAk

s the optional integral
of an Fk-optional process Y .

We now introduce a process which will play a key role in this work. If δkX is the
Fk-projection of a Wiener functional X, then we define the following Fk-optional
process

DδkX :=
∞∑

n=1

δkXT k
n

− δkXT k
n−1

BT k
n

− BT k
n−1

1[[T k
n ,T k

n ]].(2.11)

If

E

m∑
n=1

∣∣�δkXT k
n

∣∣2 < ∞ ∀m,k ≥ 1,(2.12)

then [∫ ·
0

D2
s δ

kX d
[
Ak,Ak]

s

]1/2

=
[ ∞∑

n=1

(
δkXT k

n
− δkXT k

n−1

)21{T k
n ≤·}

]1/2

is a locally integrable increasing process for every k ≥ 1. In this case, there exists
a unique Fk-local martingale M such that for every bounded Fk-martingale V , the
process [M,V ] − ∫ ·

0 DδkX d[V,Ak] is an Fk-local martingale and

Mt =
∫ t

0
Dsδ

kX dAk
s −

[∫ ·
0

Dsδ
kX dAk

s

]p,k

t

=
∮ t

0
Dsδ

kX dAk
s ,

where
∫ t

0 Dsδ
kX dAk

s is interpreted in the Lebesgue–Stieltjes sense. By observ-
ing that

∑
0≤s≤t �δkXs = ∑

0≤s≤t �Mk,X
s and the fact that δkX is quasi left-

continuous, we actually have the following optional representation for the mar-
tingale part in the decomposition (2.10):

M
k,X
t =

∮ t

0
Dsδ

kX dAk
s ; 0 ≤ t ≤ T .

Of course, DδkX is the unique Fk-optional process which represents the martin-
gale Mk,X as an optional stochastic integral with respect to the martingale Ak . Let
us characterize the remainder term in the decomposition (2.10).
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LEMMA 2.3. The Fk-dual predictable projection of δkX − X0 is given by the
continuous process ∫ t

0
Uk,X

s d
〈
Ak,Ak 〉

s, 0 ≤ t ≤ T ,

where Uk,X := E[Ak][DδkX/�Ak|P k]. Here E[Ak][·|P k] denotes the conditional
expectation w.r.t. P k under the Doléans measure generated by [Ak,Ak]. Moreover,

U
k,X
t = 01{T k

0 =t} + 1

2−2k

∞∑
n=1

E
[
Xt − XT k

n−1
|Gk

n−1;T k
n = t

]
1{T k

n−1<t≤T k
n }.(2.13)

PROOF. The fact that Uk,X = E[Ak][DδkX/�Ak|P k] is obvious. Let us now
characterize Uk,X . For this, let us consider the sequence of sigma-algebras Gk

n− :=
Gk

n−1 ∨ σ(T k
n ), n ≥ 1. We recall that for every C ∈ Gk

n−, there exists a pre-
dictable process H such that HT k

n
= 1C and it is null outside the stochastic interval

]]T k
n−1, T

k
n ]] (see [7], Theorem 31, page 307). Then,

E
[
1C�δkXT k

n
1{T k

n ≤T }
] = E

[
1CU

k,X

T k
n

2−2k1{T k
n ≤T }

]
.

Since C is arbitrary and Uk,X a predictable process, it follows that

E
[
�δkXT k

n
1{T k

n ≤T }|Gk
n−

] = U
k,X

T k
n

2−2k1{T k
n ≤T }.

Then, one version of the conditional expectation can be written as (2.13). The
proof of the lemma is complete. �

The next result describes an explicit expression for the predictable bracket of
Ak in terms of the density f k and the distribution function Fk of T k

1 (see, e.g., [8]
for the corresponding formulas).

LEMMA 2.4. The predictable bracket of Ak is an absolutely continuous pro-
cess where the Radon–Nikodym derivative process is given by

hk
t = 2−2k

∞∑
n=1

λk

t−T k
n−1

1{T k
n−1<t≤T k

n }, 0 ≤ t ≤ T ,(2.14)

where λk
t = f k

t

1−Fk
t

, 0 ≤ t ≤ T .

PROOF. Since Ak is a quasi left-continuous point process where the differ-
ence of the jumping times {(T k

n − T k
n−1);n ≥ 1} is a sequence of i.i.d. absolutely

continuous random variables, then it is well known that 〈Ak,Ak〉 has absolutely
continuous paths. A straightforward but lengthy calculation together with [29],
Theorem 18.2, yields (2.14). �
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Summing up all previous results of this section, we then arrive at the following
representation.

PROPOSITION 2.1. If X is a Wiener functional satisfying assumption (2.12),
then the Fk-special semimartingale decomposition (Mk,X,Nk,X) in (2.10) is ac-
tually given by

δkXt = X0 +
∮ t

0
Dsδ

kX dAk
s +

∫ t

0
Uk,X

s hk
s ds, 0 ≤ t ≤ T .(2.15)

3. Weak decomposition of Wiener functionals. In this section we are inter-
ested in providing readable conditions on a given Wiener functional X in such way
that

X = lim
k→∞ δkX; MX = lim

k→∞Mk,X; NX = lim
k→∞Nk,X

in a suitable topology. Under such assumptions, we are able to decompose X into
a unique orthogonal decomposition which is similar in nature to weak Dirichlet
processes (see, e.g., [13] and other references therein)

Xt = X0 + MX
t + NX

t ,

where MX is a martingale and NX is an adapted process whose specific type of
covariation (see Definition 3.2) w.r.t. Brownian motion is null.

3.1. Weak convergence and primary decomposition. In this section we inves-
tigate the convergence of our preliminary decomposition (2.15) given in terms of
the approximation scheme (Ak,Fk). By carefully choosing a suitable topology on
the space of processes, our strategy will be fully based on the information given
by the quadratic variation of the martingale component in (2.15).

Let Bp(F) be the set of all F-optional processes and which are 1 ≤ p < ∞
Böchner integrable in the sense that

‖X‖p
Bp = E

∣∣X∗
T

∣∣p < ∞,(3.1)

where X∗
T := sup0≤t≤T |Xt |. Of course, Bp(F) endowed with the norm ‖ · ‖Bp is a

Banach space, where the subspace Hp(F) of the F-martingales starting from zero
is closed. Recall that the topological dual Mq(F) of Bp(F) is the space of processes
A = (Apr,Apd) such that:

(i) Apr and Apd are right-continuous of bounded variation such that Apr is F-
predictable with A

pr
0 = 0 and Apd is F-optional and purely discontinuous.

(ii) Var(Apd) + Var(Apr) ∈ Lq; 1
p

+ 1
q

= 1,

where Var(·) denotes the total variation of a bounded variation process on the
interval [0, T ]. The space Mq(F) has the strong topology given by

‖A‖Mq := ∥∥Var
(
Apr)∥∥

Lq + ∥∥Var
(
Apd)∥∥

Lq .
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The duality pair is given by

(A,X) := E

∫ T

0
Xs− dApr

s + E

∫ T

0
Xs dApd

s ; X ∈ Bp(F),

where the following estimate holds:∣∣(A,X)
∣∣ ≤ ‖A‖Mq ‖X‖Bp

for every A ∈ Mq(F), X ∈ Bp(F) such that 1 ≤ p < ∞ and 1
p

+ 1
q

= 1. We denote
σ(Bp,Mq) the weak topology of Bp(F).

In this work, the indexes p = 1,2 will play a key role in our convergence re-
sults, in particular, the subspaces Hp for p = 1,2. See the works [15, 16, 31] for
detailed discussions on the weak topology of Bp(F) restricted to the subspace of
martingales Hp(F).

In this article it will be also useful to work with the following notion of conver-
gence. Actually, one can show that the set �∞ of the F-optional bounded variation
processes of the form

C = g1{S≤·}; g ∈ L∞(FS), S is an F-stopping time (bounded by T),

fulfills the Banach space B1(F) in the sense that

‖X‖B1 = sup
{∣∣(X,C)

∣∣;C ∈ �∞,‖C‖M∞ ≤ 1
}
.(3.2)

Relation (3.2) is given in [16], Lemma 1, and therefore we may also endow
B1(F) with the σ(B1,�∞)-topology induced by the family of seminorms

X �→ ∣∣(X,C)
∣∣; C ∈ �∞.

REMARK 3.1. Obviously, σ(B1,�∞) is weaker then σ(B1,M∞). However,
relation (3.2) says that �∞ is a norming subset of M∞ and therefore �∞ is w∗-
dense in M∞.

REMARK 3.2. A result due to Mokobodzki [31] states that if Xn is a sequence
of optional processes such that sup0≤t≤T |Xn

t | is uniformly integrable and for ev-
ery S stopping time the sequence Xn

S converges weakly in L1 relatively to FS , then
there exists an optional process X such that Xn → X in σ(B1,M∞). As a conse-
quence, if Xn → X in σ(B1,�∞) and sup0≤t≤T |Xn

t | is uniformly integrable, we
do have convergence in σ(B1,M∞) (see also Dellacherie, Meyer and Yor [16] for
more details).

In the remainder of this paper, we shall write Bp (Hp) to denote the space of
Böchner integrable process (p-integrable martingales starting from zero) satisfy-
ing (3.1) endowed with the Brownian filtration F. We now introduce the following
quantity which will play a crucial role in this work.
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DEFINITION 3.1. We say that a given Wiener functional X has finite energy
along the filtration family (Fk)k≥1 if

E2(X) := sup
k≥1

E

∞∑
n=1

∣∣�δkXT k
n

∣∣21{T k
n ≤T } < ∞.(3.3)

REMARK 3.3. The above definition is similar in spirit to the classical notion
of energy (e.g., [10, 22]), but with one fundamental difference: The relevant infor-
mation contained in the energy of X comes only from the sigma-algebras Gk

n which
reveal the information generated by the jumps of the projected Brownian motion
Ak up to the stopping time T k

n . Moreover, E2(X) = supk≥1 E[Mk,X,Mk,X]T .

It is natural to ask what happens without conditioning on the information flow
{Gk

n;k,n ≥ 1}. The following lemma answers this question.

LEMMA 3.1. If X is a Wiener functional, then

E2(X) ≤ sup
k≥1

E
∑
n≥1

(XT k
n

− XT k
n−1

)21{T k
n ≤T }.(3.4)

PROOF. It is sufficient to check that E[Hk,X
t |F k

t ] = Dt δ
kX on {T k

n ≤ t <

T k
n+1} for each k,n ≥ 1 where

Hk,X :=
∞∑

n=1

XT k
n

− XT k
n−1

BT k
n

− BT k
n−1

[[
T k

n , T k
n+1

[[
.

But this is a straightforward consequence of the strong Markov property of the
Brownian motion. A simple application of Jensen inequality and the Fk-optional
duality establishes (3.4). �

We are now in position to study convergence of the decomposition given in
(2.15). In the sequel, we fix an element X ∈ B1 and let (Mk,X,Nk,X) be the as-
sociated canonical decomposition expressed in (2.15). In order to find a candidate
for the limit of Mk,X , let us introduce the following family of F-martingales:

Z
k,X
t := E

[
M

k,X
T |Ft

]; 0 ≤ t ≤ T ;k ≥ 1.(3.5)

In order to prove convergence of Mk,X to an F-martingale we may use some
standard compactness arguments.

LEMMA 3.2. The sequence of random variables {[Mk,X,Mk,X]1/2
T :k ≥ 1} is

uniformly integrable if, and only if, the sequence of stochastic process {Zk,X :k ≥
1} is weakly relatively compact in H1.
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PROOF. The proof is a routine argument based on the Doob and Burkholder
inequalities together with [16], Theorem 1, so we omit the details. �

REMARK 3.4. By the Doob maximal inequality one should notice that if
E2(X) < ∞, then {Zk,X;k ≥ 1} is a bounded sequence in H2 which also implies
that it is an H2-weakly sequentially compact set.

LEMMA 3.3. If S is an F-stopping time, then there exists a sequence of posi-
tive random variables (Sk)k≥1 such that Sk is an Fk-stopping time for each k ≥ 1
and limk→∞ P(Sk = S) = 1. Moreover, for any G ∈ FS there exists a sequence of
sets (Gk)k≥1 such that Gk ∈ F k

Sk
, Gk ⊂ G ∩ {S < ∞} for every k ≥ 1, and

lim
k→∞P

[
G ∩ {S < ∞} − Gk] = 0.

PROOF. Let S be an arbitrary F-stopping time. Since the graph [[S]] belongs
to O, we may find a sequence (Ok)k≥1 satisfying item (iii) in Lemma 2.2. For an
arbitrary ε > 0, let k be large enough in such way that

P
[
π

([[S]]) − π
(
Ok)] < ε/2.

From the standard section theorem there exists an Fk-stopping time Sk such that

[[Sk]] ⊂ Ok ⊂ [[S]] and P
[
π

(
Ok)] ≤ P[Sk < ∞] + ε/2.

Then it follows that P[π(S) − π([[Sk]])] = P[Sk �= S] < ε for k large enough. This
allows us to conclude the first part of the lemma. For the second part, let us recall
that FS ∩ {S < ∞} = {
−1(O) :O ∈ O}, where 
(w) = (S(w),w) for any w ∈
{S < ∞}. Then, for any G ∈ FS , there exists an optional set J ∈ O such that
G ∩ {S < ∞} = 
−1(J ). We denote by J k the sequence of sets satisfying item
(iii) in Lemma 2.2 and Gk = 
−1

k (J k), where 
k(w) = (Sk(w),w) for any w ∈
{Sk < ∞} and (Sk)k≥1 is the sequence of stopping times obtained from the first
part. Then we conclude that P[G ∩ {S < ∞} − Gk] ≤ P[π(J ) − π(J k)] → 0 as
k → ∞. �

Summing up the above lemmas we arrive at the following result.

PROPOSITION 3.1. Assume that a Wiener functional X satisfies E2(X) < ∞.
Then the set {Mk,X· ;k ≥ 1} is σ(B2,M2)—relatively sequentially compact where
every limit point belongs to H2.

PROOF. From Remark 3.4, we know that Z = {Zk,X;k ≥ 1} is weakly rela-
tively compact in H2 and therefore any sequence in Z admits a weakly convergent
subsequence in H2. With a slight abuse of notation, let us denote by Zk,X this con-
vergent subsequence in H2 and Z the respective H2-martingale limit point. Let us
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fix an F-stopping time S which is bounded by the terminal time T . We claim that
Mk,X → Z in σ(B2,M2). For this, at first we show that the convergence holds in
the σ(B1,�∞)-topology. In other words,

lim
k→∞

∫
M

k,X
S g dP =

∫
ZSg dP

holds for every g ∈ L∞(FS). Recall that it is sufficient to prove for indicator func-
tions g = 1G where G ∈ FS . From Lemma 3.3 there exists a sequence of stopping
times Sk and Gk ∈ F k

Sk satisfying limk→∞ P[G − Gk] = 0. By construction, one
should notice from the proof of Lemma 3.3 that Sk = S on Gk for every k ≥ 1.
Moreover, the martingale property yields∫

G
Z

k,X
S dP =

∫
G−Gk

M
k,X
T dP +

∫
Gk

E
[
M

k,X
T |F k

Sk

]
dP

=
∫
G−Gk

M
k,X
T dP −

∫
G−Gk

M
k,X
S dP +

∫
G

M
k,X
S dP.

Therefore, the uniform integrability assumption yields∣∣∣∣
∫
G

Z
k,X
S dP −

∫
G

M
k,X
S dP

∣∣∣∣
=

∣∣∣∣
∫
G−Gk

M
k,X
T dP −

∫
G−Gk

M
k,X
S dP

∣∣∣∣ −→ 0 as k → ∞.

This shows that limk→∞(Mk,X,C) = (Z,C) for every C ∈ �∞ and therefore
we may conclude that limk→∞ Mk,X = Z in the σ(B1,�∞)-topology. The uni-
form integrability of {sup0≤t≤T |Mk,X

t |;k ≥ 1} and Remark 3.2 allow us to con-
clude that Mk,X → Z weakly in B1. We now claim that the subsequence Mk,X

actually converges to Z weakly in B2. For this, let us consider an arbitrary linear
functional Y ∈ M2 given by Y = (Y pr, Y pd). Let (Sn)n≥1 be a localizing sequence

of F-stopping times such that Var(Y pr
∧Sn

) and Var(Y pd
∧Sn

) are bounded for every
n ≥ 1. Let us denote by Yn the respective stopped linear functional Yn ∈ M∞;
n ≥ 1. The finite energy assumption yields∣∣(Y,Mk,X) − (Y,Z)

∣∣ ≤ ∣∣(Yn,Mk,X) − (
Yn,Z

)∣∣
(3.6)

+ ∥∥Yn − Y
∥∥
M2

(‖Z‖B2 + E 1/2
2 (X)

)
.

Since ‖Yn −Y‖M2 → 0 as n → ∞ and Yn ∈ M∞ for every n ≥ 1, we shall use the
B1-weak convergence of Mk,X to Z and (3.6) to conclude that limk→∞ Mk,X = Z

weakly in B2. In other words, {Mk,X;k ≥ 1} is a B2-weakly, relatively, sequen-
tially compact set where every limit point belongs to H2. �

In the sequel, we introduce a covariation notion which plays a key role in the
numerical scheme of the stochastic derivative. We stress here that it is not our
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purpose to give a more general definition of a quadratic variation. Instead, we
only need a slightly different type of approximation due to the (a priori) lack of
regularity of the Wiener functionals.

DEFINITION 3.2. Let X and Y be Wiener functionals with Fk-projections,
δkX and δkY , respectively. We say that X admits the δ-covariation w.r.t. Y if the
limit

〈X,Y 〉δt := lim
k→∞

[
δkX, δkY

]
t(3.7)

exists weakly in L1 for every t ∈ [0, T ].
REMARK 3.5. In the particular case of Brownian semimartingales, one can

easily check that the δ-covariation coincides with the usual quadratic variation by
using Lemma 3.1 and Proposition 3.2.

REMARK 3.6. The reason for choosing the L1-weak topology for the covari-
ation is due to the lack of path regularity of processes which represents Brownian
martingales. We will see that the L1-weak topology is the correct one if one at-
tempts to get a robust approximation scheme in full generality without requiring
additional assumptions (see Remark 4.2).

Next, we prove some technical results which will allow us to state Theorem 3.1
which is the main result of this section. Not surprisingly, the quadratic variation
and energy notions will play a key role in our result.

LEMMA 3.4. Let H· = E[1G|F·] and Hk· = E[1G|F k· ] be positive and uni-
formly integrable martingales with respect to the filtrations F and Fk , respectively,
where G ∈ FT . If W ∈ Hα(F) for some α > 2 then∥∥∥∥

∫ ·
0

Hs dWs −
∮ ·

0
Hk

s dδkWs

∥∥∥∥
B2

→ 0 as k → ∞.

PROOF. Throughout the proof we write C to denote a positive constant which
may differ from line to line. Let us write∫ t

0
Hs dWs −

∮ t

0
Hk

s dδkWs

=
∫ t

0

[
Hs − Hk

s

]
dWs +

[∫ t

0
Hk

s dWs −
∮ t

0
Hk

s dδkWs

]

=: T 1
k (t) + T 2

k (t), 0 ≤ t ≤ T .

From the weak convergence of Fk to F [see (ii) in Lemma 2.2] and the fact that H

is a continuous process it follows that

Hk → H uniformly in probability as k → ∞.(3.8)
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Burkholder and Hölder inequalities yield∥∥∥∥
∫ ·

0

(
Hk

t − Ht

)
dWt

∥∥∥∥
2

B2
≤ CE1/p sup

0≤t≤T

∣∣Ht − Hk
t

∣∣2p
E1/q[W,W ]qT

for q = α
2 and p = α

α−2 with α > 2. Therefore, we may conclude that T 1
k → 0 in

B2 as k → ∞. In order to prove that T 2
k vanishes when k → 0, we split it into the

following terms:

T 2
k (t) =

∫ t

0

[
Hk

s − Hk
s−

]
dWs −

∮ t

0

[
Hk

s − Hk
s−

]
dδkWs

(3.9)

+
∫ t

0
Hk

s− dWs −
∫ t

0
Hk

s− dδkWs.

We shall estimate in the same way∥∥∥∥
∫ ·

0

[
Hk

s − Hk
s−

]
dWs

∥∥∥∥
2

B2
≤ CE1/p sup

n≥1

∣∣Hk
T k

n
− Hk

T k
n−1

∣∣2p1{T k
n ≤T }E1/q [W,W ]qT

for p and q as above. One can easily check (see, e.g., Lemma 4.1) that
supn≥1|Hk

T k
n

− Hk

T k
n−1

| → 0 as k → ∞ in Lr for any r > 1. Therefore,

∥∥∥∥
∫ ·

0

[
Hk

s − Hk
s−

]
dWs

∥∥∥∥
B2

→ 0 as k → ∞.

By using the representation δkWt = ∮ t
0 Dsδ

kW dAk
s = E[WT |F k

t ], we shall use the
Doob maximal inequality to estimate in the same way∥∥∥∥

∮ ·
0

[
Hk

s − Hk
s−

]
dδkWs

∥∥∥∥
2

B2
≤ CE1/α|W |αT E1/p sup

0≤t≤T

∣∣Hk
t − Hk

t−
∣∣2p → 0

as k → ∞. It remains to estimate the last part in (3.9). We claim that (Hk−, δkW)

satisfies the assumptions of [28], Theorem 2.7. To see this, one notices that the
linearity of the conditional expectation, (3.8) and the path continuity of H and W

yield

Hk − H + δkW − W → 0 uniformly in probability.

Since limk→∞ E sup0≤t≤T |Hk
t − Hk

t−| = 0 we actually have (Hk−, δkW) →
(H,W) in probability on the two-dimensional Skorohod space. Moreover, a sim-
ple application of the maximal Doob and Burkholder inequalities ensures that δkW

satisfies [28], assumption C2.7. Therefore,∫ ·
0

Hk
s− dδkWs →

∫ ·
0

Hs dWs uniformly in probability.

Of course,
∫ ·

0 Hk
s− dWs → ∫ ·

0 Hs dWs uniformly in probability. By using the as-
sumption that W ∈ Hα for α > 2, we have

∫ ·
0 Hk

s− dδkWs + ∫ ·
0 Hk

s− dWs is bounded
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in Bα . This shows that T 2
k → 0 in B2 as k → ∞ and therefore the proof is com-

plete. �

The next result is fundamental for the approach taken in this work since it allows
us to compute the δ-covariation under a compactness assumption.

LEMMA 3.5. Let X be a finite energy Wiener functional with the Fk-
decomposition given by (Mk,X,Nk,X). Let {Mki,X; i ≥ 1} be a B2-weakly con-
vergent subsequence such that limi→∞ Mki,X = Z, where Z ∈ H2. If W ∈ H2,
then

lim
i→∞

[
Mki,X, δkiW

]
t = [Z,W ]t weakly in L1(3.10)

for every t ∈ [0, T ].

PROOF. With a slight abuse of notation, let Zk,X be the F-martingale
subsequence obtained from (3.5), Remark 3.4 and Proposition 3.1 such that
limk→∞ Zk,X = Z and limk→∞ Mk,X = Z in σ(B2,M2). By using represen-
tation (2.9) and the weak convergence Fk → F, we notice that δkW → W in
σ(B2,M2) as k → ∞ for each W ∈ H2. Thanks to [16], Theorem 7, we know
that [Zk,X,U ]t→[Z,U ]t weakly in L1(P) for every t ∈ [0, T ] and U a BMO
F-martingale. Given G ∈ FT , let us consider the Fk-martingale Hk· = E[1G|F k· ]
and W a bounded Brownian martingale. At first, one should notice that the finite
energy assumption gives Mk,X ∈ H2(Fk) for every k ≥ 1. By using the Fk-dual
optional projection property we shall write

E
[
1G

[
Mk,X, δkW

]
t

] = E
[
Mk,X,J k]

t = E
[
M

k,X
t J k

t

]
, 0 ≤ t ≤ T ,

where J k is the Fk-square integrable martingale given by the optional integral∮
Hk dδkW . In the same manner, we have that

E
[
1G

[
Zk,X,W

]
t

] = E
[
Zk,X, J

]
t = E

[
Z

k,X
t Jt

]
, 0 ≤ t ≤ T ,

where J is the stochastic integral
∫

H dW and H = E[1G|F·]. Moreover,

E
[
Z

k,X
t Jt

] − E
[
M

k,X
t J k

t

] = E
[
M

k,X
t

(
Jt − J k

t

)] − E
[(

M
k,X
t − Z

k,X
t

)
Jt

]
=: T k

1 (t) + T k
2 (t), 0 ≤ t ≤ T .

We fix t ∈ [0, T ] and we notice that it is sufficient to prove that T k
1 (t)+T k

2 (t) → 0
as k → ∞. The first term limk→∞ T k

1 (t) = 0 because of the finite energy assump-
tion and Lemma 3.4. By noting that both subsequences Zk,X and Mk,X converge to
the same limit in σ(B2,M2), we shall take the linear functional Y· = 1{t≤·}Jt ∈ M2

to conclude that T k
2 (t) → 0 as k → ∞. Therefore, (3.10) holds for any bounded

martingale W . If W ∈ H2 then we shall take a sequence of bounded martingales
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Wn such that Wn → W in H2 as n → ∞. Moreover, Burkholder and maximal
Doob inequalities yield∣∣E1G

[
Mk,X, δkW

]
t − E1G[Z,W ]t

∣∣
≤ CE

∣∣[Mk,X, δk(W − Wn)]
t

∣∣
+ ∣∣E1G

[
Mk,X, δkWn]

t − E1G

[
Z,Wn]

t

∣∣
(3.11)

+ CE
∣∣[Z,Wn − W

]
t

∣∣
≤ C

(
E 1/2

2 (X) + ‖Z‖B2
)∥∥Wn

T − WT

∥∥
L2

+ ∣∣E1G

[
Mk,X, δkWn]

t − E1G

[
Z,Wn]

t

∣∣.
Inequality (3.11) and the previous arguments allow us to conclude the proof.

�

Next, we give a necessary and sufficient condition for the existence of the mar-
tingale limit.

PROPOSITION 3.2. Let X be a Wiener functional such that E2(X) < ∞. Then
MX := limk→∞ Mk,X exists weakly in H2 if, and only if, the δ-covariation 〈X,B〉δ
exists. In this case, 〈X,B〉δ· = [MX,B]·.

PROOF. If X has finite energy, then by Proposition 3.1 we know that
{Mk,X;k ≥ 1} is σ(B2,M2)—relatively sequentially compact where all limit
points belong to H2. By assumption, the δ-covariation 〈X,B〉δ exists and there-
fore for every t ∈ [0, T ],

lim
i→∞

[
Mki,X,Aki

]
t = lim

m→∞
[
Mkm,X,Akm

]
t = 〈X,B〉δt

weakly in L1 for any two distinct B2-weakly convergent subsequences {Mki,X}∞i=1
and {Mkm,X}∞m=1. In particular, if limi→∞ Mki,X = M and limm→∞ Mkm,X = M ′,
then Lemma 3.5 yields

lim
i→∞

[
Mki,X,Aki

]
t = lim

m→∞
[
Mkm,X,Akm

]
t

= [
M ′,B

]
t = [M,B]t weakly in L1

for 0 ≤ t ≤ T , and therefore [M − M ′,B]· = 0. The predictable representation
of the Brownian motion yields M = M ′. In this case, Mk,X should be convergent
and Lemma 3.5 yields 〈X,B〉δ = [MX,B], where MX := limk→∞ Mk,X . Recipro-
cally, if limk→∞ Mk,X = MX ∈ H2 exists weakly in B2, then we may again invoke
Lemma 3.5 to conclude that 〈X,B〉δ exists. �

The main result of this section gives the structural conditions for our discretiza-
tion scheme to work. In fact, those conditions are similar to weak Dirichlet-type
processes where the notion of covariation is computed in terms of 〈·, ·〉δ .
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THEOREM 3.1. Let X be a finite energy Wiener functional such that
limk→∞ δkX = X weakly in B2 and 〈X,B〉δ· exists. Let (Mk,X,Nk,X) be the
canonical decomposition of δkX. Then there exists a unique martingale MX in
H2 such that NX := X −X0 −MX satisfies the following orthogonality condition:〈

NX,B
〉δ ≡ 0.

If this is the case, we may write

X = X0 + MX + NX(3.12)

and this decomposition is unique. Moreover, Mk,X → MX and Nk,X → NX

weakly in B2 as k → ∞.

PROOF. By Proposition 3.2 we know that

MX := lim
k→∞Mk,X

exists and MX ∈ H2. From assumption limk→∞ δkX = X, we shall define NX :=
limk→∞ Nk,X weakly in B2. By the very definition, we have

δkNX = Mk,X − δkMX + Nk,X.

The path continuity of Nk,X yields[
δkNX,Ak]

t = [
Mk,X − δkMX,Ak]

t , 0 ≤ t ≤ T ;k ≥ 1.(3.13)

The weak convergence of Fk to F [see Lemma 2.2, item (ii)] and relation (2.9)
yield δkMX = E[MX

T |F k· ] → MX uniformly in probability as k → ∞. By Lem-
ma 3.1, we know that E2(M

X) < ∞ and therefore δkMX → MX in σ(B2,M2).
Lemma 3.5, Proposition 3.2 and (3.13) yield 〈NX,B〉δ = [MX − MX,B] = 0.

The uniqueness of the decomposition is an immediate consequence of the or-
thogonality property of the nonmartingale component, the predictable representa-
tion property of the Brownian motion and the fact that 〈W,B〉δ = [W,B] for every
W ∈ H2. �

4. The stochastic derivative. In this section, we provide an explicit approx-
imation scheme for the martingale representation in the decomposition given in
Theorem 3.1. The approximation will be given in terms of Dδk which can be in-
terpreted in the limit as a derivative operator on the Wiener space w.r.t. Brownian
motion.

For a given Wiener functional X, we introduce the following family of Fk-
predictable processes:

DkX := 01[[T k
0 ,T k

0 ]] +
∞∑

n=0

DT k
n
δkX1]]T k

n ,T k
n+1]],(4.1)
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where

Dk
s X =

δkXT k
n

− δkXT k
n−1

BT k
n

− BT k
n−1

on
{
T k

n < s ≤ T k
n+1

}
, n ≥ 1.

In view of Theorem 3.1, the goal of this section is to show robustness of our ap-
proximation scheme in the sense that

DX := lim
k→∞ DkX = HX weakly

whenever X satisfies the assumptions of Theorem 3.1 such that the martingale
component in (3.12) has a representation MX = ∫

HX
s dBs . One should notice

that since there is no a priori path regularity of X (in particular HX), one has to
choose an appropriate topology in order to get the existence of limk→∞ DkX. In
the sequel, we denote by λ the usual Lebesgue measure on [0, T ].

Let us begin with the following technical lemmas. At first, the following remark
proves to be very useful for the approach taken in this work. In fact, it will play
a key role in the study of the limit limk→∞ DkX because it allows us to control
the quantity (�Ak

T k
n
)−1 in (4.1). It is a straightforward consequence of the strong

Markov property and the 1/2-self-similarity of the Brownian motion.

REMARK 4.1. The stopping time T k
n − T k

n−1 is independent from Gk
n−1 for

every k,n ≥ 1. Moreover, E(T k
n − T k

n−1) = 2−2k for every k,n ≥ 1.

LEMMA 4.1. If g ∈ L∞, then for every 1 < p < ∞,

E sup
n≥1

∣∣E[
g|Gk

n

] − E
[
g|Gk

n−1
]∣∣p1{T k

n ≤T } → 0 as k → ∞.

PROOF. For a given g ∈ L∞, let Xt = E[g|Ft ],0 ≤ t ≤ T . Recall that δkXt =
E[XT |F k

t ],0 ≤ t ≤ T and therefore E[g|Gk
n] = δkXT k

n
on {T k

n ≤ T } for each k,
n ≥ 1. Moreover, X is a bounded F-martingale with continuous paths. Remark 2.1
yields δkX → X strongly in Bp(F) as k → ∞, p > 1. We shall write

E1/p sup
n≥1

∣∣E[
g|Gk

n

] − E
[
g|Gk

n−1
]∣∣p1{T k

n ≤T }

≤ E1/p sup
n≥1

∣∣δkXT k
n

− XT k
n

∣∣p1{T k
n ≤T }

(4.2)
+ E1/p sup

n≥1
|XT k

n
− XT k

n−1
|p1{T k

n ≤T }

+ E1/p sup
n≥1

∣∣δkXT k
n−1

− XT k
n−1

∣∣p1{T k
n ≤T }.

The first and last terms in (4.2) vanish. Moreover, limk→∞ E1/p supn≥1 |XT k
n

−
XT k

n−1
|p1{T k

n ≤T } = 0 because of the path continuity of X together with the fact that

supn≥1 |T k
n − T k

n−1| → 0 a.s. as k → ∞. �
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Now we are in position to prove the existence of the stochastic derivative.

THEOREM 4.1. Let X be a Wiener functional satisfying the assumptions of
Theorem 3.1 with the weak decomposition represented by

X = X0 +
∫

HX dBs + NX(4.3)

for an adapted process HX in L2(λ × P) and 〈NX,B〉δ = 0. Then HX can be
approximated by the L2(λ × P)-weak limit DX = limk→∞ DkX = HX .

PROOF. The unique orthogonal decomposition (4.3) represented by an adapt-
ed process HX is a consequence of Theorem 3.1 together with the martingale
representation of the Brownian motion. Therefore, it only remains to prove the
existence of DX. For this, let us consider a finite energy Wiener functional X

and let us fix 0 ≤ t ≤ T and g ∈ L∞. In order to shorten notation, let us write
ξk
n := (T k

n − T k
n−1)1{T k

n ≤T }, gk
n := E[g|Gk

n] − E[g|Gk
n−1] for k,n ≥ 1 and C is a

constant which may differ from line to line. By the very definition, for every k ≥ 1
and t > 0,

g

∫ t

0
Dk

s X ds = g

∞∑
n=1

DT k
n−1

δkXξk
n1{T k

n−1≤t}
(4.4)

− g

∞∑
n=1

DT k
n−1

δkX
(
T k

n − t
)
1{T k

n−1<t≤T k
n }.

At first, a simple application of Remark 4.1 and the very definition of DkX yield

E

∫ T

0

∣∣Dk
s X

∣∣2 ds = E

∞∑
n=1

∣∣DT k
n−1

δkX
∣∣2ξk

n1{T k
n−1≤T } ≤ E2(X), k ≥ 1.(4.5)

By Hölder inequality and (4.5), the second term in (4.4) vanishes as follows:

E

∞∑
n=1

∣∣gDT k
n−1

δkX
(
T k

n − t
)∣∣1{T k

n−1<t≤T k
n }

≤ CE

∞∑
n=1

∣∣DT k
n−1

δkX
∣∣ξk

n1{T k
n−1<t≤T k

n }

≤ CE 1/2
2 (X) × E1/2 sup

n≥1

∣∣ξk
n

∣∣1{T k
n ≤T } → 0 as k → ∞.

By using Remark 4.1, we shall write

Eg

∞∑
n=1

DT k
n−1

δkXξk
n1{T k

n−1≤t} = E

∞∑
n=1

gk
nDT k

n−1
δkXξk

n1{T k
n−1≤t}

(4.6)

+ Eg

∞∑
n=1

�δkXT k
n−1

�Ak

T k
n−1

1{T k
n−1≤t}.
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The first term in (4.6) vanishes as follows. By applying Lemma 4.1, (4.5) and
Hölder inequality we have

E

∞∑
n=1

∣∣gk
nDT k

n−1
δkXξk

n

∣∣1{T k
n−1≤t} ≤ E 1/2

2 (X)E1/2 sup
n≥1

∣∣gk
n

∣∣2 ∞∑
n=1

ξk
n1{T k

n−1≤t}

→ 0 as k → ∞.

Summing up the above arguments, we arrive at the following conclusion:

lim
k→∞Eg

∫ t

0
Dk

s X ds exists if, and only if lim
k→∞Eg

[
δkX,Ak]

t exists.(4.7)

In other words, the estimate (4.5), the existence of 〈X,B〉δ and (4.7) allow us to
conclude that

lim
k→∞ DkX exists weakly in L2(λ × P).

It follows from the above steps that

lim
k→∞Eg

∫ t

0
Dk

s X ds = Eg〈X,B〉δt = Eg
[
MX,B

]
t

(4.8)

= Eg

∫ t

0
HX

s ds, 0 ≤ t ≤ T ,g ∈ L∞,

where the martingale component is represented by a progressive process HX in
L2(λ × P), that is, MX

t = ∫ t
0 HX

s dBs for 0 ≤ t ≤ T . Identity (4.8) shows that
DkX → HX weakly in L2(λ × P) as k → ∞. The proof of the theorem is com-
plete. �

REMARK 4.2. Under assumption E2(X) < ∞, relations (4.7) and (4.8) al-
low us to conclude that limk→∞ DkX exists weakly in L2(λ × P) if, and only
if, the δ-covariation 〈X,B〉δ exists. By Proposition 3.2, limk→∞ DkX exists if,
and only if, limk→∞ Mk,X exists which shows a strong robustness of our ap-
proximation scheme. In this case, limk→∞ DkX = HX where MX = ∫

HX
s dBs =

limk→∞ Mk,X.

By applying Theorem 4.1 to the classical Itô representation theorem we arrive
at the following result.

COROLLARY 4.1. If F is an FT -square integrable random variable, then

F = E[F ] +
∫ T

0
DsF dBs,

where

DF = lim
k→∞

∞∑
n=1

E[F |Gk
n] − E[F |Gk

n−1]
BT k

n
− BT k

n−1

1]]T k
n ,T k

n+1]](4.9)
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weakly in L2(λ × P).

PROOF. If Xt = E[F |Ft ], 0 ≤ t ≤ T , then δkXt = E[F ] + ∮ t
0 Dsδ

kX dAk
s

where δkXT k
n

= E[F |Gk
n];k,n ≥ 1. Since X is a square-integrable martingale,

a simple application of Theorem 4.1 yields (4.9). �

REMARK 4.3. Corollary 4.1 and the classical Clark–Ocone formula yield
DtF = E[DtF |Ft ] where D denotes the Gross–Sobolev derivative of F in L2(P).
If F is not differentiable in the sense of Malliavin calculus, the Gross–Sobolev
derivative DtF is interpreted as a generalized process where E[DtF |Ft ] can be
interpreted as a real-valued process in L2(λ × P) (see, e.g., [5] for more details).

5. The Clark–Ocone formula algorithm. In this section, we illustrate the
theory developed in this article with some numerical examples. The goal here is to
show that our approximation scheme can be easily implementable where a step-by-
step algorithm for the Clark–Ocone formula is presented. We illustrate the method
with the problem of hedging contingent claims in a complete market. For simplic-
ity of exposition and comparison with exact known formulas, we will work on a
simple diffusion setup together with well-known types of contingent claims. We
stress that the algorithm presented in Section 5.1 holds for any square integrable
FT -random variable.

In this section, the market consists of two assets: one riskless asset S0 and one
risky asset S with continuous paths. We will specify the evolution of the assets
directly under the unique equivalent martingale measure Q together with the re-
spective Q-Brownian motion W . We assume that they are given by

dS0
t = rS0

t dt, S0
0 = 1; dSt = rSt dt + σSt dWt,(5.1)

where σ > 0 and r > 0. It is well known (see, e.g., [5, 32]) that for any given con-
tingent claim F ∈ L2(Q, FT ), the correspondent replicating strategy θ is derived
by the Clark–Ocone–Karatzas [32] formula as

θt = e−r(T −t)σ−1(St )
−1Fo

t ,(5.2)

where Fo· := EQ[D·F |F·] and D is the Gross–Sobolev derivative. Since the fil-
tration generated by W coincides with F, Theorem 4.1 still holds under the cor-
respondent martingale measure Q as well. In the sequel, with a slight abuse of
notation, we also denote by E the expectation under the measure Q.

REMARK 5.1. In Fournie et al. [21] and also in a series of papers [4, 14, 20,
27], the idea is to express the optional projection Fo by E[F.G|F·] for a suitable
random variable G which in general is represented by a Skorohod integral. In this
case, a smooth underlying Markovian structure plays a key role. In this work, we
take a rather different strategy which is fully based on the information generated by
the stopping times (T k

n )k,n≥1 which allows us to treat any L2(FT )-random variable
(see also Remark 5.2).
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To illustrate our method, we will study three types of derivatives: a European
call option, a digital option and a barrier option given, respectively, by

max{ST − K,0}, 1{ST ≤K}, 1{MS
0,T ≤K},(5.3)

where MS
0,T := sup0≤t≤T |St |. It is well known that for these types of claims, there

exist closed formulas for hedging (see, e.g., [5], examples 4.1 and 5.3).

5.1. The algorithm. The method is fully based on the space-filtration dis-
cretization scheme induced by the stopping times {T k

n ;k,n ≥ 1}. In the sequel,
we fix an L2(FT )-random variable F and our goal is to describe an algorithm to
calculate the optional projection Fo

0 which yields the hedging θt at time t = 0. The
other times can be recovered from this case by a standard shift argument. From
(4.9), it follows that for sufficiently small ε > 0 and k large enough,

1

ε
E

∫ ε

0
Dk

s F ds = 1

ε
E

∫ ε

T k
1

Dk
s F ds ∼ 1

ε
E

∫ ε

0
Fo

s ds ∼ EFo
0(5.4)

as long as 0 is a Lebesgue point of t �→ EFo
t . For the purpose of hedging, we

may assume that this is the case. Otherwise, we shall always find a point in a
neighborhood of t = 0 such that (5.4) holds. In order to speed up the convergence
of the algorithm we take

E
1

ε − T k
1

∫ ε

T k
1

Dk
s F ds,

instead of 1
ε
E

∫ ε

T k
1

Dk
s F ds in (5.4). One should notice that 1

ε−T k
1
1{T k

1 <ε} → 1
ε

in L2

as k → ∞ and therefore

E
1

ε − T k
1

∫ ε

T k
1

Dk
s F ds ∼ EFo

0(5.5)

for k sufficiently large. By the very definition,

1

ε − T k
1

∫ ε

T k
1

Dk
s F ds = 1

ε − T k
1

[ ∞∑
n=1

Dk
T k

n
F

(
T k

n+1 − T k
n

)
1{T k

n+1≤ε}
(5.6)

+
∞∑

n=1

Dk
T k

n
F

(
ε − T k

n

)
1{T k

n <ε≤T k
n+1}

]
.

The whole structure of the algorithm is based on the perfect simulation of the first
passage times {T k

n − T k
n−1;k,n ≥ 1}. Based on the density of T k

1 , Burq and Jones
[8] proposes a very simple and efficient algorithm. We refer the reader to this work
for a detailed exposition of the perfect simulation method for the stopping times.

(S1) Simulation of {Ak;k ≥ 1}.
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• One chooses k ≥ 1 which represents the discrimination level of the Brownian
motion.

• One generates the stopping times {T k
n −T k

n−1;n ≥ 1} according to the algorithm
described by [8].

• One simulates the family {σk
n ;n ≥ 1} independently from {T k

n − T k
n−1;n ≥ 1}.

The i.i.d. family {σk
n ;n ≥ 1} must be simulated according to the Bernoulli ran-

dom variable σk
1 such that P[σk

1 = i] = 1/2 for i = −1,1. This simulates the
jump process Ak .

The next step is the simulation of DkF where the conditional expectations
{E[F |Gk

n];n, k ≥ 1} play a key role.

(S2) Simulation of the stochastic derivative.

• Fix a small ε > 0.
• Generate one sample of Ak according to (S1) for a large k ≥ 1. From this sample,

one takes (tk1 , σ k
1 ); . . . ; (tkn, σ k

n ) such that tkn < ε ≤ tkn+1.
• For each 0 ≤ j ≤ n, one applies Monte Carlo simulation to obtain an approxi-

mation of E[F |(tk1 , σ k
1 ), . . . , (tkj , σ k

j )] (see Remark 5.2). This object is denoted

by Ê[F |(tk1 , σ k
1 ), . . . , (tkj , σ k

j )].
Therefore, an approximation for the stochastic derivative DkF is given by

D̂k

tkj
F := Ê[F |(tk1 , σ k

1 ), . . . , (tkj , σ k
j )] − Ê[F |(tk1 , σ k

1 ), . . . , (tkj−1, σ
k
j−1)]

2−kσ k
j

for 1 ≤ j ≤ n. Then one can define the following object according to (5.5) and
(5.6):

F̂ o
0 (ε, k) := 1

ε − tk1

[
n−1∑
j=1

D̂k

tkj
F

(
tkj+1 − tkj

) + D̂k
tkn

F
(
ε − tkn

)]
.

• From (5.5) and (5.2), the correspondent replicating strategy for this path can be
approximated by

θ̂0(ε, k) := e−r(T )σ−1(S0)
−1F̂ o

0 (ε, k).

• Repeat these steps several times and take the mean of the strategies θ̂0(ε, k) as
the estimative for the replicating strategy θt at the initial point t = 0.

REMARK 5.2. The methodology presented in this section is rather general in
the sense that the only assumption that is made is the possibility to simulate the
expectation E[F |(tk1 , σ k

1 ), . . . , (tkj , σ k
j )] by a Monte Carlo method. In the classical

Black–Scholes setup, one can simulate it by means of random samples generated
by

Sk
t = exp

[(
r − 1

2σ 2)
t + σAk

t

]
, 0 ≤ t ≤ T .(5.7)
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In the general positive semimartingale case, the expectation can be simulated based
on the Euler–Maruyama method, for example, for

dSt = rtSt dt + σtSt dWt ; 0 ≤ t ≤ T ,

with the increments (WT k
n

− WT k
n−1

) computed in terms of (T k
n ) and σ can be ran-

dom.

5.2. Numerical examples. As a simple illustration of our method, we consider
three types of derivatives: a European call option, a digital option and a barrier
option. The stock price is 49, the risk-free interest rate is 5% per annum, the stock
price volatility is 20% per annum, the time to maturity is 20 weeks (0.3846 years)
and the expected return from the stock is 13% per annum. We use strike price
K = 50 for the European call option and digital option and K = 55 for the bar-
rier option. In order to develop the simulation process we choose a discrimination
level of order k = 4. The main point of the algorithm is the approximation of the
conditional expectations by Monte Carlo simulation. For each case, we generate
10,000 paths of Ak , we evaluate the payoff function on each path based on (5.7)
and we take the mean as the estimative of the conditional expectation. We choose
ε = 0.02 and we generate 1000 samples of Ak stopped at 0.02.

For each sample, we calculate the respective hedging value at time t = 0. The
estimative of the hedging at time t = 0 is given by the mean of the hedging values
from the correspondent samples (see Figure 1). The %Error is the absolute value
of the difference between estimated value and exact value divided by the exact
value. With 1000 paths, we obtain an error of 0.57% for the European call option,
0.48% for the digital option and 0.1% for the barrier option.

At this stage, one can say that the method proposed in this work is rather gen-
eral compared with the more classical ones based on the existence of densities
(see, e.g., [27] and other references therein). Moreover, it does not require fur-
ther smoothness assumptions and it can be easily implementable without requiring
advanced mathematical calculations as in the classical literature in mathematical
finance.

6. Optimal stopping. In this section, we illustrate the techniques developed
in this paper with the optimal stopping time problem based on a Wiener func-
tional X. Throughout this section we fix a bounded positive Wiener functional X

with continuous paths. To shorten notation, in this section we shall extend the time
domain of all stochastic processes X to [0,∞) as follows: Xt = XT for every
t ≥ T . In the sequel, we denote the set of all F-stopping times by ST(F).

DEFINITION 6.1. For a fixed ε > 0, we say that the stopping time τ ε is ε-
optimal if

EXτε ≥ sup
τ∈ST(F)

EXτ − ε.
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FIG. 1. Monte Carlo simulations for hedging.
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From Remark 2.1, we know that limk→∞ δkX = X strongly in B2 and therefore,

sup
τ∈ST(F)

EδkXτ → sup
τ∈ST(F)

EXτ as k → ∞.(6.1)

Let U k be the class of totally inaccessible Fk-stopping times. It is well known
(see, e.g., [23]) that S ∈ U k if, and only if, S = ∑∞

n=1 T k
n 1{S=T k

n }. The fact that δkX

is constant on the stochastic interval [[T k
n , T k

n+1[[ for each n ≥ 0 and convergence
(6.1) allow us to state the following result.

LEMMA 6.1. For each ε > 0, we have

sup
τ∈ST(F)

EXτ ≤ sup
τ k∈U k

EδkXτk + ε

for every k sufficiently large.

DEFINITION 6.2. For a given ε ≥ 0, we say that τ k,�(∈ U k) is (k, ε)-optimal,
if

EδkXτk,� ≥ sup
τ k∈U k

EδkXτk − ε.

Summing up the above results together with Remark 2.1, the following propo-
sition holds.

PROPOSITION 6.1. Let X be a bounded positive continuous Wiener func-
tional. For a given ε > 0, each (k,0)-optimal stopping time τ k,� is ε-optimal for
every k sufficiently large.

6.1. A dynamic programming principle. In the sequel, we provide a dynamic
programming principle to approximate a (k,0)-optimal stopping time for any
Wiener functional X satisfying the assumptions of Proposition 6.1. Let Sk be the
Snell envelope of δkX, that is, the minimal positive Fk-supermartingale which
dominates δkX. The dynamic programming principle can be written as follows.
For a fixed ω ∈ {T k

n ≤ T < T k
n+1}, we shall write⎧⎨

⎩
Sk

T k
n
(ω) = δkXT k

n
(ω),

Sk

T k
j

(ω) = max
{
δkXT k

j
(ω);E

[
Sk

T k
j+1

|Gk
j

]
(ω)

}
, j ≤ n.

By a backward induction argument, the dynamic programming principle can be
written in terms of optimal stopping times as⎧⎪⎪⎨

⎪⎪⎩
τ k,�
n (ω) := T k

n (ω),

τ
k,�
n−1(ω) := T k

n−1(ω)1Gk
n−1

(ω) + τ k,�
n (ω)1(Gk

n−1)
c (ω),

τ
k,�
j (ω) := T k

j (ω)1Gk
j
(ω) + τ

k,�
j+1(ω)1(Gk

j )c (ω); ω ∈ �,

(6.2)
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where

Gk
j := {

δkXT k
j

≥ E
[
δkX

τ
k,�
j+1

|Gk
j

]}
, j ≤ n − 1.(6.3)

In this case, the τ
k,�
0 is (k,0)-optimal and the value function is given by

ESk
0 = EδkX

τ
k,�
0

.(6.4)

6.2. Non-Markovian examples. We shall consider a significant class of non-
Markovian examples which fits into the assumptions of Proposition 6.1. For in-
stance, for a given bounded continuous function f : R → R+, let us consider the
following Wiener functionals:

f
(
BH )

for H ∈ (0,1),(6.5)

where BH is the fractional Brownian motion with parameter H ∈ (0,1). Based on
the simulation of {(T k

n −T k
n−1, σ

k
n );n ≥ 1} [see (S1) in Section 5] and the dynamic

programming principle for X = f (BH ) in the last section, it is straightforward to
develop an algorithm to approximate a (k,0)-optimal stopping time. In the sequel,
the index � ∈ {1, . . . ,N} encodes the �th iteration in a given dynamic programming
procedure and {Ak,�}N�=1 are independent copies of Ak .

(A1) Dynamic programming algorithm.

• Fix a large k ≥ 1 and generate one sample from Ak,� based on (S1) and take
(t

k,�
1 , σ

k,�
1 ), . . . , (tk,�

n , σ k,�
n ) such that tk,�

n ≤ T < t
k,�
n+1.

• One sets τ k,�,�
n = tk,�

n .
• One proceeds backward by taking the time τ

k,�,�
j−1 given by

τ
k,�,�
j−1 =

⎧⎪⎨
⎪⎩

t
k,�
j−1, if f

(
A

k,�,H

t
k,�
j−1

) ≥ E
[
f

(
A

k,H

τ
k,�,�
j

)|(tk,�
1 , σ

k,�
1

)
, . . . ,

(
t
k,�
j−1, σ

k,�
j−1

)]
,

τ
k,�,�
j , if f

(
A

k,�,H

t
k,�
j−1

)
< E

[
f

(
A

k,H

τ
k,�,�
j

)|(tk,�
1 , σ

k,�
1

)
, . . . ,

(
t
k,�
j−1, σ

k,�
j−1

)]
,

for any j ≤ n. The value A
k,�,H
t is obtained from Ak,� via the Volterra representa-

tion of the fractional Brownian motion as

A
k,�,H
t :=

∫ t

0
K(t, s) dAk,�

s , 0 ≤ t ≤ T ,H ∈ (0,1),(6.6)

for a suitable square-integrable kernel K(t, s) (see, e.g., [24]). The conditional
expectations

E
[
f

(
A

k,H

τ
k,�,�
j

)|(tk,�
1 , σ

k,�
1

)
, . . . ,

(
t
k,�
j−1, σ

k,�
j−1

)]
, j ≤ n,

are approximated by Monte Carlo methods via simulation of Ak,� described in
(S1), Section 5.1 and (6.6).
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• One repeats the previous steps several times, � = 1, . . . ,N and the optimal value
function (6.4) is approximated by 1

N

∑N
�=1 f (A

k,�,H

τ
k,�,�
0

) for large N .

The above formulation in terms of stopping rules (rather than in terms of value
functions) is essential to our approach as well as in other probabilistic methods
based on discretizations of the Snell envelope. The main feature of this methodol-
ogy is the computation of conditional expectations which is generically based on
the following alternatives: projections on L2(P) (see, e.g., [30]), quantization (as
in [2]) and representation formulas based on Malliavin calculus (see, e.g., [6]). An
important drawback of all these methodologies is that they essentially rely on an
induced Markov chain arising from a time-discretization scheme of a continuous-
time Markov process. Dynamic programming methods are not directly usable in
genuinely non-Markovian cases due to the nontrivial time-correlation generated
by the driving noise.

We circumvent this problem by introducing a space-filtration discretization
scheme which allows us to write the original optimal stopping problem in terms
of the information flow (Gk

n)k,n≥1. Conditional expectations appearing in the dy-
namic programming principle (6.2)–(6.4) can now be fairly simulated since most
examples of interest can be viewed in terms of the process Ak as explained in Re-
mark 5.2. A numerical study is needed in order to precisely evaluate our method
with the more classical approaches, a topic which will be further explored in a
forthcoming paper.
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