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DUAL FORMULATION OF SECOND ORDER TARGET PROBLEMS

BY H. METE SONER1, NIZAR TOUZI2 AND JIANFENG ZHANG3

ETH Zürich and Swiss Finance Institute, CMAP, Ecole Polytechnique,
and University of Southern California

This paper provides a new formulation of second order stochastic target
problems introduced in [SIAM J. Control Optim. 48 (2009) 2344–2365] by
modifying the reference probability so as to allow for different scales. This
new ingredient enables us to prove a dual formulation of the target problem
as the supremum of the solutions of standard backward stochastic differential
equations. In particular, in the Markov case, the dual problem is known to
be connected to a fully nonlinear, parabolic partial differential equation and
this connection can be viewed as a stochastic representation for all nonlinear,
scalar, second order, parabolic equations with a convex Hessian dependence.

1. Introduction. The connection between the backward stochastic differen-
tial equations (BSDE hereafter) and the nonlinear, parabolic partial differential
equations (PDE hereafter) is well documented. Indeed, the standard BSDEs, as
introduced by Pardoux and Peng [14], are known to provide a stochastic represen-
tation for the solutions of semi-linear PDEs in the Markov case. In this representa-
tion, the diffusion coefficient of the underlying process is the linear coefficient of
the Hessian variable in the PDE. Therefore, the connection to fully nonlinear equa-
tions requires an extension that should allow for stochastic processes with differ-
ent diffusion coefficients. Indeed, [6] develops such a generalization to the second
order and also proves a Markovian uniqueness result in an appropriate class. How-
ever, no existence theory is available for this generalization, with the one exception
in the Markov context. In this case any smooth solution of the related PDE, if it
exists, is easily seen to be a solution of the second order BSDE. A closely related
class of control problems, called the second order stochastic target problem, was
introduced in [20] as well.

In this paper we provide a new formulation for the second order stochastic target
problems. A better understanding of the target problem is essential for a coherent
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theory of second order BSDEs. Indeed, we develop this theory in our accompany-
ing work [21], including existence and uniqueness results with minimal assump-
tions.

We continue with the description of the target problem. Let B be a Brownian
motion under the probability measure P0 and {Ft , t ≥ 0} be the corresponding
filtration. For a continuous semimartingale Z, we denote by � the density of its
covariation with B . We then define the controlled process Y by

Yt := y −
∫ t

0
Hs(Ys,Zs,�s) ds +

∫ t

0
Zs ◦ dBs, d〈Z,B〉t = �t dt,(1.1)

where ◦ denotes the Fisk–Stratonovich stochastic integration. We assume that the
given random nonlinear function H satisfies the standard Lipschitz and measura-
bility conditions. Then, for any reasonable process Z and an initial condition y,
a unique solution, which is denoted by Y y,Z , exists. We now fix a time horizon,
say, T = 1, and a class of admissible controls Z 0. Then, given an F1 measurable
random variable ξ , [20] defines the second order stochastic target problem by

V 0 := inf{y :Yy,Z
1 ≥ ξ P0-a.s. for some Z ∈ Z 0}.(1.2)

In this formulation, the structure of the set of admissible controls is crucial. In
fact, if Z 0 is not properly defined, then the dependence of the problem on the
variable � can be trivialized. We refer to [3] for a detailed discussion of this issue
in a particular example of mathematical finance. One of the achievements of the
approach given below is to avoid this strong dependence on the control set and
simply to work with standard spaces.

As in many optimization problems, convex duality results provide a deeper un-
derstanding and powerful technical tools. Indeed, they are an essential step for the
well-posedness of the second order backward stochastic differential equations, as
proved in our accompanying paper [21]. Motivated by these, we adopt a new point
of view for the target problems which also allows for the construction of the dual.
This new formulation differs from that of [20] in two instances. First, we reinforce
the constraint Y

y,Z
1 ≥ ξ in (1.2) by requiring that it should hold under various mu-

tually singular measures and not only on the support of P0. Second, the set of
admissible controls utilized here is more natural and, as discussed above, it avoids
the technical aspects of [20].

Our reformulation is motivated by the work of Denis and Martini [8] on the
deep theory of quasi-sure stochastic analysis. An important related probabilistic
notion, introduced by Peng [17], is the G-Brownian motion. Here instead of using
these two powerful tools, we employ a direct approach by assuming sufficient reg-
ularity. One drawback of all these approaches is the implicit regularity assumption.
Indeed, in all these approaches, integrability in any power is possible only if the
random variable is quasi-surely continuous. This is a Lusin type of result and is
not restrictive when there is only countably many measures. However, in general,
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this is an additional constraint. In one of our accompanying papers [22], we pro-
vide an alternative approach through aggregation of random variables. The general
aggregation result of [22] allows us to consider a larger class of random variables,
but then the class of probability measures must be slightly restricted.

We believe our approach has several advantages:

– It avoids redeveloping an appropriate theory of stochastic integration from
scratch, as it is done in [8] and [17].

– More importantly, a representation theorem is available in our framework as
proved in [23].

– Finally, by deriving appropriate estimates, it is shown in [21] that one can extend
these concepts to a larger space with regularity conditions. Indeed, a similar
extension of G-martingales is given in [7], showing that they cover the same
space as in the quasi-sure analysis of [8].

We next provide an intuitive description of our formulation. For this heuristic
explanation we assume a Markov structure. Namely, we assume that H in (1.1)
and ξ in (1.2) are given by

Ht(y, z, γ ) = h(t,Xt , y, z, γ ), ξ = g(XT ),(1.3)

where dXt = dBt and h, g are deterministic scalar functions. Let V 0(t, x) be de-
fined as in (1.2) with time origin at t and Xt = x. As it is usual, we assume that
γ �→ h(t, x, y, z, γ ) is nondecreasing. Then, by an appropriate choice of admissi-
ble controls Z , it is shown in [20] that this problem is a viscosity solution of the
corresponding dynamic programming equation,

−∂u

∂t
− h(t, x, u(t, x),Du(t, x),D2u(t, x)) = 0, u(1, x) = g(x).(1.4)

We further assume that γ �→ h(t, x, r,p, γ ) is convex. Then,

h(t, x, r,p, γ ) = sup
a≥0

{
1

2
aγ − f (t, x, r,p, a)

}
,(1.5)

where f is the (partial) convex conjugate of h with respect to γ . Let Df be the do-
main of f as a function of a. By the classical maximum principle of parabolic dif-
ferential equations, we expect that, for every a ∈ Df , the solution u ≥ ua , where u

solves (1.4) and ua is defined as the solution of the following semi-linear PDE:

−∂u

∂t
− 1

2
aD2u(t, x) + f (t, x, u(t, x),Du(t, x), a) = 0,

(1.6)
u(1, x) = g(x).

In turn, by standard results, ua(t, x) = Ya
t , where, for s ∈ [t, T ],

Xa
s = x +

∫ s

t
a1/2
r dBr,

(1.7)

Ya
s = g(Xa

T ) −
∫ T

s
f (r,Xa

r , Y a
r ,Za

r , a) dr −
∫ T

t
Za

r a1/2 dBs.
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We have formally argued that V 0(t, x) ≥ Ya
t for any a ∈ Df . Let Af be the col-

lection of all processes with values in Df . By extending (1.7) to processes a, it is
then natural to consider the problem

Vt := sup
a∈Af

Y a
t(1.8)

as the dual of the primal stochastic target problem. Indeed, the optimization prob-
lem (1.8) corresponds to the dual formulation of the second order target problem
in the Markov case. Such a duality relation was suggested in the specific example
of [19] and can be proved rigorously by showing that v(t, x) := Vt is a viscosity
solution of the fully nonlinear PDE (1.4). This, by uniqueness, implies that v = V 0.
Of course, such an argument requires some technical conditions at least to guaran-
tee that comparison of viscosity supersolutions and subsolutions holds true for the
PDE (1.4).

The main object of this paper is to provide a purely probabilistic proof of this
duality result. Moreover, our duality result does not require to restrict the problem
to the Markov framework.

We should mention that we use weak formulation in our approach, that is, in-
stead of controlling the state process Xa in (1.7), our control is the distribution
of Xa on its canonical space. See (2.3) below for the precise definition. Such weak
formulation is important for modeling model uncertainty, as in [8] and [17]. In
the contexts of stochastic control, which naturally uses strong formulation, some
ideas have already appeared in the literature; see, for example, El Karoui and
Quenez [10] and Peng [16]. In particular, [16] uses the notion of r.c.p.d. which
turns out to be crucial in our approach.

This paper is organized as follows. After introducing the probabilistic structures
in the next section, we provide the definition of the stochastic target problem in
Section 3. Two relaxations, which are also shown to be equivalent to the original
problem, are also introduced in that section. The main duality result is stated and
proved in the following section. Section 5 is devoted to a weaker formulation. An
extension is outlined in the next section and in the Appendix we provide the proofs
of two technical results.

2. The setup. Let � := {ω ∈ C([0,1],Rd) :ω0 = 0} be the canonical space
equipped with the uniform norm ‖ω‖∞ := sup0≤t≤1 |ωt |, B the canonical process,
P0 the Wiener measure, F := {Ft }0≤t≤1 the filtration generated by B , and F+ :=
{F +

t ,0 ≤ t ≤ 1} the right limit of F.
We say a probability measure P is a local martingale measure if the canonical

process B is a local martingale under P. By Föllmer [11] (see also Karandikar [12]
for a more general result), there exists an F-progressively measurable process,
denoted as

∫ t
0 Bs dBs , which coincides with Itô’s integral, P-a.s. for all local mar-

tingale measures P. In particular, this provides a pathwise definition of

〈B〉t := BtB
T
t − 2

∫ t

0
Bs dBT

s and ât := lim
ε↓0

1

ε
(〈B〉t − 〈B〉t−ε),
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where T denotes the transposition, and the lim is taken componentwise and point-
wise in ω. Clearly, 〈B〉 coincides with the P-quadratic variation of B , P-a.s. for all
local martingale measures P.

Let P W denote the set of all local martingale measures P such that

〈B〉t is absolutely continuous in t and â takes values in S>0
d , P-a.s.,(2.1)

where S>0
d denotes the space of all d ×d real-valued positive definite matrices. We

note that, for different P1,P2 ∈ P W , in general P1 and P2 are mutually singular.
For any P ∈ P W , it follows from the Lévy characterization that Itô’s stochastic
integral under P,

WP
t :=

∫ t

0
â−1/2
s dBs, t ∈ [0,1],P-a.s.(2.2)

defines a P-Brownian motion. As in [22], we abuse the terminology of Denis and
Martini [8] as follows:

DEFINITION 2.1. For any subset P ⊂ P W , we say a property holds P -quasi-
surely (P -q.s. for short) if it holds P-a.s. for all P ∈ P .

In this paper we concentrate on the subclass P S ⊂ P W consisting of all proba-
bility measures

Pα := P0 ◦ (Xα)−1 where Xα
t :=

∫ t

0
α1/2

s dBs, t ∈ [0,1],P0-a.s.(2.3)

for some F-progressively measurable process α taking values in S>0
d with∫ 1

0 |αt |dt < ∞, P0-a.s. We recall from [22] that

P S = {P ∈ P W : FWP
P = F

P},(2.4)

where F
P

(resp., FWP
P

) is the P-augmentation of the filtration generated by B

(resp., by WP). Moreover,

every P ∈ P S satisfies the Blumenthal zero–one law and the
martingale representation property.

(2.5)

Notice that an F-progressively measurable process can be viewed as a mapping
from [0, T ] × � to Rd . Moreover, Xα takes values in � and, thus, its canonical
space is also � and the canonical filtration is still F. We have the following simple
lemma.

LEMMA 2.2. Let α be an F-progressively measurable process taking values in
S>0

d with
∫ 1

0 |αt |dt < ∞, P0-a.s. Then there exists an F-progressively measurable
mapping βα : [0, T ] × � → Rd such that

B = βα(Xα), P0-a.s. and

WPα = βα(B), â(B) = α ◦ βα(B), dt × Pα-a.s.
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PROOF. First, by [22], Lemma 8.1, we know FXα P0 = FB
P0

, and, in particular,

B is FXα P0
progressively measurable. By [22], Lemma 2.4 and Remark 2.3 below,

there exists an FXα
-progressively measurable process B̃ such that B̃ = B , P0-a.s.

Then, by viewing � as the canonical space of Xα , one may identify the process B̃

as an F-progressively measurable mapping βα . Changing back to the canonical
space of B and noting that Xα takes values in �, we have B̃(ω) = βα(Xα(ω)) for
all ω ∈ �, and, therefore, B = βα(Xα), P0-a.s.

Now it follows from the definition of Pα that

(B, W̃α)Pα = (Xα,B)P0 where W̃α := βα(B),(2.6)

that is, the Pα-distribution of (B, W̃α) is equal to the P0-distribution of (Xα,B).
Note that d〈B〉t = ât (B) dt , Pα-a.s. and d〈Xα〉t = α(B)dt = α ◦ βα(Xα)dt , P0-
a.s. Then

(B, W̃α, â(B))Pα = (
Xα,B,α ◦ βα(Xα)

)
P0

.

This implies that â(B) = α ◦ βα(B), dt × Pα-a.s. Moreover, since dBt =
α

−1/2
t (B) dXα

t = α
−1/2
t (β(Xα)) dXα

t , P0-a.s. it follows from (2.6) that

W̃α
t =

∫ t

0
α−1/2

s (β(B)) dBs =
∫ t

0
â−1/2
s (B)dBs = WPα

t , t ∈ [0,1],Pα-a.s.

�

REMARK 2.3. In the standard stochastic analysis literature, the theory is de-
veloped under the augmented filtration. Because we are working under mutually
singular measures, unless otherwise stated, we shall use the filtration F. We re-

call from [22] that, for every probability measure P, every F
P

-progressively mea-
surable process X has an F-progressively measurable version X̃, that is, X = X̃,
P-a.s. Therefore, given P, all processes involved in this paper will be considered
in their F-version. However, notice that such a version may depend on P. See also
Remark 3.6 below.

Moreover, following similar arguments, the above result still holds true if we
replace F by an arbitrary filtration. In the proof of Lemma 2.2, we have used the
result on the filtration FXα

.

Finally, we clarify that by the statement “X̃ = X, P-a.s.” we mean that these
processes are equal to dt ×dP-a.s. When both of them are càdlàg, clearly X̃t = Xt ,
0 ≤ t ≤ 1, P-a.s.

3. Second order target problem and relaxations. In this section we start
with the definitions and assumptions related to the nonlinearity H and its convex
dual. Several spaces used in the paper are also introduced in Section 3.1. We then
give the definition of the original problem, two relaxed problems and the dual. We
provide an easy first string of inequalities in the final subsection.
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3.1. Definitions and assumptions. Let Ht(ω,y, z, γ ) : [0,1] × � × R × Rd ×
DH → R be F-progressively measurable, where DH ⊂ Rd×d is a given subset
containing 0. We assume throughout the following:

ASSUMPTION 3.1. For all ω ∈ �, H is Lipschitz continuous in (y, z), uni-
formly in (t,ω, γ ) and it is uniformly continuous in ω under the L∞-norm. More-
over, we assume that it is lower-semicontinuous in γ and the conjugate F defined
at (3.1) below is measurable.

In the sequel, we denote by A :B := Tr[ATB] for A,B ∈ Rd×n. We introduce
the conjugate of H with respect to γ by

Ft(ω, y, z, a) := sup
γ∈DH

{
1

2
a :γ − Ht(ω,y, z, γ )

}
, a ∈ S>0

d .(3.1)

We notice that F is measurable if H is upper-semicontinuous (and hence con-
tinuous) in γ or if DH is compact; see, for example, [2]. Moreover, since H is
uniformly continuous in (ω, y, z), the domain of F as a function of a is indepen-
dent of (ω, y, z). Thus, we denote it by DFt . By the uniform Lipschitz continuity
of H in (y, z), we know that

F(·, a) is uniformly Lipschitz continuous in (y, z) and uni-
formly continuous in ω, uniformly on (t, a), for every a ∈ DFt .

(3.2)

Moreover, for our duality result of Section 4, we need to further assume the fol-
lowing:

ASSUMPTION 3.2. There is a constant C such that, for all (t,ω, y, z1, z2) and
all a ∈ DFt :

|Ft(ω, y, z1, a) − Ft(ω, y, z2, a)| ≤ C|a1/2(z1 − z2)|.
We also define

F̂t (y, z) := Ft(y, z, ât ) and F̂ 0
t := F̂t (0,0).(3.3)

In order to focus on our main idea, in this section we shall restrict the probability
measures in a subset PH ⊂ P S defined below. We will extend our results to more
general cases, as well as allowing H to take value ∞, in Section 6 below.

DEFINITION 3.3. Let PH denote the collection of all those P ∈ P S such that

aP ≤ â ≤ aP, dt × dP-a.s. for some aP, aP ∈ S>0
d ,(3.4)

and

EP

[∫ 1

0
(|F̂ 0

t |2 + |H 0
t |2) dt

]
< ∞.(3.5)
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REMARK 3.4. In our accompanying paper [21] we consider a slightly more
general class P κ

H with a parameter κ ∈ (1,2]. The PH in this paper coincides with
the case κ = 2 there. All the results in this paper can be easily extended to the
general case κ ∈ (1,2]. In particular, Theorem 4.5 and Proposition 4.10 in this
paper still hold true for general κ , which are used in [21], Theorem 4.6.

It is clear that ât ∈ DFt , dt × dP-a.s. for all P ∈ PH , and by (3.2) together with
Assumption 3.2,

|F̂t (y1, z1) − F̂t (y2, z2)| ≤ C
(|y1 − y2| + |â1/2

t (z1 − z2)|),
(3.6)

dt × dP-a.s. for all P ∈ PH .

REMARK 3.5. The Lipschitz continuity in z in (3.6) is implied by the follow-
ing condition on H :

|Ht(y, z1, γ ) − Ht(y, z2, γ )| ≤ C|â1/2
t (z1 − z2)|, dt × dP-a.s.

for some constant C which does not depend on (t,ω, y, γ ).

We conclude this subsection by introducing the spaces which will be needed
for the formulation of the second order target problems. For any domain D in
an Euclidean space with appropriate dimension, let L0(D) denote the space of
all F1-measurable random variables taking values in D, and H0(D) the space of
all F+-progressively measurable processes taking values in D. Notice that here
we use the right limit filtration F+. For any P ∈ P W , let D0(P,D) be the sub-
space of H0(D) whose elements have càdlàg paths, P-a.s.; I0(P,D) the subspace
of D0(P,D) whose elements K have nondecreasing paths with K0 = 0, P-a.s.; and
S0(P,D) the subspace of D0(P,D) whose elements have continuous paths, P-a.s.

Moreover, let

L2(P,D) := {ξ ∈ L0(D) : EP[|ξ |2] < ∞},
H2(P,D) :=

{
H ∈ H0(D) : EP

[∫ 1

0
|Ht |2 dt

]
< ∞

}
,

D2(P,D) :=
{
Y ∈ D0(P,D) : EP

[
sup

0≤t≤1
|Yt |2

]
< ∞

}
,(3.7)

I2(P,D) := D2(P,D) ∩ I0(P,D),

S2(P,D) := D2(P,D) ∩ S0(P,D),

and denote

L̂2
H(D) := ⋂

P∈PH

L2(P,D), Ĥ2
H(D) := ⋂

P∈PH

H2(P,D),
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and the corresponding subsets of càdlàg, continuous processes, nondecreasing
processes: D̂2

H(D) := ⋂
P∈PH

D2(P,D), Ŝ2
H(D) := ⋂

P∈PH
S2(P,D), Î2

H(D) :=⋂
P∈PH

I2(P,D).
Finally, let

Ĝ2
H(DH) := ⋂

P∈PH

G2(P,DH) and Ŝ M2
H(Rd) := ⋂

P∈PH

S M2
H (P,Rd),

where

G2(P,DH ) := {
� ∈ H0(DH ) : 1

2 â :� − H(0,0,�) ∈ H2(P,R)
}

and S M2
H (P,Rd) ⊂ D2(P,Rd) is the space of all square integrable (P,F+)-

semimartingales Z with � ∈ G2(P,DH ), where � is defined by d〈Z,B〉t =
�t :d〈B〉t , P-a.s.

REMARK 3.6. We emphasize that in the above spaces we require the pro-
cesses to be F+-progressively measurable. This is important because the process
V + in (4.21) is in general F+-progressively measurable. See also Proposition 4.11
and the paragraph before it.

However, for fixed P ∈ P S , it follows from the Blumenthal zero–one law that
EP[ξ |Ft ] = EP[ξ |F +

t ], P-a.s. for any t ∈ [0,1] and P-integrable ξ . In particu-
lar, this shows that any F +

t -measurable random variable has an Ft -measurable
P-modification. Consequently, for any fixed P, we may view the processes in
L2(P,D) as F-progressively measurable.

3.2. The second order target problem. For Z ∈ Ŝ M2
H(Rd), it follows from

Karandikar [12] that Itô’s stochastic integrals∫ t

0
Zs dBs and

∫ t

0
Bs dZs are defined PH -q.s.

In particular, the quadratic covariation between Z and B is well defined PH -q.s.
and has a density process �:

d〈Z,B〉t = �td〈B〉t = �t ât dt, PH -q.s.(3.8)

For any y ∈ R and Z ∈ Ŝ M2
H (Rd), let Y := Yy,Z ∈ Ŝ2

H(R) denote the controlled
process defined by the following ODE (with random coefficients):

Yt = y −
∫ t

0
Hs(Ys,Zs,�s) ds +

∫ t

0
Zs ◦ dBs

= y +
∫ t

0

(
1

2
âs :�s − Hs(Ys,Zs,�s)

)
ds(3.9)

+
∫ t

0
Zs dBs, t ∈ [0,1], PH -q.s.,



DUAL OF SECOND ORDER TARGET PROBLEMS 317

where ◦ denotes the Stratonovich stochastic integral. We note that the well-
posedness of (3.9) follows directly from the assumptions that � ∈ Ĝ2

H(DH), Z

is square integrable under each P ∈ PH , and H is uniformly Lipschitz continuous
in (y, z).

Let ξ ∈ L0(R). Following Soner and Touzi [20], we introduce the second order
stochastic target problem:

V(ξ) := inf{y :Yy,Z
1 ≥ ξ, PH -q.s. for some Z ∈ Ŝ M2

H(Rd)}.(3.10)

3.3. Relaxations. We relax the target problem (3.10) by removing the con-
straint that Z is a semimartingale. For any y ∈ R, Z̄ ∈ Ĥ2

H(Rd), �̄ ∈ Ĝ2
H(DH),

and P ∈ PH , let Ȳ := Ȳ P,y,Z̄,�̄ ∈ S2(P,R) denote the unique solution of

Ȳt = y +
∫ t

0

(
1

2
âs : �̄s − Hs(Ȳs, Z̄s, �̄s)

)
ds +

∫ t

0
Z̄s dBs,

(3.11)
t ∈ [0,1],P-a.s.

Here, we observe that the stochastic integral
∫ t

0 Zs dBs may not have a PH -q.s.
version, in general, and thus we can only define (3.11) under each P ∈ PH .

Our relaxed target problem is

V̄(ξ) := inf{y :∃(Z̄, �̄) ∈ Ĥ2
H(Rd) × Ĝ2

H(DH) such that
(3.12)

Ȳ
P,y,Z̄,�̄
1 ≥ ξ,P-a.s. for all P ∈ PH }.

The main duality result of this paper relies on the following further relaxation of
the above target problems. For y ∈ R, ¯̄Z ∈ Ĥ2

H(Rd) and P ∈ PH , let ¯̄Y := ¯̄Y P,y, ¯̄Z ∈
S2(P,R) be the unique solution of

¯̄Y t = y +
∫ t

0
F̂s(

¯̄Y s,
¯̄Zs)ds +

∫ t

0

¯̄Zs dBs, t ∈ [0,1],P-a.s.,(3.13)

where existence and uniqueness of ¯̄Y follows from (3.5) and (3.6). Here, again, the
stochastic integral

∫ t
0

¯̄Zs dBs may not have a PH -q.s. version. Our further relaxed
second order target problem does not involve the processes � and �̄, and is defined
by

¯̄V(ξ) := inf{y :∃ ¯̄Z ∈ Ĥ2
H(Rd) s.t. ¯̄YP,y, ¯̄Z

1 ≥ ξ,P-a.s. for all P ∈ PH }.(3.14)

3.4. Dual formulation. By (2.5), each P ∈ PH ⊂ P S satisfies the martingale
representation property. Let τ be an F-stopping time and η an Fτ -measurable and
P-square integrable random variable. By (3.5), (3.6) and the standard BSDE the-
ory, the following BSDE has a unique solution (Y P(τ, η), Z P(τ, η)) ∈ S2(P,R) ×
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H2(P,Rd):

Y P
t (τ, η) = η −

∫ τ

t
F̂s(Y P

s (τ, η), Z P
s (τ, η)) ds

(3.15)
−
∫ τ

t
Z P

s (τ, η) dBs, P-a.s.

Now for any ξ ∈ L̂2
H(R), our dual formulation is

v(ξ) := sup
P∈PH

Y P
0 (1, ξ).(3.16)

By the Blumenthal zero–one law (2.5), we know Y P
0 (1, ξ) is a constant, and

thus v(ξ) is deterministic.
Our main focus of this paper is to provide conditions which guarantee that the

problems V̄ (ξ), ¯̄V (ξ) and v(ξ) agree. In order to connect these problems to V(ξ),
we will need an appropriate reformulation; see Section 5.

3.5. Some preliminary results. In this subsection we prove a straightforward
string of inequalities.

PROPOSITION 3.7. Let Assumptions 3.1 and 3.2 hold true. Then, for any ξ ∈
L̂2

H(R),

V(ξ) ≥ V̄ (ξ) = ¯̄V (ξ) ≥ v(ξ).(3.17)

PROOF. (i) The first inequality holds true by definition of V and V̄ .

(ii) To prove that V̄ (ξ) ≥ ¯̄V(ξ), let y ∈ R, Z̄ ∈ Ĥ2
H(Rd) and �̄ ∈ Ĝ2

H(DH) be

such that Ȳ
P,y,Z̄,�̄
1 ≥ ξ , P-a.s. for all P ∈ PH . By the definition of the conjugate

function F ,

1
2 âs : �̄s − Hs(y, Z̄s, �̄s) ≤ F̂s(y, Z̄s) for all y ∈ R.

By the comparison theorem for ODEs, we conclude that Ȳ
P,y,Z̄,�̄
1 ≤ ¯̄Y P,y,Z̄

1 , P-a.s.

Thus, ¯̄Y P,y,Z̄
1 ≥ ξ,P-a.s. and, therefore, y ≥ ¯̄V (ξ).

(iii) Similarly, to see that ¯̄V (ξ) ≥ V̄(ξ), we consider some y > ¯̄V (ξ) so that there
exists ¯̄Z ∈ Ĥ2

H(Rd) such that

¯̄Y P,y ¯̄Z
1 ≥ ξ, P-a.s. for all P ∈ PH .

Then, for any ε > 0, it follows from the lower-semicontinuity of H in γ that there
exists a progressively measurable process �̄ ∈ H0(DH ) such that

F̂ ( ¯̄Y , ¯̄Z) − ε ≤ 1
2 â : �̄ − H( ¯̄Y , ¯̄Z, �̄) ≤ F̂ ( ¯̄Y , ¯̄Z).
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Then, �̄ ∈ Ĝ2
H(DH) and it follows from classical estimates on ODEs that there

exists a constant C such that, with ȳ := y + Cε, we have

Ȳ
P,ȳ, ¯̄Z,�̄
1 ≥ ¯̄Y P,y ¯̄Z

1 ≥ ξ a.s. for all P ∈ PH .

Hence, ȳ ≥ V̄(ξ). Since ε > 0 and y > ¯̄V(ξ) are arbitrary, we conclude that ¯̄V (ξ) ≥
V̄(ξ).

(iv) The final inequality ¯̄V(ξ) ≥ v(ξ) can be proved similarly to (ii) above by
using the comparison theorem for BSDEs. �

REMARK 3.8. Consider the Markovian case Ht(y, z, γ ) = h(t,Bt , y, z, γ )

and ξ = g(B1), for some deterministic functions h,g. Assume in addition that the
PDE (1.4) has a solution u ∈ C1,2 with appropriate growth. Then, by the classi-
cal verification argument of stochastic control, one can prove that u(0,0) = v(ξ).
Moreover, if H is convex, then it follows from a direct application of Itô’s for-

mula that u(0,0) = V̄(ξ) = ¯̄V(ξ) = v(ξ). If in addition {Du(t,Bt ), t ∈ [0,1]} ∈
Ŝ M2

H (Rd), then we also have u(0,0) = V(ξ) = V̄ (ξ) = ¯̄V (ξ) = v(ξ). Finally, any
optimal P∗ (if exists) for the problem v(ξ) satisfies

1
2 ât :D2u(t,Bt ) − H·(·, u,Du,D2u)(t,Bt ) = F·(·, u,Du, â·)(t,Bt ), P∗-a.s.

In the non-Markovian case, we shall prove in the next section our main duality

result V̄(ξ) = ¯̄V(ξ) = v(ξ) and that the optimal (Z̄, �̄), ¯̄Z, for the problems V̄(ξ)

and ¯̄V (ξ), respectively, exist. However, we are not able to prove V(ξ) = V̄(ξ) in
general. In order to obtain a result of this type, we shall introduce a slight modifi-
cation of these problems by restricting P to smaller sets; see Section 5 below.

4. The main results. This section is devoted to the proof of reverse inequali-
ties.

4.1. Conditional expectation. We first establish a dynamic programming prin-

ciple to prove our duality result ¯̄V (ξ) = v(ξ). The understanding of the regular con-
ditional probability distributions (r.c.p.d.) is crucial for this result. Indeed, let P be
an arbitrary probability measure on � and τ be an F-stopping time. By Stroock
and Varadhan [24], there exists a r.c.p.d. Pω

τ for all ω ∈ � satisfying the following:

– For each ω ∈ �, Pω
τ is a probability measure on F1;

– For each E ∈ F1, the mapping ω → Pω
τ (E) is Fτ -measurable;

– For P-a.e. ω ∈ �, Pω
τ is the conditional probability measure of P on Fτ , that is,

for every bounded F1-measurable random variable ξ we have

EP(ξ |Fτ )(ω) = EPω
τ (ξ), P-a.s.;
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– For each ω ∈ �,

Pω
τ (�ω

τ ) = 1 where �ω
τ := {ω′ ∈ � :ω′(s) = ω(s),0 ≤ s ≤ τ(ω)}.(4.1)

The goal of this subsection is to understand Pω
τ for P ∈ PH . Roughly, we shall

prove that Pω
τ satisfies the properties of Definition 3.3 on a shifted space; see

Lemma 4.3 below. To do that, we introduce some notation:

– For 0 ≤ t ≤ 1, denote by �t := {ω ∈ C([t,1],Rd) :ω(t) = 0} the shifted canon-
ical space; Bt the shifted canonical process on �t ; Pt

0 the shifted Wiener mea-
sure; Ft the shifted filtration generated by Bt .

– For 0 ≤ s ≤ t ≤ 1 and ω ∈ �s , define the shifted path ωt ∈ �t :

ωt
r := ωr − ωt for all r ∈ [t,1];

– For 0 ≤ s ≤ t ≤ 1 and ω ∈ �s , ω̃ ∈ �t , define the concatenation path ω ⊗t ω̃ ∈
�s by

(ω ⊗t ω̃)(r) := ωr1[s,t)(r) + (ωt + ω̃r )1[t,1](r) for all r ∈ [s,1].
– For 0 ≤ s ≤ t ≤ 1 and an F s

1 -measurable random variable ξ on �s , for each
ω ∈ �s , define the shifted F t

1-measurable random variable ξ t,ω on �t by

ξ t,ω(ω̃) := ξ(ω ⊗t ω̃) for all ω̃ ∈ �t.

Similarly, for an Fs -progressively measurable process X on [s,1] and (t,ω) ∈
[s,1]×�s , the shifted process {Xt,ω

r , r ∈ [t,1]} is Ft -progressively measurable.
– For F-stopping time τ , we shall simplify the notation as follows:

ω ⊗τ ω̃ := ω ⊗τ(ω) ω̃, ξ τ,ω := ξτ(ω),ω, Xτ,ω := Xτ(ω),ω.

The r.c.p.d. Pω
τ induces naturally a probability measure Pτ,ω on F τ(ω)

1 such that
the Pτ,ω-distribution of Bτ(ω) is equal to the Pω

τ -distribution of {Bt − Bτ(ω), t ∈
[τ(ω),1]}. By (4.1), it is clear that for every bounded and F1-measurable random
variable ξ ,

EPω
τ [ξ ] = EPτ,ω [ξτ,ω].(4.2)

We shall also call Pτ,ω the r.c.p.d. of P.
For 0 ≤ t ≤ 1, following the same arguments as in Section 2 but restricting

to the canonical space �t , we may define martingale measures Pt,α for each Ft -
progressively measurable S>0

d -valued process α such that
∫ 1
t |αr |dr < ∞, Pt

0-a.s.

Let P t

S denote the set of all such measures Pt,α . Similarly, we may define the
density process ât of the quadratic variation process 〈Bt 〉.

We first have the following result.
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LEMMA 4.1. Let P ∈ P S and τ be an F-stopping time. Then, for P-a.e. ω ∈ �,

Pτ,ω ∈ P τ(ω)

S and

âτ,ω
s (ω̃) = âτ (ω)

s (ω̃) for ds × dPτ,ω-a.e. (s, ω̃) ∈ [τ(ω),1] × �τ(ω),(4.3)

where the left-hand side above is the shifted process of original density pro-
cess â on � = �0 and the right-hand side is the density process on the shifted
space �τ(ω).

PROOF. The proof of Pτ,ω ∈ P τ(ω)

S is relegated to the Appendix. We now
prove (4.3).

Since d〈B· − Bτ 〉t = ât dt , P-a.s., then d〈B· − Bτ 〉t = ât dt , Pω
τ -a.s. for P-a.e.

ω ∈ �. Note that, for each ω ∈ � and t ≥ τ(ω),

ât (ω) = ât

(
ω ⊗τ ωτ(ω)) = â

τ,ω
t

(
ωτ(ω)).

This implies that d〈Bτ(ω)· 〉t = â
τ,ω
t dt , Pτ,ω-a.s. for P-a.e. ω ∈ �. Now (4.3) fol-

lows from the definition of âτ (ω). �

We next study the r.c.p.d. for P ∈ PH . For each (t,ω) ∈ [0,1] × �, let

Ht,ω
s (ω̃, y, z, γ ) := Hs(ω ⊗t ω̃, y, z, γ ),

(4.4)
F̂ t,ω

s (ω̃, y, z) := Fs

(
ω ⊗t ω̃, y, z, ât

s(ω̃)
)

for all (s, ω̃) ∈ [t,1] × �t and (y, z, γ ) ∈ R × Rd × DH . We emphasize that in
the definition of F̂ t,ω we use the density process ât in the shifted space. This is
important in (4.5) below. However, by Lemma 4.1 we actually have

F̂ t,ω
s (ω̃, y, z) = Fs

(
ω ⊗t ω̃, y, z, ât,ω

s (ω̃)
) = F̂s(ω ⊗t ω̃, y, z),

ds × dPt,ω-a.e. (s, ω̃) ∈ [t,1] × �t,P-a.e. ω ∈ �.

Since H and F are uniformly continuous in ω under the L∞-norm, by Assump-
tion 3.1 and (3.2), we also have

Ht,ω
s (ω̃, y, z, γ ) and F̂ t,ω

s (ω̃, y, z) are uniformly continuous
in ω under the L∞-norm.

(4.5)

We remark that Fs(ω ⊗t ω̃, y, z, ât,ω
s (ω̃)) is in general not continuous in ω be-

cause â is not continuous in ω, in general; see Lemma 2.2. Similarly, as a conse-
quence of (4.5), we see that for any Pt ∈ P t

S ,

EPt
[∫ 1

t

(|Ht,ω
s (0)|2 + |F̂ t,ω

s (0)|2)ds

]
< ∞

(4.6)
for some ω ∈ � iff it holds for all ω ∈ �.

We now extend Definition 3.3 to the shifted space.



322 H. M. SONER, N. TOUZI AND J. ZHANG

DEFINITION 4.2. Let P t
H denote the collection of all those P ∈ P t

S such that

aP ≤ ât ≤ aP, ds × dP-a.e. on [t,1] × �t for some aP, aP ∈ S>0
d ,

EP

[∫ 1

t

(|Ht,ω
s (0)|2 + |F̂ t,ω

s (0)|2)ds

]
< ∞(4.7)

for all or, equivalently, some ω ∈ �.

Then we have the following.

LEMMA 4.3. Let Assumption 3.1 hold true. Then, for any F-stopping time τ

and P ∈ PH , the r.c.p.d. Pτ,ω ∈ P τ(ω)
H , for P-a.e. ω ∈ �.

PROOF. Let P = Pα ∈ PH ⊂ P S . By Lemma 4.1 we have Pτ,ω ∈ P τ(ω)

S , P-a.s.
By (3.4) and (3.5), it holds for P-a.e. ω ∈ � that

aP ≤ âτ,ω
s (ω̃) ≤ aP, ds × dPτ,ω-a.e. (s, ω̃) ∈ [τ(ω),1] × �τ(ω),

EPτ,ω
[∫ 1

τ(ω)

(∣∣Fs

(
ω ⊗τ ω̃,0,0, âτ,ω

s (ω̃)
)∣∣2 + |Hs(ω ⊗τ ω̃,0,0,0)|2)ds

]
< ∞.

This, together with (4.3) and (4.4), implies (4.7), and thus completes the proof.
�

We remark that in this paper we actually use the r.c.p.d. only on deterministic
times. However, the r.c.p.d. on stopping times will be important in our accompa-
nying paper [21].

4.2. The duality result. To establish our main duality result, we need the fol-
lowing assumption on the terminal data.

ASSUMPTION 4.4. ξ is uniformly continuous in ω under the L∞-norm.

Under Assumptions 3.1 and 4.4, there exists a modulus of continuity function ρ

for ξ and H in ω. Then, for any 0 ≤ t ≤ s ≤ 1, (y, z) ∈ [0,1] × R × Rd , and
ω,ω′ ∈ �, ω̃ ∈ �t ,

|ξ t,ω(ω̃) − ξ t,ω′
(ω̃)| ≤ ρ(‖ω − ω′‖t ) and

|F̂ t,ω
s (ω̃, y, z) − F̂ t,ω′

s (ω̃, y, z)| ≤ ρ(‖ω − ω′‖t ),

where ‖ω‖t := sup0≤s≤t |ωs |, 0 ≤ t ≤ 1. We next define for all ω ∈ �,

�(ω) := sup
0≤t≤1

�t(ω)

(4.8)

where �t(ω) := sup
P∈P t

H

(
EP

[
|ξ t,ω|2 +

∫ 1

t
|F̂ t,ω

s (0)|2 ds

])1/2

.
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By (4.5) and following the same arguments as for (4.6), we have

�(ω) < ∞ for some ω ∈ � iff it holds for all ω ∈ �.(4.9)

Moreover, when � is finite, it is uniformly continuous in ω under the L∞-norm
and is therefore F1-measurable.

Our main duality result is as follows:

THEOREM 4.5. Let Assumptions 3.1, 3.2, 4.4 hold, and assume further that

EP[|�|2] < ∞ for all P ∈ PH .(4.10)

Then V̄(ξ) = ¯̄V(ξ) = v(ξ), and existence holds for the problem ¯̄V (ξ). Moreover,
if F has a progressively measurable optimizer, existence also holds for the problem
V̄(ξ).

We first provide several examples that satisfy the hypothesis of the theorem and
then prove it in Section 4.4.

4.3. Examples.

EXAMPLE 1 (Linear generator). Assume that H is linear in γ :

Ht(y, z, γ ) = ft (y, z) + 1
2σtσ

T
t :γ,

where ft (y, z) and σt satisfy appropriate conditions for our assumptions to hold.
Notice that the domain of F is reduced to a one-point set:

Ft(y, z, a) = ft (y, z)1{a=σtσ
T
t } + ∞1{a �=σtσ

T
t }.

Then, the present formulation of the second order target problem is clearly equiv-
alent to the classical formulation under the reference measure PσσT

which ignores
any uncertainty on the diffusion coefficient.

EXAMPLE 2 (Uncertain volatility models). Set Ht(y, z, γ ) := G(γ ) :=
1
2 [σ̄ 2γ + − σ 2γ −], where σ̄ > σ ≥ 0. This is the context studied by Denis and
Martini [8]. By straightforward calculation, we find dom(Ft ) = [σ 2, σ̄ 2], and for
any a ∈ [σ 2, σ̄ 2], F(a) = 0. It is easily seen that all our assumptions are satis-

fied. Moreover, we have V̄(ξ) = ¯̄V (ξ) = EG(ξ) for appropriate random variable ξ ,
where EG is the G-expectation defined in Peng [17]. More connections between
this paper and G-martingales are established in our accompanying paper [23].

EXAMPLE 3 (Hedging under gamma constraints). Let �,� ≥ 0 be two given
constants. The problem of superhedging under Gamma constraint, as introduced
in [5, 18] and [19], corresponds to the specification Hs(y, z, γ ) = H(γ ) = 1

2σ 2γ

for γ ∈ [−�,�], and +∞ otherwise. By straightforward calculation, we see that
F(a) = 1

2(�(a − σ 2)+ + �(a − σ 2)−). If both bounds are finite, the domain of
the dual function F is the nonnegative real line. The dual formulation of this paper
coincides with that of [19].
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4.4. Proof of the duality result. The rest of this section is devoted to the proof
of Theorem 4.5. From now on, we shall always assume Assumptions 3.1, 3.2, 4.4
and that (4.10) hold. In particular, we notice that (4.10) and (4.9) imply that

�t(ω) < ∞ for all (t,ω) ∈ [0,1] × �.(4.11)

To prove the theorem, we define the following value process Vt pathwise:

Vt(ω) := sup
P∈P t

H

Y P,t,ω
t (1, ξ) for all (t,ω) ∈ [0,1] × �,(4.12)

where, for any (t1,ω) ∈ [0,1] × �, P ∈ P t1
H , t2 ∈ [t1,1], and any η ∈ L2(P, Ft2),

we denote Y P,t1,ω
t1

(t2, η) := y
P,t1,ω
t1

, where (yP,t1,ω, zP,t1,ω) is the solution to the
following BSDE on the shifted space �t1 under P:

yP,t1,ω
s = ηt1,ω −

∫ t2

s
F̂ t1,ω

r (yP,t1,ω
r , zP,t1,ω

r ) dr −
∫ t2

s
zP,t1,ω
r dBt1

r ,

(4.13)
ds ∈ [t1, t2],P-a.s.

In view of the Blumenthal zero–one law (2.5), Y P,t,ω
t (1, ξ) is constant for any

given (t,ω) and P ∈ P t
H . Moreover, since ω0 = 0 for all ω ∈ �, it is clear that, for

the Y P defined in (3.15),

Y P,0,ω(t, η) = Y P(t, η) and V0(ω) = v(ξ) for all ω ∈ �.

LEMMA 4.6. Assume all the conditions in Theorem 4.5 hold. Then for all
(t,ω) ∈ [0,1] × �, we have |Vt(ω)| ≤ C�t(ω). Moreover, for all (t,ω,ω′) ∈
[0,1]×�2, |Vt(ω)−Vt(ω

′)| ≤ Cρ(‖ω−ω′‖t ). Consequently, Vt is Ft -measurable
for every t ∈ [0,1].

PROOF. (i) For each (t,ω) ∈ [0,1] × � and P ∈ P t
H , on [t,1] we have

yP,t,ω
s = ξ t,ω −

∫ 1

s
[F̂ t,ω

r (0) + γsy
P,t,ω
r + zP,t,ω

r (ât
r )

1/2ηT
r ]dr −

∫ 1

s
zP,t,ω
r dBt

r ,

P-a.s.,

where γ, η are bounded, thanks to (3.6). Define

Ms := exp
(
−
∫ s

t
ηr dBt

r −
∫ s

t

[
γr + 1

2
|(ât

r )
1/2ηT

r |2
]
dr

)
.(4.14)

Applying Itô’s formula, we obtain

y
P,t,ω
t = Mty

P,t,ω
t = MT ξt,ω −

∫ 1

t
MsF̂

t,ω
s (0) ds −

∫
t
[· · ·]dBt

s, P-a.s.
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Thus,

|yP,t,ω
t |2 =

∣∣∣∣EP

[
MT ξt,ω −

∫ 1

t
MsF̂

t,ω
s (0) ds

]∣∣∣∣2
≤

∣∣∣∣EP

[
sup

t≤s≤T

Ms |ξ t,ω| +
∫ 1

t
|F̂ t,ω

s (0)|ds

]∣∣∣∣2

≤ CEP
[

sup
t≤s≤T

|Ms |2
]
EP

[
|ξ t,ω|2 +

∫ 1

t
|F̂ t,ω

s (0)|2 ds

]
.

Since γ, η are bounded, by standard arguments we see that

|yP,t,ω
t |2 ≤ CEP

[
|ξ t,ω|2 +

∫ 1

t
|F̂ t,ω

s (0)|2 ds

]
≤ C|�t(ω)|2.

Since P ∈ P t
H is arbitrary, we get |Vt(ω)| ≤ C�t(ω).

(ii) Similarly, for (t,ω,ω′) ∈ [0,1] × �2 and P ∈ P t
H , denote

δy := yP,t,ω − yP,t,ω′
, δz := z

P,t,ω
t − zP,t,ω′

, δξ := ξ t,ω − ξ t,ω′
,

δF := F̂ t,ω − F̂ t,ω′
.

Then, for s ∈ [t,1], |δξ | + |δFs | ≤ Cρ(‖ω − ω′‖t ) and

δys = δξ −
∫ 1

s
[δFr(y

P,t,ω
r , zP,t,ω

r ) + γ̃r δyr + δzr(â
t
r )

1/2η̃T
r ]dr −

∫ 1

s
δzr dBt

r ,

P-a.s.,

where γ̃ , η̃ are bounded, thanks to (3.6) again. Define M̃ as in (4.14) but cor-
responding to (γ̃ , η̃). Then following the arguments in (i), we obtain |δyt | ≤
Cρ(‖ω − ω′‖t ). Since P is arbitrary, we prove the lemma. �

The following dynamic programming principle plays a central role in our anal-
ysis.

PROPOSITION 4.7. Assume all the conditions in Theorem 4.5 hold. Then

Vt1(ω) = sup
P∈P t1

H

Y P,t1,ω
t1

(t2,V
t1,ω
t2

) for all 0 ≤ t1 < t2 ≤ 1 and ω ∈ �.

PROOF. To simplify the presentation, we assume without loss of generality
that t1 = 0 and t2 = t . That is, we shall prove

v(ξ) = sup
P∈PH

Y P
0 (t,Vt ).(4.15)

Denote (yP, zP) := (Y P(1, ξ), Z P(1, ξ)).
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(i) For any P ∈ PH , note that

yP
s = yP

t −
∫ t

s
F̂r (y

P
r , zP

r ) dr −
∫ t

s
zP
r dBr, s ∈ [0, t],P-a.s.

By Lemma 4.3, for P-a.e. ω ∈ �, the r.c.p.d. Pt,ω ∈ P t
H . Since solutions of BSDEs

can be constructed via Picard iteration, one can easily check that

yP
t (ω) = Y Pt,ω,t,ω

t (1, ξ) for P-a.e. ω ∈ �.(4.16)

Then by the definition of Vt we get

yP
t (ω) ≤ Vt(ω) for P-a.e. ω ∈ �.(4.17)

It follows from the comparison principle for BSDEs that yP
0 ≤ Y P

0 (t,Vt ). Since
P ∈ PH is arbitrary, this shows that v(ξ) ≤ supP∈PH

Y P
0 (t,Vt ).

(ii) It remains to prove the other inequality. Fix P ∈ PH and arbitrary ε > 0.
Since � is separable, there exists a partition Ei

t ∈ Ft , i = 1,2, . . . such that ‖ω −
ω′‖t ≤ ε for any i and any ω,ω′ ∈ Ei

t . For each i, fix an ω̂i ∈ Ei
t , and let Pi

t ∈ P t
H

be an ε-optimizer of Vt(ω̂i), that is, Vt(ω̂i) ≤ Y Pi
t ,t,ω̂i

t + ε.
For each n ≥ 1, define Pn := Pn,ε by

Pn(E) := EP

[
n∑

i=1

EPi
t [(1E)t,ω]1Ei

t

]
+ P(E ∩ Ên

t )

(4.18)
where Ên

t

�= ⋃
i>n

Ei
t .

That is, Pn = P on Ft , and its r.c.p.d. (Pn)t,ω = Pi
t for ω ∈ Ei

t , 1 ≤ i ≤ n, and
(Pn)t,ω = Pt,ω for ω ∈ Ên

t . We claim that

Pn ∈ PH .(4.19)

The proof is similar to Lemmas 4.1 and 4.3, and thus is also postponed to the
Appendix.

Now for 1 ≤ i ≤ n and ω ∈ Ei
t , by Lemma 4.6 and its proof we see that

Vt(ω) ≤ Vt(ω̂i) + Cρ(ε) ≤ Y Pi
t ,t,ω̂i

t (1, ξ) + ε + Cρ(ε)

≤ Y Pi
t ,t,ω

t (1, ξ) + ε + Cρ(ε) = Y (Pn)t,ω,t,ω
t (1, ξ) + ε + Cρ(ε).

Here as usual the constant C varies from line to line. Then it follows from (4.16)
that

Vt ≤ yPn

t + ε + Cρ(ε), Pn-a.s. on
n⋃

i=1

Ei
t .(4.20)
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Let (yn, zn) := (yn,ε, zn,ε) denote the solution to the following BSDE on [0, t]:

yn
s = [yPn

t + ε + Cρ(ε)]1⋃n
i=1 Ei

t
+ Vt1Ên

t
−
∫ t

s
F̂r (y

n
r , zn

r ) dr −
∫ t

s
zn
r dBr,

P-a.s.

By the comparison principle of BSDEs we know Y P
0 (t,Vt ) ≤ yn

0 . Since Pn = P

on Ft , we have

yPn

s = yPn

t −
∫ t

s
F̂r (y

Pn

r , zPn

r ) dr −
∫ t

s
zPn

r dBr, s ∈ [0, t],P-a.s.

By the standard arguments in BSDE theory we get

|yn
0 − yPn

0 |2 ≤ CEP[|ε + Cρ(ε)|2 + |Vt − yPn

t |21
Ên

t
].

By Lemma 4.6 and its proof we have |Vt | ≤ C�t and |yPn

t | ≤ C�t , P-a.s. Then

Y P
0 (t,Vt ) ≤ yn

0 ≤ yPn

0 + C
(
ε + ρ(ε)

)+ C(EP[|�t |21
Ên

t
])1/2

≤ v(ξ) + C
(
ε + ρ(ε)

)+ C(EP[|�t |21
Ên

t
])1/2.

Recall (4.10) and notice that Ên
t ↓ ∅. By sending n → ∞ and applying the domi-

nated convergence theorem we get

Y P
0 (t,Vt ) ≤ v(ξ) + C

(
ε + ρ(ε)

)
for all P ∈ PH .

Since ε > 0 is arbitrary, we complete the proof. �

We next introduce the right limit of the V which is defined for each (t,ω) and
is clearly F+-progressively measurable:

V +
t := lim

r∈Q∩(t,1],r↓t
Vr .

LEMMA 4.8. Assume all the conditions in Theorem 4.5 hold. Then

V +
t = lim

r∈Q∩(t,1],r↓t
Vr , PH -q.s. and, thus, V + is càdlàg PH -q.s.(4.21)

PROOF. For each P ∈ PH , denote

Ṽ P := V − Y P(1, ξ).

Then Ṽ P
t ≥ 0, P-a.s. For any 0 ≤ t1 < t2 ≤ 1, let (yP,t2, zP,t2) := (Y P(t2,Vt2),

Z P(t2,Vt2)). Note that Y P
t1
(t2,Vt2)(ω) = Y P,t1,ω

t1
(t2,V

t1,ω
t2

) for P-a.s. ω. Then by

Proposition 4.7 we get Vt1 ≥ y
P,t2
t1

, P-a.s. Notice that yP,1 = yP. Denote

ỹ
P,t2
t := y

P,t2
t − yP

t , z̃
P,t2
t := â

−1/2
t (z

P,t2
t − zP

t ).
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Then Ṽ P
t1

≥ ỹ
P,t2
t1

, P-a.s. and (ỹP,t2, z̃P,t2) satisfies the following BSDE on [0, t2]:

ỹ
P,t2
t = Ṽ P

t2
−
∫ t2

t
f P

s (ỹP,t2
s , z̃P,t2

s ) ds −
∫ t2

t
z̃P,t2
s dWP

s , P-a.s.,

where

f P
t (ω, y, z) := F̂t

(
ω,y + yP

t (ω), â
−1/2
t (ω)

(
z + zP

t (ω)
))

− F̂t (ω, yP
t (ω), â

−1/2
t (ω)zP

t (ω)).

Notice that f P
t (0,0) = 0, and f P is uniformly Lipschitz continuous in (y, z). Fol-

lowing the definition in [15] and [4], Ṽ P is a weak f P-supermartingale under P.
Now applying the downcrossing inequality Theorem 6 of [4], one can easily see
that, for P-a.e. ω, the limit limr∈Q∩(t,1],r↓t Ṽ

P
r (ω) exists for all t ∈ [0,1]. Note

that yP is continuous, P-a.s. We get that the lim in the definition of V + is in fact
the lim, P-a.s. Then,

V +
t = lim

r∈Q∩(t,1],r↓t
Vr , t ∈ [0,1] and, therefore, V + is càdlàg, PH -q.s. �

We are now ready to prove our main duality result.

PROOF OF THEOREM 4.5. We proceed in several steps.
Step 1. We first show that V + is a strong F̂ -supermartingale under each P ∈ PH .

For any P ∈ PH , denote Ṽ +,P := V + − yP. Given 0 ≤ t1 < t2 < 1, let r1
n ∈ Q ∩

(t1, t2], r1
n ↓ t1 and r2

n ∈ Q ∩ (t2,1], r2
n ↓ t2. We have Ṽ P

r1
n

≥ ỹ
P,r2

m

r1
n

, P-a.s. for any

m,n ≥ 1. Sending n → ∞, we get Ṽ
+,P
t1

≥ ỹ
P,r2

m
t1

, P-a.s. for any m ≥ 1. Sending

m → ∞, by the stability of BSDEs we get Ṽ
+,P
t1

≥ ỹ
+,P,t2
t1

, P-a.s. where

ỹ
+,P,t2
t = Ṽ

+,P
t2

−
∫ t2

t
f P

s (ỹ+,P,t2
s , z̃+,P,t2

s ) ds −
∫ t2

t
z̃+,P,t2
s dWP

s , P-a.s.

That is, Ṽ +,P is also a weak f P-supermartingale under P. Applying Theorem 7
of [4], Ṽ +,P is a strong f P-supermartingale under P. That is, recalling (2.5), for

any F
P

-stopping times τ1, τ2 with τ1 ≤ τ2, we have Ṽ +,P
τ1

≥ ỹ+,P,τ2
τ1

, P-a.s. where

ỹ
+,P,τ2
t = Ṽ +,P

τ2
−
∫ τ2

t
f P

s (ỹ+,P,τ2
s , z̃+,P,τ2

s ) ds −
∫ τ2

t
z̃+,P,τ2
s dWP

s ,

t ∈ [0, τ2],P-a.s.

This implies that V +
τ1

≥ y+,P,τ2
τ1

, P-a.s. where y
+,P,τ2
t := ỹ

+,P,τ2
t + yP

t , z
+,P,τ2
t :=

â
1/2
t (z̃

+,P,τ2
t + zP

t ) satisfy

y
+,P,τ2
t = V +

τ2
−
∫ τ2

t
F̂s(ỹ

+,P,τ2
s , z̃+,P,τ2

s ) ds −
∫ t2

t
z̃+,P,τ2
s dBs, P-a.s.
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That is, V + is a strong F̂ -supermartingale under P.
Step 2. For each P ∈ PH , applying the nonlinear Doob–Meyer decomposition

in [15], there exist unique (P-a.s.) processes ¯̄ZP ∈ H2(P,Rd) and KP ∈ I2(P,R)

such that

V +
t = V +

0 +
∫ t

0
F̂s(V

+
s , ¯̄ZP

s ) ds +
∫ t

0

¯̄ZP
s dBs − KP

t ,

(4.22)
0 ≤ t ≤ 1,P-a.s.

Remark 4.9 below provides a simpler argument for this result. By Karandikar [12],
since V + is a càdlàg semimartingale under each P ∈ PH , we can define uniquely
a universal process ¯̄Z by d〈V +,B〉t = ¯̄Ztd〈B〉t , so that ¯̄Z = ¯̄ZP, dt × dP-a.s. for
all P ∈ PH . Thus, we have

V +
t = V +

0 +
∫ t

0
F̂s(V

+
s , ¯̄Zs)ds +

∫ t

0

¯̄Zs dBs − KP
t ,

(4.23)
0 ≤ t ≤ 1,P-a.s. for all P ∈ PH .

Step 3. We remark that V +
0 is F +

0 -measurable and is not a constant in general.

For each P ∈ PH ⊂ P S , and each r ∈ Q ∩ (0,1], we have V0 ≥ y
P,r
0 , where y

P,r
0

is a constant, thanks to the Blumenthal zero–one law (2.5) under P. It is clear
that limr↓0 y

P,r
0 = V +

0 , P-a.s. Then V0 ≥ V +
0 , P-a.s. for all P ∈ PH . Now by the

comparison of ODE and recalling (3.13) and (4.23), we see that ¯̄YV0,
¯̄Z

1 ≥ ¯̄YV +
0 , ¯̄Z

1 ≥
V +

1 = ξ , P-a.s. for all P ∈ PH . Now by the definition of V̂(ξ), we get ¯̄V(ξ) ≤
V0 = v(ξ). This, together with (3.17), proves V̄(ξ) = ¯̄V (ξ) = v(ξ). Moreover, the

process ¯̄Z in (4.23) is clearly the optimal control for the problem ¯̄V(ξ). Finally,
when F has a progressively measurable optimizer, the existence of the optimal
control for the problem V̄(ξ) is obvious. �

REMARK 4.9. Following a suggestion of Nicole El Karoui, we derive the de-
composition (4.22) by the following alternative argument. Consider the following
reflected BSDE:⎧⎪⎨⎪⎩

¯̄Y P
t = ξ −

∫ 1

t
F̂s(

¯̄Y P
s , ¯̄ZP

s ) ds −
∫ 1

t

¯̄ZP
s dBs + KP

1 − KP
t ,

¯̄Y P
t ≥ V +

t , [ ¯̄YP
t− − V +

t−]dKP
t = 0.

0 ≤ t ≤ 1,P-a.s.

By Lepeltier and Xu [13], the above RBSDE has a unique solution and ¯̄Y P is
càdlàg. Then it suffices to show that ¯̄Y P = V +, P-a.s. In fact, if they are not equal,
without loss of generality we assume ¯̄Y P

0 > V +
0 . For each ε > 0, denote τε :=

inf{t : ¯̄Y P
t ≤ V +

t + ε}. Then τε is an F
P

-stopping time and ¯̄Y P
t− ≥ V +

t− + ε > V +
t− for
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all t ≤ τε . Then KP
t = 0, t ≤ τε , and thus

¯̄Y P
t = ¯̄Y P

τε
−
∫ τε

t
F̂s(

¯̄Y P
s , ¯̄ZP

s ) ds −
∫ τε

t

¯̄ZP
s dBs.

Note that ¯̄Y P
τε

≤ V +
τε

+ ε, by comparison theorem for BSDEs and following stan-

dard arguments we have ¯̄YP
0 ≤ y

+,P,τε

0 + Cε ≤ V +
0 + Cε. Since ε is arbitrary, this

contradicts with ¯̄Y P
0 > V +

0 .

We conclude this section by establishing a representation formula for V +,
which will be important for our accompanying paper [21]. For each P ∈ PH and
t ∈ [0,1], denote

PH(t,P) := {P′ ∈ PH : P′ = P on Ft } and
(4.24)

PH(t+,P) := {P′ ∈ PH : P′ = P on F +
t }.

Then we have the following.

PROPOSITION 4.10. Assume all the conditions in Theorem 4.5 hold. Then, for
each P ∈ PH ,

Vt = ess sup
P′∈PH (t,P)

PY P′
t (1, ξ) and

V +
t = ess sup

P′∈PH (t+,P)

PY P′
t (1, ξ), P-a.s.

PROOF. Fix P ∈ PH . Denote

V P
t := ess sup

P′∈PH (t,P)

PY P′
t (1, ξ) and V

P,+
t := ess sup

P′∈PH (t+,P)

PY P′
t (1, ξ).

(i) We first prove the equality for V . For each P′ ∈ PH(t,P) ⊂ PH , by (4.17)
we have yP′

t ≤ Vt , P′-a.s. Since P′ = P on Ft , then yP′
t ≤ Vt , P-a.s. and, thus,

V P
t ≤ Vt , P-a.s.
On the other hand, proceeding as in step (ii) of the proof of Proposition 4.7, we

define Pn for each n, ε by (4.18). By (4.19), it is clear that Pn ∈ PH(t,P). Then it
follows from (4.20) that

P[Vt ≤ V P
t + ε + Cρ(ε)] ≥ P[Vt ≤ yPn

t + ε + Cρ(ε)] ≥ P

[ ⋃
1≤i≤n

Ei
t

]
→ 1

as n → ∞.

That is, Vt ≤ V P
t + ε + Cρ(ε), P-a.s. for all ε > 0. This implies that Vt ≤ V P

t ,
P-a.s.
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(ii) We now prove the equality for V +. First, for each P′ ∈ PH(t+,P) ⊂ PH

and r ∈ Q ∩ (t,1], we have yP′
r ≤ Vr , P′-a.s. Sending r ↓ t , we obtain yP′

t ≤ V +
t ,

P′-a.s. Since both yP′
t and V +

t are F +
t -measurable and P′ = P on F +

t , then yP′
t ≤

V +
t , P-a.s. and, thus, V

P,+
t ≤ Vt , P-a.s.

On the other hand, for each r ∈ Q ∩ (t,1], since Vr = V P
r , P-a.s. Following

the same arguments in [21] Theorem 4.3, Step (iii) (we emphasize that there is no
danger of cycle proof here!), we have

there exist Pn ∈ P(r,P) such that Y Pn
r (1, ξ) ↑ Vr,P-a.s.(4.25)

Then, it follows from the stability of BSDEs that

Y P
t (r,Vr) = Y P

t

(
r, lim

n→∞ Y Pn
r (1, ξ)

)
= lim

n→∞ Y P
t (r, Y Pn

r (1, ξ)).

Since Pn ∈ P(r,P) ⊂ P(t+,P), we have

Y P
t (r,Vr) = lim

n→∞ Y Pn
t (r, Y Pn

r (1, ξ)) = lim
n→∞ Y Pn

t (1, ξ) ≤ V
P,+
t , P-a.s.

Sending r ↓ t , by the stability of BSDEs again we obtain V +
t ≤ V

P,+
t , P-a.s. �

After the completion of this paper, Marcel Nutz provides us the following result
which shows that, under our conditions that F and ξ are uniformly continuous in ω,
actually V + = V . However, we decide to keep our original arguments because they
are applicable to more general cases, for example, the case in Section 5 where we
do not require the uniform continuity of F and ξ .

PROPOSITION 4.11 (M. Nutz). Assume all the conditions in Theorem 4.5
hold. Then V +

t = Vt , PH -q.s.

PROOF. First, by Lemma 4.6 V + is uniformly continuous in ω with the same
modulus of continuity function ρ. Since V + is F+-progressively measurable, for
any δ > 0, we have |V +

t (ω)−V +
t (ω′)| ≤ Cρ(‖ω−ω′‖t+δ). Sending δ → 0, we get

|V +
t (ω)−V +

t (ω′)| ≤ Cρ(‖ω−ω′‖t ) and, thus, V + is F-progressively measurable.
By Proposition 4.10, it is clear that V +

t ≤ Vt , PH -q.s. On the other hand, for
any P ∈ PH and P′ ∈ PH(t,P), by the second equality of Proposition 4.10 we have
Y P′

t (1, ξ) ≤ V +
t , P′-a.s. Since both sides of above are Ft -measurable and P′ = P

on Ft , we have Y P′
t (1, ξ) ≤ V +

t , P-a.s. Then the first equality of Proposition 4.10
implies that Vt ≤ V +

t , P-a.s. Therefore, V + = V , PH -q.s. �

5. A weaker version of the second order target problem. The purpose of
this section is to suggest a slight modification of the second order stochastic tar-
get problem so that its value is not affected by the relaxations of Section 3.3. The
key tool for this is the aggregation approach developed in our accompanying pa-
per [22]. The idea is to restrict our attention to an (uncountable) subset of PH ,
constructed out of a countable subset, so that a dominating measure is available.
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As a consequence of this modified setup, we shall remove the continuity as-
sumption on ξ . However, we still assume the nonlinearity H satisfies Assump-
tion 3.1, in particular, H is uniformly continuous in ω and the domain DFt of its
convex conjugate F is deterministic; see Section 6 for the general case.

5.1. The dominating probability measure P̂. Throughout this section we fix
a countable subset T0 ⊂ [0,1] containing the end-points {0,1}, together with
a countable sequence A0 := {αi, i ≥ 1} of deterministic integrable mappings
αi : [0,1] → S>0

d satisfying the concatenation property:

αi1[0,t) + αj 1[t,1] ∈ A0 for all i, j ≥ 1, t ∈ T0.(5.1)

Note that αi is deterministic, then by Lemma 2.2, â = αi , Pαi
-a.s., and, thus, A0

is a generating class of diffusion coefficients in the sense of Definition 4.7 in [22].
Following Definition 4.8 in [22], let A be the separable class of diffusion coeffi-
cients generated by (A0, T0). Following Proposition 8.3 in [22], let P(A) ⊂ P S

denote the corresponding measures. Then, by Definition 4.8 in [22],

P ∈ P(A) if and only if â =
∞∑

n=0

∞∑
i=1

αi1En
i
1[τn,τn+1), P-a.s.(5.2)

for some

• sequence of F-stopping times {τn, n ≥ 0} with values in T0, with τ0 = 0, τn <

τn+1 on {τn < 1}, and inf{n : τn = 1} < ∞,
• and some partition {En

i , i ≥ 1} ⊂ Fτn of �.

Finally, we assume Pi := Pαi ∈ PH and denote P A
H := P(A) ∩ PH .

The dominating measure is now defined by

P̂ := P̂A0,T0 :=
∞∑
i=1

2−iPi .(5.3)

Clearly, P̂ is a dominating measure of {Pi , i ≥ 1}. By Proposition 4.11 in [22],
P̂ is in fact a dominating measure of P(A), and thus of P A

H . Therefore, P A
H -q.s.

reduces to P̂-a.s.

5.2. The second order target problem under P̂. Recall the spaces defined
in (3.7). Let L̂2

0(D) := ⋂
i≥1 L2(Pi ,D), and define the spaces Ĥ2

0(D), D̂2
0(D),

Ŝ2
0(D), Î2

0(D), Ĝ2
0(DH) and Ŝ M2

0(R
d) similarly.

Now for an F1-measurable r.v. ξ , the modified second order target problem
under P̂ is

V0(ξ) := inf{y ∈ R :Yy,Z
1 ≥ ξ, P̂-a.s. for some Z ∈ Ŝ M2

0(R
d)},(5.4)
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where Yy,Z ∈ Ŝ2
0(R) is defined by (3.9), except that PH -q.s. is replaced with P̂-a.s.

(or, equivalently, P A
H -q.s.).

Next, notice that the families of processes {Ȳ Pi
, i ≥ 1} and { ¯̄Y Pi

, i ≥ 1}, defined
by (3.11) and (3.13) respectively, can be aggregated into processes Ȳ and ¯̄Y , thanks
to Theorem 5.1 in [22]. We then define the following relaxations of (5.4):

V̄0(ξ) := inf{y : Ȳ y,Z̄,�̄
1 ≥ ξ, P̂-a.s. for some (Z̄, �̄) ∈ Ĥ2

0(R
d) × Ĝ2

0(DH)},(5.5)

¯̄V 0(ξ) := inf{y : ¯̄Yy, ¯̄Z
1 ≥ ξ, P̂-a.s. for some ¯̄Z ∈ Ĥ2

0(R
d)}.(5.6)

Finally, our modified dual formulation under P̂ is

v0(ξ) := sup
P∈P A

H

Y P
0 (1, ξ),(5.7)

where Y P is defined by means of the BSDE (3.15). Similar to (3.17), it is obvious
that

V0(ξ) ≥ V̄0(ξ) = ¯̄V 0(ξ) ≥ v0(ξ).(5.8)

5.3. The main results. In the present modified setting, we have the equality
between the second order target problem and its first relaxation. For this, the fol-
lowing technical condition is needed.

ASSUMPTION 5.1. For any ε > 0, there is an F-progressively measurable ε-
maximizer γ ε := γ ε

t (y, z) of (3.1) such that, for every δ > 0,

|γ ε
t (y, z)| ≤ Cε,δ(1 + |y| + |z|), P̂-a.s. on {ât ≥ δId}, for some Cε,δ > 0.

Similar to (4.8), for each i ≥ 1, define

�i := ess sup
0≤t≤1

Pi

�i
t ,

(5.9)

�i
t := ess sup

P∈P A
H (t,Pi )

Pi
(

EP
t

[
|ξ |2 +

∫ 1

t
|F̂s(0)|2

])1/2

,

where, as in Proposition 4.10,

P A
H (t,Pi) := {P ∈ P A

H : P = Pi on Ft }.(5.10)

THEOREM 5.2. Let Assumptions 3.1, 3.2 and 5.1 hold true. Assume further
that

EPi [|�i |2] < ∞ for all i ≥ 1.(5.11)

Then for any ξ ∈ L̂2
0(R), we have V0(ξ) = V̄0(ξ) = ¯̄V 0(ξ) = v0(ξ), and existence

holds for the problem ¯̄V 0(ξ). Moreover, if F has a progressively measurable opti-
mizer, existence also holds for the problem V̄0(ξ).
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This main result V0(ξ) = V̄0(ξ) will be proved in the next subsection. The equal-

ity V̄0(ξ) = ¯̄V 0(ξ) was already stated in (5.8). The remaining statements are anal-
ogous to the proof of Theorem 4.5. We thus omit the proof and only comment on
it:

• We first define for every i ≥ 1 the dynamic problem:

V i
t := ess sup

P∈P A
H (t,Pi )

Pi Y P
t (1, ξ),(5.12)

where Y P is defined by means of the BSDE (3.15) and P A
H (t,Pi) is given

in (5.10). In light of Proposition 4.10, this is the analogue of the process V

in (3.10), except that this is defined Pi -a.s. for every i ≥ 1. However, using the
aggregation Theorem 5.1 in [22], we can aggregate the family {V i, i ≥ 1} into a
universal process V , that is, V = V i , Pi -a.s. for all i ≥ 1.

• Combining the arguments of Lemma 7.2 in [22] and Proposition 4.7, we have
the dynamic programming principle:

Vt1 = ess sup
P∈P A

H (t,Pi )

Pi Y Pi

t1
(t2,Vt2), Pi-a.s. for all i ≥ 1.

• Exploiting the connection with reflected BSDEs, we then obtain the decom-
position (4.23) under each Pi , and we conclude by the definition of the prob-

lem ¯̄V 0(ξ).

Our final result shows that, except for the initial second order target problem,
under certain conditions all other problems are not altered by the modification of
this section:

THEOREM 5.3. Let Assumptions 3.1, 3.2, 4.4 hold, and assume further that:

– F is uniformly continuous in a for a ∈ DFt , and for all (t,ω, y, z) and all
a ∈ DFt :

|ξ(ω)| ≤ C(1 + ‖ω‖1) and
(5.13)

|Ft(ω, y, z, a)| ≤ C(1 + ‖ω‖t + |y| + |z| + |a1/2|),
– P A

H is dense in PH in the sense that for any P = Pα ∈ PH and any ε > 0:

EP0

[∫ 1

0
|(αε

t )
1/2 − α

1/2
t |2 dt

]
≤ ε for some Pε = Pαε ∈ P A

H .(5.14)

Then v0(ξ) = v(ξ) and, thus, v0(ξ) is independent from the choice of the sets A0
and T0.

Assume further that Assumption 5.1 and (4.10) hold. Then

V0(ξ) = V̄0(ξ) = ¯̄V 0(ξ) = v0(ξ) = v(ξ) = ¯̄V(ξ) = V̄ (ξ).
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PROOF. By (3.17), Theorems 4.5 and 5.2, clearly it suffices to prove the first
statement. Since P A

H ⊂ PH , we have v0(ξ) ≤ v(ξ). Now for any P = Pα ∈ PH and
any ε > 0, let Pε = Pαε ∈ P A

H satisfy (5.14). Recall the WP defined in (2.2). Notice
that

YP
t = ξ(B·) +

∫ 1

t
Fs(B·, Y P

s ,ZP
s , âs) ds −

∫ 1

t
ZP

s â1/2
s dWP

s , 0 ≤ t ≤ 1,P-a.s.

Let (Ỹ P, Z̃P) denote the solution to the following BSDE under P0:

Ỹ P
t = ξ(Xα· ) +

∫ 1

t
Fs(X

α· , Ỹ P
s , Z̃P

s , αs) ds −
∫ 1

t
Z̃P

s α1/2
s dBs,

0 ≤ t ≤ 1,P0-a.s.

By Lemma 2.2, the P-distribution of YP is equal to the P0-distribution of Ỹ P.
This, together with the Blumenthal zero–one law, implies that Y P

0 = Ỹ P
0 . Similarly,

Y Pε

0 = Ỹ Pε

0 , where (Ỹ Pε

0 , Z̃Pε

0 ) is the solution of

Ỹ Pε

t = ξ(Xαε

· ) +
∫ 1

t
Fs(X

αε

· , Ỹ Pε

s , Z̃Pε

s , αε
s ) ds −

∫ 1

t
Z̃Pε

s (αε
s )

1/2 dBs,

0 ≤ t ≤ 1,P0-a.s.

By Proposition 2.1 from El Karoui, Peng and Quenez [9], we deduce that

|Y P
0 − YPε

0 |2 = |Ỹ P
0 − Ỹ Pε

0 |2

≤ CEP0

[
|ξ(Xα· ) − ξ(Xαε

· )|2 +
∫ 1

0
|Ft(X

α· , Ỹ P
t , Z̃P

t , αt )

− Ft(X
αε

· , Ỹ P
t , Z̃P

t , αε
t )|2 dt

]
.

By (5.13) we have

|ξ(Xαε

· )| ≤ C‖Xαε‖1 ≤ C‖Xα‖1 + C‖Xα − Xαε‖1;
|Ft(X

αε

· , Ỹ P
t , Z̃P

t , αε
t )| ≤ C(‖Xαε‖t + |Ỹ P

t | + |Z̃P
t | + |αε

t |1/2)

≤ C(‖Xα‖1 + |ỸP
t | + |Z̃P

t | + |αt |1/2)

+ C(‖Xαε − Xα‖1 + |αε
t − αt |1/2).

It follows from (5.14) that EP0[sup0≤t≤1 |Xα
t − Xαε

t |2] ≤ ε. Then |ξ(Xαε

· )|2 is
uniformly integrable under P0 and |Ft(X

αε

· , Ỹ P
t , Z̃P

t , αε
t )|2 is uniformly inte-

grable under dt × dP0. Now by the uniform continuity of ξ and F we get
limε→0 |YP

0 − YPε

0 | = 0. This implies that YP
0 ≤ v0(ξ) for all P ∈ PH , and, there-

fore, v(ξ) ≤ v0(ξ). �
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A sufficient condition for the uniform continuity of F in terms of a is that DH

is bounded. We next provide a sufficient condition for the density condition (5.14).

PROPOSITION 5.4. Let Assumption 3.1 hold and suppose that the domain DF

of F is independent of t . Assume further that T0 is dense in [0,1], and there exists
a countable dense subset A ⊂ DF such that, for all a ∈ A, the constant mapping a

is in A0. Then P A
H is dense in PH in the sense of (5.14).

PROOF. (i) We first prove that Pα ∈ P A
H for any α taking the following form:

There exist 0 = t0 < · · · < tn = 1 in T0 and a finite subset An ⊂ A s.t.

α =
n−1∑
i=0

αti 1[ti ,ti+1) + αtn1{tn} and α takes values in An.(5.15)

In fact, since An ⊂ S>0
d is finite, then α has both lower (away from 0) and upper

bounds, and thus Pα is well defined. Using the notation in Lemma 2.2, we set
a := α ◦βα . Clearly, a = ∑n−1

i=0 ati 1[ti ,ti+1) + atn1{tn} and a also takes values in An.
By Lemma 2.2 we know â = a, dt ×dPα-a.s. and Pα satisfies (3.4). Then it follows
from (5.2) that Pα ∈ P(A). Moreover, by numerating An = {ai, i = 1, . . . , n}, we
have a = ∑n

i=1 ai1Ei
, where Ei := {ω :at (ω) = ai,0 ≤ t ≤ 1}, i = 1, . . . , n, form

a partition of F1. By Lemma 5.2 in [22], we know Pα = Pai
on Ei , that is, Pα(E ∩

Ei) = Pai
(E ∩ Ei) for all E ∈ F1. Since each Pai ∈ P A

H satisfies (3.5), then so
does Pα . This implies that Pα ∈ PH , and, therefore, Pα ∈ P A

H .
(ii) Now fix Pα ∈ PH . Since â ∈ DF , dt × dPα-a.s. by Lemma 2.2 we know

α ∈ DF , dt × dP0-a.s. For any ε > 0, since EP0[∫ 1
0 |αt |2 dt] < ∞, by standard

arguments there exists F-progressive measurable càdlàg process αε such that αε

takes values in DF and EP0[∫ 1
0 |(αε

t )
1/2 − (αt )

1/2|2 dt] ≤ ε. Now by the dense
property of T0 and A, there exists α̃ε in the form (5.15) such that EP0[∫ 1

0 |(α̃ε
t )

1/2 −
(αε

t )
1/2|2 dt] ≤ ε. Then EP0[∫ 1

0 |(α̃ε
t )

1/2 − (αt )
1/2|2 dt] ≤ Cε. Since Pα̃ε ∈ P A

H by
the above (i), the proof is complete. �

5.4. Proof of Theorem 5.2 [V0(ξ) = V̄0(ξ)]. The proof requires the following
extension of Bank and Baum [1] to the nonlinear case.

LEMMA 5.5. Let ht (ω, x, z) : [0,1] × � × R × Rd → R be F-progressively
measurable, uniformly Lipschitz continuous in (x, z), and h(0,0) ∈ Ĥ2

0(R). For a

process Z ∈ Ĥ2
0(R

d), let XZ ∈ Ŝ2
0(R) denote the aggregating process of the solu-

tions to the following ODE (with random coefficients) under each Pi :

XZ
t = x +

∫ t

0
hs(X

Z
s ,Zs) ds +

∫ t

0
Zs dBs, 0 ≤ t ≤ 1, P̂-a.s.
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Then for any ε > 0, there exists Zε ∈ Ĥ2
0(R

d) with finite variation, P̂-a.s. such that

sup
0≤t≤1

|XZε

t − XZ
t | ≤ ε, P̂-a.s.

PROOF. Recall (3.4). For i ≥ 1, let Ci = Ci(aPi , aPi ) ≥ 1 be some constants
which will be specified later. Note that (3.4) implies â1/2Z ∈ H2(Pi ,Rd). Define
P̃ := ∑∞

i=1 νiP
i , where ν1 := 1 −∑∞

i=2 νi > 0, and

1

νi

:= 2iCi

[
1 + Ei

{
sup

0≤t≤1
|XZ

t |2 +
∫ 1

0
[|Zt |2 + |â1/2

t Zt |2 + |ht (0,0)|2]dt

}]
(5.16)

for i ≥ 2.

Then P̃ is probability measure equivalent to P̂, Pi ≤ ν−1
i P̃, and

XZ ∈ S2(P̃,R) and Z, â1/2Z ∈ H2(P̃,Rd).(5.17)

Obviously, it suffices to find Zε ∈ H2(P̃,R) such that

Zε has finite variation and sup
0≤t≤1

|XZε

t − XZ
t | ≤ ε, P̃-a.s.

(1) Denote X := XZ . As in Bank and Baum [1], we first prove that, for any
F-stopping time τ and any X̃τ , Z̃τ ∈ L2(P̃, Fτ ), there exists a process Zε,τ ∈
H2(P̃,Rd) such that Zε,τ

τ = Z̃τ , Zε,τ is absolutely continuous in t with finite vari-
ation on [τ,1], and

P̃
[

sup
τ≤t≤1

e−L(t−τ)|Xε,τ
t − Xt | ≥ ε + |X̃τ − Xτ |

]
≤ ε,(5.18)

where L is the uniform Lipschitz constant of h with respect to x, and

X
ε,τ
t = X̃τ +

∫ t

τ
hs(X

ε,τ
s ,Zε,τ

s ) ds +
∫ t

τ
Zε,τ

s dBs, t ≥ τ, P̃-a.s.(5.19)

For simplicity we assume τ = 0 and X̃τ = x̃, Z̃τ = z̃. Set Zt := z̃ for t < 0, and
define Zn

t := n
∫ t
t−1/n Zs ds for every n ≥ 1. Then Zn

0 = z̃, Zn is continuous in t

with finite variation, and, by (5.17),

lim
n→∞ EP̃

{∫ 1

0
[|Zn

t − Zt |2 + |â1/2
t (Zn

t − Zt)|2]dt

}
= 0.

Let Xn and X̃ be defined by Xn
0 = X̃0 = x̃ and

dXn
t = ht (X

n
t ,Zn

t ) dt + Zn
t dBt , dX̃t = ht (X̃t ,Zt ) dt + Zt dBt .

By the Lipschitz property of h, it follows from standard estimates on SDEs that

lim
n→∞EP̃

{
sup

0≤t≤1
|Xn

t − X̃t |2 dt
}

= 0 and e−Lt |X̃t − Xt | ≤ |x̃ − x|.
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Then, for any ε > 0,

P̃
[

sup
0≤t≤1

e−Lt |Xn
t − Xt | ≥ ε + |x̃ − x|

]
≤ P̃

[
sup

0≤t≤1
e−Lt |Xn

t − X̃t | ≥ ε
]

≤ P̃
[

sup
0≤t≤1

|Xn
t − X̃t | ≥ ε

]
−→ 0 as n → ∞.

By setting Zε,τ := Zn for n large enough so that the above probability is less
than ε, we complete the proof of (5.18). By our construction, notice that

Z
ε,τ
τ ′ ∈ L2(P̃, Fτ ′) for every F-stopping time τ ′ ≥ τ.(5.20)

(2) In this step, we construct a sequence of F-stopping times (τi)i≥0 which
yields the required approximation (Xε,Zε). We initialize our construction by τ0 :=
0, X̃0 = X0 and Z̃0 arbitrary. Let ε > 0 be fixed, and set εn := 2−ne−Lε.

Assume τi is defined and (Xε,Zε) have been defined over [0, τi] with Zε
τi

∈
L2(P̃, Fτi

). By (5.18) there exists Z̃i+1 ∈ H2(P̃,Rd) which is absolutely continu-
ous in t and has finite variation on [τi,1] such that Z̃i+1

τi
= Zε

τi
and

P̃
{

sup
τi≤t≤1

e−L(t−τi )|X̃i+1
t − Xt | ≥ εi+1 + |Xε

τi
− Xτi

|
}

≤ εi+1,

where {X̃i+1
t , t ∈ [τi,1]} is the solution of the ODE (5.19) with initial condition

X̃i+1
τi

= Xε
τi

. Denote

τi+1 := 1 ∧ inf
{
t ≥ τi : e−L(t−τi )|X̃i+1

t − Xt | = εi+1 + |Xε
τi

− Xτi
|},

and define

Xε
t := X̃i+1

t , Zε
t := Z̃i+1

t , ∀t ∈ (τi, τi+1].
In particular, it follows from (5.20) that Zε

τi+1
∈ L2(P̃, Fτi+1).

We remark that, although the filtration F is not right continuous, since X̃i+1
t −Xt

is continuous, the τi+1 defined here is an F-stopping time. Since
∑∞

i=1 P̃(τi < 1) ≤∑∞
i=1 εi < 1, it follows from the Borel–Cantelli Lemma that P̃(τi < 1,∀i) = 0.

That is, (Xε,Zε) is well defined on [0,1] and Zε is absolutely continuous in t and
has finite variation on [0,1]. Moreover, for t ∈ [τi, τi+1],

sup
τi≤t≤τi+1

e−L(t−τi )|Xε
t − Xt | ≤ εi+1 + |Xε

τi
− Xτi

|.

Then

sup
τi≤t≤τi+1

e−Lt |Xε
t − Xt | ≤ e−Lτi εi+1 + e−Lτi |Xε

τi
− Xτi

|

≤ εi+1 + e−Lτi |Xε
τi

− Xτi
|.
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By induction one can easily see that sup0≤t≤1 e−Lt |Xε
t − Xt | ≤ ∑∞

i=1 εi = e−Lε,
and then

sup
0≤t≤1

|Xε
t − Xt | ≤ ε, P̃-a.s.

(3) It remains to check that Zε ∈ H2(P̃,Rd). For any i, j ≥ 1, note that

Xε
t = Xε

τj
−
∫ τj

t
hs(X

ε
s ,Z

ε
s ) ds −

∫ τj

t
Zε

s dBs, t ≤ τj ,Pi-a.s.

By the Lipschitz continuity of h and (3.4), and following standard arguments, one
can easily see that, for some constant Ci ≥ 1,

EPi
[∫ τj

0
|Zε

t |2 dt

]
≤ CiE

Pi
[
|Xε

τj
|2 +

∫ τj

0
|ht (0,0)|2 dt

]

≤ CiE
Pi
[

sup
0≤t≤1

|Xt |2 + ε2 +
∫ 1

0
|ht (0,0)|2 dt

}
for all j ≥ 1.

Set Ci in (5.16) to be the above constant Ci . Then by sending j → ∞, we get

EPi
[∫ 1

0
|Zε

t |2 dt

]
≤ 1

2iνi

for all i ≥ 2.

Then

EP̃

[∫ 1

0
|Zε

t |2 dt

]
=

∞∑
i=1

νiE
Pi
[∫ 1

0
|Zε

t |2 dt

]

≤ ν1EP1
[∫ 1

0
|Zε

t |2 dt

]
+

∞∑
i=2

2−i < ∞.

This completes the proof. �

PROOF OF THEOREM 5.2 [V0(ξ) = V̄0(ξ)]. In view of (5.8), we only need to

show that V0(ξ) ≤ ¯̄V 0(ξ) when ¯̄V 0(ξ) < ∞. For any ε > 0, there exist ¯̄y < ¯̄V 0(ξ)+
ε and ¯̄Z ∈ Ĥ2

0(R
d) such that the corresponding ¯̄Y 1 := ¯̄Yy,Z̄

1 ≥ ξ, P̂-a.s. Set ȳ :=
¯̄y + ε and Z̄ := ¯̄Z. By Assumption 5.1, we may find �̄ ∈ Ĝ2

0(DH ) ∩ Ĥ2
0(DH ) such

that the corresponding Ȳ1 := Ȳ
ȳ,Z̄,�̄
1 ≥ ξ, P̂-a.s. Denote for t ∈ [0,1],

Z0
t :=

∫ t

0
�̄s dBs, ζt := Z̄t − Z0

t , Y 0
t :=

∫ t

0
Z0

s dBs, Xt := Ȳt − Y 0
t ,

and

ht (ω, x, z) := 1
2 ât (ω) : �̄t (ω) − Ht

(
ω,x + Y 0

t (ω), z + Z0
t (ω), �̄t (ω)

)
.
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One easily checks that h satisfies the conditions of Lemma 5.5, and X = Xζ . Then,
there exists ζ ε ∈ Ŝ2

0(R
d) with finite variation over [0,1] so that

sup
0≤t≤1

|Xζε

t − Xt | ≤ ε, P̂-a.s.

Set Zε := ζ ε + Z0, Y ε := Xζε + Y 0, and observe that d〈Zε,B〉t = d〈Z0,B〉t =
�̄t dt , P̂-a.s. Therefore, Zε ∈ Ŝ M2

0(R
d). Setting y := ȳ, one can easily check that

Y ε satisfies (3.11) for given (y,Zε, �̄). Notice that (3.11) coincides with (3.9) for
given �̄, we have Y ε = Yy,Zε

. Then

Yy,Zε − Ȳ = Xζε − X and, thus, sup
0≤t≤1

|Yy,Zε

t − Ȳt | ≤ ε, P̂-a.s.

Let L denote the Lipschitz constant of H with respect to y, and set yε := y + eLε.
Then

Y
yε,Zε

t − Y
y,Zε

t = eLε +
∫ t

0
λs(Y

yε,Zε

s − Yy,Zε

s ) ds,

where |λs | ≤ L. This leads to Y
yε,Zε

1 − Y
y,Zε

1 = eLεe
∫ 1

0 λt dt ≥ ε, and, thus,

Y
yε,Zε

1 ≥ Y
y,Zε

1 + ε ≥ Ȳ1 ≥ ξ, P̂-a.s.

Therefore, V0(ξ) ≤ y + eLε ≤ ¯̄y + (1 + eL)ε ≤ ¯̄V 0(ξ) + (2 + eL)ε. Since ε is
arbitrary, this provides the required result. �

6. Extension. In this section we extend our setting in Section 3 by considering
P S instead of PH and by removing the constraints on the domains of H and F .
In view of the length of this paper, we shall only formulate the extended problems
heuristically and will not report the details. However, all the results in this paper
can be extended to this new setting.

Let Ht(ω,y, z, γ ) : [0,1] × � × R × Rd × Rd×d → R ∪ {∞} be a measurable
mapping, and

Ft(ω, y, z, a) := sup
γ∈Rd×d

{
1

2
a :γ − Ht(ω,y, z, γ )

}
, a ∈ S>0

d ,

be the corresponding conjugate with respect to γ which takes values in R ∪ {∞}.
We assume DHt , the domain of H in γ , is independent of (y, z) and contains 0, H

is uniformly Lipschitz continuous in (y, z) and lower-semicontinuous in γ for all
γ ∈ DHt , and F is measurable. Then the domain DFt of F in a is also independent
of (y, z), and F is uniformly Lipschitz continuous in (y, z), for all a ∈ DFt .

Recall the notation F̂ 0
t := F̂t (0,0), and define the increasing sequence of F-

stopping times

τ̂n := 1 ∧ inf
{
t ≥ 0 :

∫ t

0
F̂ 0

s ds ≥ n

}
, n ≥ 1; and τ̂ := lim

n→∞ τ̂n.(6.1)
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Notice that ∫ 1

0
F̂ 0

s ds < ∞ on
⋃
n≥1

{τ̂n = 1} and

(6.2) ∫ 1

0
F̂ 0

s ds = ∞ on
⋂
n≥1

{τ̂n < 1}.

We shall assume further that

EP

[∫ τ̂n

0
|F̂ 0

s |2 ds

]
< ∞ for all P ∈ P S and n ≥ 1.

For the present extended setting, we introduce the space L̂2(R) :=⋂
P∈P S

L2(P,R), together with

Ĥ2(Rd) := ⋂
P∈P S

H2
loc(P,Rd) := ⋂

P∈P S

⋂
n≥1

{
Z :Z1[0,τ̂n] ∈ H2(P,Rd)

}
,

Ĝ2
H(DH) := ⋂

P∈P S

G2
loc(P,DH )

:= ⋂
P∈P S

⋂
n≥1

{
� :

(
1

2
â :� − H(0,0,�)

)
1[0,τ̂n] ∈ H2(P,R)

}
,

and the corresponding spaces for continuous processes (resp., semimartingales):
X ∈ Ŝ2(R) := ⋂

P∈P S
S2

loc(P,R) [resp., Ŝ M2
(Rd) := ⋂

P∈P S
S M2

loc(P,Rd)] iff

for every n ≥ 1 and P ∈ P S , X.∧τ̂n
∈ S2(P,R) [resp., S M2(P,Rd)].

Now given ξ ∈ L̂2(R), the second order stochastic target problem is defined by

V(ξ) := inf{y :Yy,Z
1 ≥ ξ, P S-q.s. for some Z ∈ Ŝ M2

(Rd)},
where Y := Yy,Z ∈ Ŝ2(R) is defined by the following ODE (with random coeffi-
cients):

Yt = y −
∫ t

0
Hs(Ys,Zs,�s) ds +

∫ t

0
Zs ◦ dBs, t < τ̂ , P S-q.s.

Yτ̂ := lim
n→∞Yτ̂n

on
⋃
n≥1

{τ̂n = 1},

Yt := ∞ for t ∈ [τ̂ ,1] on
⋂
n≥1

{τ̂n < 1}.

Similarly, the extended relaxed problems are as follows:

V̄(ξ) := inf{y :∃(Z̄, �̄) ∈ Ĥ2(Rd) × Ĝ2
H(DH) s.t. Ȳ

P,y,Z̄,�̄
1 ≥ ξ,

P-a.s. for all P ∈ P S},
¯̄V(ξ) := inf{y :∃ ¯̄Z ∈ Ĥ2(Rd) s.t. ¯̄Y P,y, ¯̄Z

1 ≥ ξ,P-a.s. for all P ∈ P S},
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where Ȳ P := Ȳ P,y,Z̄,�̄ and ¯̄Y P := ¯̄Y P,y, ¯̄Z are defined by

Ȳ P
t = y +

∫ t

0

(
1

2
�̄s : âs − Hs(Ȳ

P
s , Z̄s, �̄s)

)
ds

+
∫ t

0
Z̄s dBs, t < τ̂ ,P-a.s.

Ȳ P
τ̂ := lim

n→∞ Ȳ P
τ̂n

on
⋃
n≥1

{τ̂n = 1},

Ȳ P
t := ∞ for t ∈ [τ̂ ,1] on

⋂
n≥1

{τ̂n < 1};(6.3)

¯̄Y t
P = y +

∫ t

0
F̂s(

¯̄Y s
P, ¯̄Zs)ds +

∫ t

0

¯̄Zs dBs, t < τ̂ ,P-a.s.

¯̄Y τ̂
P := lim

n→∞
¯̄Y τ̂n

P on
⋃
n≥1

{τ̂n = 1},

¯̄Y t
P := ∞ for t ∈ [τ̂ ,1] on

⋂
n≥1

{τ̂n < 1}.

Finally, we remark that P[⋃n{τ̂n = 1}] = 1 for all P ∈ PH . The dual formulation
in this extended setting is the same as the original v(ξ) defined in (3.16). That
is, for dual formulation we still use PH , instead of P S . Under certain technical
conditions, again we can show that V̄(ξ) = ¯̄V(ξ) = v(ξ). Moreover, if we extend
the weaker version in Section 5 analogously, similar results will still hold.

APPENDIX

In this Appendix we prove Lemma 4.1 and claim (4.19). We shall use the nota-
tion of Lemma 2.2.

PROOF OF LEMMA 4.1. (Pτ,ω ∈ P τ(ω)

S ). Let P = Pα ∈ P S be given. We em-
phasize that we shall consider both the strong formulation (B,Xα) under P0 and
the weak formulation (WP,B) under P. We prove the lemma in four steps.

Step 1. We first proceed in the strong formulation. Let τ̃ be an arbitrary F-
stopping time. We claim that

(P0)
τ̃ ,ω = P

τ̃ (ω)
0 for P0-a.e. ω ∈ �.(A.1)

Since
∫ 1

0 |αs(ω)|ds < ∞, P0-a.s. clearly
∫ 1
τ̃ (ω) |ατ̃,ω

s (ω̃)|ds < ∞ for P0-a.e. ω ∈ �

and P
τ̃ (ω)
0 -a.e. ω̃ ∈ �τ̃(ω). Then

Pατ̃,ω ∈ P τ̃ (ω)

S for P0-a.e. ω ∈ �.(A.2)
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We now prove (A.1), which amounts to say, for P0-a.e. ω,

EP
τ,ω
0 [ξ ] = EP

τ(ω)
0 [ξ ] for any bounded F τ(ω)

T -measurable r.v. ξ .(A.3)

By standard approximating arguments, it suffices to prove (A.3) by assuming

ξ = e
λ1B̃

τ,ω
t1

+···+λnB̃
τ,ω
tn ,

where B̃
τ,ω
t := ωt1[0,τ (ω))(t) + [

ωτ(ω) + B
τ(ω)
t

]
1[τ(ω),T ]

for all rational 0 < t1 < · · · < tn ≤ T and λ1, . . . , λn ∈ Qd . By the countability
of rational numbers, we may allow the exceptional P0-null set to depend on ξ .
Moreover, by backward induction, we may assume without loss of generality that
n = 1 and tn = T . That is, we want to prove, for any λ ∈ Qd ,

EP
τ,ω
0

[
eλB

τ(ω)
T

] = EP
τ(ω)
0

[
eλB

τ(ω)
T

]
for P0-a.e. ω.(A.4)

Note that

EP
τ(ω)
0

[
eλB

τ(ω)
T

] = e|λ|2/2[T −τ(ω)].

Then, by (4.2) and the definition of r.c.p.d., (A.4) is equivalent to

EP0
[
eλ[BT −Bτ ]ητ

] = EP0
[
e(|λ|2/2)[T −τ ]ητ

]
(A.5)

where ηt := ϕ(Bs1∧t , . . . ,Bsm∧t ),

for any 0 < s1 < · · · < sm ≤ T and any bounded and smooth function ϕ.
To see (A.5), we first assume τ takes only finitely many values, and by otherwise

merging the partition points, we assume without loss of generality that τ takes only
values s1, . . . , sm. Then, noting that B· − Bsi is a Brownian motion under P0,

EP0
[
eλ[BT −Bτ ]ητ

] =
m∑

i=1

EP0
[
eλ[BT −Bsi

]ηsi 1{τ=si}
]

=
m∑

i=1

EP0
[
EP0

[
eλ[BT −Bsi

]|Fsi

]
ηsi 1{τ=si}

]

=
m∑

i=1

EP0
[
e(|λ|2/2)(T −si )ηsi 1{τ=si}

] = EP0
[
e(|λ|2/2)[T −τ ]ητ

]
.

In the general case, we may find stopping times τn ↓ τ such that each τn takes
finitely many values. Then

EP0
[
eλ[BT −Bτn ]ητn

] = EP0
[
e(|λ|2/2)[T −τn]ητn

]
.

Send n → ∞, and note that η is continuous in t , then by the Dominated Conver-
gence Theorem we obtain (A.5), and hence prove (A.1).
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Step 2. We construct the r.c.p.d. for P in weak formulation. Define

τ̃ := τ ◦ Xα and α̃τ,ω := ατ̃,βα(ω).(A.6)

One can easily see that τ̃ is also an F-stopping time. By the definition of Pα and
the definition of the mapping βα in Lemma 2.2, we have τ = τ̃ ◦ βα , Pα-a.s. Then
it follows from (A.2) that

Pα̃τ,ω ∈ P τ(ω)

S for Pα-a.e. ω ∈ �.(A.7)

Step 3. We show that Pτ,ω = Pα̃τ,ω
for P-a.e. ω ∈ �, by assuming the following

claim which will be proved in Step 4 below:

EPα [ϕ(Bt1∧τ , . . . ,Btn∧τ )ψ(Bt1, . . . ,Btn)]
(A.8)

= EPα [ϕ(Bt1∧τ , . . . ,Btn∧τ )ψτ ]
for any 0 < t1 < · · · < tn ≤ 1 and bounded and continuous functions ϕ,ψ , where

ψτ (ω) := EPα̃τ,ω [
ψ
(
ω(t1), . . . ,ω(tk),ω(t) + Bt

tk+1
, . . . ,ω(t) + Bt

tn

)]
for t := τ(ω) ∈ [tk, tk+1).

Indeed, if (A.8) is true, then by the arbitrariness of ϕ and (t1, . . . , tn), it follows
from the definition of r.c.p.d. that, for Pα-a.e. ω ∈ � and for t := τ(ω) ∈ [tk, tk+1),

ψτ (ω) = EPτ,ω[
ψ
(
ω(t1), . . . ,ω(tk),ω(t) + Bt

tk+1
, . . . ,ω(t) + Bt

tn

)]
.(A.9)

We remark that the exceptional Pα-null set is supposed to depend on ψ and t1 <

· · · < tn. However, by standard approximating arguments, one can easily choose a
common null set. That is, there exists a Pα-null set E0 such that, for any ω /∈ E0,
(A.9) holds for all (t1, . . . , tn) and all bounded continuous functions ψ . This clearly
implies that, for ω /∈ E0,

EPτ,ω [η] = EPα̃τ,ω [η]
for all bounded and F τ(ω)

1 -measurable random variables η.

Then Pτ,ω = Pα̃τ,ω
, for P-a.e. ω ∈ �. This, together with (A.7), proves that Pτ,ω ∈

P τ(ω)
S , for P-a.e. ω ∈ �.
Step 4. We now prove (A.8). For t := τ(ω) ∈ [tk, tk+1), by definition of Pα̃τ,ω

we have

ψτ (ω) = EP
τ(ω)
0

[
ψ

(
ω(t1), . . . ,ω(tk),ω(t) +

∫ tk+1

t

(
ατ̃,βα(ω)

s

)1/2
dBτ(ω)

s , . . . ,

ω(t) +
∫ tn

t

(
ατ̃,βα(ω)

s

)1/2
dBτ(ω)

s

)]
.
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Then, for each ω ∈ �, when t := τ̃ (ω) = τ(Xα(ω)) ∈ [tk, tk+1),

ψτ (X
α(ω))

= EP
τ̃ (ω)
0

[
ψ

(
Xα

t1
(ω), . . . ,Xα

tk
(ω),Xα

t (ω) +
∫ tk+1

t
(ατ̃ ,ω

s )1/2 dBτ̃(ω)
s , . . . ,

Xα
t (ω) +

∫ tn

t
(ατ̃ ,ω

s )1/2 dBτ̃(ω)
s

)]
;

note that (P0)
τ,ω-distribution of (Bτ̃(ω), ατ̃ ,ω

s (Bτ̃(ω)) is equal to the (P0)
ω
τ -

distribution of (B· − Bτ̃(ω), α
τ̃ ,ω(B· − Bτ̃(ω))). Recall (A.1), and note that, for

each ω ∈ �,

αs(ω) = α
(
ω ⊗τ̃ (ω) ωτ̃(ω)) = ατ̃,ω

s

(
ωτ̃(ω)).

Then

ψτ (X
α(ω))

= E(P0)
ω
τ̃

[
ψ

(
Xα

t1
(ω), . . . ,Xα

tk
(ω),Xα

t (ω) +
∫ tk+1

t
(αs)

1/2(B·) dBs, . . . ,

Xα
t (ω) +

∫ tn

t
(αs)

1/2(B·) dBs

)]
= E(P0)

ω
τ̃ [ψ(Xα

t1
, . . . ,Xα

tk
,Xα

tk+1
, . . . ,Xα

tn
)]

= EP0[ψ(Xα
t1
, . . . ,Xα

tk
,Xα

tk+1
, . . . ,Xα

tn
)|Fτ̃ ](ω), P0-a.e. ω ∈ �.

Then

EPα [ϕ(Bt1∧τ , . . . ,Btn∧τ )ψτ ]
= EP0[ϕ(Xα

t1∧τ̃ , . . . ,X
α
tn∧τ̃ )ψτ̃ (X

α)]
= EP0

[
ϕ(Xα

t1∧τ̃ , . . . ,X
α
tn∧τ̃ )E

P0[ψ(Xα
t1
, . . . ,Xα

tk
,Xα

tk+1
, . . . ,Xα

tn
)|Fτ̃ ]

]
= EP0[ϕ(Xα

t1∧τ̃ , . . . ,X
α
tn∧τ̃ )ψ(Xα

t1
, . . . ,Xα

tk
,Xα

tk+1
, . . . ,Xα

tn
)]

= EPα [ϕ(Bt1∧τ , . . . ,Btn∧τ )ψ(Bt1, . . . ,Btn)].
This proves (A.8) and hence the lemma. �

PROOF OF CLAIM (4.19). Let P = Pα and Pi
t = Pαi

for appropriate α and αi ,
i = 1, . . . , n. Define

ᾱs := αs1[0,t)(s) +
[

n∑
i=1

αi
s1Ei

t
(Xα) + αs1

Ên
t
(Xα)

]
1[t,1](s).
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Following similar arguments as in the proof of (A.8), one can easily show that,
for any 0 < t1 < · · · < tk = t < tk+1 < · · · < tn and any bounded continuous func-
tions ϕ and ψ ,

EPα

[
ϕ(Bt1, . . . ,Btk )

n∑
i=1

EPαi
t [ψ(Bt1, . . . ,Btk ,Bt + Bt

tk+1
, . . . ,Bt + Bt

tn
)]1Ei

t

]

= EPᾱ [ϕ(Bt1, . . . ,Btk )ψ(Bt1, . . . ,Btn)].
Then Pn = Pᾱ and one sees immediately that Pn ∈ P S .

Moreover, since each Pi
t satisfies (4.7), one can easily check that Pn satisfies all

the requirements in Definition 3.3, and thus Pn ∈ PH . �
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