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Discussion of “Impact of Frequentist and
Bayesian Methods on Survey Sampling
Practice: A Selective Appraisal” by
J. N. K. Rao
Glen Meeden

It has been pointed out that when apologists for com-
peting systems like capitalism and socialism or the fre-
quentist and Bayesian approaches to survey sampling
argue about the relative merits of their systems, they
often compare their ideal to the other’s reality. Since
the ideal is always quite different than reality it is easy
for each of them to score points. I wish to thank Rao
for avoiding this trap and giving a fair reading to both
sides in his survey. Beyond that, I particularly liked the
sections on the early development of frequentist meth-
ods.

How should prior information about the population
be used in survey sampling? It can inform how the
sample is selected and is used when making inferences
after the data have been collected. Formally, at each
of the two stages, the frequentist and Bayesian ap-
proaches are quite different but practically, I believe,
they are often more alike than is commonly supposed.

THE FREQUENTIST APPROACH

In theory, for non-model-based frequentists, the sam-
pling design is the most important place to use prior
information. In Section 2 Rao described some of the
early fundamental advances in survey design based on
the frequentist approach. He explained why in strati-
fied sampling and in stratified two-stage cluster sam-
pling, where one cluster within each stratum is drawn,
self-weighting of the units is a very desirable property.
Such examples led to the notion of assigning a weight,
which is the reciprocal of its inclusion probability, to
each unit in the sample. A unit’s weight is the number
of units in the population that it represents. A theoreti-
cal justification for this notion that is often given is that
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under the sampling design the resulting estimator is un-
biased. Rao argues, however, that large sample consis-
tency of an estimator is a more important property than
unbiasedness. Although it is hard to find sensible esti-
mators which are badly biased, I agree with him that
unbiasedness in and of itself is not an important prop-
erty. Whatever justification there is for the notion of a
weight, it should not be based on unbiasedness.

What I have sometimes found puzzling about
weights is that after the sample has been selected they
are often adjusted. Information that may not have been
used at the design stage is used to make the sampled
units and their weights more accurately reflect what is
known about the population of interest. Calibration and
the model-assisted approach are two common methods
for achieving this end. An estimator based on the ad-
justed weights will no longer be design-unbiased, but
there is theory to show that it can be design-consistent.
Practice, however, can be more complicated especially
when there are missing observations. But more impor-
tantly, the whole reweighting technology seems to me
to mix up an unconditional argument (selecting the
sampling design) and a conditional argument (using
population information to get a good estimate after the
sample has been observed). I am not suggesting that
such adjustments should not be done, only that there
can be more art than science in finding a good set of
weights.

I believe that frequentists would be better served in
their analysis if they more explicitly recognized these
two different stages in the inferential process. In the
first stage, one uses the information that is relevant to
select the sampling design. In the second stage, after
the sample has been selected, one should ignore the
design but use all the information when constructing
an estimator. In effect that is what one does when the
sampling weights are adjusted. However, in the second
stage, the design weights need not be used explictly as
long as all the information is being taken into account.
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If all the information has been used wisely, then the
resulting estimate should work well whenever this par-
ticular sample has been observed no matter how it was
selected. Again, I am not suggesting that much of cur-
rent frequentist practice is badly flawed. But I believe
design-based practitioners should realize that when try-
ing to decide how to select a good sample they are ar-
guing unconditionally and when adjusting the weights
at the estimation stage they are arguing conditionally
and in the latter stage they should pay less explicit at-
tention to the design.

THE BAYESIAN APPROACH

The usual Bayesian approach requires the specifica-
tion of a prior distribution over the possible population
values. Basu argued (Basu, 1988), correctly I believe,
that for a Bayesian after the sample has been observed,
how it was selected should not enter into the analysis.
This assumes of course that any information used in
selecting the design was also available to the Bayesian
when choosing the prior distribution. This does not
mean that a Bayesian is indifferent to how a sample
is selected. In theory a Bayesian should use the prior
distribution to select an optimal, purposeful sample.
However, as a practical matter this almost never hap-
pens. The reason is that the typical kinds of prior infor-
mation available in the finite population setting seldom
lend themselves to summarization in a prior distribu-
tion. The most common situation where a Bayesian can
find an optimal sample is when the prior distribution is
exchangeable and any sample is just as good or bad as
any other. Therefore it seems unlikely to me that the
Bayesian approach will be useful when deciding how
to select a sample. Meeden and Noorbaloochi (2010)
argue, however, that in some situations the sampling
design can be thought of as part of the prior distribu-
tion.

After the sample is observed, inferences for a Baye-
sian are in theory straightforward. Given a sample, one
uses the posterior distribution to simulate many com-
plete copies of the population. For each simulated com-
plete copy one calculates the population quantity of in-
terest, say a mean or a quantile. The average of these
simulated values is their point estimate and the 0.025
quantile and the 0.975 quantile of the values forms
an approximate 0.95 credible interval. As Rao noted,
Bayes methods have proven useful in small area esti-
mation where certain model assumptions lead to fairly
simple hierarchal priors. The more general lack of the

utilization of Bayesian methods, despite these attrac-
tive features, results from two factors. Specifying sen-
sible prior distributions can be very difficult, and even
with the recent advances in Markov chain Monte Carlo
methods simulating complete copies of the population
from a posterior distribution can also be difficult.

Consider situations where, given a sample, the statis-
tician believes the unsampled or unseen units are like
the sampled or seen units. This happens, for exam-
ple, under simple random sampling. In such cases the
Polya posterior (PP) yields a nonparametric objective
pseudo/Bayesian justification for many of the standard
methods. The PP does not arise from a single prior dis-
tribution but is actually a family of posteriors that arise
from a sequence of prior distributions. Ghosh and Mee-
den (1997) give the underlying stepwise Bayes the-
ory for this approach which proves the admissibility
of many of the standard estimators.

The stepwise Bayes theory allows for a more flexible
Bayesian-like approach. Rather than selecting a single
prior before the sample is chosen, one selects a pos-
terior, after the sample has been observed, which uses
the sample and all available information about the pop-
ulation to relate the unseen to the seen. One needs to
verify that all the posteriors fit together in a stepwise
Bayes manner to guarantee the admissibility of the re-
sulting procedure for any design. Even so, this can be
much easier to do than specifying a single prior.

Lazar, Meeden and Nelson (2008) showed how pop-
ulation information about auxiliary variables can be
incorporated into the PP after a sample has been
observed. Examples include knowing the population
mean or median of auxiliary variables and more gener-
ally only knowing that they fall in some known inter-
vals. No model assumptions are made about how the
auxiliary variables are related to the variable of inter-
est. For this constrained version of the PP, the R (RDC
Team, 2005) package polyapost is available to generate
simulated copies of the complete population.

FINAL REMARKS

I believe that once a sample has been selected the key
issue is how the unseen are related to the seen. I believe
that this is in line with much frequentist practice al-
though this is obscured by the prominent and unneces-
sary role played by the design weights after the sample
has been selected. For a Bayesian, with a prior distribu-
tion, this happens automatically through the posterior
distribution, but has been of limited value in practice.
I believe that the stepwise Bayesian approach should
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make it easier to select useful posteriors which make
use of all the prior information present. But as Rao
pointed out, this approach needs to be extended to more
complicated sampling designs.

In most of sample survey, given a design, any proce-
dure, be it frequentist or Bayesian, should be evaluated
by how it behaves under repeated sampling from the
design. For point estimators either their average mean
squared error loss or average absolute error loss is the
quantity of interest. Rather than focusing on getting an
estimate of variance for the estimator to measure its
precision, one should focus on using the estimator to
find approximate 95% confidence intervals for the pa-
rameter of interest.
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