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Quantum Computation and Quantum
Information
Yazhen Wang

Abstract. Quantum computation and quantum information are of great cur-
rent interest in computer science, mathematics, physical sciences and engi-
neering. They will likely lead to a new wave of technological innovations in
communication, computation and cryptography. As the theory of quantum
physics is fundamentally stochastic, randomness and uncertainty are deeply
rooted in quantum computation, quantum simulation and quantum informa-
tion. Consequently quantum algorithms are random in nature, and quantum
simulation utilizes Monte Carlo techniques extensively. Thus statistics can
play an important role in quantum computation and quantum simulation,
which in turn offer great potential to revolutionize computational statistics.
While only pseudo-random numbers can be generated by classical comput-
ers, quantum computers are able to produce genuine random numbers; quan-
tum computers can exponentially or quadratically speed up median evalua-
tion, Monte Carlo integration and Markov chain simulation. This paper gives
a brief review on quantum computation, quantum simulation and quantum
information. We introduce the basic concepts of quantum computation and
quantum simulation and present quantum algorithms that are known to be
much faster than the available classic algorithms. We provide a statistical
framework for the analysis of quantum algorithms and quantum simulation.

Key words and phrases: Quantum algorithm, quantum bit (qubit), quan-
tum Fourier transform, quantum information, quantum mechanics, quantum
Monte Carlo, quantum probability, quantum simulation, quantum statistics.

1. INTRODUCTION

For decades computer hardware has grown in power
approximately according to Moore’s law, which states
that the computer power doubles for constant cost
roughly once every two years. However, because of the
fundamental difficulties of size in conventional com-
puter technology, this dream run is ending. The con-
ventional approaches to the fabrication of computer
technology are to make electronic devices smaller and
smaller in order to increase the computer power. As
the sizes of the electronic devices get close to the
atomic scale, quantum effects are starting to inter-
fere in their functioning, and thus the conventional
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approaches run up against the size limit. One possi-
ble way to get around the difficulties is to move to a
new computing paradigm provided by quantum infor-
mation science. Quantum information science is based
on the idea of using quantum devices to perform com-
putation and manipulate and transmit information, in-
stead of electronic devices following the laws of clas-
sical physics, see Deutsch (1985), DiVincenzo (1995),
Feynman (1981/82). Quantum mechanics and infor-
mation theory are two of the great scientific develop-
ments and technological revolutions in the 20th cen-
tury, and quantum information science is to marry the
two previously disparate fields and form a single uni-
fying viewpoint. Quantum information science studies
the preparation and control of the quantum states of
physical systems for the purposes of information trans-
mission and manipulation. It includes quantum compu-
tation, quantum communication and quantum cryptog-
raphy. This revolutionary field will enable a range of
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exotic new devices to be possible. There is now a gen-
eral agreement that quantum information science will
likely lead to the creation of a quantum computer to
solve problems that could not be efficiently solved on
a classical computer. Already scientists have built rudi-
mentary quantum computers in the research laboratory
to run quantum algorithms and perform certain calcu-
lations. Intensive research efforts are under way around
the world to investigate a number of technologies that
could lead to more powerful and more prevalent quan-
tum computers in the near future. It is believed that
quantum information and quantum bits are to lead to
a 21st century technological revolution much as clas-
sic information and classic bits did to the 20th century.
Since the theory of quantum mechanics is fundamen-
tally stochastic, randomness and uncertainty are deeply
rooted in quantum computation and quantum informa-
tion. As a result, quantum algorithms are of random na-
ture in the sense that they yield correct solutions only
with some probabilities, and Monte Carlo methods are
widely employed in quantum simulation. Thus statis-
tics has an important role to play in quantum compu-
tation, quantum simulation and quantum information.
On the other hand, quantum computation and quantum
simulation have tremendous potential to revolutionize
computational statistics.

A quantum system is generally described by its state,
and the state is mathematically defined to be a unit
vector in some complex Hilbert space. The number of
complex numbers required to characterize the quan-
tum state usually grows exponentially with the size of
the system, rather than linearly, as occurs in classi-
cal systems. As a consequence, it takes an exponen-
tial number of bits of memory on a classical com-
puter to store the quantum state, which puts classical
computers in a difficult position to simulate a quan-
tum system. On the other hand, nature quantum sys-
tems are able to store and keep track of an exponential
number of complex numbers and perform data manip-
ulations and calculations as the systems evolve. Quan-
tum information science is to grapple with understand-
ing how to take advantage of the enormous informa-
tion hidden in the quantum systems and to harness
the immense potential computational power of atoms
and molecules for the purpose of performing compu-
tation and processing information. Already it has been
shown that quantum algorithms like Grover’s search al-
gorithm and Shor’s factoring algorithm provide great
advantage over known classical algorithms.

Contemporary scientific studies often rely on un-
derstanding complex quantum systems, such as those

in biochemistry and nanotechnology for the design of
biomolecules and nano-materials. Quantum simulation
is to use computers to simulate a quantum system and
its time evolution. Classical computers are being used
for quantum simulation in designing novel molecules
and creating innovative nano-products. Quantum com-
puters built upon quantum systems may excel in sim-
ulating naturally occurring quantum systems, while
large quantum systems may be impossible to simulate
in an efficient manner by classical computers. A quan-
tum system with b distinct components may be de-
scribed with b quantum bits in a quantum computer,
while a classical computer requires 2b bits of memory
to store its quantum state. This advantage allows quan-
tum computers to efficiently simulate general quantum
systems that are not efficiently simulatable on classical
computers.

In this article we review the concepts of quan-
tum computation and introduce quantum algorithms
and quantum simulation. The quantum algorithms are
known to be much faster than the available classi-
cal algorithms. Statistical analyses of quantum algo-
rithms and quantum simulation are provided. We give
a brief description on quantum information. The ar-
ticle sections start with presentations in broad brush-
strokes, followed by specific discussions along with
some mathematical derivations if necessary. The inten-
tion is to give each topic first an overview and then
a general description and a precise characterization.
It is recommended to focus on the qualitative discus-
sions but skip the derivations for the readers who would
like to get a quick picture of quantum computation and
quantum simulation.

The rest of the paper proceeds as follows. Section 2
briefly introduces quantum mechanics, quantum prob-
ability and quantum statistics. Section 3 reviews basic
concepts of quantum computation and entanglement.
Section 4 illustrates some widely known quantum al-
gorithms and provides a statistical framework for the
study of quantum algorithms. Section 5 presents quan-
tum simulation and discusses its statistical analysis.
Section 6 gives a short description on quantum infor-
mation theory. Section 7 features concluding remarks
and lists some open research problems.

2. BRIEF BACKGROUND REVIEW ON QUANTUM
THEORY

Quantum mechanics has been applied to everything
under and inside the Sun, from chemical reaction and
superconductor to the structure of DNA and nuclear
fusion in stars. Although the significant difference be-
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tween classical physics and quantum physics lies in the
quantum prediction of physical entity when the scale
of observations becomes comparable to the atomic or
sub-atomic scale, many macroscopic properties of sys-
tems can only be fully explained and understood by
quantum physics. The quantum world is extremely
strange, and quantum theory is completely counterin-
tuitive. Light waves behave like particles and particles
behave like waves (wave particle duality); matter can
go from one spot to another without moving through
the intermediate space (quantum tunneling); informa-
tion can be moved across a vast distance without trans-
mitting it through the intervening space (quantum tele-
portation). Quantum theory provides a mathematical
description of wave particle duality and interaction of
matter and energy. It describes the time evolutions of
physical systems via wave functions. The wave func-
tions encapsulate the probabilities that particles are to
be found in a given state at a given time. For exam-
ple, the probability of finding a photon in some region
is the square of the modulus of a wave function, and,
since at some point the sum of two wave functions can
be zero but neither wave function is zero, probabili-
ties appear to cancel out each other in a way totally
unexpected from classical probability. The intrinsic
stochastic nature of quantum theory indicates a deep
connection between quantum mechanics and probabil-
ity. Since the main focus of this paper is on quan-
tum computation and quantum information, we give
a brief description of quantum theory in this section
to provide some quantum background for the purpose
of reviewing quantum computation and quantum sim-
ulation in subsequent sections. For further reading on
the subjects we recommend textbooks by Sakurai and
Napolitano (2010) at the graduate level and Griffiths
(2004) at the undergraduate level for quantum mechan-
ics, Holevo (1982), Parthasarathy (1992) and Wang
(1994) for quantum probability and quantum stochas-
tic processes, and Artiles, Gill and Guţă (2005) and
Barndorff-Nielsen, Gill and Jupp (2003) for quantum
statistics.

2.1 Hilbert Space and Operator

For the sake of simplicity we choose to work with
comparatively easy finite-dimensional situations. De-
note by C the set of all complex numbers. We start
with vector space in linear algebra. A simple exam-
ple of vector space is C

k consisting of all k-tuples of
complex numbers (z1, . . . , zk). The elements of a vec-
tor space are called vectors. As in quantum mechanics
and quantum computation, we use Dirac notations |·〉
(which is called ket) and 〈·| (which is called bra) to in-

dicate that the objects are column vectors or row vec-
tors in the vector space, respectively. Denote by super-
scripts ∗, ′ and † the conjugate of a complex number,
the transpose of a vector or matrix, and conjugate trans-
pose operation, respectively. We define an inner prod-
uct on the vector space to be a function that takes as
input two vectors from the vector space and produces
a complex number as output. For |u〉 and |v〉 in the
vector space, we denote their inner product by 〈u|v〉.
The inner product must satisfy (i) conjugate symmetry,
〈u|v〉 = (〈v|u〉)∗; (ii) linearity in the second argument,
〈u|v + w〉 = 〈u|v〉 + 〈u|w〉; (iii) positive-definiteness,
〈u|u〉 ≥ 0 with equality only for u = 0. For example,
C

k has a natural inner product

〈u|v〉 =
k∑

j=1

u∗
j vj = (u∗

1, . . . , u
∗
k)(v1, . . . , vk)

′,

where 〈u| = (u1, . . . , uk) and |v〉 = (v1, . . . , vk)
′. An

inner product induces a norm ‖u‖ = √〈u|u〉, and a
distance ‖u − v‖ between |u〉 and |v〉. For the finite-
dimensional case, a Hilbert space H is simply a vector
space with an inner product.

An operator A on H, denoted by A(|u〉) for |u〉 ∈
H, is a function mapping from H to H that satisfies
A(a|u〉 + b|v〉) = aA(|u〉) + bA(|v〉) for any |u〉, |v〉 ∈
H and a, b ∈ C. We can represent an operator through
a matrix. Suppose that A is an operator on H and
e1, . . . , ek form an orthonormal basis in H. Then each
A(|ej 〉) ∈ H and there exists a unique k × k matrix
(aj�) such that A(|ej 〉) = ∑k

�=1 |e�〉a�j , j = 1, . . . , k.
We will identify operator A with matrix (aj�) and use
A for both operator and matrix (aj�). An operator A
on H is said to be self-adjoint if its corresponding ma-
trix A is Hermitian, that is, A = A†. We also refer to
self-adjoint operators as Hermitian operators. An oper-
ator U is said to be unitary if its corresponding matrix
U is unitary, that is, UU† = U†U = I. We say an oper-
ator A is semi-positive (or positive) definite if its cor-
responding matrix A is semi-positive (or positive) def-
inite, that is, 〈u|ρ|u〉 ≥ 0 for |u〉 ∈ H (or 〈u|ρ|u〉 ≥ 0
for |u〉 ∈ H with equality only for |u〉 = 0). The trace
of an operator A, denoted by Tr(A), is defined to be
the trace of its corresponding matrix A = (aj�), that is,
Tr(A) = ∑k

j=1 ajj .

2.2 Quantum System

Quantum mechanics depicts phenomena at micro-
scopic level such as position and momentum of an indi-
vidual particle like an atom or electron, spin of an elec-
tron, detection of light photons, and the emission and
absorption of light by atoms. Unlike classical mechan-
ics where physical entities like position and momentum
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can be measured precisely, the theory of quantum me-
chanics is intrinsically stochastic in a sense that we can
only make probabilistic prediction about the results of
the measurements performed.

Quantum mechanics is mathematically described by
a Hilbert space H and self-adjoint operators on H.
A quantum system is completely characterized by its
state and the time evolution of the state. A state is
defined to be a unit vector in H. Let |ψ(t)〉 be the
state of the quantum system at time t , which is also
referred to as a wave function. The states |ψ(t1)〉 and
|ψ(t2)〉 at t1 and t2 are connected through |ψ(t2)〉 =
U(t1, t2)|ψ(t1)〉, where U(t1, t2) is a unitary operator
depending only on time t1 and t2. In fact, there exists a
self-adjoint operator H, which is known as the Hamil-
tonian of the quantum system, such that U(t1, t2) =
exp[−iH(t2 − t1)]. With Hamiltonian H, we may de-
scribe the continuous time evolution of |ψ(t)〉 by the
Schrödinger equation

i
∂|ψ(t)〉

∂t
= H|ψ(t)〉, i = √−1.(1)

Alternatively a quantum system can be described by
a density operator (or density matrix). A density oper-
ator ρ is an operator on H which (1) is self-adjoint;
(2) is semi-positive definite; (3) has unit trace [i.e.,
Tr(ρ) = 1]. Following the convention in quantum in-
formation science, we reserve notation ρ for state, den-
sity operator or density matrix. A state is often classi-
fied as a pure state or an ensemble of pure states. A pure
state is a unit vector |ψ〉 in H, which corresponds to a
density operator ρ = |ψ〉〈ψ |, and an ensemble of pure
states corresponds to the case that the quantum system
is in one of states |ψj 〉, j = 1, . . . , J , with probability
pj being in state |ψj 〉, and the corresponding density
operator

ρ =
J∑

j=1

pj |ψj 〉〈ψj |.(2)

See Griffiths (2004), Sakurai and Napolitano (2010)
and Shankar (1994).

2.3 Quantum Probability

We can test the theory of quantum mechanics by
checking its predictions with experiments of perform-
ing measurements on quantum systems in the labora-
tory. The usual quantum measurements are on observ-
ables such as position, momentum, spin, and so on,
where an observable X is defined as a self-adjoint op-
erator on Hilbert space H. The observable definition

is motivated from the fact that the eigenvalues of self-
adjoint operators are real. Assume that an observable
X has a discrete spectrum with the following diagonal
form

X =
p∑

a=1

xaQa,(3)

where xa are real eigenvalues of X and Qa are the
corresponding one-dimensional projections onto the
orthogonal eigenvectors of X. Consider such an ob-
servable in the quantum system prepared in state ρ.
Measure space (�, F ) is used to describe possible
measurement outcomes of the observable, and the re-
sult of the measurement is a random variable on (�, F )

with probability distribution Pρ . We denote by X the
result of the measurement of observable X given by
(3). Then X is a random variable taking values in
{x1, x2, . . . , }, and under pure state |ψ〉, the probabil-
ity that measurement outcome xa occurs is defined to
be

P(a) = Pρ(X = xa)

= 〈ψ |Qa|ψ〉 = Tr(Qa|ψ〉〈ψ |), a = 1,2, . . . .

With the probability we derive the expectation under
pure state |ψ〉,

Eψ(X) = ∑
a

xaP (a) = ∑
a

xa〈ψ |Qa|ψ〉

= 〈ψ |X|ψ〉 = Tr(X|ψ〉〈ψ |).
Note the difference between an observable X which is a
Hermitian matrix and its measurement result X which
is a real-valued random variable.

Measuring observable X will alter the state of the
quantum system (Kiefer, 2004; von Neumann, 1955).
If the quantum system is prepared with initial state |ψ〉,
the state of the system after the measurement result xa

is defined to be
Qa|ψ〉√

P(a)
.(4)

For an ensemble state with density operator ρ given
by (2), if the quantum state is |ψj 〉, the probability that
result xa occurs is

P(a|j) = 〈ψj |Qa|ψj 〉 = Tr(Qa|ψj 〉〈ψj |).
Applying the law of total probability, we obtain that
under state ρ, the probability that xa occurs is equal to

P(a) = Pρ(X = xa) =
J∑

j=1

pjP (a|j)

=
J∑

j=1

pj Tr(Qa|ψj 〉〈ψj |) = Tr(Qaρ).
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The expectation of X under state ρ,

Eρ[X] =
p∑

a=1

xaPρ[X = xa] =
p∑

a=1

xa Tr(Qaρ)

= tr(Xρ),

and variance

Varρ[X] = tr[X2ρ] − (tr[Xρ])2.

We may derive the density operator of the quan-
tum system after obtaining the measurement result xa

by conditional probability arguments as follows. If the
quantum system is in pure state |ψj 〉 before the mea-
surement, the quantum state after measurement result
xa has occurred is

|ψa
j 〉 = Qa|ψj 〉√

P(a|j)
.

If the quantum state is ρ before the measurement, after
observing measurement outcome xa we have the fol-
lowing ensemble of states: the quantum system is in
pure state |ψa

j 〉 with probability P(j |a), where Bayes’s
theorem shows

P(j |a) = pjP (a|j)/P (a).

Thus after measurement xa the density operator for the
ensemble state is given by

ρa =
J∑

j=1

P(j |a)|ψa
j 〉〈ψa

j |

=
J∑

j=1

P(j |a)
Qa|ψj 〉〈ψj |Qa

P (a|j)

=
J∑

j=1

pj

Qa|ψj 〉〈ψj |Qa

P (a)
= QaρQa

Tr(Qaρ)
.

See Holevo (1982), Parthasarathy (1992) and Sakurai
and Napolitano (2010).

2.4 Quantum Statistics

For a given quantum system, it is very important but
difficult to know its state. If we do not know in ad-
vance the state of the quantum system, we may in-
fer the quantum state by the measurement results of
some observables obtained from the quantum system
and show that a certain state has been created. In statis-
tical terminology, we want to estimate density matrix
ρ based on measurements on an often large number
of systems which are identically prepared in the state
ρ. That is, after measuring observables on some identi-
cal quantum systems, we can make statistical inference

about probability distribution Pρ of the measurements
and thus indirectly about density matrix ρ. In the liter-
ature of quantum physics, quantum tomography is re-
ferred to as the reconstruction of the underlying den-
sity matrix ρ by probing identically prepared quantum
systems from some different angles. Specifically, sup-
pose that we perform measurements of observables on
identically prepared quantum systems in an unknown
state ρ and obtain measurement results X1, . . . ,Xn.
Assume that ρ is known up to some unknown parame-
ter θ ; then X1, . . . ,Xn are i.i.d. observations with dis-
tributions Pρ which depend on θ . This gives a quan-
tum parametric statistical model. We may then define
quantum likelihood and Fisher quantum information
and establish quantum point estimation and quantum
hypothesis testing theory. Alternatively we may model
ρ nonparametrically by assuming that ρ is an infinite
matrix and then use nonparametric methods to estimate
the density matrix. For details see Artiles, Gill and
Guţă (2005), Barndorff-Nielsen, Gill and Jupp (2003),
Butucea, Guţă and Artiles (2007) and Nussbaum and
Szkoła (2009).

3. QUANTUM COMPUTING CONCEPTS

Unlike classical computers using transistors to
crunch the ones and zeroes individually, quantum com-
puters can handle both one and zero simultaneously via
what are known as superposition quantum states. A su-
perposition state is a state of matter which we may
think of as both one and zero at the same time. Quan-
tum computers use the strange superposition states and
quantum entanglements to do the trick of performing
simultaneous calculations and extracting the calculated
results. The spooky phenomena of quantum entangle-
ment and superposition are the key that enables quan-
tum computers to be superfast and vastly outperform
classical computers.

3.1 Quantum Bit

Analogous to the fundamental concept of bit in clas-
sical computation and classical information, we have
its counterpart, quantum bit, in quantum computation
and quantum information. Quantum bit is called qubit
for short. Just like a classical bit with state either 0 or
1, a qubit has states |0〉 and |1〉. However, the real dif-
ference between a bit and a qubit is that besides states
|0〉 and |1〉, a qubit may take the superposition states,

|ψ〉 = α0|0〉 + α1|1〉,
where α0 and α1 are complex numbers and called am-
plitudes satisfying |α0|2 + |α1|2 = 1. That is, the states
of a qubit are unit vectors in a two-dimensional com-
plex vector space, and states |0〉 and |1〉 consist of an
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orthonormal basis for the space and are often referred
to as computational basis states. For a classical bit we
can examine it to determine whether it is in the state
0 or 1. However, for a qubit we cannot determine its
state and find the values of α0 and α1 by examining it.
The stochastic nature of quantum theory shows that we
can measure a qubit and obtain either the result 0, with
probability |α0|2, or the result 1, with probability |α1|2.
Physical experiments have realized qubits as physical
objects in different physical systems, such as the two
states of an electron orbiting a single atom, the two dif-
ferent polarizations of a photon, or the alignment of a
nuclear spin in a uniform magnetic field. Consider the
case of atom model by corresponding |0〉 and |1〉 with
the so-called “ground” and “excited” states of the elec-
tron, respectively. As the atom is shined by light with
suitable energy and for a proper amount of time, the
electron can be moved from the |0〉 state to the |1〉 state
and vice versa. Furthermore, by shortening the length
of time shining the light on the atom, we may move the
electron initially in the state |0〉 to “halfway” between
|0〉 and |1〉, say, into a state (|0〉 + |1〉)/√2.

Note that for qubit state |ψ〉 the only measurable
quantities are the probabilities |α0|2 and |α1|2; since
|eiθαx |2 = |αx |2, where x = 0,1, i = √−1, and θ is
a real number, from the viewpoint of the qubit mea-
surements, states eiθ |ψ〉 and |ψ〉 are identical. That is,
multiplying a qubit state by a global phase factor eiθ

bears no observational consequence.
Note the distinction between superposition states

and probability mixtures (or ensemble of pure states
defined in Section 2.1). Consider superposition (|0〉 +
|1〉)/√2 as a pure state. Its density matrix is given by

1
2(|0〉 + |1〉)(〈0| + 〈1|)

= 1
2(|0〉〈0| + |1〉〈1|) + 1

2(|0〉〈1| + |1〉〈0|),
while the first term on the right-hand side of the above
equation corresponds to the ensemble of pure states |0〉
and |1〉, that is, a probabilistic mixture of states |0〉 and
|1〉 with equal probability.

Similar to classic bits, we can define multiple
qubits. The states of b qubits are unit vectors in a 2b-
dimensional complex vector space with 2b computa-
tional basis states of the form |x1x2 · · ·xb〉, xj = 0 or
1, j = 1, . . . , b. For example, the states of two qubits
are unit vectors in a four-dimensional complex vec-
tor space, with four computational basis states labeled
by |00〉, |01〉, |10〉 and |11〉. The computational ba-
sis states |00〉, |01〉, |10〉 and |11〉 generate the four-
dimensional complex vector space, and the superposi-
tion states are all unit vector in the space with the forms

|ψ〉 = α00|00〉 + α01|01〉 + α10|10〉 + α11|11〉,

where amplitudes αx are complex numbers satisfying
|α00|2 + |α01|2 + |α10|2 + |α11|2 = 1. As in the single
qubit case, when two qubits are measured we get result
x being one of 00,01,10,11, with probability |αx |2.
Moreover, we may measure just the first qubit of the
two-qubit system and obtain either the result 0, with
probability |α00|2 + |α01|2, or the result 1, with proba-
bility |α10|2 + |α11|2. As quantum measuring changes
the quantum state, if the measurement result on the first
qubit is 0, after the measurement the qubits are in the
state

α00|00〉 + α01|01〉√
|α00|2 + |α01|2

.(5)

A qubit is the simplest quantum system. The quan-
tum system of b qubits is described by a 2b-dimension-
al complex vector space with each superposition state
specified by 2b amplitudes. As 2b increases exponen-
tially in b, it is very easy for such a system to have
an enormously big vector space. A quantum system
with even a few dozens of “qubits” will strain the re-
sources of even the largest supercomputers. Consider
a quantum system of 50 qubits. 250 ≈ 1015 complex
amplitudes are needed to specify its quantum states.
With 128 bits of precision, it requires approximately
32 thousand terabytes of information to store all 1015

complex amplitudes. Such storage capacity may be
available in future supercomputers. For a quantum sys-
tem with b = 500 qubits we need to specify 2500 com-
plex amplitudes for its states. It is unimaginable to
store all 2500 complex numbers in any classical com-
puters. In principle, a quantum system with only a few
hundred atoms can manage such an enormous amount
of data and execute calculations as the system evolves.
Quantum computation and quantum information are to
find ways to utilize the immense potential computa-
tional power in quantum systems.

3.2 Quantum Circuit Model

As a classical computer is built from an electri-
cal circuit consisting of wires for carrying informa-
tion around the circuit and logic gates for perform-
ing simple computational tasks, a quantum computer
can be created from a quantum circuit with quantum
gates to perform quantum computation and manipulate
quantum information. A number of physical systems
are being investigated for building quantum comput-
ers. These include optical photon, optical cavity quan-
tum electrodynamics, ion traps, nuclear magnetic res-
onance with molecules, quantum dots, and supercon-
ductors (Nielsen and Chuang, 2000). In fact, prim-
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itive solid-state quantum processors have been cre-
ated in research laboratories to run quantum algorithms
(DiCarlo et al., 2009; Johnson et al., 2011; Mariantoni
et al., 2011; Sayrin et al., 2011). The circuit model
is particularly important in quantum computation and
quantum information, and a quantum computer is often
synonymous with the quantum circuit model. A quan-
tum circuit operates on b qubits for some integer b.
The state takes a form of |x1 · · ·xb〉, with state space
being a 2b-dimensional complex Hilbert space. When
xi = 0 or 1, states |x1 · · ·xb〉 are the computational ba-
sis states of the quantum computer and often written as
|x〉, where x is the integer with binary representation
x1 · · ·xb.

As a classical logic gate converts classical bits from
one form to another such as 0 → 1 and 1 → 0, a quan-
tum gate operates on qubits. Quantum mechanics dic-
tates that quantum gates operating on b qubits are 2b

by 2b unitary matrices on the 2b-dimensional Hilbert
space. For example, a Hadamard gate on one qubit
is the 2 × 2 unitary matrix that realizes the following
transformation:

|0〉 → |0〉 + |1〉√
2

, |1〉 → |0〉 − |1〉√
2

.

Consider another important gate on two qubits which is
called control-NOT gate. It takes the two input qubits
as control qubit and target qubit, respectively, and the
output target qubit of the gate retains the input target
qubit if the control qubit is |0〉 and is flipped if the con-
trol qubit is |1〉, that is,

|00〉 → |00〉, |01〉 → |01〉,
|10〉 → |11〉, |11〉 → |10〉.

Generally for any single qubit unitary operation U, a
control-U gate is a two-qubit gate, with one control
qubit and one target qubit. If the control qubit is |1〉,
U is applied to the target qubit; if the control qubit is
|0〉, the target qubit is left alone, that is,

|0〉|0〉 → |0〉|0〉, |0〉|1〉 → |0〉|1〉,
|1〉|0〉 → |1〉U|0〉, |1〉|1〉 → |1〉U|1〉.

If f (x) maps {0,1}b onto {0,1}, we define a unitary
transformation Uf that operates on b + 1 qubit state

|x, y〉 → |x, y ⊕ f (x)〉,(6)

where x = x1 · · ·xb with xj = 0 or 1 is the data register,
y = 0 or 1 is the target register, ⊕ denotes additional
modulo 2. If y = 0, after the transformation Uf , the
state of the last qubit is the value of f (x).

3.3 Entanglement

Quantum entanglement is one of the most mind-
bending creatures known to science. It is referred to
as the phenomenon that two qubits behave like twins
that are connected by an invisible wave to share each
other’s properties.

3.3.1 Bell states. Consider a quantum gate on two-
qubit basis states |00〉, |01〉, |10〉 and |11〉 that is com-
posed of a Hadamard gate on the first qubit and then is
followed by a control-NOT gate. The output states of
the gate are as follows:

|00〉 → |00〉 + |11〉√
2

, |01〉 → |01〉 + |10〉√
2

,

|10〉 → |00〉 − |11〉√
2

, |11〉 → |01〉 − |10〉√
2

.

Physicists Bell, Einstein, Podolsky and Rosen discov-
ered the amazing properties of these four states, which
are often referred to as the Bell states, EPR states or
EPR pairs (Bell, 1964; Einstein, Podolsky and Rosen,
1935). In general states such as these four states that
cannot be expressed as products of some single qubits
are called entangled states. Entangled states, which are
not fully understood in quantum physics, have remark-
able properties.

For the two-qubit system consider a Bell state

|ψ〉 = |01〉 − |10〉√
2

,

and an observable

M = axσ x + ayσ y + azσ z,

where (ax, ay, az) is a real unit vector (i.e., a2
z + a2

y +
a2
z = 1), and σ x , σ y and σ z are Pauli matrices given by

σ x =
(

0 1
1 0

)
, σ y =

(
0 −i

i 0

)
,

(7)

σ z =
(

1 0
0 −1

)
, i = √−1.

It is easy to show that M has eigenvalues ±1 for any
real unit vector (ax, ay, az). If measuring observable
M on each qubit of |ψ〉, we will obtain a measure-
ment result of +1 or −1. Surprisingly, no matter what
choice of (ax, ay, az), the measurement results on the
two qubits are always opposite of each other, that is,
when the first qubit measurement is −1, then the sec-
ond qubit measurement will be +1, and vice versa.

The two-qubit system can be realized by the spins of
two particles, and the measurement of M is referred to
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as a measurement of spin along the (ax, ay, az) axis.
After the two-particle system is prepared in the Bell
state |ψ〉, the two particles drift far apart. Alice mea-
sures the spin of the first particle and Bob measures
the spin of the second particle. The above opposite
measurement phenomenon corresponds to that due to
the entangled state |ψ〉, if Alice gets a result +1 from
her spin measurement on the first particle, then the
state of the system immediately jumps to the untangled
state so that the second particle now has definite spin
state and Bob’s spin measurement on the second parti-
cle gives definite result −1. This phenomenon is often
referred to as anti-correlation in entanglement experi-
ments (Neumann et al., 2008; Sakurai and Napolitano,
2010).

The mathematical arguments for the anti-correlation
phenomenon are as follows. The measurement of M on
the first (or second) qubit of |ψ〉 corresponds to the spin
measurement of Alice’s (or Bob’s) particle along the
(ax, ay, az) axis in the above two-particle spin model.
From Sections 2.3 and 3.1 we have that the two-qubit
system is described by the Bell state |ψ〉 in C

4; mea-
suring M on the first qubit of |ψ〉 means performing
measurement on observable M⊗I in the Bell state |ψ〉,
which alters the quantum state of the two-qubit system;
measuring M on the second qubit corresponds to mea-
suring observable I ⊗ M in the altered quantum state,
where I is the 2 by 2 identity matrix, and M ⊗ I and
I ⊗ M are matrix tensor products.

Denote by |ϕ±〉 the two orthonormal eigenvectors of
M corresponding to eigenvalues ±1, respectively, and
let Q± be the respective projections onto the eigenvec-
tors |ϕ±〉. Following (3)–(5) we have a diagonal repre-
sentation M = Q+−Q−; when we measure observable
M on each qubit, the possible measurement results are
±1; measuring M on the first qubit changes the state of
the two-qubit system, and after the measurement result
±1 on the first qubit, the post-measurement state of the
two-qubit system is Q± ⊗ I|ψ〉/‖Q± ⊗ I|ψ〉‖. Below
we will evaluate the post-measurement state and show
that measuring I⊗M in the post-measurement state al-
ways yields measurement results opposite to the mea-
surement results on the first qubit.

Since (|0〉, |1〉) and (|ϕ+〉, |ϕ−〉) are two bases for
the one-qubit system in C

2, then( |0〉
|1〉

)
=

[
α11 α12
α21 α22

]( |ϕ+〉
|ϕ−〉

)
,

where (αj�) forms a 2 × 2 unitary matrix with deter-
minant equal to a phase factor eiθ (i = √−1) for some

real θ . Substituting the above expressions into the en-
tangled state and ignoring a global phase factor eiθ

(which has no effects on measurement results; see Sec-
tion 3.1), we obtain

|ψ〉 = |01〉 − |10〉√
2

= eiθ |ϕ+ϕ−〉 − |ϕ−ϕ+〉√
2

(8)

∼ |ϕ+ϕ−〉 − |ϕ−ϕ+〉√
2

.

From the definitions of |ϕ±〉 and Q±, Q+ ⊗ I|ϕ+ϕ−〉 =
|ϕ+ϕ−〉, Q− ⊗ I|ϕ−ϕ+〉 = −|ϕ−ϕ+〉, Q+ ⊗ I|ϕ−ϕ+〉 =
0, and Q− ⊗ I|ϕ+ϕ−〉 = 0. If the measurement result of
M on the first qubit is +1 (or −1), from (8) we obtain
the post-measurement state of the two-qubit system as
follows:

Q+ ⊗ I|ψ〉
‖Q+ ⊗ I|ψ〉‖

= eiθ Q+ ⊗ I|ϕ+ϕ−〉 − Q+ ⊗ I|ϕ−ϕ+〉√
2‖Q+ ⊗ I|ψ〉‖

= eiθ |ϕ+ϕ−〉
‖|ϕ+ϕ−〉‖ = eiθ |ϕ+ϕ−〉 ∼ |ϕ+ϕ−〉

(or Q− ⊗ I|ψ〉/‖Q− ⊗ I|ψ〉‖ = eiθ |ϕ−ϕ+〉 ∼ |ϕ−ϕ+〉).
Since

I ⊗ M|ϕ+ϕ−〉 = I ⊗ Q+|ϕ+ϕ−〉 − I ⊗ Q−|ϕ+ϕ−〉
= −|ϕ+ϕ−〉,

I ⊗ M|ϕ−ϕ+〉 = |ϕ−ϕ+〉,
that is, the post-measurement state |ϕ+ϕ−〉 (or |ϕ−ϕ+〉)
is the eigenvector of I ⊗ M corresponding to eigen-
value −1 (or +1), performing measurement on I ⊗ M
in the post-measurement state must always yield mea-
surement result −1 (or +1). Thus, the measurement re-
sults of M on the two qubits of |ψ〉 are always opposite
to each other.

3.3.2 Quantum teleportation. Quantum teleporta-
tion is a process by which we can transfer the state
of a qubit from one location to another, without trans-
mitting it through the intervening space. We illustrate
the phenomenon as follows. Alice and Bob together
generated a Bell state long ago. Each took one qubit of
the Bell state when they split. Now they are far away
from each other. The mission for Alice is to deliver
a qubit |ψ〉 to Bob, while he is hiding, and she can
only send classical information to Bob but does not
know the state of the qubit |ψ〉. Quantum teleporta-
tion is a way that Alice utilizes the entangled Bell state
to send a qubit of unknown state to Bob, with only a
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small overhead of classical communication. Recently a
breakthrough in quantum teleportation has been made
by successfully transferring complex quantum data in-
stantaneously from one place to another, paving the
way for real-world applications of quantum communi-
cations (Lee et al., 2011).

Here is how it works. Alice interacts the qubit |ψ〉 to
be teleported with her half of the Bell state, and then
performs a measurement on the two interacted qubits
to obtain one of four possible two-classical-bit results:
00,01,10 and 11. She sends the two-bit information
via classical communication to Bob. Depending on Al-
ice’s classical message, Bob performs one of four op-
erations on his half of the Bell state. Surprisingly, the
described procedure allows Bob to recover the original
state |ψ〉.

Specifically assume that the state to be teleported is
|ψ〉 = α0|0〉 + α1|1〉, where α0 and α1 are unknown
amplitudes. First, consider a three-qubit state

|ϕ0〉 = |ψ〉 |00〉 + |11〉√
2

= 1√
2
[α0|0〉(|00〉 + |11〉) + α1|1〉(|00〉 + |11〉)],

where the first two qubits (on the left) belong to Alice,
and the third qubit to Bob. Note that Alice’s second
qubit and Bob’s third qubit are from the entangled Bell
state. Second, Alice applies a control-NOT gate to her
qubits in |ϕ0〉 and obtains

|ϕ1〉 = 1√
2
[α0|0〉(|00〉 + |11〉) + α1|1〉(|10〉 + |01〉)].

Third, she applies a Hadamard gate to the first qubit in
|ϕ1〉 and gets

|ϕ2〉 = 1
2 [α0(|0〉 + |1〉)(|00〉 + |11〉)

+ α1(|0〉 − |1〉)(|10〉 + |01〉)].
We regroup the terms of |ϕ2〉 and rewrite it as follows:

|ϕ2〉 = 1
2 [|00〉(α0|0〉 + α1|1〉) + |01〉(α0|1〉 + α1|0〉)

+ |10〉(α0|0〉 − α1|1〉)
+ |11〉(α0|1〉 − α1|0〉)].

The new expression has four terms, and each term has
Alice’s qubits in one of four possible states |00〉, |01〉,
|10〉 and |11〉, and Bob’s qubit is in the state related to
the original state |ψ〉. If Alice performs a measurement
on her qubits and informs Bob of the measurement re-
sult, then his post-measurement state is completely de-
termined. For example, the first term has Alice’s qubits

in the state |00〉 and Bob’s qubit in state |ψ〉. There-
fore, if Alice’s measurement result on her qubits is 00,
then Bob’s qubit will be in state |ψ〉. Below is a list of
Bob’s four post-measurement states corresponding to
the results of Alice’s measurements:

00 → α0|0〉 + α1|1〉, 01 → α0|1〉 + α1|0〉,
10 → α0|0〉 − α1|1〉, 11 → α0|1〉 − α1|0〉.

As Alice’s measurement outcome on her qubits is one
of 00,01,10 and 11, depending on her measurement
outcome Bob’s qubit will be one of the above four pos-
sible states. Once Alice sends to Bob her two-classical-
bit measurement outcome through a classical chan-
nel, he applies appropriate quantum gates to his state
and recovers |ψ〉. For example, if her measurement is
00, Bob’s state is |ψ〉, and he does not need to apply
any quantum gate. If her measurement is 01, then Bob
needs to apply a σ x gate to his state α0|1〉 + α1|0〉 and
yields |ψ〉. If her measurement is 10, then applying a
σ z gate to his state α0|0〉 − α1|1〉 Bob recovers |ψ〉. If
her measurement is 11, then Bob can fix up his state
α0|1〉 − α1|0〉 to recover |ψ〉 by applying first a σ x

gate and then a σ z gate. Here the σ x and σ z gates are
defined by Pauli matrices σ x and σ z given by (7). In
summary, according to Alice’s measurement outcome,
applying some appropriate quantum gates to his qubit
Bob will recover the state |ψ〉.

A few important remarks about quantum teleporta-
tion are in the line. First, quantum teleportation does
not involve any transfer of matter or energy. Alice’s
particle has not been physically moved to Bob; only
its state has been transferred. Second, after the tele-
portation Bob’s qubit will be on the teleported state,
while Alice’s qubit will become some undefined part
of an entangled state. In other words, what the telepor-
tation does is that a qubit was destroyed in one place
but instantaneously resurrected in another. Teleporta-
tion does not copy any qubits, and hence is consistent
with the no-cloning theorem (which forbids the cre-
ation of identical copies of an arbitrary unknown quan-
tum state; see Wootters and Zurek, 1982). Third, in or-
der to teleportate a qubit, Alice has to inform Bob of
her measurement by sending him two classical bits of
information. These two classical bits do not carry com-
plete information about the qubit being teleported. If
the two bits are intercepted by an eavesdropper, he or
she may know exactly what Bob needs to do in order to
recover the desired state. However, this information is
useless if the eavesdropper cannot interact with the en-
tangled particle in Bob’s possession. Also the require-
ment of sending two bits of information via classical
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channel prevents quantum teleportation from transmit-
ting information faster than the speed of light.

3.3.3 Bell’s inequality. The Bell test experiments
are designed to investigate the validity of the entan-
glement effect in quantum mechanics through Bell’s
inequality. Over the past four decades many physi-
cal experiments on quantum systems were conducted
to check the validity of Bell’s inequality and resulted
in some violation of the inequality. For example, As-
pect, Grangier and Roger (1981, 1982a, 1982b) pro-
vided overwhelming support to the violation of Bell’s
inequality. The experimental results are often invoked
as the proof of quantum non-locality and lack of real-
ism that no particle has definite form until it is mea-
sured and measuring a quantum entity can instanta-
neously influence another far away. See Aspect, Grang-
ier and Roger (1981, 1982a, 1982b), Bohm (1951),
Bell (1964), Clauser et al. (1969) and Einstein, Podol-
sky and Rosen (1935). Below we describe the CHSH
version of the Bell’s inequality (Clauser et al., 1969).

Suppose Xi , i = 1,2,3,4, are four random variables
taking values ±1. Consider an ordinary experiment
with two people, Alice and Bob. In the experiment Al-
ice observes X1 or X2 while Bob measures X3 or X4.
Consider the quantity X1X3 +X2X3 +X2X4 −X1X4.
It is equal to

(X1 + X2)X3 + (X2 − X1)X4 = ±2 ≤ 2.

Regardless of the distributions of Xi , taking expecta-
tion on both sides of the above inequality we arrive at
the famous Bell inequality,

E(X1X3) + E(X2X3) + E(X2X4)
(9)

− E(X1X4) ≤ 2.

The violation of Bell’s inequality demonstrates en-
tanglement effect in quantum mechanics. In fact, quan-
tum experiments yield a quantum version of the in-
equality. Consider that a quantum system of two qubits
is prepared in a Bell state

|ψ〉 = |01〉 − |10〉√
2

.

Alice takes the first qubit of |ψ〉 while Bob gets its
second qubit. Define four observables with eigenvalues
±1,

X1 = σ z, X2 = σ x,

on the first qubit and

X3 = −σ z + σ x√
2

, X4 = σ z − σ x√
2

,

on the second qubit, where σ x and σ z are Pauli matri-
ces given by (7). Again Alice performs measurements
on X1 or X2 while Bob measures X3 or X4. The quan-
tum expectations of X1X3, X2X3, X2X4, X1X4 in the
state |ψ〉 are calculated below:

Eψ(X1X3) = 1√
2
, Eψ(X2X3) = 1√

2
,

Eψ(X2X4) = 1√
2
, Eψ(X1X4) = − 1√

2
.

Here the observable product is in the sense of tensor
product. Thus we obtain a value in the quantum frame-
work for the analog quantity on the left-hand side of
the Bell’s inequality (9)

Eψ(X1X3) + Eψ(X2X3) + Eψ(X2X4)

− Eψ(X1X4) = 2
√

2,

which exceeds 2 and hence violates the Bell’s inequal-
ity. In fact, the quantum version of the Bell’s inequal-
ity is the Tsirelson’s inequality (Tsirelson, 1980) which
shows that in any quantum state ρ,

Eρ(X1X3) + Eρ(X2X3) + Eρ(X2X4)
(10)

− Eρ(X1X4) ≤ 2
√

2.

3.4 Quantum Parallelism

Quantum computation has an amazing feature
termed as quantum parallelism, which may be heuristi-
cally explained by the following oversimplifying de-
scription: a quantum computer can simultaneously
evaluate the whole range of a function f (x) at many
different values of x.

For function f (x) with b bit input x = x1 · · ·xb and
1 bit output f (x), we illustrate quantum parallel eval-
uation of its values at many different x simultaneously
as follows. First we apply b Hadamard gates to the first
b qubits of |0 · · ·0〉|0〉 to obtain

|0〉 + |1〉√
2

· · · |0〉 + |1〉√
2

|0〉 = 1√
2b

∑
x

|x〉|0〉,

x = x1 · · ·xb, xj = 0,1,

where the sum is over all possible 2b values of x. Sec-
ond, apply quantum circuit Uf defined in (6) to the
obtained b + 1 qubit state to yield

1√
2b

∑
x

|x〉|f (x)〉.

The quantum circuit with b Hadamard gates is ex-
tremely efficient in producing an equal superposition
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of all 2b computational basis states with only b gates;
and quantum parallelism enables simultaneous evalua-
tion of the whole range of the function f , although we
evidently evaluate f just once with single quantum cir-
cuit Uf applied to the superposition state. To make it
more clear we consider the case of b = 1. Apply circuit
Uf to a superposition state as follows:

Uf

( |0〉 + |1〉√
2

|0〉
)

= Uf

( |00〉 + |10〉√
2

)

= |0f (0)〉 + |1f (1)〉√
2

.

One application of a single circuit Uf results in a su-
perposition state whose two components contain infor-
mation about both f (0) and f (1), as if we have evalu-
ated f (x) at values 0 and 1 simultaneously. The quan-
tum parallelism is in contrast with classical parallelism,
where multiple circuits each built to compute one value
of f (x) are executed simultaneously. Quantum paral-
lelism arises from superposition states. A superposi-
tion state has many components, each of which may
be thought of as a single argument to function f (x).
Because of quantum nature, a single circuit Uf applied
once to the superposition state is actually performed on
each of the components of the superposition, and the
whole range of the values of function f (x) is stored in
the resulted outcome superposition state.

The quantum parallelism can be a potentially pow-
erful tool for computational statistics. For example,
Bayesian analysis often encounters the problems of
evaluating sums over 2b quantities, with b proportional
to sample size or the number of variables. For moder-
ate to large b, the evaluation of such sums is computa-
tionally prohibitive by classical computers (Vidakovic,
1999). Because of the quantum parallelism, it is possi-
ble for quantum computers to perform such computing
tasks.

4. QUANTUM ALGORITHMS

Quantum algorithms are described by quantum cir-
cuits that take input qubits and yield output measure-
ments for the solutions of the given problems. As a
classical algorithm is a step-by-step problem-solving
procedure, with each step performed on a classical
computer, a quantum algorithm is a step-by-step pro-
cedure to solve a problem, with each step executed by
a quantum computer. Although all classical algorithms
can also be carried out on a quantum computer, we re-
fer to quantum algorithms as the algorithms that uti-
lize essential quantum features such as quantum super-
position and quantum entanglement. While it is true

that all problems solvable on a quantum computer are
solvable on a classical computer, and problems unde-
cidable by classical computers remain undecidable on
quantum computers, what makes quantum algorithms
exciting is the faster speed that quantum algorithms
might be able to achieve, compared to classical algo-
rithms, for solving some tough problems. The well-
known quantum algorithms are Shor’s factoring algo-
rithm and Grover’s search algorithm. Shor’s algorithm
and Grover’s algorithm run, respectively, exponentially
faster and quadratically faster than the best known clas-
sical algorithms for the same tasks. Common tech-
niques used in quantum algorithms include quantum
Fourier transform, phase estimation and quantum walk.

4.1 Quantum Fourier Transform

The quantum Fourier transform is defined to be a lin-
ear transformation on n qubits that maps the computa-
tional basis states |j〉, j = 0,1, . . . ,2n − 1, to superpo-
sition states as follows:

|j〉 −→ 1√
2n

2n−1∑
k=0

e2πijk/2n |k〉, i = √−1.

The inverse of quantum Fourier transform is given by

|k〉 −→ 1√
2n

2n−1∑
j=0

e−2πijk/2n |j〉.

We use the binary representation to express the state
j = j12n−1 + j22n−2 + · · · + jn20 as j = j1j2 · · · jn

and represent binary fraction j�/2 + j�+1/22 + · · · +
jm/2m−�+1 as 0.j�j�+1 · · · jm, where 1 ≤ � ≤ m ≤ 2n.
Then the quantum Fourier transform of state |j〉 =
|j1j2 · · · jn〉 has the following useful product represen-
tation:

|j1j2 · · · jn〉 → 1

2n/2 (|0〉 + e2πi0.jn |1〉)
· (|0〉 + e2πi0.jn−1jn |1〉) · · ·
· (|0〉 + e2πi0.j1j2···jn |1〉).

It can be easily checked from the product represen-
tation that with quantum parallelism the quantum
Fourier transform can be realized as a quantum circuit
with only O(n2) operations, while classically the fast
Fourier transform requires O(n2n) operations for pro-
cessing 2n data, which indicates an exponential speed-
up (Nielsen and Chuang, 2000). Realizing such an
exponential saving accommodated by quantum paral-
lelism requires clever measurement schemes. Success-
ful examples include quantum phase estimation and
Shor’s algorithms for factoring and discrete logarithm.



384 Y. WANG

4.2 Phase Estimation

Quantum algorithms are of random nature in the
sense that they are able to produce correct answers only
with some probabilities. Consider quantum phase esti-
mation which provides the key to many quantum algo-
rithms. Assume that a unitary operator U has an eigen-
vector |x〉 with eigenvalue e2πiϕ . The phase ϕ of the
eigenvalue is unknown and the goal of the phase es-
timation algorithm is to estimate ϕ based on the as-
sumption that the state |x〉 can be prepared and the
controlled-U2j

operations [see Section 3.2 for control
gate] can be performed for suitable nonnegative inte-
gers j .

The registers are used in phase estimation. The first
register consists of b qubits initially in the state |0〉.
The second register starts in the state |x〉 and involves
enough qubits to store |x〉. The phase estimation pro-
cedure is performed in two stages.

First, we apply Hadamard transform to the first reg-
ister and then controlled-U operations on the second
register, with U raised to successive powers of 2, to ob-
tain the final state with the second register unchanged
and the first register given by

1

2b/2 (|0〉 + e2πi2b−1ϕ|1〉)

· (|0〉 + e2πi2b−2ϕ|1〉) · · · (|0〉 + e2πi20ϕ|1〉)(11)

= 1

2b/2

2b−1∑
k=0

e2πiϕk|k〉.

If ϕ is expressed exactly in b bits as ϕ = 0.ϕ1 · · ·ϕb,
(11) becomes

1

2b/2 (|0〉 + e2πi0.ϕb |1〉)
· (|0〉 + e2πi0.ϕb−1ϕb |1〉) · · ·(12)

· (|0〉 + e2πi0.ϕ1ϕ1···ϕb |1〉),
which is the quantum Fourier transform of the product
state |ϕ1ϕ2 · · ·ϕb〉.

The second stage of phase estimation is to take the
inverse quantum Fourier transform on the first register.
For ϕ = 0.ϕ1 · · ·ϕb, the output state from the second
stage is |ϕ1ϕ2 · · ·ϕb〉, and a measurement in the com-
putational basis yields ϕ1 · · ·ϕb and dividing the mea-
surement by 2b gives ϕ1 · · ·ϕb/2b = 0.ϕ1 · · ·ϕb = ϕ.
We obtain a perfect estimate of ϕ.

Now we consider the case that ϕ cannot be expressed
exactly with a b bit binary expansion. Take 0 ≤ η <

2b to be the integer that its binary fraction η/2b =

0.η1η2 · · ·ηb is the first b bit representation in the bi-
nary expansion of ϕ, which satisfies 0 ≤ ϕ − η/2b ≤
2−b.

Perform the inverse quantum Fourier transform on
the first register given by (11), which is obtained in the
first stage results, and get

1

2b

2b−1∑
k,�=0

e−2πik�/2b

e2πiϕk|�〉 =
2b−1∑
�=0

β�|�〉,

where amplitudes of |(η + �)(mod 2b)〉 are

β� = 1

2b

2b−1∑
k=0

{
e2πi[ϕ−(η+�)/2b]}k

= 1

2b

(
1 − e2πi(2bϕ−η−�)

1 − e2πi(ϕ−η/2b−�/2b)

)
.

Assume that the result of the final measurement from
phase estimation is η̃ and dividing the result by 2b gives
ϕ̃ = η̃/2b. Let ζ be the specified accuracy for the phase
estimation procedure. By adding up |β�|2 with � being
within ζ2b, we bound the probability that the obtained
ϕ̃ is within ζ from ϕ:

P(|ϕ̃ − ϕ| ≤ ζ ) ≥ P(|η̃ − η| ≤ ζ2b − 1)

≥ 1 − 1

2(ζ2b − 2)
.

For ε > 0, set

b =
[
log2

(
1

ζ

)]
+

[
log2

(
2 + 1

2ε

)]
.(13)

Then P(|ϕ̃ − ϕ| ≤ ζ ) ≥ 1 − ε, that is, with probabil-
ity at least 1 − ε the phase estimation procedure can
successfully produce ϕ̃ within ζ from the true ϕ. See
Nielsen and Chuang (2000).

4.3 Statistical Analysis

The phase estimation algorithm requires b qubits for
the first register to achieve [− log2 ζ ] bit accuracy and
success probability 1 − ε. With accuracy fixed, to in-
crease the success probability the required qubits

b ∼ 1 − log2 ζ + 1

4ε log 2
,

which grows at a very fast rate. For example, an in-
crease in success probability from 90% to 99% re-
quires eighteen times of qubit increase compared to the
change from 80% to 90%.

Quantum algorithms are of random nature in the
sense that they often produce correct answers only with
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certain probabilities. The success probabilities depend
upon the schemes of the algorithms as well as the con-
text of applications. Given a quantum algorithm for
solving a problem, a common practice is to repeatedly
run the quantum algorithm to achieve high probability
of successfully obtaining a correct answer. Consider
that the phase estimation procedure is repeatedly run
n times to obtain results ϕ̃1, . . . , ϕ̃n. Then ϕ̃1, . . . , ϕ̃n

may be treated as i.i.d. random variables with each ϕ̃j

satisfying

P(|ϕ̃j − ϕ| > ζ) ≤ ε.

We may statistically model ϕ̃j by the gross error model
(Huber and Ronchetti, 2009) as follows. Assume that
ϕ̃j are independently and identically generated from
(1 − ε)F (x) + εH(x), where F(x) is the distribution
of the correct answers that are within ζ from true ϕ,
and H(x) is the distribution of wrong answers that are
at least ζ away from true ϕ. Then ϕ̃j are correct with
probability 1 − ε and incorrect with probability ε.

If the outcome result of the algorithm is verifiable to
be a correct answer or not [as in the case of Shor’s al-
gorithms for factoring and order-finding in Section 4.4
below], the obtained result from each run is checked to
be a correct answer or not. Then the number of times
required to run the algorithm for obtaining a correct an-
swer follows a geometric distribution. Thus the proba-
bility that we obtain a correct answer in n repetitions is
equal to

P(obtain a correct answer in n trials)

= 1 − P(no success in the n trials) = 1 − εn.

Since εn goes to zero geometrically fast, we may
choose a moderate ε with fewer qubits to achieve very
high probability of successfully obtaining a correct
answer by repeatedly running the algorithm enough
times.

On the other hand, if the outcome result is not ver-
ifiable to be a correct answer or not [as in the case
of phase estimation], careful analysis is needed to de-
sign ways for obtaining a correct answer with very
high probability. As wrong answers are far away from
true ϕ, estimators like sample average of ϕ̃1, . . . , ϕ̃n

may not estimate ϕ well. We adopt a robust statisti-
cal method to estimate ϕ by α-trimmed mean ϕ̄, which
is defined as follows. Ordering ϕ̃1, . . . , ϕ̃n and then re-
moving [nα] largest and [nα] smallest ones, we take
the average of the remaining ϕ̃j as α-trimmed mean,
where α is chosen to be greater than ε/2. One exam-
ple is the sample median of ϕ̃1, . . . , ϕ̃n. The probability

that ϕ̄ is within ζ from ϕ can be calculated from the bi-
nomial probability as follows:

P(|ϕ̄ − ϕ| ≤ ζ ) ≥ P
(
more than n(1 − 2α) number

of ϕ̃j are within ζ from ϕ
)

=
n∑

k=[n(1−2α)]−1

(
n

k

)
(1 − ε)kεn−k.

As n → ∞, nε approaches to infinity. The binomial
probability can be approximated by resorting to a nor-
mal approximation, yielding

n∑
k=[n(1−2α)]−1

(
n

k

)
(1 − ε)kεn−k

∼ 1 − �

(√
n(ε − 2α)√
ε(1 − ε)

)
= �

(√
n(2α − ε)√
ε(1 − ε)

)
,

where �(·) is the standard normal distribution func-
tion. Since 2α − ε > 0, as n increases, P(|ϕ̄ − ϕ| ≤ ζ )

approaches to 1 exponentially fast. Combining the two
cases together, we arrive at the following theorem.

THEOREM 1. Suppose that the outcome ϕ̃ of a
quantum algorithm obeys the gross error model that
with probability 1− ε it produces a correct answer and
probability ε it gives a wrong answer. Then by repeat-
edly running the quantum algorithm we will obtain a
correct answer with probability approaching 1 expo-
nentially fast in the number of repetitive runs.

For a quantum algorithm that produces a correct an-
swer with probability 70% and α = 0.2, in order to ob-
tain a correct answer with 0.999 probability we need to
run the algorithm five times and 20 times, respectively,
for the cases that the outcome results are verifiable and
not verifiable.

4.4 Factoring and Order-Finding Algorithms

The factoring problem is to find all prime factors of
a given positive composite number such that the prod-
uct of these prime numbers is equal to the composite
number. Factoring is known to be a very hard problem
for classical computers. Shor (1994, 1997) developed
a quantum algorithm for the factoring problem that is
exponentially faster than the most efficient known clas-
sical factoring algorithm.

Shor’s quantum algorithms work as follows. Math-
ematically the factoring problem is equivalent to the
order-finding problem that for two positive integers x

and N , x < N , with no common factors, find the small-
est integer r such that dividing xr by N we obtain a
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reminder 1 (Shor, 1997; Nielsen and Chuang, 2000).
The quantum algorithm for factoring is reduced to a
quantum algorithm for order-finding. The quantum al-
gorithm for order-finding is to apply the phase estima-
tion algorithm to the unitary operator

U|y〉 = |xy(modN)〉.
The eigenvectors of U are

|us〉 = 1√
r

r−1∑
k=0

exp
(−2πisk

r

)
|xk modN〉,

s = 0,1, . . . , r − 1, i = √−1,

with corresponding eigenvalues exp(2πis/r). Using
the phase estimation algorithm we can obtain the
eigenvalues exp(2πis/r) with high accuracy and thus
find the order r with certain probability.

While the quantum factoring algorithm can accom-
plish the task of factoring an n-bit integer with op-
erations of order n2 logn log logn, the current best
known classical algorithm requires operations of order
exp(n1/3 log2/3 n) to factor an n-bit composite number
(Crandall and Pomerance, 2001). Note that the num-
ber of operations required in the best classical algo-
rithm grows exponentially in the size of the number
being factored. Because of the exponential complex-
ity, the factoring problem is generally regarded as an
intractable problem on classical computers.

The factoring problem plays an important role in
cryptography. Cryptography is to enable two parties,
Alice and Bob, to communicate privately, while it
is very difficult for the third parties to “eavesdrop”
on the contents of the communications. Examples in-
clude ATM cards, computer passwords, internet com-
mences, clandestine meetings and military communi-
cations. Two cryptographic protocols used in the com-
munications are private key cryptosystem and public
key cryptosystem. A private key cryptosystem requires
the two communicating parties to share a private key.
Alice uses the key to encrypt the information, sends
the encrypted information to Bob who uses the key
to decrypt the received information. The severe draw-
back of the private key cryptosystem is that the par-
ties have to safeguard the key transmission from being
eavesdropped. A public key cryptosystem invented in
the 1970s requires no sharing secret key in advance.
Bob publishes a “public key” available to the gen-
eral public, and Alice uses the public key to encrypt
information and sends the encrypted information to
Bob. The encryption transformation is specially cre-
ated such that with only the public key, it is extremely

difficult, though not impossible, to invert the encryp-
tion transformation. When publishing the public key
Bob keeps a matched secret key for easy inversion of
the encryption transformation and decryption of the re-
ceived information. One of the most widely used pub-
lic key cryptosystems is the RSA cryptosystem, which
is named after its creator Rivest, Shamir and Adleman
(Menezes, van Oorschot and Vanstone, 1996; Rivest,
Shamir and Adleman, 1978). RSA is built on the math-
ematical asymmetry of factoring: it is easy to multi-
ply large prime numbers and obtain their product as a
composite number but hard to find the prime factors
of a given large composite number. RSA encryption
keeps the large primes as a secret key and uses their
product to make a “public key.” Because of its expo-
nential complexity, tremendous efforts tried to break
the RSA system so far have resulted in vain, and there
is a widespread belief that the RSA system is secure
against any classical computer based attacks. As the
factoring problem can be efficiently solved by Shor’s
quantum factoring algorithm, a quantum computer can
break the RSA system easily. Fortunately, while quan-
tum mechanics takes away with one hand, it gives back
with the other. A quantum procedure known as quan-
tum cryptography or quantum key distribution can do
key distribution so that the communication security
cannot be compromised. The idea is based on the quan-
tum principle that observing a quantum system will
disturb the system being observed. If there is an eaves-
dropper during the transmission of the quantum key be-
tween Alice and Bob, eavesdropping will disturb the
quantum communication channel that is used to estab-
lish the key, and the disturbance will make eavesdrop-
ping visible. Alice and Bob will throw away the com-
promised key and keep only the secured key for their
communication.

4.5 Quantum Search Algorithm

Suppose that you would like to find the name corre-
sponding to a given phone number in a telephone direc-
tory; or suppose that there are some locations in a given
city you would like to visit and wish to find the shortest
route passing through all the locations. If there are N

names in the telephone directory or N possible routes
to pass through all the locations, search algorithms by
classical computers usually require operations of or-
der N . One such simple classical algorithm is to check
exhaustively all names to find a name matching with
the given phone number or to search all possible routes
and then find the shortest route among all routes. How-
ever, Grover (1996, 1997) developed a quantum search
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algorithm that needs only operations of order
√

N to
find a solution to the search problem.

The quantum search algorithm works as follows.
Suppose that the search space has N elements and
the search problem has exactly M solutions. Assume
M ≤ N/2. (For the silly case of M > N/2, we either
search for the solution by doing random selection from
the search space or double the number of the elements
in the search space by adding N extra non-solution el-
ements to the search space.) The algorithm works by
creating superposition state with Hadamard gate,

|ψ〉 = 1

N1/2

N−1∑
x=0

|x〉,

and then applying a so-called Grover iteration (or op-
erator) repeatedly. Set

|φ〉 = 1√
N − M

∑
x′

|x′〉, |ϕ〉 = 1√
M

∑
x′′

|x′′〉,

where the summations over x′ and x′′ denote sums over
all non-solutions and solutions, respectively. Then we
can express |ψ〉 as follows:

|ψ〉 =
√

N − M

N
|φ〉 +

√
M

N
|ϕ〉.

The Grover operator is to perform two reflections, one
about the vector |φ〉 and another about the vector |ψ〉.
The two reflections together are a rotation with angle θ

in the two-dimensional space spanned by |φ〉 and |ϕ〉,
where

cos(θ/2) =
√

N − M

N
.

After the rotation, the initial state |ψ〉 = cos(θ/2)|φ〉+
sin(θ/2)|ϕ〉 becomes state

cos(3θ/2)|φ〉 + sin(3θ/2)|ϕ〉.
Thus each application of the Grover operator is a ro-
tation with angle θ . The initial state |ψ〉 has angle
π/2 − θ/2 with |ϕ〉; after the first rotation, the resulted
state has angle π/2 − 3θ/2 with |ϕ〉; and in general af-
ter the r th rotation, the resulted state has angle π/2 −
(2r + 1)θ/2 with |ϕ〉. Repeatedly applying the Grover
operator, we rotate the state vector near |ϕ〉. With the
initial state |ψ〉 = cos(θ/2)|φ〉 + sin(θ/2)|ϕ〉, we need
to rotate through arccos

√
M/N radians to transform

the state vector to |ϕ〉. After R = arccos(
√

M/N)/θ =
O(

√
N/M) times of applications of the Grover opera-

tor, we rotate the state vector |ψ〉 to within an angle θ/2
of |ϕ〉. Performing measurements of the state yields a

solution to the search problem with probability at least
cos2(θ/2) ≥ 1 − M/N .

The number of iterations R depends on M , the
number of solutions. Since R ≤ π/(2θ) and θ/2 ≥
sin(θ/2) = √

M/N , R ≤ (π/4)
√

N/M . Typically,
M � N , θ ≈ sin θ ≈ 2

√
M/N , thus R ≈ (π/4) ·√

N/M . We estimate the number of solutions by quan-
tum counting, which is to combine the Grover operator
with the phase estimation method. Under the basis |φ〉
and |ϕ〉 the Grover operator has eigenvalues eiθ and
ei(2π−θ). Applying the phase estimation method we
can estimate the eigenvalues and thus θ with prescribed
precision and probability, which in turn yields M . The
combination of the quantum counting and search pro-
cedure will find a solution of the search problem with
certain probability. Repeating the quantum search al-
gorithm will boost the probability and enable us to ob-
tain a solution to the search problem.

Quantum walk and quantum Markov chain are cur-
rently being investigated for new quantum search algo-
rithms and quantum speed-up of Markov chain based
algorithms (Aharonov and Ta-Shma, 2003, Childs et
al., 2003; Childs, 2010; Tulsi, 2008; Shenvi, Kempe
and Whaley, 2003 and Szegedy, 2004). In Section 5 we
show that the quantum search algorithm can also be
viewed as a quantum simulation procedure.

5. QUANTUM SIMULATION

Quantum simulation is to intentionally and artifi-
cially mimic a natural quantum dynamics, which is
hard to access, and analyze, by a computer-generated
quantum system, which is easy to manipulate and in-
vestigate. It provides scientific means for simulating
complex biological, chemical or physical systems in
order to study and understand certain scientific phe-
nomena and evaluate hard-to-obtain quantities in the
systems. Examples in modern scientific studies include
the estimation of dielectric constant, proton mass, and
precise energy of molecular hydrogen, the study of su-
perconductivity, the test of novel nano-materials, and
the design of new biomolecules.

To simulate a quantum system we need to solve the
Schrödinger equation (1) which governs the dynamic
evolution of the system. For a typical Hamiltonian with
real particles the Schrödinger equation usually consists
of elliptical differential equations, each of which can
be easily simulated by a classical computer. However,
the real challenge in simulating a quantum system is
to solve the exponential number of such differential
equations. For a quantum system of b qubits, its states
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have 2b amplitudes. To simulate the dynamic behav-
ior of b qubits evolving according to the Schrödinger
equation, we need to solve a system of 2b differential
equations. Due to the exponential growth in the num-
ber of differential equations, the simulation of general
quantum systems by classical computers is very in-
efficient. Classical simulation of quantum systems is
feasible for the cases where insightful approximations
are available to dramatically reduce the effective num-
ber of equations involved. Quantum computers may
excel in simulating physically interesting and impor-
tant quantum systems for which efficient simulation by
classical computers may not be available.

5.1 Simulate a Quantum System

The key of quantum simulation is to solve the
Schrödinger equation (1) which has solution

|ψ(t)〉 = e−iHt |ψ(0)〉, i = √−1.(14)

Numerical evaluation of e−iHt is needed. The Hamil-
tonian H is usually exponentially large and extremely
difficult to exponentiate. The common approach in nu-
merical analysis is to use the first-order linear approx-
imation, 1 − iHδ, of e−iH(t+δ) − e−iHt , which often
yields unsatisfactory numerical solutions.

Many classes of Hamiltonians have sparse represen-
tations. For such sparse Hamiltonians we can find ef-
ficient evaluation of the solutions (14) with high-order
approximation. For example, the Hamiltonians in many
physical systems involve only local interactions, which
originate from the fact that most interactions fall off
with increasing distance in location or increasing dif-
ference in energy. In the local Hamiltonian case, the
Hamiltonian of a quantum system with α particles in a
d-dimensional space has the form

H = 2
L∑

�=1

H�,(15)

where L is a polynomial in α+d , and each H� acts on a
small subsystem of size free from α and d . For exam-
ple, the terms H� are typically two-body interactions
and one-body Hamiltonians. Hence e−iH�δ are easy
to approximate, although e−iHδ is very hard to eval-
uate. Since H� and Hk are non-commuting, e−iHδ �=
e−iH1δ · · · e−iHLδ . Applying a modification of the Trot-
ter formula (Kato, 1978; Trotter, 1959; Yu, 2001) we
obtain

e−iHδ = Uδ + O(δ2),

where

Uδ = [e−iH1δ · · · e−iHLδ][e−iHLδ · · · e−iH1δ].(16)

Thus we can approximate e−iHδ by Uδ which needs to
evaluate only each e−iH�δ .

Assume that the quantum system starts at t = 0 with
initial state |ψ(0)〉 and ends at final time t = 1. For an
integer m, set tj = j/m, j = 0,1, . . . ,m. The quan-
tum simulation is to apply approximation Uδ of e−2iHδ

to evaluate (14) at tj iteratively and generate approxi-
mate solutions to |ψ(tj )〉. Denote by |ψ̃(tj )〉 the state
at tj obtained from the quantum simulation as an ap-
proximation of the true state |ψ(tj )〉 at tj . Then for
j = 1, . . . ,m,

|ψ(tj )〉 = e−2iHδ|ψ(tj−1)〉 = e−2iHjδ|ψ(t0)〉,
(17)

|ψ̃(tj )〉 = Uδ|ψ̃(tj−1)〉 = Uj
δ |ψ(t0)〉.

While classical computers are inefficient in simulat-
ing general quantum systems, quantum computers can
efficiently carry out the quantum simulation proce-
dure and provide an exponential speedup for the quan-
tum simulation on classical computers. In spite of the
inefficiency, classical computers are currently being
used to simulate quantum systems in biochemistry and
material science. Quantum simulation will be among
the important applications of quantum computers. See
Abrams and Lloyd (1997), Aspuru-Guzik, Dutoi and
Head-Gordon (2005), Bennett et al. (2002), Berry et
al. (2007), Freedman, Kitaev and Wang (2002), Jané et
al. (2003), Boghosian and Taylor (1998), Lloyd (1996),
Nielsen and Chuang (2000), and Zalka (1998).

5.2 Recast Quantum Search Algorithm as
Quantum Simulation

Grover’s search algorithm discussed in Section 4.5
is an important finding in quantum computation. It can
be heuristically sketched as a quantum simulation by
writing down an explicit Hamiltonian H such that a
quantum system evolves from its initial state |ψ〉 to |x〉
after some specified time, where x is a solution of the
search problem. Of course the Hamiltonian H depends
on the initial state |ψ〉 and solution x. Suppose that |y〉
is another state such that |x〉 and |y〉 form an compu-
tational basis, and |ψ〉 = α|x〉 + β|y〉 for real α and β

with α2 + β2 = 1. Define Hamiltonian

H = |x〉〈x| + |ψ〉〈ψ | = I + α(βσ x + ασ z),

where σ x and σ z are Pauli matrices defined in (7).
Then

exp(−iHt)|ψ〉
= e−it [cos(αt)|ψ〉 − i sin(αt)(βσ x + ασ z)|ψ〉]
= e−it [cos(αt)|ψ〉 − i sin(αt)|x〉].
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Measuring the system at time t = π/(2α) yields the
solution state |x〉.
5.3 Quantum Monte Carlo Simulation

Quantum theory is intrinsically stochastic and quan-
tum measurement outcome is random. As many natu-
rally occurring quantum systems involve a large num-
ber of interacting particles, due to the computational
complexity we are forced to utilize Monte Carlo tech-
niques in the simulations of such quantum systems.
The combination of Monte Carlo methods with quan-
tum simulation makes it possible to obtain reliable
quantifications of quantum phenomena and estimates
of quantum quantities. Such combination procedures
are often referred to as quantum Monte Carlo sim-
ulation (Nightingale and Umrigar, 1999; Rousseau,
2008). Consider the problem of estimating the follow-
ing quantity:

θ = Tr(Xρ) = E(X),(18)

where X is an observable, X is its measurement result,
and ρ is the state of the quantum system under which
we perform the measurements and evaluate the quan-
tity θ .

As ρ is the true final state of the quantum system, we
denote by ρ̃ the final state of the quantum system ob-
tained via quantum simulation. The quantum systems
are prepared in initial state ρ0, and we use the quan-
tum simulation procedure described above to simulate
the evolutions of the systems from initial state ρ0 to
final state ρ̃ according to Schrödinger’s equation (14)
with Hamiltonian H given by (15). We repeatedly per-
form the measurements of such n identically simulated
quantum systems at the final state and obtain measure-
ment results X1, . . . ,Xn. We estimate θ defined in (18)
by

θ̂ = 1

n

n∑
j=1

Xj .(19)

The target θ given by (18) is defined under the true
state ρ, while the simulated quantum system is under
approximate final state ρ̃ which is close to ρ. The mea-
surement results X1, . . . ,Xn are obtained via quantum
simulation from the quantum systems in the simulated
state ρ̃. Therefore, the Monte Carlo quantum estimator
θ̂ in (19) involves both bias and variance. Wang (2011)
studied the quantum simulation procedure and investi-
gated the bias and variance of θ̂ . The derived bias and
variance results can be used to design optimal strategy
for the best utilization of computational resources to
obtain the quantum Monte Carlo estimator.

6. QUANTUM INFORMATION

Classical information theory is centered on Shan-
non’s two coding theorems on noiseless and noisy
channels. The noiseless channel coding theorem quan-
tifies the number of classical bits required to store
information for transmission by Shannon entropy,
while the noisy channel coding theorem quantifies the
amount of information that can be reliably transmitted
through a noisy channel by an error-correction coding
scheme. The quantum analogs of Shannon entropy and
Shannon noiseless coding theorem are von Neumann
entropy and Schumacher’s noiseless channel coding
theorem, respectively. The von Neumann entropy is de-
fined to be S(ρ) = − tr(ρ logρ). Schumacher’s noise-
less channel coding theorem quantifies quantum re-
sources required to compress quantum states by von
Neumann entropy (Schumacher, 1995). Analogous to
Shannon’s noisy channel coding theorem, a theorem
known as Holevo–Schumacher–Westmoreland theo-
rem can be used to compute the product quantum
state capacity for some noisy channels (Holevo, 1998;
Schumacher and Westmoreland, 1997). However, com-
munications over noisy quantum channels are much
less understood than the classical counterpart. It is an
unsolved problem to determine quantum channel ca-
pacity or the amount of quantum information that can
be reliably transmitted over noisy quantum channels.
See Hayashi (2006) and Nielsen and Chuang (2000).

In spite of the above similarity, there are intrinsic
differences between classical information and quan-
tum information. Classical information can be distin-
guished and copied. For example, we can identify dif-
ferent letters and produce an identical version of a
digital image for back-up. However, quantum mechan-
ics does not allow unknown quantum states to be dis-
tinguished or copied exactly. For example, we cannot
reliably distinguish between quantum states |0〉 and
(|0〉 + |1〉)/√2. If we perform measurement for quan-
tum state |0〉, the measurement result will be 0 with
probability 1, while measuring quantum state (|0〉 +
|1〉)/√2 yields measurements 0 or 1 with equal proba-
bility. A measurement result of 0 cannot tell the iden-
tity of the quantum state being measured. A theorem
known as a no-cloning theorem states that unknown
quantum states cannot be copied exactly (Wootters and
Zurek, 1982; Nielsen and Chuang, 2000).

As we discussed in Section 3.3, quantum entan-
glement plays a crucial role in strange quantum ef-
fects such as quantum teleportation, violation of Bell’s
inequality, and superdense coding (Hayashi, 2006;
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Nielsen and Chuang, 2000). Entanglement is a new
type of resource that differs vastly from the tradi-
tional resources in classical information theory. We are
far from having a general theory to understand quan-
tum entanglement but encouraging progress made so
far reveals the amazing property and intriguing struc-
ture of entangled states and remarkable connections
between noisy quantum channels and entanglement
transformation. Consider quantum error-correction for
reliable quantum computation and quantum informa-
tion processing. Quantum error-correction is employed
in quantum computation and quantum communica-
tion to protect quantum information from loss due
to quantum noise and other errors like faulty quan-
tum gates. Classical information uses redundancy to
achieve error-correction, but the no-cloning theorem
presents an obstacle to copying quantum information
and formulating a theory of quantum error-correction
based on simple redundancy. Again quantum entan-
glement comes to the rescue. It is forbidden to copy
qubits but we can spread the information of one qubit
onto a highly entangled state of several qubits. Shor
(1995) first discovered the method of formulating a
quantum error-correction code by storing the informa-
tion of one qubit onto a highly entangled state of nine
qubits. Over time several quantum error-correction
codes are proposed (Calderbank and Shor, 1996; Cory
et al., 1998; Steane, 1996a, 1996b). These quantum
error-correction codes can protect quantum informa-
tion against quantum noise, and thus quantum noise
likely poses no fundamental barrier to the performance
of large-scale quantum computing and quantum infor-
mation processing.

Here is how quantum error-correction codes work.
We consider the single qubit case. First assume that a
qubit α0|0〉 + α1|1〉 is passed through a bit flip channel
which flips the state of a qubit from |0〉 to |1〉 and from
|1〉 to |0〉, each with probability p, and leaves each of
states |0〉 and |1〉 untouched with probability 1−p. We
describe a bit flip code that protects the qubit against
quantum noise from the bit flip channel.

We encode states |0〉 and |1〉 in three qubits, with |0〉
encoded as |000〉 and |1〉 as |111〉. Thus the qubit state
α0|0〉 + α1|1〉 is encoded in three qubits as α0|000〉 +
α1|111〉. We pass each of the three qubits through an
independent copy of the bit flip channel, and assume
that at most one qubit is flipped. The following sim-
ple two-step error-correction procedure can be used to
recover the correct quantum state.

Step 1. Perform a measurement on a specially con-
structed observable and call the measurement result

an error syndrome. The error syndrome can inform us
what error, if any, occurred on the quantum state. The
observable has eigenvalues 0, 1, 2 and 3, with corre-
sponding projection operators,

Q0 = |000〉〈000| + |111〉〈111| no error,

Q1 = |100〉〈100| + |011〉〈011|
bit flip on the first qubit,

Q2 = |010〉〈010| + |101〉〈101|
bit flip on the second qubit,

Q3 = |001〉〈001| + |110〉〈110|
bit flip on the third qubit.

If one of three qubits has one or no bit flip, the error
syndrome will be one of 0, 1, 2 and 3, with 0 cor-
responding to no flip, and 1, 2 and 3 to a bit flip on
the first, second and third qubit, respectively. For ex-
ample, if the first qubit is flipped, the corrupted state
is |ψ〉 = α0|100〉 + α1|011〉. Since 〈ψ |Q1|ψ〉 = 1 and
〈ψ |Qj |ψ〉 = 0 for j �= 1, in this case the error syn-
drome is 1. Although performing measurements usu-
ally causes change to the quantum state, the speciality
of the constructed observable is that syndrome mea-
surement does not perturb the quantum state: it is easy
to check that the state is |ψ〉 both before and after the
syndrome measurement. While the syndrome provides
information about what flip error has occurred, it does
not contain any information about the state being pro-
tected, that is, it does not allow us to deduce anything
about the amplitudes α0 and α1. Such a special prop-
erty is the generic feature of syndrome measurement.

Step 2. The error type supplied by the error syn-
drome can inform us what procedure to use to recover
the original state. For example, error syndrome 1 in-
dicates a bit flip on the first qubit, and a flip on the
first qubit again will perfectly recover the original state
α0|000〉 + α1|111〉. The error syndrome 0 implies no
error and doing nothing, and error syndromes 1, 2 and
3 correspond to a bit flip again on the first, second,
third qubit, respectively. The procedure will recover the
original state with perfect accuracy, if there is at most
one bit flip in the encoded three qubits. The probability
that more than one bit flipped is p3 + 3p2(1 − p) =
3p2 − 2p3, which is much smaller than the error prob-
ability p of making no-correction for the typical bit
flip channel. Thus the encoding and decoding scheme
makes the storage and transmission of the qubit more
reliable.

Next we consider a more interesting noisy quantum
channel: a phase flip channel which, with probability
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p, changes a qubit state α0|0〉+α1|1〉 to α0|0〉−α1|1〉,
and with probability 1 − p, leaves alone the qubit.
The following scheme is to turn the phase flip chan-
nel into a bit flip channel. Let |+〉 = (|0〉 + |1〉)/√2
and |−〉 = (|0〉 − |1〉)/√2 be a qubit basis. The phase
flip channel leaves alone states |+〉 and |−〉 with prob-
ability 1 − p and changes |+〉 to |−〉 and vice versa
with probability p. In other words, the phase flip chan-
nel with respect to the basis |+〉 and |−〉 acts just like
a bit flip channel with respect to the basis |0〉 and |1〉.
Thus we encode |0〉 as |+ + +〉 and |1〉 as |− − −〉 for
protection against phase flip errors. The operations for
encoding, error-detection and recovery are the same as
for the bit flip channel but with respect to the |+〉 and
|−〉 basis instead of the |0〉 and |1〉 basis.

Last we describe Shor error-correction code. It is
a combination of the three-qubit phase flip and bit
flip codes. First use the phase flip code to encode
states |0〉 and |1〉 in three qubits, with |0〉 encoded as
|+ + +〉 and |1〉 as |− − −〉; next, use the three-qubit
bit flip code to encode each of these qubits, with |+〉
encoded as (|000〉 + |111〉)/√2 and |−〉 encoded as
(|000〉 − |111〉)/√2. The resulted nine-qubit code has
codeworks as follows:

|0〉 → |000〉 + |111〉√
2

|000〉 + |111〉√
2

|000〉 + |111〉√
2

,

|1〉 → |000〉 − |111〉√
2

|000〉 − |111〉√
2

|000〉 − |111〉√
2

.

With the mixture of both phase flip and bit flip codes,
the Shor error-correction code can protect against bit
flip errors, phase flip errors, as well as a combined bit
and phase flip errors on any single qubit. In fact it has
been shown that this simple quantum error-correction
code can protect against the effects of any completely
arbitrary errors on a single qubit (Shor, 1995).

7. CONCLUDING REMARKS

Quantum information science gains enormous atten-
tion in computer science, mathematics, physical sci-
ences and engineering, and several interdisciplinary
subfields are developing under the umbrella of quan-
tum information. This paper reviews quantum compu-
tation and quantum information from a statistical per-
spective. We introduce concepts like qubits, quantum
gates and quantum circuits in quantum computation
and discuss quantum entanglement, quantum paral-
lelism and quantum error-correction in quantum com-
putation and quantum information. We present ma-
jor quantum algorithms and show their advantages

over the available classical algorithms. We illustrate
quantum simulation procedure and Monte Carlo meth-
ods in quantum simulation. As classical computation
and simulation are ubiquitous nowadays in statistics,
we expect quantum computation and quantum sim-
ulation will have a paramount role to play in mod-
ern statistics. This paper exposes the topics to statis-
ticians and encourages more statisticians to work in
the fields. There are many statistical issues in theoret-
ical research as well as experimental work in quan-
tum computation, quantum simulation and quantum
information. For example, as measurement data col-
lected in quantum experiments require more and more
sophisticated statistical methods for better estimation,
simulation and understanding, it is imperative to de-
velop good quantum statistics methods and quantum
simulation procedures and study interrelationship and
mutual impact between quantum estimation and quan-
tum simulation. Since quantum computation is intrinsi-
cally random, and quantum simulation employs Monte
Carlo techniques, as we point out in Section 4.3 and
Wang (2011), it is important to provide sound statis-
tical methods for analyzing quantum algorithms and
quantum simulation in general and study high-order
approximations to exponentiate Hamiltonians and the
efficiency of the resulted quantum simulation proce-
dures in particular. On the other hand, quantum com-
putation and quantum simulation have great potential
to revolutionize computational statistics. Below are a
few cases in point.

1. The “random numbers” generated by classical com-
puters are pseudo-random numbers in the sense
that they are produced by deterministic procedures
and can be exactly repeated and perfectly predicted
given the deterministic schemes and the initial
seeds. On the contrary, superposition states enable
quantum computers to produce genuine random
numbers. For example, measuring (|0〉 + |1〉)/√2
yields 0 and 1 with equal probability. In general
we generate b-bit binary random numbers x =
x1 · · ·xb, xj = 0,1 as follows. Apply b Hadamard
gates to b qubits of |0 · · ·0〉 to obtain

|0〉 + |1〉√
2

· · · |0〉 + |1〉√
2

= 1√
2b

∑
x

|x〉,

x = x1 · · ·xb, xj = 0,1,

where the sum is over all possible 2b values of x,
and then measure the obtained qubits and yield b-
bit binary random numbers x = x1 · · ·xb with equal
probability. Quantum theory guarantees that such
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random numbers are genuinely random. Thus quan-
tum computers are able to generate genuine random
numbers and perform true Monte Carlo simulation.
It is exciting to design general quantum random
number generator and study quantum Monte Carlo
simulation. Perhaps we may need to re-examine
Monte Carlo simulation studies conducted by clas-
sical computers.

2. It is interesting to investigate the potential of quan-
tum computation and quantum simulation for
computational statistics. We expect that quantum
computers may be much faster than classical com-
puters for computing some statistical problems.
Moreover, quantum computers may be able to carry
out some computational statistical tasks that are
prohibitive by classical computers. Specific exam-
ples are as follows: (a) We may use the basic ideas
of Grover’s search algorithm to develop fast quan-
tum algorithms for implementing some statistical
procedures. For example, finding the median of a
huge data set is to search for a numerical value that
separates the top and bottom halves of the data, and
quantum algorithms can offer quadratical speedup
for calculating median and trimmed mean. (b) With
genuine random number generator and faster mean
evaluation, quantum computers may offer signifi-
cant advantages over classical computers for Monte
Carlo integration. For example, Monte Carlo inte-
gration in high dimensions may be exponentially
or quadratically faster on quantum computers than
on classical computers. (c) It might be possible for
quantum computers to carry out some prohibiting
statistical computing tasks like the Bayesian com-
putation discussed in Section 3. Some preliminary
research along these lines may be found in Nayak
and Wu (1999) and Heinrich (2003).

3. As quantum computation and quantum simulation
are ideal for simulating interacting particle systems
like the Ising model, it is fascinating to explore the
interplay between quantum simulation and Markov
chain Monte Carlo methodology and the quantum
potential to speed up Markov chain based algo-
rithms. In fact, it has been shown that quantum walk
based algorithms can offer quadratical speedup for
certain Markov chain based algorithms (Magniez et
al., 2011; Richter, 2007; Szegedy, 2004, and Wocjan
and Abeyesinghe, 2008).

Finally we point out that quantum computers are
wonderful but it is difficult to build quantum computers
with present technology. To build a quantum computer

the physical apparatus must satisfy requirements that
the quantum system realized qubits needs to be well
isolated in order to retain its quantum properties and
at the same time the quantum system has to be acces-
sible so that the qubits can be manipulated to perform
computations and measure output results. The two op-
posing requirements are determined by the strength of
coupling of the quantum system to the external entities.
The coupling causes quantum decoherence. Decoher-
ence refers to the loss of coherence between the com-
ponents of a quantum system or quantum superposi-
tion from the interaction of the quantum system with its
environment. It is very crucial but challenging to con-
trol a quantum system of qubits and correct the effects
of decoherence in quantum computation and quantum
information. Quantum computing has witnessed great
advances in recent years, and quantum computers of a
handful of qubits and basic quantum communication
devices have been built in research laboratories (see
Barz et al., 2012; Clarke and Wilhelm, 2008; DiCarlo
et al., 2009; Johnson et al., 2011; Lee et al., 2011;
Neumann et al., 2008), but there are technological hur-
dles in the development of a quantum computer of large
capacity. History shows that scientific innovations and
technological surprises are a never-ending saga. It is
anticipated that quantum computers with a few dozen
of qubits will be built in near future. As we have dis-
cussed in Section 3.1, such a quantum computer has
capacity of a classical supercomputer. We are very op-
timistic that someday quantum computers will be avail-
able for statisticians to crunch numbers. For the time
being, instead of waiting in the sidelines for that to
happen, statisticians should get into the field of play.
It is time for us to dive into this frontier research and
work with scientists and engineers to speed up the ar-
rival of practical quantum computers. As a last note,
in 2011 a Canadian company called D-Wave has sold
the claimed first commercial quantum computer of 128
qubits to the Lockheed-Martin corporation, despite the
D-Wave’s quantum system being criticized as a black
box. Large scale quantum computers may be years
away, but quantum computing is already here as a sci-
entific endeavor to provoke deep thoughts and integrate
profound questions in physics and computer science.
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