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Abstract: We introduce the concept of penalized wavelets to facilitate
seamless embedding of wavelets into semiparametric regression models. In
particular, we show that penalized wavelets are analogous to penalized
splines; the latter being the established approach to function estimation
in semiparametric regression. They differ only in the type of penalization
that is appropriate. This fact is not borne out by the existing wavelet liter-
ature, where the regression modelling and fitting issues are overshadowed
by computational issues such as efficiency gains afforded by the Discrete
Wavelet Transform and partially obscured by a tendency to work in the
wavelet coefficient space. With penalized wavelet structure in place, we
then show that fitting and inference can be achieved via the same general
approaches used for penalized splines: penalized least squares, maximum
likelihood and best prediction within a frequentist mixed model framework,
and Markov chain Monte Carlo and mean field variational Bayes within a
Bayesian framework. Penalized wavelets are also shown have a close rela-
tionship with wide data (“p ≫ n”) regression and benefit from ongoing
research on that topic.

Keywords and phrases: Bayesian inference, best prediction, generalized
additive models, Gibbs sampling, maximum likelihood estimation, Markov
chain Monte Carlo, mean field variational Bayes, sparseness-inducing pen-
alty, wide data regression.

Received September 2011.

1. Introduction

Almost two decades have passed since wavelets made their debut in the statistics
literature (Kerkycharian and Picard [40]). Articles that use wavelets in statisti-
cal problems now number in the thousands. A high proportion of this literature
is concerned with the important statistical problem of nonparametric regres-
sion which, in turn, is a special case of semiparametric regression (e.g. Rup-
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Fig 1. Left panels: penalized spline and penalized wavelet fits (shown in blue) to a smooth
regression function (shown in red). Right panels:penalized spline and penalized wavelet fits
(shown in blue) to a jagged regression function (shown in red). For each fit the penalization
parameter is chosen via generalized cross-validation, as described in Sections 2.4 and 3.4.

pert, Wand and Carroll [56, 57]). Nevertheless, a chasm exists between wavelet-
based nonparametric regression and the older and ubiquitous penalized splines-
based nonparametric regression. In this article we remove this chasm and show
that wavelets can be used in semiparametric regression settings in virtually the
same way as splines. The only substantial difference is the type of penalization.
The standard for splines is an L2-type penalty, whilst for wavelets sparseness-
inducing penalties, such as the L1 penalty, are usually preferable. For mixed
model and Bayesian approaches, this translates to the coefficients of wavelet
basis functions having non-Gaussian (e.g. Laplacian) distributions, rather than
the Gaussian distributions typically used for spline basis coefficients.

Figure 1 depicts two scatterplots: one of which is better suited to penalized
spline regression, the other of which is more conducive to penalized wavelets.
The data in the left panels is generated from a smooth regression function and
penalized splines with generalized cross-validation (GCV) choice of the penalty
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parameter (Section 2.4) appear to perform adequately. Adoption of an analogous
strategy for penalized wavelets results in an overly rugged fit. The data in the
right panels is generated from a jagged regression function and the data are
more amenable to penalized wavelet analysis.

As will be clear by the end of this section, penalized splines and wavelet
scatterplot smoothers are quite similar in the sense that each is simply a linear
combination of basis functions. Apart from the basis functions themselves, the
only difference between penalized splines and wavelets is the nature of the co-
efficient estimation strategy. However, this commonality is not clearly apparent
from the literatures of each, as they have evolved largely independent of one
another. The thrust of this article is putting penalized spline and wavelets on
a common ground and explaining that variants of the same principles can be
used for effective fitting and inference. One interesting payoff is semiparamet-
ric regression models containing both penalized splines and penalized wavelets
(Sections 5.2 and 5.3).

1.1. Aspects of wavelets best left aside in the context of this article

Readers who have no previous exposure to wavelets could proceed to the second
last paragraph of this section. Those who are are well-versed in wavelet theory
and methodology are advised, in the context of the current article, to leave aside
the following aspects of the wavelet nonparametric regression literature:

• Mallat’s Pyramid Algorithm and the Discrete Wavelet Transform;
• the advantages of a predictor variable being equally-spaced and the sample
size being a power of 2;

• the coefficient space approach to wavelet nonparametric and semiparamet-
ric regression;

• oracle and Besov space theory, and similar functional analysis theory.

We are not saying that these aspects of wavelets are unimportant. Indeed, some
of them play crucial roles in the computation of penalized wavelets — see Sec-
tion 3.1 on wavelet basis function construction. Rather, we are saying that these
aspects have contributed to the aforementioned chasm between wavelet- and
spline-based nonparametric regression, and thus has hindered cross-fertilization
between the two areas of research. This is the reason for our plea to leave them
aside for the remainder of this article.

The only aspect of wavelets that is of fundamental importance for semipara-
metric regression is that, as with splines, they can be used to construct a set
of basis functions over an arbitrary compact interval [a, b] in R, and that linear
combinations of such basis functions are able to estimate particular, usually
jagged, regression functions better than spline bases.

We believe that this viewpoint of wavelet-based semiparametric regression is
superior in terms of its accordance with regression modelling. That is: postulate
models in terms of linear combinations of basis functions, with appropriate
distributional assumptions, penalties and the like. But keep the numerical details
in the background.
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1.2. Relationship to existing wavelet nonparametric regression

literature

The literature on wavelet approaches to nonparametric regression is now quite
immense and we will not attempt to survey it here. Books on the topic in-
clude Vidakovic [62] and Nason [47]. The penalized wavelets that we develop
in the present article are similar in substance to most wavelet-based nonpara-
metric regression estimators already developed. The reason for this article, as
the title suggests, is to show, explicitly, how wavelets can be integrated into
existing semiparametric regression structures. A reader familiar with the first
author’s co-written expositions on semiparametric regression, Ruppert, Wand
and Carroll [56, 57]), will immediately see how wavelets can be added to the
semiparametric regression armory.

Despite the absence of a literature survey, we give special mention to An-
toniadis and Fan [3], which crystallized the penalized least squares approaches
to wavelet nonparametric regression and their connections with wide data, or
“p≫ n”, regression. That article, like this one, also proposed a way of handling
non-equispaced predictor data. Finally, we note that our adoption of the term
penalized wavelets for our proposed new wavelet regression paradigm is driven
by the close analogues with penalized splines. This term has made at least one
appearance in the literature: Antoniadis, Bigot and Gijbels [2], although their
penalized wavelets are more in keeping with classical wavelet nonparametric
regression.

1.3. Elements of penalized splines

Penalized splines are the building blocks of semiparametric regression models —
a class of models that includes generalized additive models, generalized additive
mixed models, varying coefficient models, geoadditive models, subject-specific
curve models, among others (e.g. Ruppert, Wand and Carroll [56, 57]). Penalized
splines include, as special cases, smoothing splines (e.g. Wahba [63]), P-splines
(Eilers and Marx [21]), and pseudosplines (Hastie [34]). A distinguishing feature
of penalized splines is that the number of basis functions does not necessarily
match the sample sizes, and terminology such as low-rank or fixed-rank smooth-
ing has emerged to describe this aspect. The R (R Development Core Team [54])
function smooth.spline() uses a low-rank modification of smoothing splines
when the sample size exceeds 50. In the generalized additive (mixed) model
R package mgcv (Wood [73]) the univariate function estimates use yet another
variant of penalized splines: low-rank thin plate splines (Wood [71]).

In the early sections of this article we will confine discussion to the simple
nonparametric regression model, and return to various semiparametric exten-
sions in later sections. So, for now, we focus on the situation where we observe
predictor/response pairs (xi, yi), 1 ≤ i ≤ n, and consider the model

yi = f(xi) + εi (1)
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where the εi are a random sample from a distribution with mean zero and
variance σ2

ε . The regression function f is assumed to be “smooth” in some
sense. There are numerous functional analytic ways by which this smoothness
assumption can be formalized. See, for example, Chapter 1 of Wahba [63]. The
penalized spline model for the regression function f is

f(x) = β0 + β1 x+
K∑

k=1

uk zk(x)

where {zk(·) : 1 ≤ k ≤ K} is a spline basis function.
The coefficients β0, β1 and u1, . . . , uK may be estimated in a number of ways

(Section 2). The simplest is penalized least squares, which involves choosing the
coefficients to minimize

n∑

i=1

{
yi − β0 − β1 xi −

K∑

k=1

ukzk(xi)

}2

+ λ

K∑

k=1

u2k (2)

where λ > 0 is usually referred to as the smoothing parameter or penalty param-
eter. The linear component β0 + β1 x is left unpenalized since the most popular
spline basis functions have orthogonality properties with respect to lines. How-
ever, there is nothing special about lines, and other spline basis functions are
such that other polynomial functions of x should be unpenalized. The default
basis for penalized wavelets that we develop in Section 3.1 has only the constant
component unpenalized.

Criterion (2) assumes that the zk(·) have been linearly transformed to a
canonical form, in that the penalty is simply a multiple of the sum of squares of
the spline coefficients. For many spline basis functions it is appropriate that the
penalty is a more elaborate quadratic form λ

∑K
k=1

∑K
k′=1 Ωkk′ukuk′ where Ωkk′

depends on the basis functions. However, one can always linearly transform the
zk(·) so that the canonical penalty λ

∑K
k=1 u

2
k is appropriate (see e.g. Wand and

Ormerod [66], Section 4). Throughout this article we assume that the zk(·) are
in canonical form.

1.3.1. Basis construction

At the heart of contemporary penalized splines are algorithms, and correspond-
ing software routines, for construction of design matrices for smooth function
components in semiparametric regression — but also for plotting function esti-
mates over a fine grid, and prediction at other locations in the predictor space.
Algorithm 1 describes spline basis construction in its most elementary form.

The most obvious and common use of Algorithm 1 is to obtain the zk(xi)
values required for the fitting via the penalized least squares criterion (2). This
involves setting g = (x1, . . . , xn). The output matrix, usually denoted by Z, is
then the n × K design matrix containing the zk(xi). However, Algorithm 1 is
also relevant for prediction at other values of the x variable and for plotting
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Algorithm 1 Spline basis function construction in its most elementary form.

Inputs: (1) g = (g1, . . . , gM ): vector of length M in the predictor space

(2) a ≤ min(g) and b ≥ max(g): end-points of compact interval [a, b]
over which basis functions are non-zero

(3) Knot locations κ1, . . . , κK

Inputs (2) and (3) are sufficient to define spline basis functions
zk(·), 1 ≤ k ≤ K, over the interval [a, b]

Output: Zg =




z1(g1) · · · zK(g1)
...

. . .
...

z1(gM ) · · · zK(gM )




(M ×K design matrix containing the zk(·) evaluated at g)

estimates of f over a grid. For example, prediction at x = xnew would require
a call to Algorithm 1 with g = xnew, in which case a 1 ×K matrix containing
the values of zk(xnew), 1 ≤ k ≤ K, would be returned. This matrix, together
with the estimated coefficients, could then be used to construct the prediction
f̂(xnew).

Examples of Algorithm 1 include:

• the smooth.spline() function in R,
• the appendix of Eilers and Marx [21] on a discrete penalty (P-spline)
approach, combined with the mixed model basis transformation described
in Currie and Durbán [14],

• the d = 1 version of the algorithm described in Section 2 of Wood [71],
• special cases of the general model for polynomial splines given in Section
4 of Welham, Cullis, Kenward and Thompson [70],

• the O’Sullivan spline (O-spline) basis construction described in Wand and
Ormerod [66] and Appendix A of the present article.

1.4. Proposed new penalized wavelet paradigm

The foundation stone for our proposed new paradigm for embedding penalized
wavelets into semiparametric regression is an algorithm, Algorithm 2, taking
almost the same form as Algorithm 1. A concrete version of Algorithm 2 is
given in Section 3.1.

There are a few key differences between penalized wavelets and penalized
splines:

1. computational considerations (see Section 3.1) dictate that once a, b andK
are set, there are no other options for basis function specification. Hence,
the analogue of knot placement is absent for penalized wavelets.
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Algorithm 2 Wavelet basis function construction in its most elementary form.

Inputs: (1) g = (g1, . . . , gM ) (vector of M in the predictor space)

(2) a ≤ min(g) and b ≥ max(g) (end-points of compact interval [a, b]
over which basis functions are non-zero)

(3) K = 2L − 1, L positive integer

(These inputs are sufficient to define wavelet basis functions
zk(·), 1 ≤ k ≤ K, over the interval [a, b])

Output: Zg =




z1(g1) · · · zK(g1)
..
.

. . .
..
.

z1(gM ) · · · zK(gM )




(M ×K design matrix containing the zk(·) evaluated at g)

2. symmetry conditions dictate that the number of basis functions K should
satisfy K = 2L− 1 for some positive integer L, which denotes the number
of levels in the wavelet basis.

3. the unpenalized companion of Z consists of a constant rather than linear
function of the xis.

4. the coefficients of the basis functions in Z are subject to a sparseness-
inducing penalty such as the L1 penalty.

Section 3.1 gives details on computation of Z.
The third and fourth of differences imply that, instead of (2), we work with

a penalized least squares criterion

n∑

i=1

{
yi − β0 −

K∑

k=1

ukzk(xi)

}2

+ ℘λ(|uk|) (3)

where ℘λ induces a sparse solution, i.e. a solution for which many of the fitted
uks are exactly zero. The simplest choice is ℘λ(x) = λx, corresponding to L1 pe-
nalization. However, as discussed in Section 3.2, several other possibilities exist.
As alluded to in Antoniadis and Fan [3], there is a lot of common ground between
wavelet regression and wide data regression where the number of predictors ex-
ceeds the number of observations, and often labelled “p ≫ n” regression. This
connection is particularly strong for the penalized wavelet approach developed
in the current article since we work with design matrices containing wavelet
basis functions evaluated at the predictors. This means that the mechanics of
fitting penalized wavelets are similar, and sometimes identical, to that used in
fitting wide data regression models.
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1.5. Common ground between penalized splines and penalized

wavelets

The establishment of a wavelet basis algorithm for penalized wavelets puts them
on the same footing as splines. For the nonparametric regression problem (1),
the fitted values are

f̂ = Xβ̂ +Zû (4)

where X = [1 x] for penalized splines and X = 1 for penalized wavelets. In
both cases, Z is an n×K matrix containing either K spline or K wavelet basis
functions evaluated at the xi. To re-affirm the fact that penalized wavelets are
such close relatives of penalized splines we will use the

{z1(·), . . . , zK(·)}

notation for the K basis functions over [a, b] for both splines and wavelets, and
only call upon distinguishing notation when there is a clash.

The only substantial difference between penalized splines and penalized wave-
lets is in the determination of the coefficients β̂ and û. Sections 2 and 3 lay out
the differences and similarities for several fitting methods.

1.6. Outline of remainder of article

The remainder of this article is structured as follows:

2. Recap of Penalized Spline Fitting and Inference

2.1 Default basis

2.2 Fitting via penalized least squares

2.3 Effective degrees of freedom

2.4 Penalty parameter selection

2.5 Fitting via frequentist fixed model representation

2.6 Fitting via Bayesian inference and Markov chain Monte Carlo

2.7 Fitting via mean field variational Bayes

3. Penalized Wavelet Fitting and Inference

3.1 Default basis

3.2 Fitting via penalized least squares

3.3 Effective degrees of freedom

3.4 Penalty parameter selection

3.5 Fitting via frequentist mixed model representation

3.6 Fitting via Bayesian inference and Markov chain Monte Carlo

3.7 Fitting via mean field variational Bayes

4. Choice of Penalized Wavelet Basis Size
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5. Semiparametric Regression Extensions

5.1 Non-Gaussian response models

5.2 Additive models

5.3 Semiparametric longitudinal data analysis

5.4 Non-standard semiparametric regression

6. R Software

7. Discussion

Note that Sections 2 and 3 have exactly the same subsection titles. These two
sections are central to achieving our overarching goal of showing that penalized
wavelet analysis can be performed in the same way as penalized spline analysis.
Admittedly, most of the content of Section 2 has been described elsewhere.
However, putting the various penalized spline analysis approaches in one place
allows us to show the strong parallels between penalized splines and penalized
wavelets.

Section 4 discusses the issue of choosing the number of penalized wavelet
basis functions. We argue that this number should be of the form 2L − 1 where
the integer L corresponds to the number of levels in the wavelet basis function
hierarchy, and provide some suggestions for the choice of L. In Section 5 we
discuss a number of semiparametric regression extensions of penalized wavelets
including non-Gaussian response models, additive models and models for anal-
ysis of longitudinal data. R software relevant penalized wavelet semiparametric
regression described in Section 6. Closing discussion is given in Section 7.

2. Recap of penalized spline regression fitting and inference

We now provide brief descriptions of the various ways by which the nonpara-
metric regression model (1) can be fitted when f is modelled using penalized
splines:

f(x) = β0 + β1 x+

K∑

k=1

uk zk(x)

where {z1(·), . . . , zK(·)} is a set of spline basis functions appropriate for the
linear component β0 + β1 x being unpenalized. Default choice of the zk(·)s is
described in Section 2.1.

The following notation will be used throughout this section:

y =



y1
...
yn


 , β =

[
β0
β1

]
, u =




u1
...
uK


 , X =




1 x1
...

...
1 xn


 ,

Z =



z1(x1) · · · zK(x1)

...
. . .

...
z1(xn) · · · zK(xn)


 , C = [X Z] and D =




0 0 0
0 0 0
0 0 IK



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Fig 2. Canonical O-spline basis functions for 25 equally-spaced interior knots on the unit
interval.

with IK denoting the K ×K identity matrix and 0 denoting a matrix of zeroes
of appropriate size.

2.1. Default basis

For practice, it is prudent to have a default version of Algorithm 1. We believe
that the B-spline basis and penalty set-up of O’Sullivan [51] is an excellent
choice. It may be thought of as a low-rank version of smoothing splines (e.g.
Green and Silverman [31]) and is used in the R function smooth.spline()when
the sample size exceeds 50. Wand and Ormerod [66] describe conversion of the
B-splines to canonical form. Appendix A provides details on the construction
of the O’Sullivan penalized spline basis, or O-splines for short. Figure 2 shows
the canonical O-spline basis functions with 25 equally-spaced interior knots on
the unit interval.

2.2. Fitting via penalized least squares

The penalized spline criterion (2) has the matrix representation:

‖y −Xβ −Zu‖2 + λ‖u‖2. (5)

Noting that, in terms of C and D, the criterion equals

∥∥∥∥∥y −C

[
β

u

]∥∥∥∥∥

2

+ λ

[
β

u

]T
D

[
β

u

]
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the following solution is easily obtained:

[
β̂

û

]
= (CTC + λD)−1CTy. (6)

The vector of fitted values is then

f̂λ =



f̂λ(x1)

...

f̂λ(xn)


 = C

[
β̂

û

]
. (7)

2.3. Effective degrees of freedom

The effective degrees of freedom (edf) of a nonparametric regression fit is defined
to be the following function of the penalty parameter λ:

edf(λ) ≡
1

σ2
ε

n∑

i=1

Cov(f̂λ(xi), yi). (8)

It provides a meaningful and scale-free measure of the amount of fitting (Buja,
Hastie and Tibshirani [11]). Definition (8) has its roots in Stein’s unbiased risk
estimation theory (Stein [60], Efron [19]). If the vector of fitted values can be

written as f̂λ = Sλ y for some n× n matrix not depending on the yis (known
as the smoother matrix ) then

edf(λ) = tr(Sλ). (9)

For the penalized least squares fit (7) it follows from (6) and (7) that Sλ =
C(CTC + λD)−1CT , which leads to the expression

edf(λ) = tr{(CTC + λD)−1CTC}.

Figure 3 shows penalized spline fits to some simulated data with four different
edf(λ). Setting edf(λ) too low results in underfitting of the data, whilst exces-
sively high edf(λ) produces overfitting. For these data, edf(λ) = 12 achieves a
pleasing fit.

2.4. Penalty parameter selection

In the nonparametric regression literature there are numerous proposals for
selection of the penalty parameter from the data. Many of these involve trade-
offs between edf(λ) and the residual sum of squares (RSS)

RSS(λ) = ‖y − f̂λ‖
2.
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Fig 3. Penalized spline fits to a simulated data set with four different values of the effective
degrees of freedom edf(λ).

Examples of popular penalty parameter selection criteria of this type are Gen-
eralized Cross-Validation,

GCV(λ) = RSS(λ)/[{n− edf(λ)}2]

(Craven and Wahba [13]) and corrected Akaike’s Information Criterion,

AICC(λ) = log{RSS(λ)} +
2{edf(λ) + 1}

n− edf(λ) − 2

(Hurvich, Simonoff and Tsai [38]).

Another option for selection of λ is k-fold cross-validation, where k is a small
number such as 5 or 10 (e.g. Hastie, Tibshirani and Friedman [37], Section
7.10.1). This selection method is defined, and computationally feasible, for gen-
eral estimation methods and loss functions.
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2.5. Fitting via frequentist mixed model representation

The frequentist mixed model representation of (5) is

y|u ∼ N(Xβ +Zu, σ2
εI), u ∼ N(0, σ2

uI). (10)

(e.g. Ruppert et al. [56], Section 4.9). According to this model, the log-likelihood
of the model parameters is

ℓ(β, σ2
u, σ

2
ε ) = − 1

2

{
n log(2π) + log |V |+ (y −Xβ)TV −1(y −Xβ)

}

where
V = V (σ2

u, σ
2
ε ) ≡ Cov(y) = σ2

uZZT + σ2
εI.

At the maximum we have the relationship

β = (XTV −1X)−1XTV −1y (11)

which leads to the profile log-likelihood

ℓP (σ
2
u, σ

2
ε) = − 1

2

[
log |V |+ yTV −1{I −X(XTV −1X)−1XTV −1}y

]

− n
2 log(2π).

The modified profile log-likelihood, also known as the restricted log-likelihood,
is

ℓR(σ
2
u, σ

2
ε ) = ℓP (σ

2
u, σ

2
ε)−

1
2 log |X

TV −1X|

and is usually preferred for estimation of the variance parameters σ2
u and σ2

ε .
Such estimators, which we denote by σ̂2

u and σ̂2
ε , are known as restricted maxi-

mum likelihood (REML) estimators. Define

V̂ = σ̂2
uZZT + σ̂2

εI.

Then, in view of (11), an appropriate estimator for β is

β̂ = (XT V̂
−1

X)−1XT V̂
−1

y.

For estimation of u we appeal to the fact that its best predictor is

E(u|y) = σ2
εZ

TV −1(y −Xβ)

and then plug in the above estimates to obtain

û = σ̂2
εZ

T V̂
−1

(y −Xβ̂).

In summary:

• σ2
u and σ2

ε are estimated by maximum likelihood or restricted maximum
likelihood,

• β is estimated by maximum likelihood,
• u is estimated via best prediction.

In practice, the second and third of these involve replacement of σ2
u and σ2

ε with
the estimates σ̂2

u and σ̂2
ε .
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2.6. Fitting via Bayesian inference and Markov chain Monte Carlo

Bayesian approaches to penalized splines have been the subject of considerable
research in the past decade. See, for example, Sections 2.3, 2.5 and 2.7 of Ruppert
et al. [57]. Wand [65] describes a graphical models viewpoint of penalized splines
and draws upon inference methods and software from that burgeoning area of
research. We make use of such developments in this and the next subsections.

A Bayesian penalized spline model, corresponding to least squares penaliza-
tion of u, is:

y|β,u, σε ∼ N(Xβ +Zu, σ2
εI), u|σu ∼ N(0, σ2

uI),

β ∼ N(0, σ2
βI), σu ∼ Half-Cauchy(Au), σε ∼ Half-Cauchy(Aε).

(12)

The notation σ ∼ Half-Cauchy(A) means that σ has a Half Cauchy distribution
with scale parameter A > 0. The corresponding density function is p(σ) =
2/[πA{1 + (σ/A)2}], σ > 0. As explained in Gelman [29], Half-Cauchy priors
on scale parameters have the ability to achieve good non-informativity.

Approximate inference via Markov chain Monte Carlo (MCMC) is aided by
the distribution theoretical result:

σ ∼ Half-Cauchy(A) if and only if

σ2| a ∼ Inverse-Gamma(12 , 1/a) and a ∼ Inverse-Gamma(12 , 1/A
2)

(13)

(e.g. Wand, Ormerod, Padoan and Frühwirth [67]). Here

σ2 ∼ Inverse-Gamma(A,B)

denotes that σ2 has an Inverse Gamma distribution with shape parameter A > 0
and rate parameter B > 0. The Inverse Gamma density function is

p(σ2) =
BA

Γ(A)
(σ2)−A−1 e−B/σ2

, σ2 > 0.

Employment of (13) results in the following equivalent representation of (12):

y|β,u, σ2
ε ∼ N(Xβ +Zu, σ2

εI), u|σ2
u ∼ N(0, σ2

uI), β ∼ N(0, σ2
βI),

σ2
u| au ∼ Inverse-Gamma(12 , 1/au), σ

2
ε | aε ∼ Inverse-Gamma(12 , 1/aε),

au ∼ Inverse-Gamma(12 , A
−2
u ), aε ∼ Inverse-Gamma(12 , A

−2
ε ).

(14)

Figure 4 shows the directed acyclic graph (DAG) corresponding to (14).
In this Bayesian inference context, the most common choice for the vector of

fitted values is the posterior mean

f̂ = E(Xβ +Zu|y) = X E(β|y) +Z E(u|y).
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y
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2

aε

σu

2au

u

Fig 4. Directed acyclic graph representation of the auxiliary variable Bayesian penalized spline
model (14). The shaded node corresponds to observed data.

The posterior distributions of β and u, as well as the scale parameters σu and
σε, are not available in closed form. However, the full conditionals can be shown
to have the following distributions:

[
β

u

] ∣∣∣rest ∼ N

((
σ−2
ε CTC +

[
σ−2
β I 0

0 σ−2
u I

])−1

σ−2
ε CTy,

(
σ−2
ε CTC +

[
σ−2
β I 0

0 σ−2
u I

])−1
)
,

σ2
u|rest ∼ Inverse-Gamma

(
1
2 (K + 1), 12‖u‖

2 + a−1
u

)
,

σ2
ε |rest ∼ Inverse-Gamma

(
1
2 (n+ 1), 12‖y −Xβ −Zu‖2 + a−1

ε

)
,

au|rest ∼ Inverse-Gamma
(
1, σ−2

u +A−2
u

)

and aε|rest ∼ Inverse-Gamma
(
1, σ−2

ε +A−2
ε

)
.

Here ‘rest’ denotes the set of other random variables in model (14). Since all
full conditional are standard distributions Gibbs sampling, the simplest type of
MCMC sampling, can be used to draw samples from the posterior distributions
(see e.g. Robert and Casella [55]).

The DAG in Figure 4 is useful for determination of the above full conditional
distributions. This is due to the fact that the full conditional distribution of any
node on the graph is the same as the distribution of the node conditional on its
Markov blanket (e.g. Pearl [52]). The Markov blanket of a node consists of its
parent nodes, co-parent nodes and child nodes.

2.7. Fitting via mean field variational Bayes

Mean field variational Bayes (MFVB) (e.g. Attias [5], Wainwright and Jordan
[64]) is a deterministic alternative to Markov chain Monte Carlo which allows
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faster fitting and inference. In certain circumstances MFVB can be quite accu-
rate and there is prima facie evidence that such is the case for the Bayesian
penalized spline model (14). Moreover, MFVB algorithms are often very sim-
ple to implement. Each of the MFVB algorithms in the present article involve
straightforward algebraic calculations. In Ormerod and Wand [49] we explained
MFVB using statistical examples similar to those presented here.

For (14) we start by restricting the full posterior density function

p(β,u, σ2
u, σ

2
ε , au, aε|y) (15)

to have the product form

q(β,u, σ2
u, σ

2
ε) = q(β,u) q(σ2

u, σ
2
ε) q(au, aε) (16)

where q denotes a density function over the appropriate parameter space. Let
q∗ denote the optimal q densities in terms minimum Kullback-Leibler distance
between (15) and (16). Then, as shown in Appendix C,

q∗(β,u) is a Multivariate Normal density function,
q∗(σ2

u), q
∗(σ2

ε ), q
∗(au) and q

∗(aε) are each Inverse Gamma
density functions.

(17)

Let µq(β,u) and Σq(β,u) denote the mean vector and covariance matrix for

q∗(β,u) and Aq(σ2
u)

and Bq(σ2
u)

denote the shape and rate parameters for q∗(σ2
u).

Apply similar definitions for the parameters in q∗(σ2
ε ), q

∗(au) and q
∗(aε). Then

the optimal values of these parameters are determined from Algorithm 3.

Algorithm 3 Mean field variational Bayes algorithm for the determination of
the optimal parameters in q∗(β,u), q∗(σ2

u), and q
∗(σ2

ε ) for the Bayesian penal-
ized wavelet model (14)

Initialize: µq(1/σ2
ε)
, µq(1/σ2

u), µq(1/aε), µq(1/au) > 0.

Cycle:

Σq(β,u) ←

(
µq(1/σ2

ε)
CTC +

[
σ−2
β I2 0

0 µq(1/σ2
u)IK

])
−1

µq(β,u) ← µq(1/σ2
ε)
Σq(β,u)C

T y

µq(1/aε) ← 1/{µq(1/σ2
ε)

+ A−2
ε } ; µq(1/au) ← 1/{µq(1/σ2

u) +A−2
u }

Bq(σ2
u) ←

1
2
{‖µq(u)‖

2 + tr(Σq(u))}+ µq(1/au)

Bq(σ2
ε)
← 1

2
{‖y −Cµq(β,u)‖

2 + tr(CTCΣq(β,u))}+ µq(1/aε)

µq(1/σ2
u) ←

1
2
(K + 1)/Bq(σ2

u) ; µq(1/σ2
ε)
← 1

2
(n+ 1)/Bq(σ2

ε )

until the increase in p(y; q) is negligible.
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The lower bound on the marginal log-likelihood is

log p(y; q) = 1
2 (K + 2)− 1

2 n log(2π)− 2 log(π) + log Γ(12 (K + 1))

+ log Γ(12 (n+ 1))− log(σ2
β)− log(Au)− log(Aε)

− 1
2σ2

β

{‖µq(β)‖
2 + tr(Σq(β))}+

1
2 log |Σq(β,u)|

− 1
2 (K + 1) log{Bq(σ2

u)
} − 1

2 (n+ 1) log{Bq(σ2
ε)
}

− log(µq(1/σ2
u)

+A−2
u )− log(µq(1/σ2

ε )
+A−2

ε )

+ µq(1/σ2
u)
µq(1/au) + µq(1/σ2

ε )
µq(1/aε)

Figure 5 illustrates Bayesian penalized spline regression using both MCMC
and MFVB approaches described in this and the preceding subsections. The
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Fig 5. Left panels: MCMC output for fitting Bayesian penalized spline model to simulated
data. The upper left panel is for log(σε). The lower left panel is for the estimated function
at the median of the xis. Upper right panel: successive values of log p(y; q) to monitor con-
vergence of the MFVB algorithm. Lower right panel: Fitted function estimates and pointwise
95% credible sets for both MCMC and MFVB approaches.
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data were generated according to

yi = 3 sin(2πx3i ) + εi

with the xis uniformly distributed on (0, 1) and εi
ind.
∼ N(0, 1). Here and else-

where
ind.
∼ stands for “independently distributed as”. For the MCMC approach,

samples of size 10000 were generated. The first 5000 values were discarded and
the second 5000 values were thinned by a factor of 5. For the MFVB approach
the iterations were terminated when the relative change in log p(y; q) fell below

10−10. For this example the MCMC and MFVB fits and pointwise 95% credible
sets are almost indistinguishable, suggesting that MFVB achieves high accuracy
for Gaussian response Bayesian penalized spline regression.

Finally, we mention that the Bayesian penalized spline model treated here
can be fitted via MFVB using the Infer.NET computing environment (Minka,
Winn, Guiver and Knowles [44]). Wang and Wand [69] provide illustration of
such implementation.

3. Penalized wavelet regression fitting and inference

This section parallels the previous with wavelets replacing splines. As we shall
see, the approaches to fitting and inference are similar in many respects. The
only substantial difference is the type of penalization.

Consider, again, the nonparametric regression model (1) but with with the
smoothness assumption on f relaxed somewhat to allow for jumpier and spikier
regression functions. Donoho [16], for example, discusses quantification of such
relaxed smoothness assumptions via functional analytic structures such as Besov
spaces. For the remainder of the present article we will simply say that f is a
jagged function and refer the reader to articles such as Donoho [16] for mathe-
matical formalization. For such jagged f we consider penalized wavelets models
of the form:

f(x) = β0 +

K∑

k=1

uk zk(x)

where {zk(·) : 1 ≤ k ≤ K} is an appropriate set of wavelet basis functions.
Default choice of the zk(·)s is described in Section 3.1.

The following notation will be used throughout this section:

y =



y1
...
yn


 , β =

[
β0
]
, u =




u1
...
uK


 , X =




1
...
1


 ,

Z =



z1(x1) · · · zK(x1)

...
. . .

...
z1(xn) · · · zK(xn)


 and C = [X Z].
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The β vector and X matrix correspond to constants being unpenalized. Even
though β is a scalar and X is a column vector, we continue to use such notation
to allow easier comparison and contrast between penalized wavelets and splines.

3.1. Default basis

In this section we begin to fill in the missing details of Algorithm 2.
The assembly of a default basis for penalized wavelets relies on classical

wavelet construction over equally-spaced grids on [0, 1) of length R, where R is
a power of 2. Let the functions {zU

k (·) : 1 ≤ k ≤ R − 1}, each defined on [0, 1),
be such that

W = R−1/2[ 1 zU

k (
i−1
R )

1≤k≤R−1

]1≤i≤R (18)

where W is an R × R orthogonal matrix known as a wavelet basis matrix. We
also insist that, for any fixed k, the zU

k (·) do not depend on the value of R.
Hence, if R is increased from 4 to 8 then the functions zU

1 (·), z
U
2 (·) and zU

3 (·)
remain unchanged. The “U” superscript denotes the fact the zU

k are only defined
over the unit interval.

If y is an R × 1 vector of responses then it may be represented in terms of
W as

y = Wθ̂

where, using the orthogonality of W ,

θ̂ = (W TW )−1W Ty = W Ty. (19)

A fast O(R) algorithm, known as the Discrete Wavelet Transform, exists for

determination of θ̂. If y corresponds to a signal contaminated by noise then a
common denoising strategy involves annihilation or shrinkage of certain entries
of θ̂. This is not the general approach to wavelet-based regression being studied
in the present article and is only mentioned here to relate the W matrix to
the established wavelet literature. Later in this section we will use (18) for
computation of default penalized spline basis functions.

Until the mid-1980s the only known choice of zU

k (·) having compact support
over arbitrarily small intervals was the piecewise constant Haar basis. Starting
with Daubechies [15], many continuous and arbitrarily smooth zU

k (·) have been
discovered and allowed efficient approximation of jagged functions. Each of the
zU

k (·), 1 ≤ k ≤ R − 1, are shifts and dilations of a single (“mother”) wavelet
function. Figure 6 shows four wavelet functions from the basic Daubechies fam-
ily. The numbers correspond to the amount of smoothness. In the R package
wavethresh (Nason [48]) this is referenced using family="DaubExPhase" and
the smoothness number is denoted by filter.number. Note, however, that the
Daubechies wavelet functions do not admit explicit algebraic expressions and
can only be constructed via recursion over equally-spaced grids of size equal to
a power of 2.
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Fig 6. Daubechies “mother” wavelets with smoothness values 2,3,4 and 5.

The zU

k (·) basis functions with the same amount of dilation, but differing
shift, are said to be on the same level. The number of basis functions at level ℓ
is 2ℓ−1 for each of ℓ = 1, . . . , log2(R). Our default basis definition requires that
we impose the following ordering on the zU

k (·), 1 ≤ k ≤ R− 1:

• z1(·) is the single function on level 1
• z2(·) and z3(·) are on level 2, with ordering from left to right in terms of
the support of the functions.

• Continue in this fashion for levels 3, . . . , log2(R).

Figure 7 shows the zU

k functions generated by the Daubechies 5 wavelet with
resolution R = 16.

Let a and b be the end-point parameters defined in Algorithm 2 and K =
2L − 1 be the required number of basis functions. We propose that default
penalized wavelet basis functions take the form:

zk(x) = zUk

(
x− a

b− a

)
, 1 ≤ k ≤ K.

where the zU

k s are as in (18). We see no compelling reason to choose zU

k from
outside the basic Daubechies family. A reasonable default for the smoothness
number is 5.

It remains to discuss computation of zUk (x) for arbitrary x ∈ [0, 1). This sim-
ply involves choosing R to be a very large number such as R = 214 = 16384 and
then approximating via zUk (x) linear interpolation over the grid 0, 1

R , . . . ,
R−1
R .

Specifically,

zU

k (x) ≈ {1− (xR − ⌊xR⌋)}zU

k (⌊xR⌋/R) + (xR − ⌊xR⌋)zU

k ((⌊xR⌋+ 1)/R)
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Fig 7. Debauchies 5 zUk (·) functions for R = 16, with ordering as prescribed in the text. The
constant function, corresponding to the first column of the W matrix, is also shown.

where zU

k (1) ≡ zU

k (
R−1
R ). All required calculations can be performed rapidly us-

ing the Discrete Wavelet Transform and without explicit construction of the W
matrix. An R function that performs efficient default basis function computation
is given in Appendix A.

Figure 8 illustrates approximation of the zU

k functions for K = 15. The top-
left panel shows values of zU

k over a coarse grid with resolution R = 16. As R
increases to 32, 64 and 128 the number of zU

k functions increases to R − 1 and
there is successive doubling of the resolution of the first 15 zU

k (·) that are needed
for the penalized wavelet basis.

Figure 9 shows the default basis functions for varying values of K = 2L − 1.
A significant aspect of the basis functions, apparent from Figure 9, is their
hierarchical nature. To move from L = L′ to L = L′ + 1 one simply adds 2L

′

new basis functions corresponding to dilations of the highest level basis functions
at level L′. This means that, for example, the basis functions for L = 7 are also
present for L = 4, 5, 6.
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Fig 8. Illustration of accurate approximation of zUk for K = 15. In each panel the zUk for
1 ≤ k ≤ 15 are colored, whilst zUk for k+1 ≤ k ≤ R−1 are grey. As R increases the accuracy
with which the colored functions can be approximated also increases.

The use of penalized wavelet bases with the hierarchical structure is pred-
icated on the belief that, for many signals of interest, higher-frequency basis
functions can be ignored and that L can be set at a number considerably lower
than log2(n). In the penalized spline literature, Hastie [34] and Ruppert, Wand
and Carroll [56] (Section 3.12) justify the omission of higher-frequency basis
functions using the eigen-decomposition of the smoother matrix and the term
low-rank, corresponding to the rank of the smoother matrix, is often used to
describe this aspect of penalized splines.

We have constructed an example which suggest that the low-rank argument
also applies to penalized wavelets. Consider the case of noiseless regression data
generated according to

yi = fWO(xi), 1 ≤ i ≤ n,

where xi = (i − 1)/n, n = 212 = 4096 and the function fWO, introduced in this
article and named after the initials of the authors’ surnames, is given by

fWO(x) ≡ 18
[√

x(1 − x) sin(1.6π/(x+ 0.2)) + 0.4 I(x > 0.13)

− 0.7 I(0.32 < x < 0.38) + 0.43{(1− |(x− 0.65)/0.03|)+}
4

+ 0.42{(1− |(x− 0.91)/0.015|)+}
4
]
, 0 < x < 1.

(20)
Here, and elsewhere, I(P) = 1 if P is true and zero otherwise. Let CL = [1 ZL]
be the design matrix consisting of a column of ones for the constant term and
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Fig 9. Default penalized wavelet bases with varying values of K = 2L − 1.

our default wavelet basis functions evaluated at the xis. Figure 10 shows the
least squares regression fits

ŷ = CL(C
T
LCL)

−1CT
Ly

and corresponding R2 values. Notice the diminished returns as measured by R2

when L is increased. An R2 of 99.0% is achieved with only 27− 1 = 127 wavelet
basis functions. It appears that that L = 8 (K = 255) is adequate for recovery
for this particular signal, regardless of the sample size.

3.2. Fitting via penalized least squares

A generalization of the penalized spline criterion (5) is

‖y −Xβ −Zu‖2 +

K∑

k=1

℘λ (|uk|) (21)

where ℘(·) is a non-decreasing function on [0,∞). For penalized splines, the
choice ℘λ(x) = λx2 is usually adequate, and has the advantage of admitting the
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Fig 10. Illustration of the ability of penalized wavelet basis functions with number of levels
L ≪ log2(n) to estimate the fWO function. In this case n = 212 = 4096 and the data are
observed without noise. Ordinary least squares is used for the fitting and the resultant R2

value is shown.

closed form solution (6). For wavelets, a more appropriate choice is ℘λ (x) = λx
since the corresponding L1 penalty invokes a sparse solution. The L1 penalty
corresponds to the least absolute shrinkage selection operator (LASSO) (Tib-
shirani [61]) applied to the basis functions. Algorithms for solving (21) when
℘λ(x) = λx are given in Osborne, Presnell and Turlach [50] and Efron et al.
[20]. The algorithm in Efron et al. [20] efficiently computes the solutions over a
grid of λ values.

There are several other possible contenders for ℘λ(·). These include

℘λ(x) =





λxq , q < 1, bridge penalty
λ2 − (x− λ)2 I(x < λ), hard thresholding penalty
SCAD(x;λ, a), a > 2, smoothly clipped absolute

deviation (SCAD) penalty
λ
∫ x

0 (1− t/a)+ dt, a > 0, minimax concave penalty

(22)
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where

SCAD(x;λ, a) ≡ λx I(x ≤ λ)−
x2 − 2aλx+ λ2

2(a− 1)
I(λ < x ≤ aλ)

+ 1
2 (a+ 1)λ2 I(x > aλ).

In each case ℘λ(x) is non-convex in x. Primary references for each of the penal-
ties in (22) are, in order, Frank and Friedman [26], Donoho and Johnstone [17],
Fan and Li [23] and Zhang [74].

Antoniadis and Fan [3] study the properties of wavelet nonparametric regres-
sion estimators for several such penalties. In particular, they provide a theorem
that links the shape of ℘λ to the properties of the penalized least squares so-
lution. The essence of this result is that non-convex penalties are sparseness-
inducing. This sparseness property allows penalized wavelets to better handle
jumps and jagged features. Figure 12 in Section 3.4 displays penalized least
squares fits for three choices of ℘λ.

3.3. Effective degrees of freedom

Penalized least squares with non-quadratic penalties does not lead to an explicit
expression for the fitted values f̂λ(xi) which means that the effective degrees

of freedom edf(λ), given by (8), is generally not tractable. In particular, f̂λ(xi)
is not a linear in the yis and (9) no longer applies. However Zou, Hastie and
Tibshirani [78] derived an unbiased estimator for edf(λ) in the case of the L1,
or LASSO, penalty. For penalized wavelets their results lead to the following
estimated effective degrees of freedom:

êdf(λ) = 1 + (number of non-zero ûks when the penalty parameter is λ). (23)

Zou et al. [78] also point out that êdf(λ) is not unbiased for other penalties such
as SCAD. Hence, effective degrees of freedom estimation is an open problem for
penalized wavelets with non-L1 penalization.

Figure 11 shows four L1-penalized wavelet fits to data simulated according
to

yi = fWO(xi) + εi, 1 ≤ i ≤ 2000,

where the xis are uniformly distributed on the unit interval and εi
ind.
∼ N(0, 1).

For this example it is seen that êdf(λ) = 100 is the most visually pleasing among
the four fits. This is much larger than the best edf(λ) value of 12 for the example
in Figure 3, and is to be expected given the complexity of the signal.

Figures 1 and 11 each include at least one visually pleasing penalized wavelet
fit to simulated data sets. However, in each case, the error variance is relatively
small and the sample size is quite large. If the error variance is increased by
even a modest amount, whilst keeping the sample size fixed, then the quality of
the penalized wavelet fit tends to deteriorate quite quickly in comparison with
penalized splines. This phenomenon has been observed in the wavelet nonpara-
metric regression literature. See, for example, Figure 6 of Marron et al. [43].
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Fig 11. Penalized wavelet fits to a simulated data set with four different values of the estimate

effective degrees of freedom êdf(λ).

3.4. Penalty parameter selection

As discussed in Section 2.3, many popular smoothing parameter selection meth-
ods trade off residual sum of squares against effective degrees of freedom. The
same principle can be translated to penalized wavelets using the estimated ef-
fective degrees of freedom described in Section 3.3. For example, (23) suggests
the estimated generalized cross-validation criterion:

ĜCV(λ) = RSS(λ)/[{n− êdf(λ)}2],

for selection of λ. In the case of L1 penalization, the use of êdf(λ) in ĜCV(λ)
is justified by the theory of Zou et al. [78]. For other types of penalization,

use of ĜCV(λ) is somewhat tenuous. As mentioned in Section 3.4, k-fold cross-
validation is always an option for selection of λ.

In Figure 12 we display three automatic penalized wavelet estimates for re-
gression data of size n = 500 simulated from (20) with N(0, 1) noise added. The
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Fig 12. Automatic penalized wavelet fits to the fWO mean function with L1 penalization

and ĜCV penalty parameter selection (left panel), SCAD penalization with 10-fold cross-
validation penalty parameter selection (middle panel) and minimax concave penalization with
10-fold cross-validation penalty parameter selection (right panel). In each panel, the estimate
is shown in blue and the true regression function is shown in red.

estimates were obtained using (1) L1 penalization with λ chosen to minimize

ĜCV(λ), (2) SCAD penalization with λ chosen via 10-fold cross-validation (CV)
and (3) minimax concave penalization with λ chosen the same way. For these
data, the estimates are seen to be quite similar. The R software used to produce
Figure 12 is discussed in Section 6.

3.5. Fitting via frequentist mixed model representation

Penalized wavelet analogues of (10) take the general form

y|u ∼ N(Xβ +Zu, σ2
εI), uk|σu, θ

ind.
∼ p(uk;σu, θ). (24)

where p(·;σu, θ) is a symmetric density function with scale parameter σu and
shape parameter θ. There are numerous options for the choice of this density
function. Some of them are:

p(u; 1) = 1
2 exp(−|u|) (Laplace)

p(u; 1, w) = w{ 1
2 exp(−|u|)}+ (1− w) δ0(u) (Laplace-Zero)

p(u; 1) = (2π3)−1/2 exp(u2/2)(−1)Ei(−u2/2) (Horseshoe)

p(u; 1, λ) =
λ 2λΓ(λ+

1
2 )

π1/2 exp(u2/4)D−2λ−1(|u|) (Normal-Exponential
-Gamma)

(25)

The Laplace density is an obvious candidate because of its connection with L1

penalization. Johnstone and Silverman [39] make a strong case for the use of
penalty densities such as the Laplace-Zero family. The Horseshoe and Normal-
Exponential-Gamma density functions correspond to non-convex penalization
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Fig 13. Plots of the density functions listed in (25).

and have been proposed in the wide data regression literature by, respectively,
Carvalho, Polson and Scott [12] and Griffin and Brown [32]. The definitions
involve the special functions Ei, the exponential integral function, and Dν , the
parabolic cylinder function of order ν. For these special functions, we follow
the definitions used by Gradshteyn and Ryzhik [30]. Figure 13 plots the density
functions listed at (25).

We now focus attention on the first and simplest of these penalty density
function, the Laplace. Note the penalized least squares estimator of u with L1

penalty λ
∑K

k=1 |uk| corresponds to the conditional mode of u given y. The best
(mean squared error) predictor of u is the conditional mean:

ũ ≡ E(u|y) =

∫
RK u exp[− 1

2σ2
ε
{‖Zu‖2 − 2uTZT (y −Xβ)} − 1

σu
1T |u|] du

∫
RK exp[− 1

2σ2
ε
{‖Zu‖2 − 2uTZT (y −Xβ)} − 1

σu
1T |u|] du

.

For general Z this expression for ũ cannot be reduced any further. However, if

ZTZ = α2 I for some constant α > 0 (26)

then a closed form expression for ũ materializes. Appendix B contains the de-
tails. Whilst (26) does not hold for general regression data sets, it holds approx-
imately when the xis are close to being equally spaced or uniformly distributed.
It holds exactly when n is a power of 2 and the xis are equally spaced with
a = min(xi) and b = {nmax(xi) − min(xi)}/(n − 1). Hence, the formulae in
Appendix B could be used to perform approximate best prediction of u and
maximum likelihood estimation of β, σε and σu.

The quality of penalized wavelet regression according to frequentist mixed
model approaches, such as that using the formulae in Appendix B, is yet to be
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studied in any depth. Apart from the fact that viability relies on conditions such
as (26) approximately holding, there is the concern that the non-sparseness of
the wavelet coefficient estimates may result in overly wiggly fits. In Sections 3.6
and 3.7 it is seen that Bayesian computing methods, MCMC and MFVB, with
the random effects density containing a point mass at zero, such as the Laplace-
Zero density, overcome this problem.

3.6. Fitting via Bayesian inference and Markov Chain Monte Carlo

Penalized wavelet analogues of (12) take the generic form:

y|β,u, σε ∼ N(Xβ +Zu, σ2
εI), uk|σu, θ

ind.
∼ p(uk|σu, θ),

β ∼ N(0, σ2
βI), σu ∼ Half-Cauchy(Au), σε ∼ Half-Cauchy(Aε),

(27)

where, p( · |σu, θ) could be any of the random effects density functions contem-
plated in Section 3.5 such of those listed in (25) and displayed in Figure 13.
(Note the use of the vertical line (|) rather than a semi-colon (;) since σu and
θ and now random.) In (27) we have not specified the form of the prior distri-
bution on the shape parameter θ. This may be a fixed distribution, or involve
further hierarchical modelling.

We have experimented with the choice of p( · |σu, θ). The choice correspond-
ing to L1, or LASSO-type, penalization is the Laplace density function

p(uk|σu) = (2σu)
−1 exp(−|uk|/σu) (28)

but the Bayes estimator of u is not sparse and, as a consequence, the result-
ing fits tend to be overly wiggly. However, sparse solutions are produced by a
Laplace-Zero density function

p(uk|σu, ρ) = ρ (2σu)
−1 exp(−|uk|/σu) + (1− ρ) δ0(uk) (29)

where ρ is a random variable over [0, 1]. Such priors are advocated by Johnstone
and Silverman [39]. These authors also provide theoretical justification for use
of (29). The fact that E(uk|y) is often exactly zero translates to better handling
of jumps and sharp features in the underlying signal. Hence, for the remainder
of this article we work with (29) for Bayesian penalized wavelets. Concurrent
doctoral thesis research by Sarah E. Neville, supervised by the first author, is in-
vestigating the performance of the Horseshoe and Normal-Exponential-Gamma
priors in this wavelet context.

MCMC handling of (29) is aided by introducing specially tailored auxiliary
variables vk, γk and bk. Suppose that uk = γk vk where

γk| ρ
ind.
∼ Bernoulli(ρ), vk|bk

ind.
∼ N(0, σ2

u/bk) and bk
ind.
∼ Inverse-Gamma(1, 12 ).

Then, courtesy of elementary distribution theory manipulations, uk|ρ has den-
sity function (29). Because vk is conditionally Gaussian, it is advantageous to
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Fig 14. Directed acyclic graph representation of the auxiliary variable Bayesian penalized
wavelet model (30). The shaded node corresponds to observed data.

work with the pairs (vk, γk) rather than (uk, γk) in the MCMC sampling strat-
egy. As in Section 2.6 we use (13) to allow easier handling of the Half-Cauchy
priors on σu and σε. Let a ⊙ b denote the elementwise product of equi-sized
vectors a and b and diag(b) be the diagonal matrix with diagonal entries cor-
responding to those of b. The full model, with appropriate auxiliary variables,
is then

y|β,v, σ2
ε ∼ N(Xβ +Z(γ ⊙ v), σ2

εI), v|σ
2
u, b ∼ N(0, σ2

u diag(b)
−1),

σ2
u| au ∼ Inverse-Gamma(12 , a

−1
u ), σ2

ε | aε ∼ Inverse-Gamma(12 , a
−1
ε ),

au ∼ Inverse-Gamma(12 , A
−2
u ), aε ∼ Inverse-Gamma(12 , A

−2
ε ),

β ∼ N(0, σ2
βI), bk

ind.
∼ Inverse-Gamma(1, 12 ),

γk| ρ
ind.
∼ Bernoulli(ρ), ρ ∼ Beta(Aρ, Bρ).

(30)

The last of these distributional specifications corresponds to conjugate Beta
priors being placed on Bernoulli probability parameters. The hyperparameters
Aρ and Bρ are positive numbers corresponding to the usual parametrization of
the Beta distribution. Figure 14 shows the DAG corresponding to (30).

As with penalized splines, the vector of fitted values is the posterior mean

f̂ = E(Xβ +Zu|y) = X E(β|y) +Z E(u|y) = X E(β|y) +Z E(γ ⊙ v|y).

The full conditionals for Markov chain Monte Carlo can be shown to be:

[
β

v

] ∣∣∣rest ∼ N

((
σ−2
ε CT

γCγ +

[
σ−2
β 0

0 σ−2
u diag(b)

])−1

σ−2
ε CT

γy,

(
σ−2
ε CT

γCγ +

[
σ−2
β 0

0 σ−2
u diag(b)

])−1
)
,
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σ2
u|rest ∼ Inverse-Gamma

(
1
2 (K + 1), 12v

Tdiag(b)v + a−1
u

)
,

σ2
ε |rest ∼ Inverse-Gamma

(
1
2 (n+ 1), 12‖y −Xβ −Zγv‖

2 + a−1
ε

)
,

au|rest ∼ Inverse-Gamma
(
1, σ−2

u +A−2
u

)
,

aε|rest ∼ Inverse-Gamma
(
1, σ−2

ε +A−2
ε

)
,

bk|rest
ind.
∼ Inverse-Gaussian(σu/|vk|, 1) ,

ρ|rest ∼ Beta(Aρ + γ•, Bρ +K − γ•)

and γk|rest
ind.
∼ Bernoulli

(
exp(ηk)

1 + exp(ηk)

)

where

γ• ≡
K∑

k=1

γk , Cγ ≡ [X Z diag(γ)]

and

ηk ≡ − 1
2σ2

ε

[
‖Zk‖

2v2k − 2yT Zk vk + 2XT Zk β vk

+ 2ZT
k Z−k{γ−k ⊙ (vkv−k)}

]
+ logit(ρ).

Here, and elsewhere,

γ−k ≡ [γ1, . . . , γk−1, γk+1, . . . , γK ]T .

The vector v−k is defined analogously.
As for the Bayesian penalized spline model (14) all full conditional distribu-

tions are standard and MCMC reduces to ordinary Gibbs sampling.

3.7. Fitting via mean field variational Bayes

As in the penalized spline case, we now seek fast deterministic approximate
inference for (30) based on MFVB. A tractable solution arises if we impose the
product restriction

q(β,v, b,γ, ρ, σ2
u, σ

2
ε , au, aε) =

q(β,v) q(b) q(au, aε, ρ) q(σ
2
u, σ

2
ε)
∏K

k=1 q(γk).
(31)

Note that induced factorizations (e.g., Bishop [8], Section 10.2.5) lead to solution
having the additional product structure

q(β,v) q(σ2
u) q(σ

2
ε ) q(au) q(aε) q(ρ)

K∏

k=1

{ q(bk) q(γk)}.
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Then, as shown in Appendix D,

q∗(β,v) is a Multivariate Normal density function,
q∗(σ2

u), q
∗(σ2

ε ), q
∗(au) and q

∗(aε) are each
Inverse Gamma density functions,
q∗(b) is a product of Inverse Gaussian density functions,
q∗(γk), 1 ≤ k ≤ K, are Bernoulli probability mass functions,
q∗(ρ) is a Beta density function.

(32)

Similarly to the penalized spline case, let µq(β,v) and Σq(β,v) denote the mean
vector and covariance matrix for q∗(β,v) and Aq(σ2

u)
and Bq(σ2

u)
denote the

shape and rate parameters for q∗(σ2
u) with similar definitions for the parame-

ters in q∗(σ2
ε ), q

∗(au) and q
∗(aε). Then the optimal values of these parameters

are determined from Algorithm 4, which is justified in Appendix D. Note that
ψ(x) ≡ d

dx log{Γ(x)} denotes the digamma function.
Convergence of Algorithm 4 can be monitored using the following expression

for the lower bound on the marginal log-likelihood:

log p(y; q) = 1
2 (K + 1) + 1

2 (K − n) log(2π)−K log(2)− 2 log(π)

+ log Γ(12 (K + 1)) + log Γ(12 (n+ 1))− 1
2 log(σ

2
β)

− log(Au)− log(Aε)−
1

2σ2
β

{‖µq(β)‖
2 + tr(Σq(β))}

+ 1
2 log |Σq(β,v)| −

1
2 (K + 1) log{Bq(σ2

u)
}

− 1
2 (n+ 1) log{Bq(σ2

ε)
} − 1

2

K∑

k=1

{1/µq(bk)}

− log(µq(1/σ2
u)

+A−2
u )− log(µq(1/σ2

ε )
+A−2

ε )

+ µq(1/σ2
u)
µq(1/au) + µq(1/σ2

ε)
µq(1/aε)

−

K∑

k=1

[µq(γk) log{µq(γk)}+ (1− µq(γk)) log{1− µq(γk)}]

+ log Γ(Aρ + µq(γ•)) + log Γ(Bρ +K − µq(γ•))

− log Γ(Aρ +Bρ +K) + log(Aρ +Bρ)− log Γ(Aρ)− log Γ(Bρ).

Illustration of Bayesian penalized wavelet regression, using both the MCMC
and MFVB, is provided by Figure 15. The data were generated according to

yi = fWO(xi) + εi

with xi = (i − 1)/n and εi
ind.
∼ N(0, 1). The hyperparameters were set to be

σ2
β = 108, Au = Aε = 25, Aρ = 1 and Bρ = 9. MCMC samples of size 10000

were generated. The first 5000 values were discarded and the second 5000 values
were thinned by a factor of 5. The MFVB iterations were terminated when the
relative change in log p(y; q) fell below 10−10.
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Algorithm 4 Mean field variational Bayes algorithm for the determination of
the optimal parameters in q∗(β,v), q∗(γ), q∗(σ2

u) and q∗(σ2
ε) for the Bayesian

penalized wavelet model (30).

Initialize: µq(1/σ2
ε)
, µq(1/σ2

u), µq(1/aε), µq(1/au),µq(b),µq(wγ ) and Ωq(wγ ).

Cycle:

Σq(β,v) ←

(
µq(1/σ2

ε)
(CTC)⊙Ωq(wγ) +

[
σ−2
β 0

0 µq(1/σ2
u)diag(µq(b))

])
−1

µq(β,v) ← µq(1/σ2
ε)
Σq(β,v)diag{µq(wγ)}C

T y

For k = 1, . . . ,K:

µq(bk) ← {µq(1/σ2
u)(σ

2
q(vk)

+ µ2
q(vk)

)}−1/2

ηq(γk) ← − 1
2
µq(1/σ2

ε)

[
‖Zk‖

2{σ2q(vk) + µ2q(vk)} − 2ZT
k y µq(vk)

+2ZT
k X

{
(Σq(β,v))1,1+k + µq(β)µq(vk)

}

+2ZT
k Z

−k

{
(µq(γ))−k ⊙ {(Σq(v))−k,k + µq(vk)(µq(v))−k}

}]

+ψ(Aρ + µq(γ•))− ψ(Bρ +K − µq(γ•))

µq(γk) ←
exp(ηq(γk))

1 + exp(ηq(γk))

µq(wγ) ←

[
1

µq(γ)

]
; µq(γ•) ←

∑K
k=1 µq(γk)

Ωq(wγ ) ← diag{µq(wγ) ⊙ (1− µq(wγ))} + µq(wγ) µ
T
q(wγ )

µq(1/aε) ← 1/{µq(1/σ2
ε )

+ A−2
ε } ; µq(1/au) ← 1/{µq(1/σ2

u) + A−2
u }

Bq(σ2
ε)
← µq(1/aε) +

1
2
‖y‖2 − yTC

(
µq(wγ ) ⊙ µq(β,v)

)

+ 1
2
tr
(
CTC

[
Ωq(wγ ) ⊙

{
Σq(β,v) + µq(β,v)µ

T
q(β,v)

}])

Bq(σ2
u) ← µq(1/au) +

1
2

∑K
k=1 µq(bk){σ

2
q(vk)

+ µ2
q(vk)

}

µq(1/σ2
u) ←

1
2
(K + 1)/Bq(σ2

u) ; µq(1/σ2
ε)
← 1

2
(n+ 1)/Bq(σ2

ε)

until the increase in p(y; q) is negligible.

The left panels of Figure 15 show that the MCMC converges quite well. The
upper right panel shows that MFVB converges after 79 iterations. R language
implementation of the MCMC fit took about 45 minutes on the first author’s
laptop (Mac OS X; 2.33 GHz processor, 3 GBytes of random access memory)
whereas the MFVB one took only 17 seconds with the same programming lan-
guage. The lower right panel of Figure 15 indicates that the two fits are quite
close.

In Figure 15 we zoom in on the fits for 0.6 ≤ x ≤ 0.7. It is seen that both the
MFVB and MCMC fits are quite close in terms of both point estimation and
interval estimation. This suggests that MFVB is quite accurate for penalized
wavelet model (30), although further simulation checks are warranted.
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Fig 15. Left panels: MCMC output for fitting Bayesian penalized wavelet model to simulated
data. The upper left panel is for log(σε). The lower left panel is for the estimated function
at the median of the xis. Upper right panel: successive values of log p(y; q) to monitor con-
vergence of the MFVB algorithm. Lower right panel: Fitted function estimates and pointwise
95% credible sets for both MCMC and MFVB approaches.

4. Choice of penalized wavelet basis size

A remaining problem attached to our proposed new wavelet nonparametric
paradigm is the choice of L = log2(K + 1). As demonstrated by Figure 10, it is
often quite reasonable to have L ≪ log2(n). In the case of penalized spline re-
gression is it usually enough to work with simple rules such asK = max(35, n/4).
But this rule sometimes needs modification if it is believed that the underlying
function is particularly wiggly. The same dilemma applies to penalized wavelets.
Indeed, casual experimentation suggests that more care needs to be taken with
choice of penalized wavelet basis size compared with the penalized splines coun-
terpart. Further research is required to formalize the extent of the problem and
to devise high-quality solutions. In the present article we flag it as an issue
and make some brief remarks on possible approaches to choosing the penalized
wavelet basis size.



1688 M.P. Wand and J.T. Ormerod

0.60 0.62 0.64 0.66 0.68 0.70

2
4

6
8

1
0

1
2

x

y

MCMC

MFVB

Fig 16. Zoomed display of fits shown in lower right panel of Figure 15. The solid curves
are the function estimates based on the pointwise posterior means and the dashed curves are
pointwise 95% credible sets.

In the low-noise situation, simple graphical checks could be used to guide the
choice of L. If a more automatic method is required then each of the approaches
to penalized wavelet fitting described in Sections 3.4 to 3.7 lend themselves
to data-based rules choosing L. For example, an attractive by-product of the
MFVB approach is an approximation to the marginal log-likelihood, which can
be used to guide the choice of L.

Another possible approach to choice of L involves adaptation of classical
wavelet thresholding methodology. If n is a power of 2 and the xis are equally-
spaced then the Discrete Wavelet Transform can be used to quickly obtain
the n coefficients of the full set of wavelet basis functions, as elucidated by
(19). Simple thresholds such as σ̂ε

√
2 loge(n) (Donoho and Johnstone [17]) can

be used to select L. Specifically, the L could correspond to the largest level
having coefficients exceeding the threshold. Further development is required for
general xi.
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5. Semiparametric regression extensions

The preceding sections put wavelets on the same footing as splines and, hence,
facilitate straightforward embedding of penalized wavelets into semiparametric
regression models (e.g. Ruppert, Wand and Carroll [56, 57]). Any existing semi-
parametric regression model containing penalized splines can be modified to
instead contain penalized wavelets if there is reason to believe that the underly-
ing functional effect is jagged. It is also conceivable that some components in the
model are better handled using penalized splines, whilst penalized wavelets are
more appropriate for other components. Illustrations of such composite models
are given in Sections 5.2 and 5.3.

Bayesian approaches to semiparametric regression, with MCMC or MFVB
fitting, are particularly amenable to such adaptation since replacement of splines
by wavelets simply means modification of the corresponding DAG. Since the
MCMC and MFVB algorithm updates are localized on the DAG (e.g. Wand et
al. [67], Section 3) the spline to wavelet replacement can be made by replacement
of penalized spline node structure (as in Figure 4) by penalized wavelet node
structure (as in Figure 14).

The remainder of this section provides some concrete illustrations of such
spline to wavelet adaptations. Given the ease with which these adaptations
can be made using MCMC or MFVB, we will confine description to these ap-
proaches. The non-Bayesian approaches of Sections 2 and 3 can, at least in
theory, be treated analogously. However, some of the implementational details
may require further research.

5.1. Non-Gaussian response models

Non-Gaussian response models involving penalized wavelets can be treated anal-
ogously to those involving penalized splines. The only differences are the design
matrices X and Z and the type of penalization applied to entries of the u vec-
tor. The non-Gaussian aspect means that penalized least squares is no longer
appropriate and penalized log-likelihood should be used instead. Fan and Song
[24] describe some of the properties of penalized log-likelihood estimators for
penalties such as L1 and SCAD. The extension of penalized wavelets to non-
Gaussian response models via penalized log-likelihood applies quite generally.
However, we will restrict further discussion to the important binary response
case. See Antondiadis and Leblanc [4] for a classical wavelet treatment of binary
response regression.

Figure 17 shows penalized wavelet estimates for binary response data simu-
lated according to

logit{P (yi = 1)} = 0.15 fWO(xi)−
1
2 , 1 ≤ i ≤ n. (33)

where xi = (i − 1)/n and n is set at 1000, 10000 and 100000. The estimates
were obtained using the SCAD-penalized negative logistic log-likelihood

− yT (Xβ +Zu) + 1T log{1+ exp(Xβ +Zu)} + λ

K∑

k=1

SCAD(|uk|, 3) (34)
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Fig 17. Illustration of difficulty of binary response penalized wavelet regression. In each case,
the penalized wavelet estimates of the mean, or probability, function are obtained using SCAD-
penalized logistic log-likelihood with the penalty parameter chosen via 10-fold cross-validation
and shown in blue. The true probability function is shown in red. In the leftmost panel (n =
1000 the data are shown as rugs. The rugs in the other two panels (n = 10000, 100000)
correspond to sub-samples of size 1000.

and λ chosen via 10-fold cross-validation. The R functions ncvreg() and cv.nc-

vreg() within the package ncvreg (Breheny [9]) were used to obtain the fits in
Figure 17. The design matrices in X and Z (34) have exactly the same form
as those used in Section 3 for Gaussian response penalized wavelet regression.
A striking feature of Figure 17 is that quite large sample sizes are required to
obtain visually pleasing estimates. This is a consequence of the low signal-to-
noise ratio that is an inherent part of binary response regression and the diff-
iculty that wavelets have in high-noise situations, as mentioned in Section 3.3.

Bayesian binary response penalized spline regression, with a probit rather
than logit link function, has a Gibbsian MCMC solution courtesy of the auxiliary
variable construction of Albert and Chib [1] (e.g. Ruppert et al. [56], Section
16.5.1). The same is true for penalized wavelets using, for example, a Laplace-
Zero prior (29) on the wavelet coefficients. Specifically, consider the model

yi|β,u
ind.
∼ Bernoulli{Φ((Xβ +Zu)i)},

p(u |σu, γk) =
∏K

k=1

{
γk (2σu)

−1 exp(−|uk|/σu) + (1− γk) δ0(uk)
}
,

β ∼ N(0, σ2
βI), σu ∼ Half-Cauchy(Au),

γk| ρ
ind.
∼ Bernoulli(ρ), ρ ∼ Beta(Aρ, Bρ).

(35)

Here Φ(x) ≡
∫ x

−∞
φ(t) dt is the standard normal cumulative distribution func-

tion, with φ(x) ≡ (2π)−1/2 exp(−x2/2) denoting the corresponding density func-
tion. Introduce the vector of auxiliary variables a = (a1, . . . , an) such that yi = 1
if and only if ai ≥ 0 and

a|β,u ∼ N(Xβ +Zu, I).
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Fig 18. Directed acyclic graph representation of the probit Bayesian penalized spline model
(36). The shaded node corresponds to observed data.

Then, with the auxiliary variables v, b and au as in Section 3.6, we can write
(35) as

yi|ai
ind.
∼ Bernoulli(I(ai ≥ 0)), a|β,v ∼ N(Xβ +Z(γ ⊙ v), I),

v|σ2
u, b ∼ N(0, σ2

u diag(b)
−1),

β ∼ N(0, σ2
βI), σ2

u| au ∼ Inverse-Gamma(12 , a
−1
u ),

au ∼ Inverse-Gamma(12 , A
−2
u ), bk

ind.
∼ Inverse-Gamma(1, 12 ),

γk| ρ
ind.
∼ Bernoulli(ρ), ρ ∼ Beta(Aρ, Bρ).

(36)

Figure 18 is the DAG corresponding to (36).
The full conditionals for Markov chain Monte Carlo can be shown to be:
[
β

v

] ∣∣∣rest ∼ N

((
CT

γCγ +

[
σ−2
β 0

0 σ−2
u diag(b)

])−1

CT
γ a,

(
CT

γCγ +

[
σ−2
β 0

0 σ−2
u diag(b)

])−1
)
,

ai|rest
ind.
∼

{
N({Xβ +Z(γ ⊙ v)}i, 1) truncated on (−∞, 0), yi = 0
N({Xβ +Z(γ ⊙ v)}i, 1) truncated on (0,∞), yi = 1

σ2
u|rest ∼ Inverse-Gamma

(
1
2 (K + 1), 12v

Tdiag(b)v + a−1
u

)
,

au|rest ∼ Inverse-Gamma
(
1, σ−2

u +A−2
u

)
,

bk|rest
ind.
∼ Inverse-Gaussian(σu/|vk|, 1) ,

ρ|rest ∼ Beta(Aρ + γ•, Bρ +K − γ•)

and γk|rest
ind.
∼ Bernoulli

(
exp(ηk)

1 + exp(ηk)

)
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where Cγ has the same definition as before and

ηk ≡ − 1
2

[
‖Zk‖

2v2k − 2aT Zk vk + 2XT Zk β vk + 2ZT
kZ−k{γ−k ⊙ (vkv−k)}

]

+logit(ρ).

The corresponding MFVB approach, summarised in Algorithm 5, requires
only closed form updates. The optimal q∗ density functions for all variables
except a take the same forms as those given for the Gaussian response case in
Section 3.7. Appendix E contains underpinning for Algorithm 5.

Figure 19 illustrates these MCMC and MFVB approaches to estimating the
underlying probability function from data generated according to (33) with the
sample size set at n = 50000. (Note, however, that the i linear predictor (Xβ+
Zu)i estimates Φ−1(logit−1(0.15fWO(xi) −

1
2 )) since (35) is a probit regression

model). Both approaches are seen to give similar fits.

Algorithm 5 Mean field variational Bayes algorithm for the determination of
the optimal parameters in q∗(β,v), q∗(γ) and q∗(σ2

u) for the probit Bayesian
penalized wavelet model (36).

Initialize: µq(1/σ2
u), µq(1/au),µq(b),µq(wγ ) and Ωq(wγ).

Cycle:

Σq(β,v) ←

(
(CTC)⊙Ωq(wγ) +

[
σ−2
β 0

0 µq(1/σ2
u)diag(µq(b))

])
−1

µq(β,v) ← Σq(β,v) diag{µq(wγ)}C
Tµq(a)

µq(a) ←Xµq(β) +Z(µq(γ) ⊙µq(v)) +
(2y − 1)⊙ φ(Xµq(β) +Z(µq(γ) ⊙ µq(v)))

Φ((2y − 1) ⊙ {Xµq(β) +Z(µq(γ) ⊙ µq(v))})

For k = 1, . . . ,K:

µq(bk) ← {µq(1/σ2
u)(σ

2
q(vk)

+ µ2
q(vk)

)}−1/2

ηq(γk) ← − 1
2

[
‖Zk‖

2{σ2q(vk) + µ2q(vk)} − 2ZT
k µq(a) µq(vk)

+2ZT
k X

{
(Σq(β,v))1,1+k + µq(β)µq(vk)

}

+2ZT
k Z

−k

{
(µq(γ))−k ⊙ {(Σq(v))−k,k + µq(vk)(µq(v))−k}

}]

+ψ(Aρ + µq(γ•))− ψ(Bρ +K − µq(γ•))

µq(γk) ←
exp(ηq(γk))

1 + exp(ηq(γk))

µq(wγ) ←

[
1

µq(γ)

]
; µq(γ•) ←

∑K
k=1 µq(γk)

Ωq(wγ ) ← diag{µq(wγ) ⊙ (1− µq(wγ))} + µq(wγ) µ
T
q(wγ )

Bq(σ2
u) ← µq(1/au) +

1
2

∑K
k=1 µq(bk){σ

2
q(vk)

+ µ2
q(vk)

}

µq(1/σ2
u) ←

1
2
(K + 1)/Bq(σ2

u) ; µq(1/au) ← 1/{µq(1/σ2
u) +A−2

u }

until the increase in p(y; q) is negligible.
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Fig 19. Bayesian posterior mean estimates of the probability function (green curve) from
data generated according to (33) with n = 50000. The Bayesian estimates were obtained via
MCMC (blue curve) and MFVB (red curve). The rugs show a 10% random sub-sample of
the data.

5.2. Additive models and varying coefficient models

Additive models and varying coefficient models are a popular extensions of non-
parametric regression when several continuous predictor variables are available.
If the response is non-Gaussian then the term generalized additive model (Hastie
and Tibshirani [36], Wood [72]) is commonly used for the former type.

With simplicity in mind, we will restrict discussion to the case of two predictor
variables x1 and x2. The treatment of the general case is similar, but at the
expense of additional notation. Generalized additive models take the generic
form

g{E(y)} = f1(x1) + f2(x2) (37)

whilst a varying coefficient model for such data is

g{E(y)} = f1(x1) + f2(x1)⊙ x2. (38)

Here g is a link function and f1 and f2 are arbitrary “well-behaved” functions.
See, for example, Ruppert, Wand and Carroll [56], for details on penalized spline
fitting of (37) and (38)

Given the preceding sections, the replacement of penalized splines by pe-
nalized wavelets is relatively straightforward and is appropriate if there is good
reason to believe that either f1 or f2 is jagged. Models containing both penalized
splines and penalized wavelets are also worthy of consideration.
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To amplify this point, and to illustrate the embedding of penalized wavelets
into additive models consider data simulated according to

yi =
1
2 Φ(6 x1i − 3) + 1

3 I(x2i ≥ 0.6) + εi, 1 ≤ i ≤ n, (39)

where the xi1 and x2i are generated as completely independent samples from

the Uniform distribution on (0, 1) and εi
ind.
∼ N(0, σ2

ε) for some σε > 0. Since, as
known by the simulation set-up, the mean responses are a smooth function of
the x1is and a step function of x2is an appropriate model in this example is

yi = β0 + β1 x1i +

Kspl∑

k=1

uspl

k zspl

k (x1i) +

Kwav∑

k=1

uwav

k zwav

k (x2i) + εi

where the zspl

k (·) are spline basis functions and the zwav

k (·) are wavelet basis
functions. Let

X = [1 x1i x2i]1≤i≤n, Zspl = [zspl

k (x1i)
1≤k≤Kspl

]1≤i≤n and Zwav = [zwav

k (x2i)
1≤k≤Kwav

]1≤i≤n

be the design matrices containing the linear functions, spline basis functions and
wavelet basis functions of the data. Note that Zspl and Zwav can be obtained,
respectively, by application of Algorithm 1 to the x1is and Algorithm 2 to the
x2is. Given regularization parameters λspl > 0 and λwav > 0, an appropriate
estimation strategy is one that minimizes the penalized least squares criterion

∥∥y −X β −Zspluspl −Zwavuwav
∥∥2 + λspl

∥∥uspl
∥∥2 + λwav

Kwav∑

k=1

|uwav

k |. (40)

This takes a form similar to the elastic net penalty introduced by Zou and
Hastie [77], and it is anticipated that the efficient computational algorithm that
these authors developed is extendible to (40).

Alternatively a mixed model approach can be used by placing suitable distri-
butions on the spline and wavelet coefficients. We will confine discussion to the
Bayesian version of mixed model fitting, in which an appropriate hierarchical
Bayesian model is

y|β,uspl,uwav, σε ∼ N(Xβ +Zspluspl +Zwavuwav, σ2
ε I),

β ∼ N(0, σ2
βI), uspl ∼ N(0, (σspl

u )2 I),

p(uwav |σwav
u , γk) =

∏K
k=1

{
γk (2σ

wav
u )−1 exp(−|uwav

k |/σwav
u )

+ (1− γk) δ0(u
wav

k )
}
,

σspl
u ∼ Half-Cauchy(Aspl

u ), σwav
u ∼ Half-Cauchy(Awav

u ),

σε ∼ Half-Cauchy(Aε), γk| ρ
ind.
∼ Bernoulli(ρ), ρ ∼ Beta(Aρ, Bρ).

(41)
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Fig 20. Illustrative MFVB-based fit for the spline/wavelet additive model (41). The data were
simulated from (39) with n = 5000 and σε = 1. The true functions are shown in red. The
blue solid curves are function estimates based on the pointwise posterior means. The blue
dashed curves correspond to pointwise approximate 95% credible sets. All curves in the left
panel correspond to the functions of x2 evaluated at the sample mean of the x2i. The reverse
situation applies to the right panel. The rugs at the base of each panel show, respectively, 10%
random sub-samples of the x1is and x2is.

MCMC and MFVB algorithms for fitting (41) involve relatively straightforward
marriage of those given in Sections 2.6, 2.7, 3.6 and 3.7 for Bayesian penalized
spline and Bayesian penalized wavelet nonparametric regression.

Figure 20 shows a MFVB fit for (41), where the data is simulated from (39)
with n = 5000 and σε = 1. For this example, the combination of penalized
splines and penalized wavelets is seen to capture the true functions quite well.

5.3. Semiparametric longitudinal data analysis

During the last fifteen years there has been much research on the use of splines
to handle non-linear effects in the analysis of longitudinal data. See, for exam-
ple, the Non-Parametric and Semi-Parametric Methods for Longitudinal Data
Analysis section of Fitzmaurice, Davidian, Verbeke and Molenberghs [25] and
the references therein. There is also a smaller literature on the incorporation
of wavelets into longitudinal models, with contributions such as Aykroyd and
Mardia [6], Morris, Vannucci, Brown and Carroll [46], Morris and Carroll [45]
and Zhao and Wu [76]. A feature of the wavelet-based longitudinal data analysis
literature is a tendency to work in the coefficient space (e.g. Morris et al. [46]).
In this section we demonstrate that sound analyses can be conducted using di-
rect approaches, analogous to those in the penalized spline longitudinal data
analysis literature.
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The penalized wavelet approach laid out in Section 3 facilitates straightfor-
ward modification of spline-based longitudinal models to handle data possessing
jagged signals. One simply replaces spline basis functions by wavelet basis func-
tions and modifies the penalties on the basis function coefficients. We will pro-
vide illustration via a modification of the subject-specific curve penalized spline
model developed by Durbán, Harezlak, Wand and Carroll [18]. Earlier variants
of this model, based on smoothing splines rather than penalized splines, were
developed by Brumback and Rice [10], Wang [68] and Zhang, Lin, Raz and
Sowers [75]. The model considered by Durbán et al. [18] takes the basic form

yij = f(xij) + gi(xij) + εij , εij
ind.
∼ N(0, σ2

ε)

where, for 1 ≤ i ≤ m and 1 ≤ j ≤ ni, (xij , yij) denotes the jth predic-
tor/response pair for the ith subject. A Bayesian penalized spline model for
f is

f(x) = β0 + β1 x+

Kgbl∑

k=1

ugbl

k zgbl

k (x), ugbl

k |σgbl

u
ind.
∼ N(0, (σgbl

u )2).

We could use penalized wavelets for f , but splines will often be adequate for the
smoother global mean function. However, the subject-specific deviation func-
tions could be quite jagged, in which case a penalized wavelet model such as

gi(x) = Ui +
∑Ksbj

k=1 usbj

ik z
sbj

k (x), Ui|σU
ind.
∼ N(0, σ2

U )

p(usbj

ik |σsbj
u , γik) = γik (2σ

sbj
u )−1 exp(−|usbj

ik |/σ
sbj
u ) + (1− γik) δ0(u

sbj

ik )

(42)

is appropriate for the subject specific deviations. We complete the model spec-
ification with

β0, β1
ind.
∼ N(0, σ2

β I), σgbl
u ∼ Half-Cauchy(Agbl

u ),

σsbj
u ∼ Half-Cauchy(Asbj

u ), σε ∼ Half-Cauchy(Aε),

γik| ρik
ind.
∼ Bernoulli(ρik), ρik

ind.
∼ Beta(Aρ, Bρ).

(43)

Other possibilities for the last component (43) are ρi
ind.
∼ Beta(Aρ, Bρ) and

ρ ∼ Beta(Aρ, Bρ), each of which are more natural generalizations of the Bayesian
penalized wavelet models given in earlier sections of this article. A limited
amount of experimentation with these alternatives led to poor results, whereas
(43) has worked well (e.g. Figures 21 and 22 below). Note, however, that the

last line of (43) is equivalent to γik
ind.
∼ Bernoulli

( Aρ

Aρ+Bρ

)
which implies that the

ρik can be omitted. Further research on this part of the model is warranted.
Figure 21 shows data where model (43) is beneficial. The data are from a

respiratory pneumonitis study (source: Hart et al. [33]) and the panels display
the logarithm of normalized fluorodeoxyglucose uptake against radiation dose
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Fig 21. Logarithm of normalized fluorodeoxyglucose uptake versus radiation dose (J/kg)for
each of 21 lung cancer patients (source: Hart et al. [33]), shown as red points. The blue
curves are posterior mean fits of the model given by (42) and (43). The light blue shading
corresponds to pointwise 95% credible sets.

for each of 21 lung cancer patients. The red points in Figure 21 show the data.
The blue curves correspond to the posterior mean fit of (42) and (43). The
light blue shading conveys pointwise 95% credible sets for each fitted curve.
These fits were obtained using BUGS (Spiegelhalter et al. [58]), accessed from
within R via the BRugs package (Ligges et al. [41]). The BUGS code is listed in
Appendix F. A burnin of size 15000 was used, followed by 5000 iterations which
were then thinned by a factor 5. The predictor and response data were each
linearly transformed to the unit interval and the hyperparameters were set to
the values σ2

β = 108,Agbl
u = Asbj

u = Aε = 25,Aρ = Bρ = 1, corresponding to non-
informativity. The inverse linear transformation was applied before displaying
the fits.

Figure 22 highlights aspects of the fit shown in Figure 21. The top left panel is
the penalized spline-based estimate of the global mean function f . The bottom
left panel displays the penalized wavelet-based subject specific deviations. These
are quite irregular and appear to benefit from the use of wavelets rather than
splines. The top right panel is a zoomed version of one of the panels from
Figure 21 and the bottom right panels shows the residuals against the fitted
values. The residual plot shows no pronounced patterns, indicating that the
model fits the data well.

In this article we do not delve into the scientific questions associated with
these data and only use it to illustrate penalized wavelet-based semiparametric
longitudinal data analysis. Further work is planned on the scientific ramifications
of such analyses.
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Fig 22. Additional plots corresponding to the model fit shown in Figure 21. Top left: fitted
penalized spline-based global mean curve. Bottom left: fitted penalized wavelet-based subject-
specific deviation curves. Top right: Zoomed version of the for fit for the 13th subject. Bottom
right: residuals versus fitted values.

As of this writing our only implementation of model (42) and (43) is in
BUGS, which has the disadvantage of taking 1–2 days to run on contemporary
computing platforms. Ongoing work by Sarah E. Neville and the first author
is aimed at developing faster MCMC and MFVB implementations for this and
related models.

5.4. Non-standard semiparametric regression

As laid out in Section 2 penalized spline fitting and inference is now handled
in a number of different ways. In particular, frequentist and Bayesian mixed
model representations play an important role in accommodating various non-
standard situations. Examples include measurement error (e.g. Berry, Carroll
and Ruppert [7]), missing data (e.g. Faes, Ormerod and Wand [22]) and ro-
bustness (e.g. Staudenmayer, Lake and Wand [59]). In Marley and Wand [42]
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we should how MCMC, with the help of BUGS, can handle a wide range of
non-standard semiparametric regression problems.

As Section 3 shows, penalized wavelets can be handled using the same general
approaches as penalized splines. It follows that modification to non-standard
cases has similar parallels.

6. R software

Penalized wavelets benefit from particular software packages in the R language.
We briefly describe some of them here.

The R package wavethresh (Nason [48]) plays a particularly important role
in our proposed penalized wavelet paradigm since it supports efficient com-
putation of the Z and Zg design matrices, containing wavelet basis functions
evaluated at predictor values or plotting grids. The function ZDaub(), described
in Appendix A, contains the relevant code.

For the penalized least squares approach with L1 penalization the function
lars() within the package lars (Hastie and Efron [35]) efficiently computes

a suite over a fine grid of λ values. The function also returns values of êdf(λ)

which assists penalty parameter selection via criteria such as ĜCV(λ).
The R package ncvreg (Breheny [9]) is similar to lars in that it efficiently

computes penalized least squares fits over penalty parameter grids. However,
it offers penalization using either the SCAD or minimax concave penalties. It
also supports logistic regression loss and has k-fold cross-validation functionality
for choice of the penalty parameter. Similar functionality is provided by the R

package glmnet (Friedman, Hastie and Tibshirani [27, 28]), but with the elastic
net family of penalties. This family includes the L1 penalty as a special case.

A shortcoming of lars, ncvreg and glmnet in the context of the current
article is that they support models only with a single penalty parameter. Hence,
the multiple penalty parameter models described in Sections 5.2 and 5.3 require
alternative routes for R implementation. As mentioned in Section 5.3, the BRugs
package was used for the semiparametric longitudinal analysis done there and, of
course, it can be used to handle the simpler Bayesian penalized models discussed
earlier.

Finally, we mention that the matrix algebra features of the R language allow
efficient implementation of the MFVB algorithms given in Sections 3 and 5.

7. Concluding remarks

The overarching theme of this article, that wavelets can be embedded in semi-
parametric regression in a way that is analogous to splines, is apparent from
details provided in Sections 2 to 5. Two areas which have seen a great deal of re-
cent activity in Statistics, wide data regression and mean field variational Bayes,
are particularly relevant to penalized wavelets and can aid more widespread
adoption. R packages for MCMC-based analyses, such as BRugs, also have an
important role to play as demonstrated by the example in Section 5.3.
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This new paradigm promises to be important for future analyses and de-
velopments in semiparametric regression since the benefits offered by wavelets
can be enjoyed with relatively straightforward adaptation of existing penalized
spline methodology.

Appendix A: R code for default basis computation

Algorithms 1 and 2, together with details given in Sections 2.1 and 3.1, describe
construction of good default Z matrices for penalized splines and penalized
wavelets, respectively. A web-supplement to this article is a ZIP archive titled
ZOSullandZDaub.zip that includes two files ZOSull.r and ZDaub.r. These,
respectively, contain the R functions, ZOSull() and ZDaub(), for computing
these Z matrices. The first function uses O’Sullivan splines, or O-splines for
short. The second uses Daubechies wavelets with the smoothness number an
input parameter but defaulted to 5. Note that ZDaub() avoids computation
and storage of large matrices, despite the description given in Section 3.1. Also
included in ZOSullandZDaub.zip is an R script named

ZOSullandZDaubDemo.Rs

which demonstrates how ZOSull() and ZDaub() can be used for design ma-
trix construction, prediction and plotting. The README file in the ZIP archive
provides full details.

Appendix B: Details on frequentist mixed model-based penalized
wavelet regression with Laplacian random effects

Consider the wavelet nonparametric regression model with frequentist mixed
model representation:

y|u ∼ N(Xβ +Zu, σ2
εI)

where the uk are independent with density function

p(uk;σu) = (2σu)
−1 exp(−|uk|/σu).

Theorem. Suppose that ZTZ = α2I. Then the log-likelihood of (β, σ2
u, σ

2
ε )

admits the explicit expression

ℓ(β, σ2
u, σ

2
ε)

= 1
2 (K − n) log(2πσ2

ε )−K log(2σu)−
1

2σ2
ε
‖y −Xβ‖2

+
1

2α2σ2
ε

∥∥∥ZT (y −Xβ)−
σ2
ε

σu
1
∥∥∥
2

+ 1T logΦ

(
ZT (y −Xβ)−

σ2
ε

σu

ασε

)

+ 1T H

(
2ZT (y −Xβ)

α2σu
+ logΦ

(
−ZT (y −Xβ)−

σ2
ε

σu

ασε

)

− log Φ

(
ZT (y −Xβ)−

σ2
ε

σu

ασε

))
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where H(x) ≡ log(ex+1). In addition, the best predictor of u admits the explicit
expression

E(u|y) = α−2
[
w(y,β, σ2

ε , σ
2
u){Z

T (y −Xβ) +
σ2
ε

σu
1}

+ {1− w(y,β, σ2
ε , σ

2
u)}{Z

T (y −Xβ)−
σ2
ε

σu
1}
]

where

w(y,β, σ2
ε , σ

2
u) ≡ exp

(ZT (y −Xβ)

α2σu

)
Φ
(−ZT (y −Xβ)−

σ2
ε

σu

ασε

)

×

{
exp

(ZT (y −Xβ)

α2σu

)
Φ
(−ZT (y −Xβ)−

σ2
ε

σu

ασε

)

+ exp
(−ZT (y −Xβ)

α2σu

)
Φ
(ZT (y −Xβ)−

σ2
ε

σu

ασε

)}−1

.

Remark 1. The expression for ℓ(β, σ2
u, σ

2
ε) is given in terms of H(x) = log(ex+

1) for reasons of numerical stability. Note that H(x) ≈ x, with this approxima-
tion being very accurate for x ≥ 20. This approximation of H(x) for large
positive x should be used to avoid overflow in computation of ℓ(β, σ2

u, σ
2
ε ).

Remark 2. The expression for E(u|y) is similar to (6) of Pericchi and Smith
[53] for the Bayes estimator of a normal location parameter with Laplacian prior.

Proof of Theorem. Define

C(k, s1, s2, s3) ≡ s−k−1
2

∫ ∞

−∞

xk exp{−(x2 − 2s1x)/(2s
2
2)− |x|/s3} dx.

The proof uses the following two lemmas, each of which can be derived via
elementary calculations:

Lemma 1. For general s1 ∈ R and s2, s3 > 0

C(0, s1, s2, s3) = (Φ/φ)

(
−
s1
s2

−
s2
s3

)
+ (Φ/φ)

(
s1
s2

−
s2
s3

)

and

C(1, s1, s2, s3) =

(
s1
s2

−
s2
s3

)
(Φ/φ)

(
s1
s2

−
s2
s3

)

−

(
−
s1
s2

−
s2
s3

)
(Φ/φ)

(
−
s1
s2

−
s2
s3

)

where (Φ/φ)(x) ≡ Φ(x)/φ(x) is the ratio of the standard normal cumulative
distribution and density functions.
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Lemma 2. For any a, b ∈ R

log {(Φ/φ)(−a− b) + (Φ/φ)(a− b)}= 1
2 log(2π) +

1
2 (a− b)2 + logΦ(a− b)

+H(2ab+ logΦ(−a− b)− logΦ(a− b))

where H(x) ≡ log(ex + 1).

The log-likelihood is

ℓ(β, σ2
u, σ

2
ε ) = log p(y;β, σ2

u, σ
2
ε )

= log

∫

RK

p(y|u;β, σ2
ε )p(u|σ

2
u) du

= log

∫

RK

(2πσ2
ε )

−n/2 exp

{
−

1

2σ2
ε

‖y −Xβ −Zu‖2
}

× (2σu)
−K exp

{
−

K∑

k=1

|uk|

σu

}
du.

The assumption thatZTZ = α2I leads to separation of the multivariate integral
into K univariate integrals, resulting in

ℓ(β, σ2
u, σ

2
ε) = − 1

2 n log(2πσ
2
ε) +K log

(
σε

2σuα

)
− 1

2σ2
ε
‖y −Xβ‖2

+
K∑

k=1

log C(0, {ZT (y −Xβ)}k/α, σε, α σu).

The stated result for ℓ(β, σ2
u, σ

2
ε) follows from the first part of Lemma 1 and

Lemma 2.
Next note that

E(u|y) =

∫
RK u p(y|u;β, σε)p(u;σu) du∫
RK p(y|u;β, σε)p(u;σu) du

.

The denominator is the likelihood exp{ℓ(β, σ2
u, σ

2
ε )} whilst the numerator is

∫
RK u(2πσ2

ε )
−n/2 exp

{
− 1

2σ2
ε
‖y −Xβ −Zu‖2

}

× (2σu)
−K exp

{
−
∑K

k=1
|uk|
σu

}
du.

(44)

As with the log-likelihood derivation, the assumption ZTZ = α2I leads to
separation of the multivariate integral into the following univariate integral ex-
pression for (44):

C(1, α−1ZT (y −Xβ), σε, α σu)

C(0, α−1ZT (y −Xβ), σε, α σu)
exp{ℓ(β, σ2

u, σ
2
ε )}.

Application of Lemma 1 then leads to the explicit result for E(u|y).
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Appendix C: Derivation of (17) and Algorithm 3

We now derive result (17) and Algorithm 3 concerning MFVB fitting of the
Bayesian penalized spline model (14). Throughout this appendix and the next
two, additive constants with respect to the function argument are denoted by
‘const’. The MFVB calculations heavily rely on the following results for the full
conditional density functions:

log p(β,u|rest) = − 1
2

[[
β

u

]T (
σ−2
ε CTC +

[
σ−2
β I2 0

0 σ−2
u IK

])[
β

u

]

−2

[
β

u

]T
CTy

]
+ const,

log p(σ2
u|rest) = {− 1

2 (K + 1)− 1} log(σ2
u)−

(
1
2‖u‖

2 + a−1
u

)
/σ2

u + const,

log p(σ2
ε |rest) = {− 1

2 (n+ 1)− 1} log(σ2
ε)

−
(
1
2‖y −Xβ −Zu‖2 + a−1

ε

)
/σ2

ε + const,

log p(au|rest) = −2 log(au)− (σ−2
u +A−2

u )/au + const

and log p(aε|rest) = −2 log(aε)− (σ−2
ε + a−2

ε )/aε + const.

Expressions for q∗(β,u), µq(β,u) and Σq(β,u)

q∗(β,u) ∼ N(µq(β,u),Σq(β,u))

where

Σq(β,u) =

(
µq(1/σ2

ε)
CTC +

[
σ−2
β I2 0

0 µq(1/σ2
u)
IK

])−1

and

µq(β,v) = µq(1/σ2
ε )
Σq(β,u)C

Ty.

Derivation:

log q∗(β,u) = Eq{log p(β,u|rest)}+ const

= − 1
2

{[
β

u

]T (
µq(1/σ2

ε)
CTC +

[
σ−2
β I 0

0 µq(1/σ2
u)
IK

])[
β

u

]

−2

[
β

u

]T
CTy

}
+ const.

The stated result then follows from standard ‘completion of the square’ manip-
ulations.
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Expressions for q∗(σ2
u), Bq(σ2

u)
and µq(1/σ2

u)

q∗(σ2
u) ∼ Inverse-Gamma(12 (K + 1), Bq(σ2

u)
)

where
Bq(σ

2
u) =

1
2{‖µq(u)‖

2 + tr(Σq(u))}+ µq(1/au).

In addition,
µq(1/σ2

u)
= 1

2 (K + 1)/Bq(σ2
u)
.

Derivation:

log q∗(σ2
u) = Eq{log p(σ

2
u|rest)}+ const

= {− 1
2 (K + 1)− 1} log(σ2

u)−
(
1
2 Eq‖u‖

2 + µq(1/au)

)
/σ2

u + const.

The form of q∗(σ2
u) and Bq(σ2

u)
follows from this and the fact that

Eq‖u‖
2 = ‖Eq(u)‖

2 + tr{Covq(u)}.

The expression for µq(1/σ2
u)

follows from elementary manipulations involving
Inverse Gamma density functions.

Expressions for q∗(σ2
ε ), Bq(σ2

ε )
and µq(1/σ2

ε)

q∗(σ2
ε ) ∼ Inverse-Gamma(12 (n+ 1), Bq(σ2

ε)
)

where

Bq(σ
2
ε ) =

1
2{‖y −Cµq(β,u)‖

2 + tr(CTCΣq(β,u))}+ µq(1/aε).

In addition,
µq(1/σ2

ε)
= 1

2 (n+ 1)/Bq(σ2
ε)
.

Derivation:
This derivation is similar to that for q∗(σ2

u).

Expressions for q∗(aε), Bq(aε) and µq(1/aε)

q∗(aε) ∼ Inverse-Gamma(1, Bq(aε))

where

Bq(aε) = µq(1/σ2
ε )

+A−2
ε and µq(1/aε) = 1/{µq(1/σ2

ε)
+A−2

ε }.

Derivation:

log q∗(aε) = −2 log(aε)− Eq(σ
−2
ε +A−2

ε )/aε + const

= (−1− 1) log(aε)− (µq(1/σ2
ε )

+A−2
ε )/aε + const.

Therefore
q∗(aε) ∼ Inverse-Gamma(1, µq(1/σ2

ε)
+A−2

ε ).

The expressions for Bq(aε) and µq(1/aε) follow immediately.
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Expressions for q∗(au), Bq(au) and µq(1/au)

q∗(au) ∼ Inverse-Gamma(1, Bq(au))

where

Bq(au) = µq(1/σ2
u)

+A−2
u and µq(1/au) = 1/{µq(1/σ2

u)
+A−2

u }.

Derivation:
The derivation is analogous to that for q∗(aε) and related quantities.

Appendix D: Derivation of (32) and Algorithm 4

In this appendix we derive (32) and Algorithm 4 concerning MFVB fitting of
the Bayesian penalized wavelet model (30).

The full conditionals satisfy

log p(β,v|rest) = − 1
2

{[
β

v

]T (
σ−2
ε CT

γCγ +

[
σ−2
β 0

0 σ−2
u diag(b)

])[
β

v

]

−2

[
β

v

]T
CT

γy

}
+ const

log p(σ2
u|rest) = {− 1

2 (K + 1)− 1} log(σ2
u)−

{
1
2v

Tdiag(b)v + a−1
u

}
/σ2

u

+const,

log p(σ2
ε |rest) = {− 1

2 (n+ 1)− 1} log(σ2
ε )

−
(
1
2‖y −Xβ −Zγu‖

2 + a−1
ε

)
/σ2

ε + const,

log p(au|rest) = −2 log(au)− (σ−2
u +A−2

u )/au + const,

log p(aε|rest) = −2 log(aε)− (σ−2
ε + a−2

ε )/aε + const,

log p(b|rest) =

K∑

k=1

{− 3
2 log(bk)− (bk − σu/|vk|)

2/(2 bk σ
2
u/v

2
k)}+ const,

log p(γ|rest) =

K∑

k=1

{
− 1

2σ2
ε
‖y −Xβ −Z−k(γ−k ⊙ v−k)−Zkγk vk‖

2

+γk logit(ρ)
}
+ const

and log p(ρ|rest) = (Aρ + γ• − 1) log(ρ) + (Bρ +K − γ• − 1) log(1− ρ)

+const.

where γ• ≡
∑K

k=1 γk.

Expressions for q∗(β,v), µq(β,v) and Σq(β,v)

q∗(β,v) ∼ N(µq(β,v),Σq(β,v))
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where

Σq(β,v) =

(
µq(1/σ2

ε )
(CTC)⊙Ωq(wγ ) +

[
σ−2
β 0

0 µq(1/σ2
u)
diag(µq(b))

])−1

,

µq(β,v) = µq(1/σ2
ε )
Σq(β,v)diag{µq(wγ )}C

Ty

and
Ωq(wγ ) ≡ diag{µq(wγ) ⊙ (1− µq(wγ ))}+ µq(wγ ) µ

T
q(wγ )

. (45)

Derivation:

log q∗(β,v) = − 1
2

{[
β

v

]T (
µq(1/σ2

ε )
Eq(C

T
γCγ)

+

[
σ−2
β 0

0 µq(1/σ2
u)
diag(µq(b))

])[
β

v

]

−2

[
β

v

]T
Eq(Cγ)

Ty

}
+ const.

The stated result then follows from standard ‘completion of the square’ manip-
ulations and explicit expressions for Eq(Cγ) and Eq(C

T
γCγ) which we derive

next.
Firstly,

Eq(Cγ) = C Eq{diag(wγ)} = C diag{µq(wγ )}.

Secondly,

CT
γCγ = diag(wγ)C

TCdiag(wγ) = (CTC)⊙ (wγw
T
γ ).

Hence,
Eq(C

T
γCγ) = (CTC)⊙ {Covq(wγ) + µq(wγ) µ

T
q(wγ)

}.

Since the entries of wγ are binary and independent with respect to q(γ) we have

Covq(wγ) = diag{µq(wγ ) ⊙ (1− µq(wγ ))}.

The stated results from these results via standard arguments.

Expressions for q∗(σ2
u), Bq(σ2

u)
and µq(1/σ2

u)

q∗(σ2
u) ∼ Inverse-Gamma(12 (K + 1), Bq(σ2

u)
)

where

Bq(σ2
u)

= µq(1/au) +
1
2

K∑

k=1

µq(bk){σ
2
q(vk)

+ µ2
q(vk)

}.
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In addition,

µq(1/σ2
u)

= 1
2 (K + 1)/Bq(σ2

u)
.

Derivation:

log q∗(σ2
u) = {− 1

2 (K + 1)− 1} log(σ2
u)−

[
1
2 Eq{v

Tdiag(b)v}+ µq(1/au)

]/
σ2
u

+const.

It is apparent from this that q∗(σ2
u) is an Inverse Gamma density function with

shape parameter 1
2 (K +1) and rate parameter, Bq(σ2

u)
, equal to the term inside

the square brackets. The remaining non-explicit term is

Eq{v
Tdiag(b)v} = tr{diag(µq(b))Eq(vv

T )} =
K∑

k=1

µq(bk){σ
2
q(vk)

+ µ2
q(vk)

}.

Expressions for q∗(σ2
ε ), Bq(σ2

ε )
and µq(1/σ2

ε)

q∗(σ2
ε ) ∼ Inverse-Gamma(12 (n+ 1), Bq(σ2

ε)
)

where

Bq(σ2
ε)

= µq(1/aε) +
1
2 ‖y‖

2 − yTC
(
µq(wγ ) ⊙ µq(β,v)

)

+ 1
2 tr
(
CTC

[
Ωq(wγ ) ⊙

{
Σq(β,v) + µq(β,v)µ

T
q(β,v)

}])

and Ωq(wγ ) is as given by (45). In addition,

µq(1/σ2
ε )

= 1
2 (n+ 1)/Bq(σ2

ε)
.

Derivation:

log q∗(σ2
ε ) = Eq{log p(σ

2
ε |rest)} + const

= {− 1
2 (n+ 1)− 1} log(σ2

ε )

−

{
1
2 Eq

∥∥∥y −C

(
wγ ⊙

[
β

v

])∥∥∥
2

+ µq(1/aε)

}/
σ2
ε + const.

It is apparent from this that q∗(σ2
ε ) is an Inverse Gamma density function with

shape parameter 1
2 (n+ 1) and rate parameter, Bq(σ2

ε )
, equal to the term inside

the curly brackets. The remaining non-explicit term is

Eq

∥∥∥y −C

(
wγ ⊙

[
β

v

])∥∥∥
2

=
∥∥∥y −C

(
µq(wγ ) ⊙ µq(β,v)

) ∥∥∥
2

+tr

{
CTC Covq

(
wγ ⊙

[
β

v

])}
.
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Lemma 3 below implies that

Covq

(
wγ ⊙

[
β

v

])
= Covq(wγ)⊙ {Σq(β,v) + µq(β,v)µ

T
q(β,v)}

+(µq(wγ)µ
T
q(wγ )

)⊙Σq(β,v).

The stated result for Bq(σ2
ε )

then follows quickly from this expression and the
fact that

Covq(wγ) = diag[µq(wγ) ⊙ {1− µq(wγ )}].

Lemma 3. If x1 and x2 are independent random vectors of the same length
then

Cov(x1 ⊙ x2) = Cov(x1)⊙ Cov(x2) + {E(x1)E(x1)
T } ⊙ Cov(x2)

+{E(x2)E(x2)
T } ⊙ Cov(x1)

Proof. First note that for any constant vector a having the same length as x

we have Cov(a⊙ x) = (aaT )⊙ Cov(x). Then

Cov(x1 ⊙ x2) = E{Cov(x1 ⊙ x2|x1)} +Cov{E(x1 ⊙ x2|x1)}

= {E(x1x
T
1 )} ⊙ Cov(x2) + Cov{E(x2)⊙ x1}

= {Cov(x1) + E(x1)E(x1)
T } ⊙ Cov(x2)

+{E(x2)E(x2)
T } ⊙ Cov(x1).

The lemma follows immediately.

Expressions for q∗(bk) and µq(bk)

q∗(b) =

K∏

k=1

q∗(bk)

where

q∗(bk) ∼ Inverse-Gaussian({µq(1/σ2
u)
(σ2

q(vk)
+ µ2

q(vk)
)}−1/2, 1).

In addition,
µq(bk) = {µq(1/σ2

u)
(σ2

q(vk)
+ µ2

q(vk)
)}−1/2.

Derivation:
We have

log p(b|rest) =

K∑

k=1

{− 3
2 log(bk)− (bk − σu/|vk|)

2/(2 bk σ
2
u/v

2
k)}+ const

from which it follows that

log q∗(b) =

K∑

k=1

[− 3
2 log(bk)− Eq{(bk − σu/|vk|)

2/(2 bk σ
2
u/v

2
k)}] + const

=

K∑

k=1

[− 3
2 log(bk)−

1
2µq(1/σ2

u)
Eq(v

2
k) bk −

1
2 (1/bk)] + const.

Straightforward manipulations then lead to the stated result.
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Expressions for q∗(ρ)

q∗(ρ) ∼ Beta(Aρ + µq(γ•), Bρ +K − µq(γ•)).

Derivation:
Since

log p(ρ|rest) = (Aρ + γ• − 1) log(ρ) + (Bρ +K − γ• − 1) log(1 − ρ)

+const,

we have

log q∗(ρ) = (Aρ + µq(γ•) − 1) log(ρ) + (Bρ +K − µq(γ•) − 1) log(1− ρ)

+const.

which quickly leads to the stated result for q∗(ρ).

Expressions for q∗(γk) and µq(γk)

q∗(γk)
ind.
∼ Bernoulli

(
exp(ηq(γk))

1 + exp(ηq(γk))

)

where

ηq(γk) = − 1
2 µq(1/σ2

ε)

[
‖Zk‖

2{σ2
q(vk)

+ µ2
q(vk)

} − 2ZT
k y µq(vk)

+2ZT
kX

{
(Σq(β,v))1,1+k + µq(β)µq(vk)

}

+2ZT
kZ−k

{
(µq(γ))−k ⊙ {(Σq(v))−k,k + µq(vk)(µq(v))−k}

}]

+ψ(Aρ + µq(γ•))− ψ(Bρ +K − µq(γ•)).

Derivation:

The full conditional density function for γk satisfies

log p(γk|rest) = − 1
2σ2

ε
‖y −Xβ −Z−k(γ−k ⊙ v−k)−Zkγk vk‖

2

+γk logit(ρ) + const

= γk

(
− 1

2σ2
ε

[
‖Zk‖

2v2k − 2yT Zk vk + 2XT Zk β vk

+2ZT
kZ−k{γ−k ⊙ (vkv−k)}

]
+ logit(ρ)

)
+ const.

Hence

log q∗(γk) = γk

(
− 1

2 µq(1/σ2
ε )
Eq

[
‖Zk‖

2v2k − 2yT Zk vk + 2XT Zk β vk

+2ZT
kZ−k{γ−k ⊙ (vkv−k)}

]
+ Eq{logit(ρ)}

)
+ const.
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We thus require four expectations with respect to the q-functions corresponding
to the square brackets in this last expression. The first is

Eq(v
2
k) = σ2

q(vk)
+ µ2

q(vk)
= (Σq(v))kk + (µq(v))

2
k

whilst the second is Eq(vk) = (µq(v))k. The third is

Eq(β vk) = (Σq(β,v))1,1+k + µq(β)(µq(v))k.

Next note that

Eq{γ−k ⊙ (vkv−k)} = (µq(γ))−k ⊙ Eq(vkv−k)

= (µq(γ))−k ⊙ {(Σq(v))−k,k + µq(vk)(µq(v))−k}

where (Σq(v))−k,k is the kth column of Σq(v) with the kth row omitted.
The remaining expectation is

Eq{logit(ρ)} = Eq{log(ρ)} − Eq{log(1− ρ)}

=

∫ 1

0

ρAρ+µq(γ•)−1(1 − ρ)Bρ+K−µq(γ•)−1 log(ρ)

B(Aρ + µq(γ•), Bρ +K − µq(γ•))
dρ

−

∫ 1

0

ρAp+µq(γ•)−1(1− ρ)Bρ+K−µq(γk)−1 log(1− ρ)

B(Aρ + µq(γ•), Bρ +K − µq(γ•))
dρ

where B(·, ·) is the Beta function. Using the integral result

∫ 1

0

xa−1(1− x)b−1

B(a, b)
log(x) dx = ψ(a)− ψ(a+ b)

(Result 4.253 1. of Gradshteyn and Ryzhik [30]), where ψ(x) ≡ d
dx log{Γ(x)} is

the digamma function, we eventually get

Eq{logit(ρ)} = ψ(Aρ + µq(γ•))− ψ(Bρ +K − µq(γ•)).

On combining we see that

log q∗(γk) = γk ηq(γk) + const, γk = 0, 1.

The stated result follows immediately.

Expressions for q∗(aε), Bq(aε), µq(1/aε), q
∗(au), Bq(au) and µq(1/au)

Each of these expressions, and their derivations, are identical to the penalized
spline case.
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Appendix E: Derivation of Algorithm 5

In Algorithm 5, the MFVB calculations for σ2
u, au, b and ρ are unaffected by

the change from Gaussian y to binary y. For β, v and γ the algebra is very
similar to the Gaussian case. The only modifications are

µq(1/σ2
ε )

replaced by 1

and y replaced by µq(a).

It remains to determine the form of q∗(a) and µq(a). Firstly, if yi = 1 then

q∗(ai) ∝ exp
{
Eq

(
− 1

2 [ai − (Xβ)i − {Z(γ ⊙ v)}i]
2
)}
, ai ≥ 0

∝ exp

(
− 1

2

[
ai − (Xµq(β))i − {Z(µq(γ) ⊙ µq(v))}i

]2)
, ai ≥ 0.

Hence, if yi = 1,

q∗(ai) =
φ(ai − (Xµq(β))i − {Z(µq(γ) ⊙ µq(v))}i)

Φ((Xµq(β))i + {Z(µq(γ) ⊙ µq(v))}i)
, ai ≥ 0,

which is a truncated normal density function on (0,∞). Similarly, if yi = 0, then

q∗(ai) =
φ(ai − (Xµq(β))i − {Z(µq(γ) ⊙ µq(v))}i)

1− Φ((Xµq(β))i + {Z(µq(γ) ⊙ µq(v))}i)
, ai < 0.

Using moment results such as
∫∞

0 xφ(x−µ)/Φ(x) dx = µ+φ(µ)/Φ(µ) we even-
tually obtain the expression

µq(a) = Xµq(β) +Z(µq(γ) ⊙ µq(v))

+
(2y − 1)⊙ φ(Xµq(β) +Z(µq(γ) ⊙ µq(v)))

Φ((2y − 1)⊙ {Xµq(β) +Z(µq(γ) ⊙ µq(v))})
.

Appendix F: BUGS code for Section 5.3 analysis

This last appendix lists the BUGS code used to fit the subject-specific curve
model given by (42) and (43). The notation in the code matches that used in
Section 5.3. For example Zgbl corresponds to Zgbl, and this design matrix is
constructed outside of BUGS and inputted as data.

model

{

for (i in 1:numObs)

{

mu[i] <- (beta0 + beta1*x[i] + inprod(uGbl[],Zgbl[i,])

+ U[idnum[i]] + inprod(uSbj[idnum[i],],Zsbj[i,]))
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y[i] ~ dnorm(mu[i],tauEps)

}

for (iSbj in 1:numSbj)

{

U[iSbj] ~ dnorm(0,tauU)

}

for (kGbl in 1:ncZgbl)

{

uGbl[kGbl] ~ dnorm(0,tauGbl)

}

for (iSbj in 1:numSbj)

{

for (kSbj in 1:ncZsbj)

{

uSbj[iSbj,kSbj] <- gamma[iSbj,kSbj]*vSbj[iSbj,kSbj]

vSbj[iSbj,kSbj] ~ ddexp(0,tauSbj)

gamma[iSbj,kSbj] ~ dbern(rho[iSbj,kSbj])

rho[iSbj,kSbj] ~ dbeta(Arho,Brho)

}

}

beta0 ~ dnorm(0,tauBeta) ; beta1 ~ dnorm(0,tauBeta)

tauEps ~ dgamma(0.5,recipAeps) ; AepsRecSq <- pow(Aeps,-2)

recipAeps ~ dgamma(0.5,AepsRecSq)

tauGbl ~ dgamma(0.5,recipAgbl) ; AgblRecSq <- pow(Agbl,-2)

recipAgbl ~ dgamma(0.5,AgblRecSq)

tauU ~ dgamma(0.5,recipAlin) ; AlinRecSq <- pow(Alin,-2)

recipAlin ~ dgamma(0.5,AlinRecSq)

tauSbj ~ dgamma(0.5,recipAsbj) ; AsbjRecSq <- pow(Asbj,-2)

recipAsbj ~ dgamma(0.5,AsbjRecSq)

}
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