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1. Introduction

Let X1, . . . , Xn be a sample of unobservable random variables from an unknown
distribution function F0 on the interval [0, 1]. More generally, we could take an
arbitrary closed interval [a, b] as support for the underlying distribution, but for
the purposes of the development of the theory, we can just as well take [0, 1], as
is also done in [1].

Suppose that one can observe n pairs (Ti, Ui), independent of Xi, with a joint
density function h on the upper triangle of the unit square, for which the sum
of the marginal densities is bounded away from zero. Moreover,

∆i1 = 1{Xi≤Ti}, ∆i2 = 1{Ti<Xi≤Ui}, ∆i3 = 1−∆i,1 −∆i,1, (1.1)

provide the only information one has on the position of the random variables
Xi with respect to the observation times Ti and Ui. In this set-up we want to
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estimate the unknown distribution function F0, generating the “unobservables”
Xi. This setting is known as interval censoring, case 2.

The model of current status data, also known as interval censoring, case 1,
has been thoroughly studied, and has a theory which is considerably simpler
than the theory for the interval censoring, case 2, model. In the current status
model one only has one observation time Ti, corresponding to the unobservable
Xi, and the only information we have about Xi is whether Xi is to the left or
to the right of Ti.

Although the present paper mainly focuses on the case 2 model, we start
by discussing the current status model, in order to put this paper into a more
general context and to explain why the case 2 model is so much harder to study.
In the current status model, the only observations which are available to us are
the pairs

(Ti,∆i), ∆i = 1{Xi≤Ti},

so we do not observe Xi itself, but only its “current status” ∆i. The nonpara-
metric maximumum likelihood estimator, commonly denoted by NPMLE or just
MLE, maximizes the (partial) log likelihood

n∑

i=1

{∆i logF (Ti) + (1−∆i) log (1− F (Ti))} ,

where the maximization is over all distribution functions F .
The MLE can be found in one step by computing the left-continuous slope

of the greatest convex minorant of the cusum diagram of the points (0, 0) and
the points (

i,
∑

j≤i

∆(j)

)
, i = 1, . . . , n, (1.2)

using a notation, introduced in [10]. Here ∆(j) denotes the indicator corre-
sponding to the jth order statistic T(j). The theory for this estimator is further
developed in [10], where also the (non-normal) pointwise limit distribution is
derived and it is shown that the rate of convergence is n−1/3.

In contrast, there is no such one-step algorithm for computing the MLE in
the case 2 situation, where one wants to maximize

n∑

i=1

{∆i1 logF (Ti) + ∆i2 log {F (Ui)− F (Ti)}+∆i3 log (1− F (Ui))} .

over distribution functions F . One has to take recourse to iterative algorithms,
for example the iterative convex minorant algorithm, introduced in [10] and
further developed in [11]. Moreover, the MLE can possibly achieve a faster local
rate of convergence than in the current status model, depending on properties
of the bivariate distribution of the observation times (Ti, Ui).

In the so-called non-separated case, the density of the pair of observation
times (Ti, Ui) is positive on the diagonal, meaning that we can have arbitrar-
ily small observation intervals [Ti, Ui]. For this situation, [1] proposes a simple
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piecewise constant estimator for F0, with the purpose of showing that in this
situation an estimator can be constructed that achieves the (n logn)−1/3 con-
vergence rate, which is optimal in a minimax sense, both using a global loss
function, and using a local loss function for the estimation at a fixed point. In
the separated case, the observation times Ti and Ui cannot become arbitrarily
close: in this case there exists an ǫ > 0 so that Ui − Ti > ǫ for each i. In this
case the convergence rate of Birgé’s estimator is n−1/3 again, which is also the
minimax rate for the current status model. For both situations we derive the
asymptotic behavior of Birgé’s estimator, and compare this with the behavior
of the MLE in a simulation study. The simulations show a better behavior of
the MLE, probably caused by the local adaptivity of the MLE.

A common complaint about the MLEs is that under the conditions for which
the local asymptotic distribution result is derived, other estimators can be sug-
gested, which in fact attain a faster rate of convergence. Such estimators are
discussed for the current status model in, e.g., [8, 9] and [7]. We introduce a
similar estimator below for the case 2 model below, the smoothed maximum
likelihood estimator (SMLE). The smoothed MLE is defined by

F̃ML
n (t) =

∫
K ((t− u)/bn) dF̂n(u), (1.3)

where

K(u) =

∫ u

−∞

K(w) dw =





0, u < −1∫ u

−1

K(w) dw, u ∈ [−1, 1],

1, u > 1,

letting K be a smooth symmetric kernel, with support [−1, 1], like the triweight
kernel

K(u) = 35
32

(
1− u2

)3
1[−1,1](u),

and taking the bandwidth bn ≍ n−1/5. Note that

f̃ML
n (t)

def
=

d

dt
F̃ML
n (t) =

1

bn

∫
K ((t− u)/bn) dF̂n(u)

is an estimate of the density f0 of the underlying distribution function F0.
Analogously to what has been proved for the current status model, we ex-

pect the smoothed MLE to converge at (at least) rate n−2/5 under appropriate
regularity conditions. It is an attractive alternative to the MLE and histogram-
type estimator of [1]. We give a heuristic discussion on this in section 6. Just
as in [3] and [4], the asymptotic variance depends on the solution of an inte-
gral equation. The asymptotic expressions for the variance, obtained by solving
these equations numerically, give a rather good fit with the actually observed
variances, as shown in section 6. The SMLE can probably also be used for a
two-sample test for interval censored data, analogous to the two-sample test
for current status data, introduced in [7]. The MSE of the smoothed MLE is
much smaller than that of Birgé’s estimator or the MLE for smooth underlying
distribution functions, as is illustrated in the sections on the simulations.
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Fig 1. Birgé’s estimator (dashed), the MLE (dotted), and the smoothed MLE (dashed-dotted)
for sample size n = 1000 and bn = n−1/5, when F0(x) = 1 − (1 − x)2 (solid curve) and the
observation distribution is uniform on the upper triangle of the unit square.

A picture of the three estimators is shown in Figure 1. The MLE and smoothed
MLE are monotone, in contrast with Birgé’s estimator. Also Birgé’s estimator
can have negative values and values larger than 1; both events happen in the
picture shown. This cannot happen for the MLE and smoothed MLE, since these
are based on isotonization; the smoothed MLE is an integral of a positive kernel
w.r.t. the (positive) jumps of the MLE, and inherits the monotonicity proper-
ties of the MLE. Although histogram-type estimators (like Birgé’s estimator)
and kernel estimators without any isotonization are much easier to analyze than
the estimators, based on isotonization, the price one has to pay is the behavior
illustrated in Figure 1.

2. A local minimax result for the non-separated case

In this section we derive a local minimax result for the non-separated case of
the interval censoring problem, case 2. This result will provide the best possible
local convergence rate and also the best constant, as far as this constant depends
on the underlying distributions.

Our approach makes use of a perturbation Fn of F0 which is defined by

Fn(x) =





F0(x) if x < t0 − c(n logn)−1/3

F0(t0 − c(n logn)−1/3) if x ∈ [t0 − c(n logn)−1/3, t0)

F0(t0 + c(n logn)−1/3) if x ∈ [t0, t0 + c(n logn)−1/3)

F0(x) if x ≥ t0 + c(n logn)−1/3
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for a c > 0 to be specified below.
Before stating the theorem to be proved, we introduce some notation. Let

∆ = (∆1,∆2) ∈ T := {(1, 0), (0, 1), (0, 0)} and define the densities q0 and qn by

q0(t, u, δ) = h(t, u)F0(t)
δ1(F0(u)− F0(t))

δ2 (1− F0(u))
1−δ1−δ2

qn(t, u, δ) = h(t, u)Fn(t)
δ1(Fn(u)− Fn(t))

δ2 (1− Fn(u))
1−δ1−δ2

with respect to the measure µ = λ1 ⊗ λ2 on Ω = R2
+ × T , where λ1 is the

Lebesgue measure and λ2 is counting measure. We note that q0 is the joint
density of (T, U,∆1,∆2).

Furthermore, let (Ln), n ≥ 1, be a sequence of estimators for F0(t0), based
on samples of size n, generated by q0. That is, we can write

Ln = ln((T1, U1,∆1,1,∆1,2), . . . , (Tn, Un,∆n,1,∆n,1)),

where ln is a Borel measurable function. Then, the following theorem holds:

Theorem 2.1.

lim
n→∞

inf(n logn)1/3 max{En,q0 |Ln − F0(t0)|, En,qn |Ln − Fn(t0)|}

≥ 61/3

4
exp(−1/3){f0(t0)2/h(t0, t0)}1/3,

where En,q denotes the expectation with respect to the product measure q⊗n.

In our proof we need the following lemma, which is proved in [6]. This type
of result is often denoted as “LeCam’s lemma”.

Lemma 2.1. Let G be a set of probability densities on a measurable space
(Ω, A) with respect to a σ-finite dominating measure µ, and let L be a real-
valued functional on G. Moreover, let f : [0,∞) → R be an increasing convex
loss function, with f(0)=0. Then, for any q1, q2 ∈ G such that the Hellinger
distance H(q1, q2) < 1:

inf
Ln

max
{
En,q1f(|Ln − Lq1|), En,q2f(|Ln − Lq2|)

}

≥ f

(
1

4
|Lq1 − Lq2|{1−H2(q1, q2)}2n

)
.

Proof of theorem 2.1. Let the partitioning A1,n∪· · ·∪A6,n of {(t, u) ∈ R2
+ : t <

u} be defined by

A1,n = {(t, u) ∈ R
2
+ : 0 < t < t0 − δn, t0 − δn ≤ u < t0)}

A2,n = {(t, u) ∈ R
2
+ : 0 < t < t0 − δn, t0 ≤ u < t0 + δn}

A3,n = {(t, u) ∈ R
2
+ : t0 − δn ≤ t < t0, t0 + δn < u < ∞}

A4,n = {(t, u) ∈ R
2
+ : t0 ≤ t < t0 + δn, t0 + δn < u < ∞}

A5,n = {(t, u) ∈ R
2
+ : t0 − δn ≤ t < t0 + δn, t < u < t0 + δn}

A6,n = {(t, u) ∈ R
2
+ : t < u}\{A1,n ∪ · · · ∪ A5,n},

where δn = c(n logn)−1/3. The partitioning is shown in figure 2.
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Fig 2. The areas A1,n, . . . , A6,n

Then the squared Hellinger distance between q0 and qn can be written as

H2(qn, q0) :=
1

2

∫

Ω

{√qn −√
q0} dµ

=
1

2

5∑

k=1

∫

Ak,n

h(t, u)
(√

Fn(t)−
√
F0(t)

)2
dtdu+

+
1

2

5∑

k=1

∫

Ak,n

h(t, u)
(√

Fn(u)− Fn(t)−
√
F0(u)− F0(t)

)2
dtdu

+
1

2

5∑

k=1

∫

Ak,n

h(t, u)
(√

1− Fn(u)−
√
1− F0(u)

)2
dtdu.

We now calculate the three integrals over A1,n.
Obviously, we have

∫

A1,n

h(t, u)
(√

Fn(t)−
√
F0(t)

)2
dtdu = 0. (2.1)

Furthermore,
∫

A1,n

h(t, u)
(√

Fn(u)− Fn(t)−
√
F0(u)− F0(t)

)2
dtdu

=

∫

A1,n

(h(t, t0) + o(1))
(u − t0 + δn)

2f0(t0)
2 + o(δ2n)

4(F0(t0)− F0(t))
dtdu

=

∫ t0−δn

0

h(t, t0)
f0(t0)

2(δ3n + o(δ3n))

12(F0(t0)− F0(t))
dt.
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The last integral can be split into two integrals over the sets [0, t0 − κn) and
[t0 − κn, t0 − δn], where κn = (logn)−1/3. Since

∫ t0−κn

0

h(t, t0)
f0(t0)

2(δ3n + o(δ3n))

12(F0(t0)− F0(t))
dt = O(δ3nκ

−1
n )

and
∫ t0−δn

t0−κn

h(t, t0)
(δ3n + o(δ3n))f0(t0)

2

12(F0(t0)− F0(t))
dt

= (f0(t0)(δ
3
n + o(δ3n))/12)

∫ t0−δn

t0−κn

(h(t0, t0) + o(1))
f0(t) + o(1)

(F0(t0)− F0(t))
dt

= (f0(t0)h(t0, t0)(δ
3
n + o(δ3n))/12) [− log(F0(t0)− F0(t))]

t0−δn
t0−κn

= f0(t0)h(t0, t0)c
3n−1/36 + o(n−1),

it follows that∫

A1,n

h(t, u)
(√

Fn(u)− Fn(t)−
√
F0(u)− F0(t)

)2
dtdu

= f0(t0)h(t0, t0)c
3n−1/36 + o(n−1). (2.2)

Next, a straightforward computation shows that
∫

A1,n

h(t, u)
(√

1− Fn(u)−
√
1− F0(u)

)2
)dtdu

=

∫

A1,n

(u− t0 + δn)
2f0(t0)

2

4(1− F0(t0))
dtdu = O(δ3n). (2.3)

Using (2.1), (2.2) and (2.3), we get
∫

A1,n

h(t, u)
(√

Fn(t)−
√
F0(t)

)2
dtdu

+

∫

A1,n

(√
Fn(u)− Fn(t)−

√
F0(u)− F0(t)

)2
dtdu

+

∫

A1,n

(√
1− Fn(u)−

√
1− F0(u)

)2
dtdu

= f0(t0)h(t0, t0)n
−1/36 +O(δ3nκ

−1
n ).

The integrals over A2,n, A3,n and A4,n can be treated in a similar way. Indeed,
∫

Ak,n

h(t, u)
(√

Fn(t)−
√
F0(t)

)2
dtdu

+

∫

Ak,n

(√
Fn(u)− Fn(t)−

√
F0(u)− F0(t)

)2
dtdu

+

∫

Ak,n

(√
1− Fn(u)−

√
1− F0(u)

)2
dt du

= f0(t0)h(t0, t0)n
−1/36 +O(δ3nκ

−1
n ), k = 2, 3, 4.
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Moreover, it is easily verified that

∫

A5,n

h(t, u)
(√

Fn(t)−
√
F0(t)

)2
dtdu

+

∫

A5,n

(√
Fn(u)− Fn(t)−

√
F0(u)− F0(t)

)2
dtdu

+

∫

A5,n

(√
1− Fn(u)−

√
1− F0(u)

)2
dtdu = O

(
δ3n
)
.

Thus, we infer that the asymptotic squared Hellinger distance between q0 and
qn is given by

H2(q0, qn) = f0(t0)h(t0, t0)n
−1/18.

By using lemma 2.1 we now get:

(n logn)1/3 inf
Tn

max{En,q0 |Tn − F0(t0)|, En,qn |Tn − Fn(t0)|}

≥ 1

4
(n logn)1/3|Fn(t0)− F0(t0)|{1−H2(qn, q0)}2

→ 1

4
cf0(t0) exp

{
− 1

18
h(t0, t0)f(t0)c

3

}

Maximizing the last expression over c yields the desired minimax lower bound.

3. Asymptotic distribution of Birgé’s estimator in the

non-separated case

[1] constructed a histogram-type estimator to show that the minimax lower
bound rate of the preceding section can indeed be attained in the non-separated
case. It is defined in the following way. Let t0 be an interior point of [0,1], let c
be a positive constant and let K = ⌊c−1(n logn)1/3⌋, where n is the sample size
and where ⌊x⌋ denotes the “floor” of x, i.e., the largest integer which is smaller
than or equal to x. We distinguish two cases.

(i) If Kt0 ∈ N, the interval [0, 1] is partitioned into K intervals Ij , j =
1, . . . ,K, of equal length 1/K, where Ij = [tj , tj+1), 1 ≤ j < K, IK =
[tK , tK+1], and t1 = 0, tK+1 = 1.

(ii) If Kt0 /∈ N, the interval [0, 1] is partitioned into K + 1 intervals Ij , where
Ij = [tj , tj+1), 1 ≤ j ≤ K, IK+1 = [tK+1, tK+2], and t1 = 0, tj = t0 −
(⌊t0K⌋ − j) /K, 1 ≤ j ≤ K + 1, tK+2 = 1. Note that in this case the
intervals I2, . . . , IK have length 1/K, but that I1 and IK+1 have a shorter
length. Furthermore, just as in case (i), t0 is the left boundary point of
one of the intervals Ij .

In fact we slightly modified the definition of Birgé who always partitions the
interval into K subintervals of equal length. The reason for our modification
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is that we want to assign a fixed position to t0 with respect to the boundary
points of the interval Ij to which it belongs, since the bias of the estimator
heavily depends on this position. Letting t0 be a left boundary point enables us
to compare the results for different sample sizes “on equal footing”, so to speak.

Let ∆i,1, ∆i,2 and ∆i,3 be defined by (1.1). We define, following [1], for
1 ≤ j, k ≤ K,

Nj = # {Ti : Ti ∈ Ij} , Mj = # {Ui : Ui ∈ Ij}
Qj,k = # {(Ti, Ui) : Ti ∈ Ij , Ui ∈ Ik} ,

and

N ′
j =

∑

Ti∈Ij

∆i,1, Q′
j,k =

∑

Ti∈Ij , Ui∈Ik

∆i,2, M ′
j =

∑

Ui∈Ij

∆i,3 .

In addition to these (integer-valued) random variables, [1] defines the random
variables:

F̂ (j,k) =





N ′
k

Nk
−

Q′
j,k

Qj,k
, j < k,

1− M ′
k

Mk
+

Q′
k,j

Qk,j
, j > k,

(3.1)

weights wj,k, defined by

wj,k =





√
Nk ∧ (KQj,k)

(k − j + 1)Wj
, j < k,

√
Mk ∧ (KQk,j)

(j − k + 1)Wj
, j > k,

(3.2)

where

Wj =
∑

k<j

√
Mk ∧ (KQj,k)

j − k + 1
+
∑

k>j

√
Nk ∧ (KQj,k)

k − j + 1
. (3.3)

We are now ready to define Birgé’s estimator F̃n.

Definition 3.1 (Birgé’s estimator). Let the intervals Ij be defined as in (i) or

(ii) above (depending on the value of t0), and let F̂ (j,k) and the weights wj,k be
defined by (3.1) and (3.2), respectively. Then, for t belonging to the interval Ij ,

Birgé’s estimator F̃n(t) of F0(t) is defined by

F̃n(t) =
∑

k:k 6=j

wj,kF̂
(j,k) . (3.4)

In determining the asymptotic distribution of Birgé’s estimator, we are faced
with the following difficulties.

(1) The weights wj,k are ratios of random variables, which interact with the
random variables M ′

k/Mk, N
′
k/Nk and Q′

j,k/Qj,k, for which they are mul-
tipliers.
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(2) The ratios M ′
k/Mk, N

′
k/Nk and Q′

j,k/Qj,k are themselves ratios of random
variables.

(3) The weighted sum, defining Birgé’s estimator, consists of dependent sum-
mands. The dependence is caused by the dependence of the weights, the
dependence between the M ′

k/Mk, N
′
k/Nk and Q′

j,k/Qj,k and the depen-
dence between the weights and these terms. This prevents a straightfor-
ward use of the Lindeberg-Feller central limit theorem.

These difficulties have to be dealt with in turn. The following crucial lemma
bears on difficulty (1), by showing that the random weights wj,k are close to
deterministic weights w̃j,k.

Lemma 3.1. Consider a partition of [0, 1] into K or K + 1 subintervals, ac-
cording to the construction of Birgé’s estimator, using the scheme of (i) and (ii)
at the beginning of this section. Assume that, for a fixed constant c > 0,

K = Kn ∼ (n logn)1/3

c
, n → ∞, (3.5)

that is: the asymptotic binwidth is given by c(n logn)−1/3. Moreover, assume
that the observation density h is continuous on the upper triangle of the unit
square, staying away from zero on its support. Let g1 and g2 be the first and
second marginal density of h, respectively. Finally, let t0 be the left boundary
point of Ij, let a(t) and b(t) be defined by

a(t) =
√
h(t0, t) ∧ g1(t), b(t) =

√
h(t, t0) ∧ g2(t), (3.6)

and let the deterministic weights w̃j,k be defined by:

w̃j,k =





3a(tk)

{a(t0) + b(t0)} (k − j + 1) logn
, k > j,

3b(tk)

{a(t0) + b(t0)} (j − k + 1) logn
, k < j.

(3.7)

Then:

(i)

sup
k 6=j

(1 + |j − k|)E |wj,k − w̃j,k| = o (1/ logn) , n → ∞. (3.8)

(ii) Wj , defined by (3.3), satisfies

Wj =
1
3 (logn)

√
n/K {a(t0) + b(t0)} {1 + op(1)} , n → ∞, (3.9)

and, for m = 1, 2, . . .

E
{
1/Wm

j

}
1{Wj>0} ∼ (9K/n)m/2 {(a(t0) + b(t0)) logn}−m

, n → ∞.
(3.10)
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It may be helpful to give some motivation for the construction of Birgé’s
statistic. If we replace Nk, N

′
k, etc. by their expected values, we obtain:

∑

k>j

wj,k

{ ∫
Ik
F0(u) dG1(u)

G1(tk+1)−G1(tk)
−
∫
t∈Ij , u∈Ik

{F0(u)− F0(t)} dH(t, u)
∫
t∈Ij , u∈Ik

dH(t, u)

}

+
∑

k<j

wj,k

{
1−

∫
Ik
{1− F0(t)} dG2(u)

G2(tk+1)−G2(tk)

+

∫
t∈Ik, u∈Ij

{F0(u)− F0(t)} dH(t, u)
∫
t∈Ik, u∈Ij

dH(t, u)

}
,

where G1 and G2 are the first and second marginal distribution functions of H ,
repectively. By expanding F0 at the left endpoints tk of the intervals, we get:
∑

k>j

wj,k {F0(tk)− {F0(tk)− F0(tj)}}

+
∑

k<j

wj,k {1− {1− F0(tk)}+ {F0(tj)− F0(tk)}}

+
1

2K2

∑

k>j

wj,k

{
f0(tk)g1(tk)

G1(tk+1)−G1(tk)
− {f0(tk)− f0(tj)} h(tj , tk)

K
∫
t∈Ij , u∈Ik

dH(t, u)

}

+
1

2K2

∑

k<j

wj,k

{
f0(tk)g1(tk)

G2(tk+1)−G2(tk)
+

{f0(tj)− f0(tk)} h(tk, tj)
K
∫
t∈Ik, u∈Ij

dH(t, u)

}
+ . . .

= F0(tk)
∑

k:k 6=j

wj,k

+
1

2K

∑

k>j

wj,k

{
f0(tk)g1(tk)

g1(tk)
− {f0(tk)− f0(tj)} h(tj , tk)

h(tj , tk)

}

+
1

2K

∑

k<j

wj,k

{
f0(tk)g1(tk)

g2(tk)
+

{f0(tj)− f0(tk)} h(tk, tj)
h(tk, tj)

}
+ . . .

= F0(tj) +
1

2K

∑

k>j

wj,k {f0(tk)− {f0(tk)− f0(tj)}}

+
1

2K

∑

k<j

wj,k {f0(tk) + f0(tj)− f0(tk)}+ . . .

= F0(tj) +
1

2K
f0(tj) + . . . (3.11)

One of the difficulties in this expansion that we have glossed over for the moment
is that g1(tk) tends to zero, if tk → 1, and that similarly g2(tk) tends to zero,
if tk → 0. This difficulty has to be dealt with separately. We do not have that
difficulty for h, since we assume that h stays away from zero on its support.

The expansion suggests that the asymptotic bias at tj will be f0(tj)/(2K),
which is indeed the case. However, the expansion does not explain the particular
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choice of the weights. Considering the deterministic counterparts w̃j,k of wj,k,
given by (3.7) in Lemma 3.1, we see that the weights are proportional to 1/(1+
|j − k|), which has the effect that the smaller observation intervals give the
biggest contribution to the estimator, taking advantage of the fact that the
smaller observation intervals do indeed give more precise information on the
“unobservable” Xi, if we know that Xi is contained in the interval (see the
discussion on this point in section 1. The choice of these weights reduces the
variance of the estimator. Only this fact is responsible for the fact that the rate
of convergence is slightly faster than n−1/3.

It seems that the MLE is doing something similar automatically, but in a
more efficient way, if we believe the “working hypothesis”, discussed in section 1.
Assuming the truth of this “working hypothesis”, the asymptotic variance of the
MLE only involves the local joint density h of (Ti, Ui) at (t0, t0) and the density
f0(t0) of Xi at t0, whereas the variance of Birgé’s estimator also involves the
marginal densities of (Ti, Ui), which do not appear in the local minimax lower
bound, derived in section 2.

Also note that the partition, needed in the construction of Birgé’s estimator,
is dependent on an a priori knowledge of whether we are in the separated or
non-separated case; in the non-separated case binwidths of order (n logn)−1/3

are taken (otherwise the higher rate (n logn)−1/3 would not be attained), and in
the separated case binwidths of order n−1/3 (taking (n logn)−1/3 would let the
variance dominate the bias, as the sample size tends to infinity). For the com-
putation of the maximum likelihood estimator (MLE), discussed in section 5, it
is not necessary to use a priori knowledge on the observation distribution; the
MLE, considered as a histogram adapts automatically to the separated or non-
separated case and will choose generally smaller binwidth for the non-separated
case. This is one of the major advantages of the MLE over Birgé’s estimator,
apart from being monotone with values restricted to [0, 1].

Using the notation of Lemma 3.1 we can now formulate the main result for
Birgé’s estimator.

Theorem 3.1. Let the observation density h satisfy the same condition as in
Lemma 3.1, and let F0 have a continuous derivative f0 on (0, 1), satisfying

f0(t0) > 0. Furthermore, let I
(n)
j be a subinterval, belonging to the partition of

[0, 1] into K intervals, corresponding to the construction of Birgé’s estimator
for a sample of size n, where K is defined by (3.5) in Lemma 3.1. Finally, let
αn be defined by

αn = (n logn)−1/3, (3.12)

and let t
(n)
j be the left boundary point of I

(n)
j , for which we assume that it

converges to an interior point t0 ∈ (0, 1), as n → ∞. Then:

(i)

α−1
n

{
F̃n

(
t
(n)
j

)
− F0

(
t
(n)
j

)}
D−→ N

(
1
2cf0(t0), σ

2
0

)
, n → ∞. (3.13)
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where the right-hand side of (3.13) denotes a normal random variable,
with expectation 1

2cf0(t0) and variance

σ2
0 =

3f0(t0)
{
a(t0)

2 + b(t0)
2
}

ch(t0, t0) {a(t0) + b(t0)}2
, (3.14)

and where c, a(t0) and b(t0) are defined by (3.5) and (3.6).
(ii)

lim
n→∞

α−1
n E

{
F̃n(tj)− F0(tj)

}
= 1

2cf0(t0), (3.15)

and
lim
n→∞

α−2
n var

{
F̃n

(
t
(n)
j

)}
= σ2

0 . (3.16)

Note that Theorem 3.1 implies that the optimal value of c is given by

3

2

(
9f0(t)

4

2h(t, t)2

)1/3 (
a(t)2 + b(t)2

{a(t) + b(t)}2
)2/3

.

This value of the constant was used in the simulations, reported below.

4. Birgé’s estimator in the separated case

We consider the asymptotic behavior of Birgé’s estimator in the separated case.
This is mainly meant for illustrative purposes and to give background to the
simulation study. We therefore do not aim to prove results in the widest gener-
ality and confine our discussion to the case where the density h of the observed
pairs (Ti, Ui) has as support the triangle with vertices (0, ǫ), (0, 1) and (1− ǫ, 1)
and stays away from zero on its support, which is the situation we consider in
the simulation study. In this case the faster rate (n logn)−1/3 is unattainable,
and we know that Birgé’s estimator (and also the MLE) can only achieve the
rate n−1/3. We therefore assume K to be of order n1/3 and set K = ⌊c−1n1/3⌋.

As in section 3 we introduce deterministic weights w̃j,k to replace the random
weights wj,k. Recall that, by definition,

wj,k =





√
Nk ∧ (KQj,k)

(k − j + 1)Wj
, j < k,

√
Mk ∧ (KQk,j)

(j − k + 1)Wj
, j > k,

(4.1)

and

Wj =
∑

1≤k<j

√
Mk ∧ (KQj,k)

j − k + 1
+

∑

j<k≤K

√
Nk ∧ (KQj,k)

k − j + 1
.

Let g1 and g2 be the first and second marginal density of h, respectively, that
is:

g1(t) =

∫ 1

t

h(t, u) du, g2(t) =

∫ t

0

h(t′, t) dt′, t ∈ [0, 1]. (4.2)
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Then, if 2ǫ ≤ t0 ≤ 1− 2ǫ,

Wj ∼
∑

k:tj−tk>ǫ

√
cn2/3 {h(tk, tj)∧ g2(tk)}

j − k + 1
+

∑

k:tk−tj>ǫ

√
cn2/3 {h(tj , tk)∧ g1(tk)}

k − j + 1

∼ n1/3

∫ t0−ǫ

ǫ

√
c {h(t, t0) ∧ g2(t)}

t0 − t
dt+ n1/3

∫ 1−ǫ

t0+ǫ

√
c {h(t0, t) ∧ g1(u)}

t− t0
dt,

showing Wj ≍ n1/3. The deterministic weights w̃j,k are now defined by:

w̃j,k =





√
h(tk, tj) ∧ g2(tk)

KW̃ (t0) (t0 − tk)
, k < j,

√
h(tj , tk) ∧ g1(tk)

KW̃ (t0) (tk − t0)
, k > j,

(4.3)

where

W̃ (t0) =

∫ t0−ǫ

ǫ

√
h(t, t0) ∧ g2(t)

t0 − t
dt+

∫ 1−ǫ

t0+ǫ

√
h(t0, u) ∧ g1(u)

u− t0
du. (4.4)

We assume that the integrals on the right-hand side of (4.4) are finite, and hence

that W̃ (t0) < ∞.
We now have the following lemma, which plays a similar role as Lemma 3.1

in section 3.

Lemma 4.1. Consider a partition of [0, 1] into K or K + 1 subintervals, ac-
cording to the construction of Birgé’s estimator, using the scheme of (i) and (ii)
at the beginning of section 3. Assume that

K = Kn ∼ n1/3

c
, n → ∞,

for a fixed constant c > 0, that is: the asymptotic binwidth is given by cn−1/3.
Let the weights wj,k and w̃j,k be defined by (4.1) and (4.3), respectively, where

we assume W̃ (t0) < ∞. Then:

sup
k 6=j

(1 + |j − k|) |wj,k − w̃j,k| = op

(
n−1/3

)
, (4.5)

Using this lemma, we get the following limit result (compare with Theo-
rem 3.1).

Theorem 4.1. Suppose that the observation density h has as support the tri-
angle with vertices (0, ǫ), (0, 1) and (1 − ǫ, 1) and stays away from zero on its
support. Let F0 have a continuous derivative f0 on (0, 1), satisfying f0(t0) > 0.

Moreover, let I
(n)
k be a subinterval, belonging to the partition of [0, 1] into K
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intervals, corresponding to the construction of Birgé’s estimator for a sample of
size n. Finally, let W̃ (t0) be defined by (4.4), where we assume W̃ (t0) < ∞.

Assume that, for a fixed constant c > 0, K = Kn ∼ n1/3/c, and let t
(n)
k be the

left boundary point of I
(n)
k , for which we assume that it converges to an interior

point t0 ∈ (0, 1), as n → ∞. Then we have, as n → ∞

n1/3
{
F̃n

(
t
(n)
k

)
− F0

(
t
(n)
k

)}
D−→ N

(
1
2cf0(t0), σ

2
)

(4.6)

where the right-hand side of (4.6) denotes a normal random variable, with ex-
pectation 1

2cf0(t0) and variance

σ2 =
1

cW̃ (t0)2

∫ 1−ǫ

t0+ǫ

g1(u)∧h(t0, u)

h(t0, u)(u− t0)2
{
F0(u)−F0(t0)

}{
1− (F0(u)−F0(t0))

}
du

+
1

cW̃ (t0)2

∫ t0−ǫ

ǫ

g2(t)∧h(t, t0)
h(t, t0)(t0 − t)2

{
F0(t0)−F0(t)

}{
1− (F0(t0)−F0(t))

}
dt.

(4.7)

In the simulation study we take the observation density h uniform on the
triangle of its support. For ease of reference, we here determine the value of
the variance σ2 of the asymptotic distribution for this case. If h is uniform, its
density is given by

h(t, u) =

{
2(1− ǫ)−2, 0 ≤ t+ ǫ ≤ u ≤ 1
0, elsewhere

. (4.8)

Hence the marginal densities g1 and g2 are given by:

g1(t) =
2

(1 − ǫ)2

∫ 1

t+ǫ

du =
2{1− t− ǫ}
(1− ǫ)2

, t ∈ [0, 1− ǫ],

and

g2(u) =
2

(1− ǫ)2

∫ u−ǫ

0

du =
2{u− ǫ}
(1− ǫ)2

, u ∈ [ǫ, 1].

For W̃ (t0) we get:

W̃ (t0) =
1

1− ǫ

∫ t0−ǫ

ǫ

√
2(t− ǫ)

t0 − t
dt+

1

1− ǫ

∫ 1−ǫ

t0+ǫ

√
2(1− u− ǫ)

u− t0
du. (4.9)

Hence, using (4.7), we obtain:

σ2 =
1

cW̃ (t0)2

∫ 1−ǫ

t0+ǫ

1− u− ǫ

(u− t0)2
{F0(u)− F0(t0)} {1− (F0(u)− F0(t0))} du

+
1

cW̃ (t0)2

∫ t0−ǫ

ǫ

t− ǫ

(t0 − t)2
{F0(t0)− F0(t)} {1− (F0(t0)− F0(t))} dt.

(4.10)

where W̃ (t0) is defined by (4.9).
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5. The maximum likelihood estimator

As mentioned in section 1, the (nonparametric) maximum likelihood estimator
(MLE or NPMLE) maximizes the (partial) log likelihood

n∑

i=1

{∆i1 logF (Ti) + ∆i2 log {F (Ui)− F (Ti)}+∆i3 log (1− F (Ui))} ,

where the maximization is over all distribution functions F . For the non-sep-
arated case the following conjecture was given in [5] (the lecture notes of a
summer course given at Stanford University in 1990), which later appeared as
part 2 of [10]):

Theorem 5.1 (Conjecture in [5]). Let F0 and H be continuously differen-
tiable at t0 and (t0, t0), respectively, with strictly positive derivatives f0(t0) and
h(t0, t0), where H is the distribution function of (Ti, Ui). By continuous dif-
ferentiability of H at (t0, t0) is meant that the density h(t, u) is continuous at
(t, u), if t < u and (t, u) is sufficiently close to (t0, t0), and that h(t, t), defined
by

h(t, t) = lim
u↓t

h(t, u),

is continuous at t, for t in a neighborhood of t0.
Let 0 < F0(t0), H(t0, t0) < 1, and let F̂n be the MLE of F0. Then

(n logn)1/3
{
F̂n(t0)− F0(t0)

} / {
3
4f0(t0)

2/h(t0, t0)
}1/3 D−→ 2Z,

where Z is the last time that standard two-sided Brownian motion minus the
parabola y(t) = t2 reaches its maximum.

It was also shown in [5] that Theorem 5.1 is true for a “toy” estimator,
obtained by doing one step of the iterative convex minorant algorithm, starting
the iterations at the underlying distribution function F0; the “toy” aspect is that
we can of course not do this in practice. In spite of the fact that now more than
20 years have passed since this conjecture has been launched, it still has not
been proved. In the simulation section we provide some material which seems to
support the conjecture, but further research is necessary to settle this question.

For the separated case one can also introduce a toy estimator of the same
type and one can again formulate the “working hypothesis” that that the toy es-
timator and the MLE have the same pointwise limit behavior. Anticipating that
this would hold, [14] derived the asymptotic distribution of the toy estimator in
the separated case, under the following conditions.

(C1) The support of F0 is an interval [0,M ], where M < ∞.
(C2) F0 and H have densities f0 and h w.r.t. Lebesgue measure on R and R2,

respectively.
(C3) Let the functions k1,ǫ and k2,ǫ be defined by

k1,ǫ(u) =

∫ M

u

h(u, v)

F0(v)− F0(u)
{F0(v) − F0(u) < ǫ−1} dv,
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and

k2,ǫ(v) =

∫ v

0

h(u, v)

F0(v)− F0(u)
{F0(v)− F0(u) < ǫ−1} du.

Then, for i = 1, 2 and each ǫ > 0,

lim
α→∞

α

∫

(t0,t0+t/α]

ki(u, ǫα) du = 0.

(C4) 0 < F0(t0) < 1 and 0 < H(t0, t0) < 1.

The motivation for these conditions is given in [14] and actually become clear
from the proof, which is not given here.

Theorem 5.2 ([14]). Suppose that assumptions (C1) to (C4) hold. Let ki, i =
1, 2, be defined by

k1(u) =

∫ M

u

h(u, v)

F0(v)− F0(u)
dv, and k2(v) =

∫ v

0

h(u, v)

F0(v)− F0(u)
du,

and suppose that f0, g1, g2, k1 and k2 are continuous at t0, where g1 and g2
are the first and second marginal densities of h, respectively. Moreover, assume

f0(t0) > 0. Then, if F
(1)
n is the estimator of the distribution function F0, ob-

tained after one step of the iterative convex minorant algorithm, starting the
iterations with F0, we have

n1/3{2ξ(t0)/f0(t0)}1/3{F (1)
n (t0)− F0(t0)} D−→ 2Z,

where Z is the last time where standard two-sided Brownian motion minus the
parabola y(t) = t2 reaches its maximum, and where

ξ(t0) =
g1(t0)

F0(t0)
+ k1(t0) + k2(t0) +

g2(t0)

1− F0(t0)
.

It is indeed proved in [6] that, under slightly stronger conditions (the most
important one being that an observation interval always has length > ǫ, for
some ǫ > 0), which hold for the examples in the simulation below, the MLE has
the same limit behavior, using the same norming constants. The expression for
the asymptotic variance in the separated case is remarkably different from the
conjectured variance in the non-separated case, which only depends on F0 via
f0(t0), showing that only the local behavior, depending on the density at t0, is
important for the asymptotic variance (assuming that the working hypothesis
holds).

Note that if (Ti, Ui) is uniform on the upper triangle of the unit square, with
vertices (0, ǫ), (0, 1) and (1− ǫ, 1), we have:

g1(u) =
2(1− u− ǫ)

(1− ǫ)2
, g2(v) =

2(v − ǫ)

(1− ǫ)2
,
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and, if F0 is the uniform distribution function on [0, 1],

k1(u) =
2 log{(1− u)/ǫ}

(1 − ǫ)2
, k2(v) =

2 log(v/ǫ)

(1− ǫ)2
,

so

ξ(t0) =
2

(1− ǫ)2

{
1− t0 − ǫ

t0
+ log

(
t0(1− t0)

ǫ2

)
+

t0 − ǫ

1− t0

}

in this case. If F0 is given by F0(x) = 1− (1− x)4, x ∈ [0, 1], we get:

ξ(t0) =
2

(1− ǫ)2

{
1− t0 − ǫ

F0(t0)
+

t0 − ǫ

1− F0(t0)

}

+
1

2(1− ǫ)2(1− t0)3

{
2 arctan

(
1− t0 − ǫ

1− t0

)
+ log

(
2− 2t0 − ǫ

ǫ

)

+ 2 arctan

(
1− t0 + ǫ

1− t0

)
− 2 arctan

(
1

1− t0

)
+ log

(
t0(2− 2t0 + ǫ)

ǫ(2− t0)

)}
.

(5.1)

We give some results for the latter model in section 8.

6. The smoothed maximum likelihood estimator

Let h be the density of (Ti, Ui), with first marginal density h1 and second
marginal h2, and let φt,b,F be a solution of the integral equation (in φ):

φ(u) = dF (u)

{
kt,b(u) +

∫

v>u

φ(v) − φ(u)

F (v)− F (u)
h(u, v) dv

−
∫

v<u

φ(u)− φ(v)

F (u)− F (v)
h(v, u) dv

}
,

where

dF (u) =
F (u){1− F (u)}

h1(u){1− F (u)}+ h2(u)F (u)
,

and the function kt,b is defined by

kt,b(u) = b−1K ((t− u)/b) . (6.1)

Moreover, let the function θt,b,F be defined by

θt,b,F (u, v, δ1, δ2) = −δ1φt,b,F (u)

F (u)
− δ2{φt,b,F (v)− φt,b,F (u)}

F (v)− F (u)
+

δ3φt,b,F (v)

1− F (v)
,

(6.2)
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where u < v. Then, as in [3] (separated case) and [4] (non-separated case), we
have the representation

∫
K ((t− u)/b) d

(
F̂n − F0

)
(u) =

∫
θt,b,F̂n

(u, v, δ1, δ2) dP0(u, v, δ1 d2)

=

∫
φt,b,F̂n

(u)

F̂n(u)
F0(u)h1(u) du

+

∫
φt,b,F̂n

(v)− φt,b,F̂n
(u)

F̂n(v)− F̂n(u)
{F0(v) − F0(u)}h(u, v) du dv

−
∫

φt,b,F̂n
(v)

1− F̂n(v)
{1− F0(v)}h2(v) dv.

For F = F0 we get the integral equation:

φ(u) = dF0
(u)

{
kt,b(u) +

∫

v>u

φ(v) − φ(u)

F0(v)− F0(u)
h(u, v) dv

−
∫

v<u

φ(u)− φ(v)

F0(u)− F0(v)
h(v, u) dv

}
.

Using the theory in [3] and [4] again, we get that the solution φt,b,F0
gives as an

approximation for n var(F̃n(t)):

E θt,b,F0
(T1, U1,∆11,∆12)

2

=

∫
φt,b,F0

(u)2

F0(u)
h1(u) du

+

∫ {
φt,b,F0

(v) − φt,b,F0
(u)
}2

F0(v)− F0(u)
h(u, v) du dv +

∫
φt,b,F0

(v)2

1− F0(v)
h2(v) dv.

The approximation seems to work pretty well, as can be seen in table 1, where
we estimated the actual variance for samples of size n = 1000 by generating
10, 000 samples of size 1000 from a Uniform(0, 1) distribution F0 and a uniform
observation distribution H on the upper triangle of the unit square.

Table 1

Estimates of the actual variances var(F̃n(t)) (times n) and corresponding theoretical
variances Eθ2t,bn,F0

, where bn = n−1/5, for sample size n = 1000. The estimates of of the

actual variances were based on 10, 000 samples of size 1000 from a Uniform(0, 1) distribution
F0 and a uniform observation distribution H on the upper triangle of the unit square

t nvar(F̃n(t)) Eθ2t,bn,F0
ratio

0.1 0.146489 0.142235 1.029910
0.2 0.262056 0.255404 1.026044
0.3 0.334990 0.332985 1.006019
0.4 0.380357 0.376413 1.010479
0.5 0.399258 0.390382 1.022736
0.6 0.386292 0.376340 1.026444
0.7 0.342651 0.332856 1.029428
0.8 0.261457 0.255255 1.024296
0.9 0.145304 0.142129 1.022338
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Fig 3. The function u 7→ φt,bn,F0
(u), u ∈ [0, 1], for t = 0.7, bn = n−1/5, n = 1000, the

Uniform(0, 1) distribution F0 and a uniform observation distribution H on the upper triangle
of the unit square.

As in the papers cited above, we do not have an explicit expression for φt,bn,F0
;

a picture of φt,bn,F0
for F0 the Uniform(0, 1) distribution F0 and bn = n−1/5

is shown in Figure 3; the function was computed by solving the corresponding
matrix equation on a 1000×1000 grid. Note that we apply the smooth functional
theory of the above mentioned papers (which is also discussed in [6]) not for
a fixed functional, but for changing functionals on shrinking intervals (in the
hidden space). The reason we can do this is that the bandwidth b is chosen to be
of a larger order than the critical rate n−1/3, and that then a different type of
asymptotics sets in, with asymptotic normality, etc., instead of the non-standard
asymptotics of the MLE itself. This method is also used in [8], for the current
status model.

In analogy with Theorem 4.2 in [8] we expect the following result to hold,
using the conditions on the underlying distributions, discussed in [3] and [4]. To
avoid messy notation, we will denote the smoothed MLE by F̃n instead of F̃ML

n

in the remainder of this section.

Theorem 6.1 (Conjectured). Let the conditions of Theorem 1, p. 212, in [3]
(separated case) or Theorem 3.2, p. 647, in [4] (non-separated case) be satisfied.
Moreover, let the joint density h of the joint density of (Ti, Ui) have a continuous
bounded second total derivative in the interior of its domain and let f0 have a
continuous derivative at the interior point t of the support of f0, and let F̃n be
the smoothed MLE, defined by (1.3). Then, if bn ≍ n−1/5, we have

√
n

{
F̃n(t)− F0(t)− 1

2b
2
nf

′
0(t)

∫
u2K(u) du

} /
σn

D−→ N (0, 1) , n → ∞,
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Fig 4. The function u 7→ φt,b,F0
(t − bu), u ∈ [−5, 5], for t = 0.5, b = 0.1, the Uniform(0, 1)

distribution F0 and (non-separated case:) a uniform observation distribution H on the upper
triangle of the unit square (solid curve) and the function u 7→ φt,b,F0

(t−bu) for the (separated)
case where the observation distribution H is uniform on the triangle with vertices (0, ǫ), (0, 1)
and (1− ǫ, 1), where ǫ = 0.2 (dashed).

where N(0, 1) is the standard normal distribution and σ2
n is defined by

σ2
n = E θt,bn,F0

(T1, U1,∆11,∆12)
2
, (6.3)

with θt,bn,F0
given by (6.2).

Note that (the conjectured) Theorem 6.1 covers both the separated and the
non-separated case. Unfortunately, we do not have an explicit expression for
(6.3) in Theorem 6.1 at present. The functions φF0

, defining the function θF0

and hence also the variance σ2
n, are of a rather different nature for the separated

case and the non-separated case. For an example of this, see Figure 4.
The variance σ2

n can be estimated by

σ̂2
n =

∫
θ̃t,bn,F̃n

(t, u, δ1, δ2) dPn(u, v, δ1, δ2),

where

θ̃t,bn,F̃n
(u, v, δ1, δ2) = −

δ1φ̃t,bn,F̃n
(u)

F̃n(u)
−

δ2{φ̃t,bn,F̃n
(v) − φ̃t,bn,F̃n

(u)}
F̃n(v)− F̃n(u)

+
δ3φ̃t,bn,F̃n

(v)

1− F̃n(v)
, u < v,
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and φ̃t,bn,F̃n
solves the integral equation

φ(u) = dF̃n(u)
(u)

{
kt,bn(u) +

∫

v>u

φ(v) − φ(u)

F̃n(v) − F̃n(u)
hn(u, v) dv

−
∫

v<u

φ(u)− φ(v)

F̃n(u)− F̃n(v)
hn(v, u) dv

}
, (6.4)

and where hn is a kernel estimate of the density h, and where

dF̃n(u)
(u) =

F̃n(u){1− F̃n(u)}
hn1(u){1− F̃n(u)}+ hn2(u)F̃n(u)

,

hn1(u) =

∫
hn(u, v) dv, hn2(u) =

∫
hn(v, u) dv.

For bn chosen as in the theorem, the distribution function F̃n will be strictly
increasing with probability tending to one. Since F̃n is also continuously differ-
entiable, the equation (6.4) will have an absolutely continuous solution φ̃t,bn,F̃n

,
and we do not have to take recourse to a solution pair, as in [4], which deals
separately with a discrete and absolutely continuous part.

In the corresponding result for the current status model we have explicit
expressions, and we briefly discuss the analogy here, using a notation of the

same type. Let F̃
(CS)
n be the smoothed MLE for the current status model,

defined by (1.3), but now using the MLE F̂n in the current status model. In this
case the function θt,b,F , representing the functional in the observation space, is
given by

θ
(CS)
t,b,F (u, δ) = −

δφ
(CS)
t,b,F (u)

F (u)
+

(1− δ)φ
(CS)
t,b,F (u)

1− F (u)
, u ∈ (0, 1). (6.5)

where φ is given by:

φ
(CS)
t,b,F (u) =

F (u){1− F (u)}
g(u)

kt,b(u),

and kt,b is defined by (6.1). Moreover, g is the density of the (one-dimensional)

observation distribution. The solution φ
(CS)
t,bn,F0

gives as an approximation for

n var(F̃n(t)):

E θ
(CS)
t,bn,F0

(T1,∆1)
2 =

∫
φ
(CS)
t,bn,F0

(u)2

F0(u)
g(u) du+

∫
φ
(CS)
t,bn,F0

(u)2

1− F0(u)
g(u) du

=

∫
F0(u){1− F0(u)}kt,bn(u)2

g(u)
du ∼ F0(t){1− F0(t)}

bng(t)

∫
K(u)2 du, bn → 0.

Moreover,

lim
b↓0

bE θ
(CS)
t,b,F0

(T1,∆1)
2 =

F0(t){1− F0(t)}
g(t)

∫
K(u)2 du,
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so in this case we obtain the central limit theorem

√
n

{
F̃n(t)− F0(t)− 1

2b
2
nf

′
0(t)

∫
u2K(u) du

} /
σn

D−→ N (0, 1) , n → ∞,

where

σ2
n = E θ

(CS)
t,bn,F0

(T1,∆1)
2 ∼ F0(t){1− F0(t)}

bng(t)

∫
K(u)2 du,

see Theorem 4.2, p. 365, [8].

Remark 6.1. It is tempting to think that the asymptotic variance can be found
for case 2 by computing

lim
b↓0

bE θt,b,F0
(T1, U1,∆11,∆12)

2 ,

just as in the current status model. However, numerical computations suggested
that bE θ2t,b,F0

tends to zero in the non-separated case. This might mean that

the variance is not of order n−4/5 in this case, but perhaps contains a logarith-
mic factor, in analogy with the variance (n logn)−2/3 for the histogram-type
estimators, like Birgé’s estimator and the MLE without smoothing.

However, we do not expect this to happen for the separated case. All this still
has to be determined by the analysis of the difference in asymptotic behavior
of the functions φt,bn,F0

for the separated and non-separated case (see Figure 4
for a picture of the rather different behavior of φt,bn,F0

in these two situations).

7. Simulation results for the non-separated case

In tables 2 to 5 we present some simulation results for the “non-separated case”
for both Birgé’s estimator, the MLE and the smoothed MLE. In all cases the
observation density was the uniform density on the upper triangle. All results
are based on 10,000 pseudo-random samples. For Birgé’s estimator the asymp-
totically optimal binwidth was chosen in all simulations.

We study the case where f0 is the uniform density on [0, 1] and give results
for the interior points t0 = 0.3, 0.4, 0.5 and 0.6. Although these points are
somewhat arbitrarily chosen, the results are representative for what happens in
the interior of the interval.

Table 2

MSE for Birgé’s estimator and MLE, times (n logn)2/3, t0 = 0.3, 0.4, 0.5 and 0.6,
non-separated case. The asymptotic MSE of Birgé’s estimator and the conjectured MSE of

the MLE are displayed in bold type

t0 = 0.3 t0 = 0.4 t0 = 0.5 t0 = 0.6
Birgé MLE Birgé MLE Birgé MLE Birgé MLE
1.01 0.55 0.99 0.55 0.98 0.55 0.99 0.55

n = 1000 1.10 0.50 1.10 0.55 1.09 0.55 1.11 0.55
n = 2500 1.06 0.52 1.08 0.54 1.07 0.55 1.06 0.53
n = 5000 1.05 0.50 1.03 0.54 1.04 0.56 1.03 0.53
n = 10000 1.03 0.51 1.02 0.54 1.00 0.54 1.06 0.54
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Table 3

Variance for Birgé’s estimator and MLE, times (n logn)2/3, t0 = 0.3, 0.4, 0.5 and 0.6,
non-separated case. The asymptotic variance of Birgé’s estimator and the conjectured

asymptotic variance of the MLE (MLE) are displayed in bold type

t0 = 0.3 t0 = 0.4 t0 = 0.5 t0 = 0.6
Birgé MLE Birgé MLE Birgé MLE Birgé MLE
0.67 0.55 0.66 0.55 0.66 0.55 0.66 0.55

n = 1000 0.79 0.50 0.78 0.55 0.78 0.55 0.79 0.55
n = 2500 0.75 0.52 0.75 0.54 0.74 0.55 0.73 0.53
n = 5000 0.74 0.50 0.71 0.54 0.73 0.56 0.72 0.53
n = 10000 0.69 0.51 0.69 0.54 0.69 0.54 0.72 0.54

Table 4

Squared Bias for Birgé’s estimator and MLE, times (n logn)2/3, t0 = 0.3, 0.4, 0.5 and 0.6,
non-separated case. The asymptotic squared bias of Birgé’s estimator is displayed in bold

type

t0 = 0.3 t0 = 0.4 t0 = 0.5 t0 = 0.6
Birgé MLE Birgé MLE Birgé MLE Birgé MLE
0.34 0.33 0.33 0.33

n = 1000 0.31 3.4 · 10−4 0.32 1.6 · 10−4 0.31 2.4 · 10−5 0.32 1.3 · 10−4

n = 2500 0.31 1.3 · 10−4 0.32 8.4 · 10−5 0.33 7.9 · 10−6 0.33 5.6 · 10−7

n = 5000 0.30 5.5 · 10−7 0.32 1.6 · 10−4 0.31 2.5 · 10−4 0.31 3.6 · 10−4

n = 10000 0.34 6.3 · 10−5 0.33 4.1 · 10−5 0.31 4.1 · 10−6 0.34 8.2 · 10−5

Table 5

MSE of SMLE divided by MSE of MLE, t0 = 0.3, 0.4, 0.5 and 0.6, non-separated case

t0 = 0.3 t0 = 0.4 t0 = 0.5 t0 = 0.6
ratio ratio ratio ratio

n = 1000 0.247 0.262 0.265 0.263
n = 2500 0.217 0.236 0.236 0.233
n = 5000 0.203 0.219 0.224 0.216
n = 10000 0.187 0.197 0.204 0.201

It can be seen from the tables that the squared bias for the MLE is, in all
cases, negligible compared to the variance. We note that this is in contrast with
Birgé’s estimator. Moreover, the variance of the MLE is generally smaller than
that of Birgé’s estimator. Table 5 shows, not unexpectedly, that the MSE of
the smoothed MLE is much smaller than the MSE of either the MLE or Birgé’s
estimator.

8. Simulation results for the separated case

For the separated case the results of a simulation study are provided in the
tables 6 to 14. We first take again F0 to be the uniform(0, 1) distribution func-
tion. On the other hand, we chose the observation density defined by (4.8),
with ǫ = 0.1, so the observation times Ti and Ui cannot become arbitrarily
close. The results are based on 10,000 pseudo-random samples. As in the non-
separated case, the MSE of the MLE turns out to be smaller than the MSE of
Birgé’s estimator. Here the difference is however even more noticeable.
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Table 6

MSE for Birgé’s estimator divided by its asymptotic value, t0 = 0.3, separated case

f0(t) = 1 f0(t) = 4(1− t)3

n = 106 1.12 1.09
n = 107 1.04 1.04

Table 7

MSE for Birgé’s estimator and MLE, times n2/3, t0 = 0.3, 0.4, 0.5 and 0.6, separated case.
The asymptotic MSE (Birgé) and “the asymptotic variance” (MLE) are displayed in bold

type

t0 = 0.3 t0 = 0.4 t0 = 0.5 t0 = 0.6
Birgé MLE Birgé MLE Birgé MLE Birgé MLE
0.34 0.12 0.32 0.13 0.31 0.13 0.32 0.13

n = 1000 0.58 0.14 0.57 0.15 0.56 0.15 0.57 0.15
n = 2500 0.44 0.13 0.46 0.14 0.49 0.14 0.48 0.14
n = 5000 0.52 0.13 0.48 0.13 0.50 0.14 0.50 0.13
n = 10000 0.46 0.12 0.48 0.13 0.49 0.14 0.49 0.14

Table 8

Variance for Birgé’s estimator and MLE, times n2/3, t0 = 0.3, 0.4, 0.5 and 0.6, separated
case. The asymptotic variances are displayed in bold type

t0 = 0.3 t0 = 0.4 t0 = 0.5 t0 = 0.6
Birgé MLE Birgé MLE Birgé MLE Birgé MLE
0.23 0.12 0.21 0.13 0.20 0.13 0.21 0.13

n = 1000 0.46 0.14 0.47 0.15 0.46 0.15 0.47 0.15
n = 2500 0.35 0.13 0.36 0.14 0.39 0.14 0.37 0.14
n = 5000 0.42 0.13 0.38 0.13 0.40 0.14 0.39 0.13
n = 10000 0.36 0.12 0.37 0.14 0.39 0.14 0.39 0.14

Table 9

Squared Bias for Birgé’s estimator and MLE, times n2/3, t0 = 0.3, 0.4, 0.5 and 0.6,
separated case. The asymptotic squared bias (Birgé) is displayed in bold type

t0 = 0.3 t0 = 0.4 t0 = 0.5 t0 = 0.6
Birgé MLE Birgé MLE Birgé MLE Birgé MLE
0.11 0.11 0.10 0.11

n = 1000 0.11 2.3 · 10−5 0.10 1.1 · 10−6 0.10 1.3 · 10−6 0.10 1.2 · 10−5

n = 2500 0.09 5.1 · 10−6 0.10 1.7 · 10−5 0.09 3.1 · 10−6 0.12 2.0 · 10−5

n = 5000 0.11 4.0 · 10−8 0.09 2.6 · 10−6 0.10 5.9 · 10−5 0.11 1.6 · 10−6

n = 10000 0.10 3.2 · 10−5 0.11 2.1 · 10−6 0.10 1.0 · 10−5 0.10 4.6 · 10−6

In the tables 7 to 9 we give the results for the MSE, variance and squared bias
for both estimators. Again it can be seen that the variance of Birgé’s estimator is
generally larger than the variance of the MLE. Moreover, as in the non-separated
case, the squared bias for the MLE is, in all cases, negligible compared to the
variance.

To show that the results are not specific for the uniform distribution, we
give in the tables 11 to 13 the corresponding comparisons for the distribution
function F0, with density f0, defined by

F0(x) = 1− (1− x)4, f0(x) = 4(1− x)3, x ∈ [0, 1].



1822 P. Groeneboom and T. Ketelaars

Table 10

MSE of SMLE divided by MSE of MLE, t0 = 0.3, 0.4, 0.5 and 0.6, separated case

t0 = 0.3 t0 = 0.4 t0 = 0.5 t0 = 0.6
ratio ratio ratio ratio

n = 1000 0.258 0.272 0.274 0.268
n = 2500 0.230 0.244 0.243 0.244
n = 5000 0.219 0.225 0.225 0.219
n = 10000 0.199 0.201 0.206 0.203

Table 11

MSE for Birgé’s estimator and MLE, times n2/3, f0(t) = 4(1 − t)3, t ∈ [0, 1],
t0 = 0.3, 0.4, 0.5 and 0.6, separated case. The asymptotic MSE (Birgé) and the asymptotic

variance (MLE) are displayed in bold type

t0 = 0.3 t0 = 0.4 t0 = 0.5 t0 = 0.6
Birgé MLE Birgé MLE Birgé MLE Birgé MLE
0.41 0.15 0.24 0.081 0.14 0.037 0.08 0.014

n = 1000 0.53 0.16 0.39 0.088 0.21 0.041 0.101 0.016
n = 2500 0.61 0.16 0.33 0.087 0.25 0.039 0.100 0.015
n = 5000 0.56 0.16 0.36 0.083 0.18 0.038 0.101 0.014
n = 10000 0.49 0.15 0.36 0.082 0.22 0.037 0.120 0.014

Table 12

Variance for Birgé’s estimator and MLE, times n2/3, t0 = 0.3, 0.4, 0.5 and 0.6,
f0(t) = 4(1 − t)3, t ∈ [0, 1], separated case. The asymptotic variances are displayed in bold

type

t0 = 0.3 t0 = 0.4 t0 = 0.5 t0 = 0.6
Birgé MLE Birgé MLE Birgé MLE Birgé MLE
0.28 0.15 0.16 0.081 0.091 0.037 0.051 0.014

n = 1000 0.41 0.16 0.32 0.087 0.16 0.040 0.070 0.016
n = 2500 0.48 0.16 0.25 0.087 0.19 0.039 0.063 0.015
n = 5000 0.43 0.16 0.28 0.082 0.13 0.038 0.070 0.014
n = 10000 0.35 0.15 0.28 0.082 0.17 0.037 0.090 0.014

Table 13

Squared Bias for Birgé’s estimator and MLE, times n2/3, f0(t) = 4(1 − t)3, t ∈ [0, 1],
t0 = 0.3, 0.4, 0.5 and 0.6, separated case. The asymptotic squared bias (Birgé) is displayed

in bold type

t0 = 0.3 t0 = 0.4 t0 = 0.5 t0 = 0.6
Birgé MLE Birgé MLE Birgé MLE Birgé MLE
0.14 0.079 0.045 0.025

n = 1000 0.12 1.1 · 10−4 0.076 1.6 · 10−4 0.051 2.2 · 10−4 0.030 3.2 · 10−4

n = 2500 0.13 3.2 · 10−5 0.080 2.3 · 10−4 0.054 2.0 · 10−4 0.037 1.1 · 10−4

n = 5000 0.13 1.4 · 10−6 0.075 3.0 · 10−4 0.048 1.0 · 10−4 0.031 8.7 · 10−5

n = 10000 0.13 4.8 · 10−5 0.079 1.4 · 10−4 0.049 1.1 · 10−4 0.030 8.0 · 10−5

For the computation of the asymptotic variance of the MLE we used (5.1) of sec-
tion 5. It is seen that the correspondence between the asymptotic expression for
the variance and the actual sample variance of the MLE is rather good, and also
that the superiority of the MLE w.r.t. Birgé’s estimator is still more pronounced
for this distribution function. Table 14 shows that the ratio of the MSE of the
SMLE and the MSE of the actual MLE is somewhat larger here, which is prob-
ably due to the fact that the asymptotic bias plays a larger role for the SMLE
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Table 14

MSE of SMLE divided by MSE of MLE, times n2/3, f0(t) = 4(1− t)3, t ∈ [0, 1],
t0 = 0.3, 0.4, 0.5 and 0.6, separated case

t0 = 0.3 t0 = 0.4 t0 = 0.5 t0 = 0.6
ratio ratio ratio ratio

n = 1000 0.439 0.395 0.443 0.435
n = 2500 0.372 0.393 0.409 0.424
n = 5000 0.350 0.354 0.383 0.391
n = 10000 0.312 0.332 0.349 0.389

in this case (this bias vanishes for the uniform distribution function). The bias
of the actual MLE is again very small for this distribution function, however.

As the fit with the asymptotic MSE was not satisfactory for Birgé’s estimator
in the separated case, we also did some simulations for much larger sample
sizes. It turns out that the MSE then approximates the values predicted by the
asymptotic theory. Some evidence is given in table 6. The results are based on
1000 pseudo-random samples.

9. Summary

In the preceding, the limit distributions of three estimators for the interval cen-
soring, case 2, problem were discussed: Birgé’s estimator, the (nonparametric)
maximum likelihood estimator (MLE) and the smoothed MLE, which is analo-
gous to the smoothed MLE introduced in [8] for the current status model. Birgé’s
estimator is mainly of theoretical interest and constructed to show that the min-
imax rate can be attained. The construction uses prior knowledge on whether
the observation distribution has arbitrarily small observation intervals (the so-
called non-separated case) or not (the separated case). Such prior knowledge is
not necessary for the MLE, which adapts automatically to either situation.

The conjectured limit distribution of the MLE in the non-separated case,
given in [5], was (partially) checked in a simulation study, comparing Birgé’s
estimator, the MLE and the smoothed MLE. The simulation study seems to
support the conjecture. The smoothed MLE converges at a faster rate than
either Birgé’s estimator or the MLE on which it is based if the underlying
distribution is smooth, as is also borne out by the simulation study.

The limit distribution of the MLE in the separated case was given in [6] and
the simulation study for the separated case shows that the asymptotic variance,
arising from this result, provides a good approximation to the actual finite
sample variance. The difference in behavior for the separated and non-separated
cases persists for the smoothed MLE and in that case crucially depends on
properties of the solution of an integral equation, as discussed in section 6. This
analysis is based on a local version of the theory developed in [2, 3] and [4]. The
(numerical) solution of the integral equation can be used to estimate the variance
of the smoothed MLE. The theoretically computed asymptotic variance, using
a numerical solution of the integral equation, fits the observed sample variance
rather well, but the discussion on this matter is heuristic and still contains lots
of open questions.
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10. Appendix

We split the proof of Theorem 3.1 into several parts, dealing with the difficulties
(1), (2) and (3), mentioned in section 3. Here and in the following we will
use some empirical process notation to make the transition to the asymptotic
distribution more transparant. As an example, we give a representation of

N ′
k/Nk =

∑
Ti∈Ik

∆i,1

# {Ti ∈ Ik}
. (10.1)

in terms of integrals with respect to empirical distributions. First we write:

n−1N ′
k =

∫

t∈Ik

δ1 dPn(t, u, δ),

where δ = (δ1, δ2, δ3) is the vector of indicators

δ1 = 1{x≤t}, δ2 = 1{t<x≤u}, δ3 = 1{x>u},

giving the position of the unobservable random variables Xi with respect to
the observation interval [Ti, Ui], and where Pn is the empirical measure of the
random variables (Ti, Ui,∆i) = (Ti, Ui,∆i,1,∆i,2,∆i,3).

The denominator of (10.1), after dividing by n, is rewritten in the form:

n−1Nk =

∫

t∈Ik

dGn,1(t) = Gn,1 (tk+1)−Gn,1 (tk) , (10.2)

whereGn,1 is the empirical distribution function of the Ti, with underlying df G1

and underlying density g1, which is the first marginal of h. Using this notation,
we get:

N ′
k/Nk =

∫
t∈Ik

δ1 dPn(t, u, δ)

Gn,1 (tk+1)−Gn,1 (tk)
, (10.3)

where we the define the ratio to be zero if the denominator is zero. The terms
M ′

k/Mk and Q′
j,k/Qj,k can be rewritten in a similar way.

We will also use the following decomposition:

{
N ′

k

Nk
− F0(tk)

}
1{Nk>0}

=
N ′

k − E {N ′
k|Nk}

Nk
1{Nk>0} +

E {N ′
k −NkF0(tk)|Nk}

Nk
1{Nk>0} . (10.4)

We similarly have, denoting 1− F0 by F 0,

{
M ′

k

Mk
− F 0(tk)

}
1{Mk>0}

=
M ′

k − E {M ′
k|Mk}

Mk
1{Mk>0} +

E
{
M ′

k −MkF 0(tk)|Mk

}

Mk
1{Mk>0} . (10.5)
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and

{
Q′

j,k

Qj,k
− {F0(tk)− F0(tj)}

}
1{Qj,k>0}

=
Q′

j,k − E
{
Q′

j,k|Qj,k

}

Qj,k
1{Qj,k>0}

+
E
{
Q′

j,k −Qj,k {F0(tk)− F0(tj)} |Qj,k

}

Qj,k
1{Qj,k>0} . (10.6)

One can consider this as a decomposition into a “variance part” and a “bias
part”, where the first terms on the right-hand sides of the above expressions
correspond to the variance part and the second terms to the bias part.

We first deal with the bias part.

Lemma 10.1. Let the conditions of Theorem 3.1 be satisfied, and let, for each

interval Ik of the partition, tk = t
(n)
k be its left boundary point. Moreover, let

tj = t
(n)
j → t0, and αn be defined by (3.12). Then we have for Birgé’s statistic,

defined by (3.4),

(i) As n → ∞,

α−2
n var

(
E
{
F̃n(tj)− F0(tj)

∣∣ Nk, Qj,k, k > j; Mk, Qk,j, k < j
})2

→ 0.

(10.7)
(ii) As n → ∞,

α−1
n E

{
F̃n(tj)− F0(tj)

∣∣ Nk, Qj,k, k > j; Mk, Qk,j , k < j
}

p−→ 1
2cf0(t0).

(10.8)

Proof. (i). If Nk, Mk, Qj,k and Qk,j are strictly positive, for all (relevant) values
of k, we can write

E
{
F̃n(tj)− F0(tj)

∣∣ Nk, Qj,k, k > j; Mk, Qk,j , k < j
}

=
∑

k:k>j

wj,k

{
E {N ′

k −NkF0(tk)|Nk}
Nk

−
E
{
Q′

j,k −Qj,k {F0(tk)− F0(tj)} |Qj,k

}

Qj,k

}

+
∑

k:k<j

wj,k

{
E
{
Mk −M ′

kF 0(tk)|Mk

}

Mk

+
E
{
Q′

k,j −Qk,j {F0(tk)− F0(tj)} |Qk,j

}

Qk,j

}
,
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see (10.4) to (10.6). We can write this in the following form:

E
{
F̃n(tj)− F0(tj)

∣∣ Nk, Qj,k, k > j; Mk, Qk,j , k < j
}

=
∑

k:k>j

wj,k

{∫
Ik

{F0(t)− F0(tk)} dGn,1(t)

Gn,1(tk+1)−Gn,1(tk)

−
∫
t∈Ij , u∈Ik

{F0(u)− F0(t)− F0(tk) + F0(tj)} dHn(t, u)∫
t∈Ij , u∈Ik

dHn(t, u)

}

+
∑

k:k<j

wj,k

{∫
Ik

{F0(t)− F0(tk)} dGn,2(t)

Gn,2(tk+1)−Gn,2(tk)

+

∫
t∈Ik, u∈Ij

{F0(u)− F0(t)− F0(tj) + F0(tk)} dHn(t, u)∫
t∈Ik, u∈Ij

dHn(t, u)

}
.

By expanding F0 in tk and tj , as in (3.11), we find that this can be written

E
{
F̃n(tj)− F0(tj)

∣∣ Nk, Qj,k, k > j; Mk, Qk,j , k < j
}

=
∑

k:k>j

wj,k

{
f0(tk)

∫
Ik
(t− tk) dGn,1(t)

Gn,1(tk+1)−Gn,1(tk)

−
∫
t∈Ij , u∈Ik

{f0(tk) (u− tk)− f0(tj) (t− tj)} dHn(t, u)∫
t∈Ij , u∈Ik

dHn(t, u)

}

+
∑

k:k<j

wj,k

{
f0(tk)

∫
Ik

(t− tk) dGn,2(t)

Gn,2(tk+1)−Gn,2(tk)

−
∫
t∈Ik, u∈Ij

{f0(tj) (u− tj)− f0(tk) (t− tk)} dHn(t, u)∫
t∈Ik, u∈Ij

dHn(t, u)

}

+ o (1/K) .

The remainder term o(1/K) arises from the fact that we can write, for example,

∫
Ik

{F0(t)− F0(tk)} dGn,1(t)

Gn,1(tk+1)−Gn,1(tk)
=

f0(tk)
∫
Ik

(t− tk) dGn,1(t)

Gn,1(tk+1)−Gn,1(tk)
+ (tk+1 − tk) o(1),

where tk+1 − tk ≤ 1/K, and the o(1)-factor is uniform in k, by the uniform
contiuity of f0 on [0, 1]. A similar expansion is used for the other terms, and the
o(1/K) remainder term now surfaces from the fact that the weights wj,k sum
to 1.
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Furthermore, if j < k, and tk, tj ∈ [ǫ, 1− ǫ], for some ǫ ∈ (0, 1/2), we get:

Ew2
j,k

{
f0(tk)

∫
Ik

(t− tk) dGn,1(t)

Gn,1(tk+1)−Gn,1(tk)
−

f0(tk)
∫
Ik
(t− tk) dG1(t)

Gn,1(tk+1)−Gn,1(tk)

}2

1{Nk>0>0}

≤ E
nf0(tk)

2
{∫

Ik
(t− tk) d (Gn,1 −G1) (t)

}2

(1 + k − j)2W 2
j {Gn,1(tk+1)− Gn,1(tk)}

1{Nk>0}

∼ f0(tk)
2

3(1 + k − j)2Kg1(tk)
E

1

W 2
j

1{Wj > 0}

∼ 3f0(tk)
2

n(1 + k − j)2g1(tk) {a(t0) + b(t0)}2 (log n)2
,

where we use (3.10) and exponential inequalities of the type discussed in the
proof of Lemma 3.1 below for the probability that

|Gn,1(tk+1)−Gn,1(tk)−G1(tk+1) +G1(tk)| > ǫ.

We similarly get, for all k > j,

Ew2
j,k

{∫
t∈Ij , u∈Ik

f0(tk) (u− tk) d (Hn −H) (t, u)
∫
t′∈Ij , u′∈Ik

dHn(t′, u′)

−
∫
t∈Ij , u∈Ik

f0(tj) (t− tj) d (Hn −H) (t, u)
∫
t′∈Ij , u′∈Ik

dHn(t′, u′)

}2

1{Qj,k>0}

≤ E

{
f0(tk)

2 + f0(tj)
2
}
{1 + o(1)}

3n(1 + k − j)2h(tj , tk) {a(t0) + b(t0)}2 (logn)2
,

with an analogous upper bound for the terms, involving Qk,j,, with k < j, and,
finally, if k < j, and tk, tj ∈ [ǫ, 1− ǫ],

Ew2
j,k

{
f0(tk)

∫
Ik

(t− tk) d (Gn,2 −G2) (t)

Gn,2(tk+1)−Gn,2(tk)

}2

1{Mk>0}

≤ 3f0(tk)
2{1 + o(1)}

n(1 + k − j)2g2(tk) {a(t0) + b(t0)}2 (log n)2
.

The terms for tk > 1− ǫ are treated by using

Ew2
j,k

{
f0(tk)

∫
Ik

(t− tk) dGn,1(t)

Gn,1(tk+1)−Gn,1(tk)

}2

≤ Ew2
j,kf0(tk)

2 (tk+1 − tk)
2

≤
w2

j,kf0(tk)
2

K2
∼ 9a(tk)

2f0(tk)
2

K2(k − j + 1)2 {a(t0) + b(t0)}2 (logn)2

∼ 9a(tk)
2f0(tk)

2

K4(tk − tj)2 {a(t0) + b(t0)}2 (log n)2
,
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with a similar upper bound for tk < ǫ and

Ew2
j,k

{
f0(tk)

∫
Ik

(t− tk) dGn,2(t)

Gn,2(tk+1)−Gn,2(tk)

}2

.

We also have, for example, if k′ > k > j,

E

{
wj,kf0(tk)

∫
Ik

(t− tk) d (Gn,1 −G1) (t)

Gn,1(tk+1)−Gn,1(tk)

·
wj,k′f0(tk′ )

∫
Ik′

(t− tk′) d (Gn,1 −G1) (t)

Gn,1(tk′+1)−Gn,1(tk′)

}

∼ 9a(tk)a(tk′ )

4nK2{a(t0) + b(t0)}2(k − j + 1)(k′ − j + 1)(logn)2
,

and the expectation of other cross-product terms can be treated similarly.
Combining these results, we find that the variance of the conditional expec-

tation

α−1
n E

{
F̃n(tj)− F0(tj)

∣∣ Nk, Qj,k, k > j; Mk, Qk,j , k < j
}

is of order O(1/{n(logn)2α2
n}) = o(1).

(ii). We have, if tk ∈ [ǫ, 1− ǫ],
∫
Ik

{F0(t)− F0(tk)} dGn,1(t)

Gn,1(tk+1)−Gn,1(tk)
=

1
2c

2f0(tk) (tk+1 − tk)
2 g1(tk) {1 + op(1)}

cg1(tk) (tk+1 − tk) {1 + op(1)}
= 1

2cf0(tk) (tk+1 − tk) {1 + op(1)} ,
and similarly,

∫
Ik

{F0(t)− F0(tk)} dGn,1(t)

Gn,2(tk+1)−Gn,2(tk)
= 1

2cf0(tk) (tk+1 − tk) {1 + op(1)} ,

Moreover, if k > j,
∫
t∈Ij , u∈Ik

{F0(u)− F0(t)− F0(tk) + F0(tj)} dHn(t, u)∫
t∈Ij , u∈Ik

dHn(t, u)

= 1
2c

{f0(tk) (tk+1 − tk)− f0(tj) (tj+1 − tj)}h(tj , tk) {1 + op(1)}
h(tj , tk) {1 + op(1)}

= 1
2c {f0(tk) (tk+1 − tk)− f0(tj) (tj+1 − tj)} {1 + op(1)} ,

with a similar expansion for k < j. The op(1)-terms are uniform in k, as follows
by using exponential inequalities of the same type as used in Lemma 3.1.

It is easily seen that the terms, involving values of tk /∈ [ǫ, 1 − ǫ] give a
negligible contribution, by noting that

f0(tk)
∫
Ik
(t− tk) dGn,1(t)

Gn,1(tk+1)−Gn,1(tk)
≤ f0(tk) (tk+1 − tk) ,
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if k > j, with a similar upper bound if tk < tj. The results now follows by
multiplying with wj,k and summing over k, see (3.11).

We now define

Un,k = n−1 {N ′
k − E {N ′

k|Nk}} , (10.9)

and

Vn,k = n−1 {M ′
k − E {M ′

k|Mk}} . (10.10)

Note that these are the numerators of the “variance parts” in (10.4) and (10.5),
divided by n. The following lemma shows that (in the proper scaling for Birgé’s
statistic) the variances of the sums of terms, involving Un,k and Vn,k in Birgé’s
statistic, tend to zero.

Lemma 10.2. Let the conditions of Theorem 3.1 be satisfied, let tj = t0, and
let αn be defined by (3.12). Moreover, let Un,k and Vn,k be defined by (10.9) and
(10.10). Then, as n → ∞,

α−2
n var


∑

k:k>j

wj,kUn,k

Gn,1 (tk+1)−Gn,1 (tk)
+
∑

k:k<j

wj,kVn,k

Gn,2 (tk+1)−Gn,2 (tk)


→ 0.

Proof. We have:

var


∑

k:k>j

wj,kUn,k

Gn,1 (tk+1)−Gn,1 (tk)
+
∑

k:k<j

wj,kVn,k

Gn,1 (tk+1)−Gn,1 (tk)




=
∑

k:k>j

var

(
wj,kUn,k

Gn,1 (tk+1)−Gn,1 (tk)

)
+
∑

k:k<j

var

(
wj,kVn,k

Gn,2 (tk+1)−Gn,2 (tk)

)
,

since the covariances of the terms in the sum are zero. As before, we define the
ratios to be zero if the denominator is zero.

Furthermore:

var

(
wj,kUn,k

Gn,1 (tk+1)−Gn,1 (tk)

)
= E

(
wj,kUn,k

Gn,1 (tk+1)−Gn,1 (tk)

)2

,

since E wj,kUn,k/{Gn,1 (tk+1) − Gn,1 (tk)} = 0. Noting that the weights wj,k

have upper bound √
n {Gn,1 (tk+1)−Gn,1 (tk)}

(k − j + 1)Wj
,

we now obtain:

α−2
n var

(
wj,kUn,k

Gn,1 (tk+1)−Gn,1 (tk)

)

≤ α−2
n E

nU2
n,k

(k − j + 1)2 {Gn,1 (tk+1)−Gn,1 (tk)}W 2
j
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= α−2
n E

∫
Ik

F0(t) {1− F0(t)} dGn,1(t)

(k − j + 1)2 {Gn,1 (tk+1)−Gn,1 (tk)}W 2
j

=
α−2
n {F0(tk) (1− F0(tk)) + o(1)}

(k − j + 1)2
E
{
1/W 2

j

}
1{Wj>0} .

where (as before),

Un,k/ {Gn,1 (tk+1)−Gn,1 (tk)} def
= 0,

if Gn,1 (tk+1)−Gn,1 (tk) = 0.
By (3.10):

E
{
1/W 2

j

}
1{Wj>0} ∼ K

n {a(t0) + b(t0)}2 (logn)2
≍ n−2/3(logn)−5/3, (10.11)

So we obtain

α−2
n

∑

k:k>j

var

(
wj,kUn,k

Gn,1 (tk+1)−Gn,1 (tk)

)

+ α−2
n

∑

k:k<j

var

(
wj,kVn,k

Gn,2 (tk+1)−Gn,2 (tk)

)

= O (1/ logn) .

We now define, if j < k,

Wn,j,k = (log n)
{
Q′

j,k − E
{
Q′

j,k|Qj,k

}}
, (10.12)

and, if j > k:
Wn,j,k = (log n)

{
Q′

k,j − E
{
Q′

k,j |Qk,j

}}
. (10.13)

Lemma 10.2 suggests that if (n logn)1/3{F̃n(t0)− F0(t0)} has a nondegenerate
distribution, this has to come from the sum:

−
∑

k:k>j

wj,k
Wn,j,k

c2h(tj , tk)
+
∑

k:k<j

wj,k
Wn,j,k

c2h(tk, tj)
, (10.14)

The following lemma shows that (10.14), with the random weights wj,k replaced
by the deterministic weights w̃j,k indeed has a nondegenerate limit distribution.

Lemma 10.3. Let the conditions of Theorem 3.1 be satisfied, let tj = t0. More-
over, let Wn,j,k be defined by (10.12) and (10.13). Then:

−
∑

k:k>j

w̃j,k
Wn,j,k

c2h(tj , tk)
+
∑

k:k<j

w̃j,k
Wn,j,k

c2h(tk, tj)

D−→ N
(
0, σ2

0

)

where the right-hand side denotes a normal random variable, with expectation 0
and variance σ2

0 , defined by (3.14) in Theorem 3.1.
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Proof. We will prove the result by constructing a martingale-difference array,
and applying Theorem 1, p. 171 of [12]. Define, for k > j, the random variables

ξn,k = −w̃j,k
Wn,j,k

c2h(tj , tk)
.

For k < j we define

ξn,k = w̃j,k
Wn,j,k

c2h(tk, tj)
,

and (for notational convenience) we define ξn,j ≡ 0.
Let the increasing sequence of σ-fields Fn,k, k = 0, 1, . . . be defined by

Fn,0 = ∅, Fn,k = σ {(Ti, Ui,∆i) , Ti ≤ tk+1, Ui ∈ Ij} , k ≤ j,

and
Fn,k = σ {(Ti, Ui,∆i) , Ti ∈ Ij , Ui ≤ tk+1} , j < k,

where ∆i = (∆i,1,∆i,2,∆i,3), as before. Note: Ik = [tk, tk+1), k < K, and
IK = [tK , tK+1], under scheme (i), and Ik = [tk, tk+1), k ≤ K, and IK+1 =
[tK+1, tK+2] under scheme (ii) at the beginning of this section.

Then:
E
{
ξn,k

∣∣ Fn,k−1

}
= 0, k = 1, 2, . . . (10.15)

Here and in the following the indices k run from 1 to K or to K +1, depending
on whether scheme (i) or (ii) holds, respectively.

Note that, if k < j, we can write

Wn,j,k = n logn

∫

(t,u)∈Ik×Ij

{δ2 − {F0(u)− F0(t)}} dPn(t, u, δ)

= logn

n∑

i=1

{∆2,i − {F0(u)− F0(t)}} 1{Ti∈Ik, Ui∈Ij} .

and that
E
{
∆2,i − {F0(Ui)− F0(Ti)}

∣∣ Fn,k

}
= 0,

if tk < Ti < tj and Ui ∈ Ij , using the independence of the Xi from the pairs
(Ti, Ui). Similar relations hold if ti ∈ Ij . This implies

E
{
ξn,k

∣∣ Fn,k−1

}
= 0, k = 1, 2, . . . . (10.16)

It is also clear that ξn,k is measurable with respect to Fn,k.
Let the conditional variances vn,k be defined by

vn,k = E
{
ξ2n,k

∣∣ Fn,k−1

}
, k = 1, 2, . . . .

We first consider the indices k such that

|j − k| < ǫnK,
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where ǫn = (logn)−1/3. We then get, if k < j,

vn,k =
w̃2

j,kn(log n)
2

c4h(tk, t0)2

·E
{∫

t∈Ik, u∈Ij

{F0(u)− F0(t)} {1− F0(u) + F0(t)} dHn(t, u)
∣∣ Fn,k−1

}

=
w̃2

j,kn
1/3(logn)4/3(t0 − tk)f0(t0) {1 + op(1)}

c2h(tk, t0)

=
9β(t0)

2(n logn)1/3(j − k + 1)f0(t0) {1 + op(1)}
c2Kh(tk, t0)(j − k + 1)2 logn

=
9b(t0)

2f0(t0) {1 + op(1)}
c {a(t0) + b(t0)}2 h(tk, t0)(j − k + 1) logn

.

We similarly get:

vn,k =
9a(t0)

2f0(t0) {1 + op(1)}
c {a(t0) + b(t0)}2 h(tk, t0)(j − k + 1) logn

.

if k > j and k− j < ǫnK. The terms vn,k, where |k− j| ≥ ǫnK, give a negligible
contribution, since

∑

k:j−k≥ǫnK

vn,k =
∑

k:j−k≥ǫnK

w̃2
j,kn(logn)

2

c4h(tk, t0)2
Op

{
(n logn)−2/3

}

= Op

(
(logn)−2/3

)
,

using

∑

k:j−k≥ǫnK

w̃2
j,k = O


 ∑

k:j−k≥ǫnK

1

(j − k)2(logn)2


 = O

(
n−1/3(logn)−2

)
,

as n → ∞. So we find ∑

k:k 6=j

vn,k
p−→ σ2

0 , (10.17)

since ∑

m:m<ǫnK

1

m+ 1
∼ 1

3
logn, n → ∞.

To get asymptotic normality, it only remains to show that the Lindeberg-type
condition ∑

k 6=j

E
{
ξ2n,k1{|ξn,k|>ǫ}

∣∣ Fn,k−1

} p−→ 0, (10.18)
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holds for each ǫ > 0, since in that case both conditions of Theorem 1 of [12] are
satisfied. To this end we use the conditional Cauchy-Schwarz inequality

E
{
ξ2n,k1{|ξn,k|>ǫ}

∣∣ Fn,k−1

}
≤
√
E
{
ξ4n,k

∣∣ Fn,k−1

}
E
{
1{|ξn,k|>ǫ}

∣∣ Fn,k−1

}
.

(10.19)
Note that:

E
{
1{|ξn,k|>ǫ}

∣∣ Fn,k−1

}
≤ ǫ−2E

{
ξ2n,k

∣∣ Fn,k−1

}
= ǫ−2vn,k = Op(1/ logn),

(10.20)

as n → ∞. Using again the conditional independence of the Xi, given the values
of the pairs (Ti, Ui), and defining p0(t, u) = F0(u)−F0(t), p0(t, u) = 1−p0(t, u),
we get, if k < j:

E
{
ξ4n,k

∣∣ Fn,k−1

}

∼
w̃4

j,kn(logn)
4

c8h(tk, t0)4
·

· E
{∫

t∈Ik, u∈Ij

p0(t, u)p0(t, u)}
{
p0(t, u)

3 + p0(t, u)
3
}
dHn(t, u)

∣∣ Fn,k−1

}

+
w̃4

j,kn
2(logn)4

c8h(tk, t0)4
·

· E
{{∫

t∈Ik, u∈Ij

p0(t, u){1− p0(t, u)} dHn(t, u)

}2 ∣∣∣∣ Fn,k−1

}
. (10.21)

The first conditional expectation on the right-hand side of (10.21) arises from
terms of the form

E
{
{∆2,i − (F0(Ui)− F0(Ti))}4

∣∣ Fn,k−1

}
,

where Ti ∈ Ik, Ui ∈ Ij , and the second one from terms of the form

E
{
{∆2,i − (F0(Ui)− F0(Ti))}2 {∆2,i′ − (F0(Ui′)− F0(Ti′))}2

∣∣ Fn,k−1

}
,

where i 6= i′ and Ti, Ti′ ∈ Ik; Ui, Ui′ ∈ Ij , where we added the diagonal terms
(where i = i′) for simplicity of notation, since they give a negligible contribution.
The other conditional expectations of crossproducts are zero. If k > j we get an
entirely similar expansion, with the roles of t and u interchanged.

The first term on the right-hand side of (10.21) gives a contribution of order
Op(1/

√
logn) in the summation of the terms

√
E
{
ξ4n,k

∣∣ Fn,k−1

}

over k. The square root of the second term is of order Op(1/{|j − k| logn}),
if |j − k| < ǫnK, which leads to a contribution of order Op(1) in the above
summation. The part where |j − k| ≥ ǫnK is again negligible.
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So we get, using (10.19) and (10.20),

K∑

k=1

E
{
ξ2n,k1{|ξn,k|>ǫ}

∣∣ Fn,k−1

}
= Op

(
1/
√
logn

) K∑

k=1

√
E
{
ξ4n,k

∣∣ Fn,k−1

}

= Op

(
1/
√
logn

)
.

Proof of Theorem 3.1. ad (i). Lemma 10.2 shows that the terms involvingN ′
k/Nk

and M ′
k/Mk only give a contribution to the asymptotic bias of Birgé’s statistic,

but not to the limit distribution of the centered part. The limit distribution of
the centered part therefore arises from the terms Wn,j,k, where

Wn,j,k = n logn

∫

(t,u)∈Ik×Ij

{δ2 − {F0(u)− F0(t)}} dPn(t, u, δ),

which are the numerators of the fractions

(n logn)1/3
{
Q′

j,k − E
(
Q′

j,k|Qj,k

)}

Qj,k

=
n logn

∫
(t,u)∈Ik×Ij

{δ2 − {F0(u)− F0(t)}} dPn(t, u, δ)

(n logn)2/3
∫
(t,u)∈Ij×Ik

dHn(t, u)
.

Now note that

(n logn)2/3
∫

(t,u)∈Ij×Ik

dHn(t, u) = c2h(tj , tk) {1 + op(1)} .

where the op(1)-term is uniform in k by the results, given above. Moreover, by
part (i) of Lemma 3.1,

∑

k 6=j

wj,k
Wn,j,k

c2h̃(tj , tk)
=
∑

k 6=j

w̃j,k
Wn,j,k

c2h̃(tj , tk)
+ op(1)

∑

k 6=j

Wn,j,k

(k − j + 1) logn
,

where

h̃(t, u) = h(t, u), t < u, h̃(t, u) = h(u, t), t ≥ u.

The result now follows from Lemma 10.3.
ad (ii). We first prove (3.15). Since EF̃n(tj) is the expectation of

E
{
F̃n(tj)

∣∣ Nk, Qj,k, k > j; Mk, Qk,j, k < j
}
,

part (i) of Lemma 10.1 tells us that

α−2
n E

{
E
{
F̃n(tj)

∣∣ Nk, Qj,k, k > j; Mk, Qk,j , k < j
}
− EF̃n(tj)

}2

→ 0,
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as n → ∞. This implies:

α−1
n

{
E
{
F̃n(tj)

∣∣ Nk, Qj,k, k > j; Mk, Qk,j , k < j
}
− EF̃n(tj)

}
p−→ 0,

as n → ∞. But since, by part (ii) of Lemma 10.1,

α−1
n

{
E
{
F̃n(tj)

∣∣ Nk, Qj,k, k > j; Mk, Qk,j , k < j
}
− F0(t0)

}
p−→ 1

2cf0(t0),

as n → ∞, we must have:

α−1
n

{
EF̃n(tj)− F0(t0)

}
→ 1

2cf0(t0), n → ∞.

This yields (3.15).
To prove (3.16), we first note that, by part (i) of Lemma 10.1, the variance

of the conditional expectation

α−1
n E

{
F̃n(tj)− F0(t0)

∣∣ Nk, Qj,k, k > j; Mk, Qk,j , k < j
}

in the decomposition

α−1
n

{
F̃n(tj)− F0(t0)

}

= α−1
n

{
F̃n(tj)− E

{
F̃n(tj)

∣∣ Nk, Qj,k, k > j; Mk, Qk,j , k < j
}}

+ α−1
n E

{
F̃n(tj)− F0(t0)

∣∣ Nk, Qj,k, k > j; Mk, Qk,j , k < j
}

tends to zero. By Lemma 10.2 the sum of terms involving Nk and Mk also gives
an asymptotically negligible contribution to α−1

n

{
F̃n(tj)− F0(t0)

}
.

So we only have to consider the contribution of terms of the form

α−1
n wj,k

{
Q′

j,k − E
(
Q′

j,k|Qj,k

)}

Qj,k
, k > j, (10.22)

and
α−1
n wj,k

{
Q′

k,j − E
(
Q′

k,j |Qk,j

)}

Qk,j
, k < j. (10.23)

The variance of (10.22) is given by

E
n(logn)2w2

j,k

∫
(t,u)∈Ik×Ij

{F0(u)− F0(t)} {1− (F0(u)− F0(t))} dHn(t, u)

(n logn)4/3
{∫

(t,u)∈Ij×Ik
dHn(t, u)

}2 .

Lemma 3.1 gives (uniform) exponential inequalities are derived for the proba-
bilities of the events of the following type:

Aj,k
def
=

{∣∣∣∣∣(n logn)2/3
∫

(t,u)∈Ij×Ik

dHn(t, u)− c2h(tj , tk)

∣∣∣∣∣ > ǫc2h(tj , tk)

}
,
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yielding upper bounds, tending to zero faster than any power of n. So we get:

E

{
n(logn)2w2

j,k

∫
(t,u)∈Ik×Ij

{F0(u)− F0(t)} {1− (F0(u)− F0(t))} dHn(t, u)

(n logn)4/3
{∫

(t,u)∈Ij×Ik
dHn(t, u)

}2

· 1Aj,k

}

≤ K {F0(tk+1)− F0(tj)}E
(n logn)2/3{1 + o(1)}

(1 + k − j)2W 2
j

1Aj,k∩{Wj>0}

≤ K3 {F0(tk+1)− F0(tj)}E
(n logn)2/3{1 + o(1)}

(1 + k − j)2
P (Aj,k) ,

which tends to zero faster than any power of n, uniformly in k. Here we use the
lower bound 1/K for Wj1{Wj>0}.

So we find:

E
n(logn)2w2

j,k

∫
(t,u)∈Ik×Ij

{F0(u)− F0(t)} ({1− (F0(u)− F0(t))} dHn(t, u)

(1 − ǫ)2c4h(tj , tk)

+ o(1/K)

≥ E
n(logn)2w2

j,k

∫
(t,u)∈Ik×Ij

{F0(u)− F0(t)} {1− (F0(u)− F0(t))} dHn(t, u)

(n logn)4/3
{∫

(t,u)∈Ij×Ik
dHn(t, u)

}2

≥ E
n(logn)2w2

j,k

∫
(t,u)∈Ik×Ij

{F0(u)− F0(t)} {1− (F0(u)− F0(t))} dHn(t, u)

(1 + ǫ)2c4h(tj , tk)

+ o(1/K).

This implies:

E
n(logn)2w2

j,k

∫
(t,u)∈Ik×Ij

{F0(u)− F0(t)} {1− (F0(u)− F0(t))} dHn(t, u)

(n logn)4/3
{∫

(t,u)∈Ij×Ik
dHn(t, u)

}2

= E
n(logn)2w2

j,k

∫
(t,u)∈Ik×Ij

{F0(u)− F0(t)} {1− (F0(u)− F0(t))} dHn(t, u)

c4h(tj , tk)

+ o(1/K).

Now let, for tk < 1− δ, where δ > 0, the event Bk be defined by

Bk
def
=

{
(1 + k − j)

∣∣∣∣(n logn)1/3
∫

u∈Ik

dGn(u)− cg1(tk)

∣∣∣∣ > ǫcg1(tk)

}
,

For tk ≥ 1− δ, we define the event Bk by:

Bk
def
=

{
(1 + k − j)

∣∣∣∣(n log n)1/3
∫

u∈Ik

dGn(u)− cg1(tk)

∣∣∣∣ > ǫc

}
,
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Similarly to what is true for Aj,k, we have that P (Bk) tends to zero faster than
any power of n, uniformly in k. This shows that we also can replace wj,k by w̃j,k

in the asymptotic expression for the variance, using the fact that the terms for
tk > 1− δ will give a contribution of lower order in the summation. So we find:

n(logn)2

·
∑

k:j>k

Ew2
j,k

∫
(t,u)∈Ik×Ij

{F0(u)− F0(t)} {1− (F0(u)− F0(t))} dHn(t, u)

c4h(tj , tk)

∼
∑

k:j>k

9na(tk)
2E
∫
(t,u)∈Ik×Ij

{F0(u)− F0(t)} {1− (F0(u)− F0(t))} dHn(t, u)

c4 {a(t0) + b(t0)}2 (j − k + 1)2h(tj , tk)

∼
∑

k:j>k

9na(tk)
2 {F0(tk)− F0(tj)} {1− (F0(tk)− F0(tj))} (n logn)−2/3

c2 {a(t0) + b(t0)}2 (j − k + 1)2h(tj , tk)

∼
∑

k:j>k

9na(tj)
2f0(tj) (tk − tj) (n logn)−2/3

c2 {a(t0) + b(t0)}2 (j − k + 1)2h(tj , tk)

∼
∑

k:j>k

9na(tj)
2f0(tj)(n logn)−1

c {a(t0) + b(t0)}2 (j − k + 1)h(tj , tk)
∼ 3a(t0)

2f0(t0)

c {a(t0) + b(t0)}2 h(tj , tk)
.

Similarly we find that the summation for k < j gives a contribution which is
asymptotically equivalent to

3b(t0)
2f0(t0)

c {a(t0) + b(t0)}2 h(tj , tk)
.

This yields (3.16).

Proof of Lemma 3.1. We first prove (3.9). By Bennett’s inequality (see, e.g.,
[12], p. 192) we have, for ǫ > 0,

P
{
|Nk/n− ENk/n| >

ǫ

K

}

≤ 2 exp

{
− nǫ2

2K2
∫
t∈Ik

g1(t) dt
φ

(
ǫ

K
∫
t∈Ik

g1(t) dt

)}
,

where

φ(x) =
2 {(1 + x) log(1 + x)− x}

x2
, x > 0. (10.24)

This way of stating Bennett’s inequality first appeared in [13]. The function φ
satisfies limx↓0 φ(x) = 1 and

φ(x) ≥ 1

1 + x/3
, x > 0,

see [12], p. 192, p. 193.
By the continuity of g1 on [0, 1] there exists for each k a ξk ∈ Ik such that

∫

Ik

g1(t) dt = g1(ξk) {tk+1 − tk} .
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Hence we get, for each k,

P
{
|Nk/n− ENk/n| >

ǫ

K

}
≤ 2 exp

{
− nǫ2

2Kg1(ξk)
φ

(
ǫ

g1(ξk)

)}

= 2 exp

{
− cn2/3ǫ2

2g1(ξk)(log n)1/3
φ

(
ǫ

g1(ξk)

)}
.

Similarly we get, for each k and points ηk ∈ Ik,

P
{
|Mk/n− EMk/n| >

ǫ

K

}
≤ 2 exp

{
− cn2/3ǫ2

2g2(ηk)(log n)1/3
φ

(
ǫ

2g2(ηk)

)}
.

Moreover, if j < k,

P
{
|Qj,k/n− EQj,k/n| >

ǫ

K2

}

≤ 2 exp

{
− nǫ2

2K4
∫
t∈Ij , u∈Ik

h(t, u) dt du
φ

(
ǫ

K2
∫
t∈Ij , u∈Ik

h(t, u) dt du

)}

= 2 exp

{
−c2n1/3ǫ2{1 + o(1)}
2h(tj , tk)(log n)2/3

φ

(
ǫ{1 + o(1)}
2h(tj , tk)

)}
.

with a similar upper bound, if k < j.
Let ǫ > 0, let h be defined by

h(t, u) = h(t, u), u ≥ t, h(t, u) = h(u, t), u < t, (10.25)

and similarly Qj,k by

Qj,k(t, u) = Qj,k(t, u), u ≥ t, k ≥ j, Qj,k(t, u) = Qk,j(u, t), (u, t), u < t, k < j.
(10.26)

Moreover, let the set Aj,ǫ be defined by

Aj,ǫ =

{
sup
k 6=j

∣∣Qj,k/n− EQj,k/n
∣∣ ≤ ǫ

K2
, sup
k>j

|Nk/n− ENk/n| ≤
ǫ

K
,

sup
k<j

|Mk/n− EMk| ≤
ǫ

K

}
.

and let
hj = inf

k:k 6=j
h(tj , tk). (10.27)

Then we have:

1− P (Aj,ǫ) = O

(
n1/3 exp

{
− c2n1/3ǫ2

4hj(logn)2/3
φ

(
ǫ

4hj

)})
. (10.28)

Furthermore, as n → ∞,

sup
k:k>j

|KENk/n− g1(tk)| = sup
k:k>j

∣∣∣∣K
∫

t∈Ik

g1(t) dt− g1(tk)

∣∣∣∣→ 0,
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also on the last interval, since g1(t) → 0 on this interval,

sup
k:k<j

|KEMk/n− g2(tk)| = sup
k:k<j

∣∣∣∣K
∫

t∈Ik

g2(t) dt− g2(tk)

∣∣∣∣→ 0,

also on the first interval, since g2(t) → 0 on this interval. We also have:

∣∣K2EQj,k/n− h(tj , tk)
∣∣ =

∣∣∣∣∣K
2

∫

t∈Ij , u∈Ik

h(t, u) dt du− h(tj , tk)

∣∣∣∣∣→ 0,

uniformly for all tk, not belonging to the first or last interval, which may not
have length 1/K (see the construction of the intervals of Birgé’s statistic at the
beginning of section 3). But on these intervals we have

h(t, tj) ∧ g2(t) = g2(t) and h(tj , t) ∧ g1(t) = g1(t),

respectively. So we get:

sup
k:k>j

∣∣(KENk/n) ∧
(
K2EQj,k/n

)
− g1(tk) ∧ h(tj , tk)

∣∣→ 0, (10.29)

and

sup
k:k<j

∣∣(KEMk/n) ∧
(
K2EQk,j/n

)
− g2(tk) ∧ h(tk, tj)

∣∣→ 0, (10.30)

Hence, we get from (10.28), (10.29) and (10.30), on the set Aj,ǫ,

Wj =
∑

k<j

√
Mk ∧ (KQk,j)

j − k + 1
+
∑

k>j

√
Nk ∧ (KQj,k)

k − j + 1

=
√
n
∑

k<j

√
(Mk/n ∧ (KQk,j/n)

j − k + 1
+
√
n
∑

k>j

√
(Nk/n) ∧ (KQj,k/n)

k − j + 1

≥
√
n(1− ǫ)




∑

k<j

√
(EMk/n) ∧ (KEQk,j/n)

j − k + 1

+
∑

k>j

√
(ENk/n) ∧ (KEQj,k/n)

k − j + 1





=

√
n(1− ǫ)√

K




∑

k<j

√
(KEMk/n) ∧ (K2EQk,j/n)

j − k + 1

+
∑

k>j

√
(KENk/n) ∧ (K2EQj,k/n)

k − j + 1





=

√
n(1− ǫ)√

K




∑

k<j

√
g2(tk) ∧ h(tk, tj)

j − k + 1
+
∑

k>j

√
g1(tk) ∧ h(tj , tk)

k − j + 1



 ,
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and similarly

Wj ≤
√
n(1 + ǫ)√

K




∑

k<j

√
g2(tk) ∧ h(tk, tj)

j − k + 1
+
∑

k>j

√
g1(tk) ∧ h(tj , tk)

k − j + 1



 .

Moreover, letting ǫn = (log n)−1/3, we get:,

∑

k<j

√
g2(tk) ∧ h(tk, tj)

j − k + 1
+
∑

k>j

√
g1(tk) ∧ h(tj , tk)

k − j + 1

=
∑

k:tj−tk<ǫn

√
g2(tk) ∧ h(tk, tj)

j − k + 1
+

∑

k:tk−tj<ǫn

√
g1(tk) ∧ h(tj , tk)

k − j + 1

+
∑

k:tj−tk≥ǫn

√
g2(tk) ∧ h(tk, tj)

j − k + 1
+

∑

k:tk−tj≥ǫn

√
g1(tk) ∧ h(tj , tk)

k − j + 1

= 1
3 {a(t0) + b(t0)} (logn){1 + o(1)}.

Relation (3.9) now follows.
To prove (3.10) we first note that

E
1

Wm
j

1{Wj>0}∩Ac
j,ǫ

= O

(
(K + 1)mn1/3 exp

{
− c2n1/3ǫ2

4hj(log n)2/3
φ

(
ǫ

4hj

)})
,

where hj is defined by (10.27), since Wj ≥ 1/(K + 1), if Wj > 0 Thus we find:

E
1

Wm
j

1{Wj>0} = E
1

Wm
j

1{Wj>0}∩Aj,ǫ
+ E

1

Wm
j

1{Wj>0}∩Ac
j,ǫ

≤ 1

(1− ǫ)m/2




∑

k<j

√
EMk ∧ (KEQk,j)

j − k + 1
+
∑

k>j

√
ENk ∧ (KEQj,k)

j − k + 1





−m

+O

(
(K + 1)mn1/3 exp

{
− c2n1/3ǫ2

4hj(log n)2/3
φ

(
ǫ

4hj

)})

∼
(

9K

n(1− ǫ)

)m/2

{(a(t0) + b(t0)) logn}−m
, n → ∞.

and similarly

E
1

Wm
j

1{Wj>0} ≥
(

9K

n(1 + ǫ)

)m/2

{(a(t0) + b(t0)) logn}−m
, n → ∞,

implying

E
1

Wm
j

1{Wj>0} ∼
(
9K

n

)m/2

{(a(t0) + b(t0)) logn}−m
, n → ∞,

which proves (3.10).
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Finally we get for j > k:

(1 + k − j)E |wj,k − w̃j,k| 1{Wj>0}

= E

∣∣∣∣∣

√
Nk ∧ (KQk,j)

Wj
1{Wj>0} −

3a(tk)

{a(t0) + b(t0)} logn

∣∣∣∣∣

≤ E

∣∣∣∣∣

√
(KNk/n) ∧ (K2Qk,j/n)− 3a(tk)

Wj

√
K/n

∣∣∣∣∣ 1{Wj>0}

+ 3a(tk)E

∣∣∣∣∣

√
n/K

Wj
1{Wj>0} −

1

{a(t0) + b(t0)} logn

∣∣∣∣∣ .

Applying the Cauchy-Schwarz inequality on the first term on the right-hand
side yields, if j < k,

E

∣∣∣∣∣

√
(KNk/n) ∧ (K2Qj,k/n)− 3a(tk)

Wj

√
K/n

∣∣∣∣∣ 1{Wj>0}

≤
{
E

{√
(KNk/n) ∧ (K2Qj,k/n)− 3a(tk)

}2
}1/2√

E1/W 2
j

= o(1/ logn),

uniformly in k, using (3.10) and the exponential inequalities for

P
{
|Nk/n− ENk/n| >

ǫ

K

}
and P

{
|Qj,k/n− EQj,k/n| >

ǫ

K2

}

derived above. Using ((3.10)) again, we get that the second term satisfies the
inequality

3a(tk)E

∣∣∣∣∣

√
n/K

Wj
1{Wj>0} −

1

{a(t0) + b(t0)} logn

∣∣∣∣∣

≤



E

{√
n/K

Wj
1{Wj>0} −

1

{a(t0) + b(t0)} log n

}2




1/2

= o(1/ logn).

The case k < j is treated similarly.
We also have:

(1 + k − j)E |wj,k − w̃j,k| 1{Wj=0} = (1 + k − j) |w̃j,k|P {Wj = 0}
= o(1/ logn),

since, in fact, P {Wj = 0} tends to zero exponentially fast in n. This proves (3.8).

We next discuss the proof of Theorem 4.1. Since the following lemmas have
proofs analogous to the proofs of Lemma 10.1 and Lemma 10.2 in section 3 we
omit their proofs.
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Lemma 10.4. Let the observation density h, the number of intervals K and

the constant c be as in Theorem 3.1, and let tk = t
(n)
k be the left boundary point

of a sub-interval of the partition, Moreover, let F0 have a continuous derivative
on [0, 1], and let Gn,1 and Gn,2 be the empirical distribution functions of the Ti

and Ui, respectively. Then

(i)

{
N ′

k

Nk
− F0(tk)

}
1{Nk>0} =

Un,k +
∫
t∈Ik

{F0(t)− F0(tk)} dGn,1(t)

Gn,1 (tk+1)−Gn,1 (tk)
,

(10.31)
where

Un,k =

∫

t∈Ik

{δ1 − F0(t)} dPn(t, u, δ).

(ii)

{
M ′

k

Mk
− F0(tk)

}
1{Mk>0} =

Vn,k +
∫
t∈Ik

{F0(t)− F0(tk)} dGn,2(t)

Gn,2 (tk+1)−Gn,2 (tk)
,

(10.32)
where

Vn,k =

∫

u∈Ik

{δ1 + δ2 − F0(u)} dPn(t, u, δ).

(iii) Let tj = t0. Then, if k > j,

n1/3

{
Q′

j,k

Qj,k
− {F0(tk)− F0(tj)}

}

=

{
1
2c {f0(tk)− f0(t0)}+

Wn,j,k

c2h(tj , tk)

}
{1 + op(1)} , (10.33)

where

Wn,j,k = n

∫

(t,u)∈Ij×Ik

{δ2 − {F0(u)− F0(t)}} dPn(t, u, δ).

If k < j we get:

n1/3

{
Q′

j,k

Qj,k
− {F0(t0)− F0(tk)}

}

=

{
Wn,j,k

c2h(tk, tj)
+ 1

2c {f0(t0)− f0(tk)}
}
{1 + op(1)} , (10.34)

where

Wn,j,k = n

∫

(t,u)∈Ik×Ij

{δ2 − {F0(u)− F0(t)}} dPn(t, u, δ).

(iv) The op(1) terms in (iii) tend to zero uniformly in k.
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Lemma 10.5. Let the conditions of Theorem 4.1 be satisfied, and let tj = t0.
Then, as n → ∞,

n2/3var


∑

k:k>j

wj,kUn,k

Gn,1 (tk+1)−Gn,1 (tk)
+
∑

k:k<j

wj,kVn,k

Gn,2 (tk+1)−Gn,2 (tk)


→ 0.

Since the first moment of the asymptotic distribution follows in a similar
way as in section 3, using the representations of the components N ′

k/Nk, etc. of
Lemma 10.4, the proof of Theorem 4.1 again boils down to proving the following
lemma.

Lemma 10.6. Let the conditions of Theorem 4.1 be satisfied, and let tj = t0.
Moreover, let Wn,j,k be defined as in part (iii) of Lemma 10.4, and let σ2 be
defined as in Theorem 4.1. Then:

−
∑

k:k>j

w̃j,k
Wn,j,k

c2h(tj , tk)
+
∑

k:k<j

w̃j,k
Wn,j,k

c2h(tk, tj)

D−→ N
(
0, σ2

)
,

where the right-hand side denotes a normal random variable, with expectation 0
and variance σ2, defined by (4.7).

Proof. Since the proof follows the same lines as the proof of Theorem 3.1, we only
give the main steps. We define the martingale difference array in the same way as
in the proof of Theorem 3.1. Then, if k < j, we get the following representation
of the conditional variance

vn,k =
nw̃2

j,k

c4h(tk, t0)2

·E
{∫

t∈Ik, u∈Ij

{F0(u)− F0(t)} {1− F0(u) + F0(t)} dHn(t, u)
∣∣ Fn,k−1

}

=
n1/3w̃2

j,k {F0(t0)− F0(tk)} {1− F0(t0) + F0(tk)} {1 + op(1)}
c2h(tk, t0)

.

Similarly we get, if k < j,

vn,k =
nw̃2

j,k

c4h(tk, t0)2

·E
{∫

t∈Ij , u∈Ik

{F0(u)− F0(t)} {1− F0(u) + F0(t)} dHn(t, u)
∣∣ Fn,k−1

}

=
n1/3w̃2

j,k {F0(tk)− F0(t0)} {1− F0(tk) + F0(t0)} {1 + op(1)}
c2h(t0, tk)

.

Hence, using (4.3) and a Riemann sum approximation, we obtain:

∑

k 6=j

vn,k
p−→ σ2. (10.35)
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It remains to show the Lindeberg-type condition
∑

k 6=j

E
{
ξ2n,k1{|ξn,k|>δ}

∣∣ Fn,k−1

} p−→ 0, (10.36)

for each δ > 0. We again use the conditional Cauchy-Schwarz inequality

E
{
ξ2n,k1{|ξn,k|>δ}

∣∣ Fn,k−1

}
≤
√
E
{
ξ4n,k

∣∣ Fn,k−1

}
E
{
1{|ξn,k|>δ}

∣∣ Fn,k−1

}
.

(10.37)
We have:

E
{
1{|ξn,k|>δ}

∣∣ Fn,k−1

}
≤ 1

δ2
E
{
ξ2n,k

∣∣ Fn,k−1

}
= Op (1/K) = Op

(
n−1/3

)
.

(10.38)

Letting p0(t, u) = F0(u)− F0(t), p0(t, u) = 1− p0(t, u), we get, if k < j:

E
{
ξ4n,k

∣∣ Fn,k−1

}

∼
nw̃4

j,k

c8h(tk, t0)4

· E
{∫

t∈Ik, u∈Ij

p0(t, u)p0(t, u)}
{
p0(t, u)

3 + p0(t, u)
3
}
dHn(t, u)

∣∣ Fn,k−1

}

+
n2w̃4

j,k

c8h(tk, t0)4
E

{{∫

t∈Ik, u∈Ij

p0(t, u){1− p0(t, u)} dHn(t, u)

}2 ∣∣∣∣ Fn,k−1

}
.

(10.39)

The first and second terms on the right-hand side are, respectively, of order

Op

(
1

K3(t0 − tk)4

)
and Op

(
1

K2(t0 − tk)4

)
.

So the second term is dominant, and hence:

∑

k<j

nw̃2
j,k

c4h(tk, t0)2

·
{
E

{{∫

t∈Ik, u∈Ij

p0(t, u){1− p0(t, u)} dHn(t, u)

}2 ∣∣∣∣ Fn,k−1

}}1/2

= Op


 1

K

∑

k<j

1

(t0 − tk)2


 = Op

(∫ t0−ǫ

ǫ

1

(t0 − t)2
dt

)
= Op(1). (10.40)

Similarly the sum of the terms for k > j is Op(1). The result now follows from
(10.37) and (10.38).

The proof of Theorem 4.1 can now be finished by making the transition from
the random weights to the deterministic weights, using Lemma 4.1 (see the proof
of Theorem 3.1 at the end of section 3), and using the central limit result of
Lemma 10.6.
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