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Éric Marchand∗,†
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Abstract: We study the frequentist risk performance of Bayesian estima-
tors of a bounded location parameter, and focus on conditions placed on
the shape of the prior density guaranteeing dominance over the minimum
risk equivariant (MRE) estimator. For a large class of even and logconcave
densities, even convex loss functions, we demonstrate in a unified manner
that symmetric priors which are bowled shaped and logconcave lead to
Bayesian dominating estimators. The results generalize similar results ob-
tained by Marchand and Strawderman for the fully uniform prior, as well
as those obtained by Kubokawa for squared error loss. Finally, we present
a detailed example and several remarks.
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1. The problem

Consider the restricted parameter space estimation problem:

X ∼ f0(x− θ), loss is ρ(d− θ), θ ∈ [a, b], (1)

where f0 is a positive Lebesgue density and ρ is convex. Without the restriction
θ ∈ [a, b], a benchmark estimator is the minimum risk equivariant estimator
δmre, which is also minimax and Bayes with respect to the flat (or nonin-
formative) prior on (−∞,∞). In view of the compact interval restriction, the
frequentist risk performance of Bayesian alternatives δπ with respect to prior
densities π supported on [a, b], or a subset of [a, b], is of interest. Characterizing
Bayesian estimators δπ, or the prior densities π themselves, that guarantee that
δπ dominate δmre is of particular interest. In this regard, Marchand and Straw-
derman [11] (see also [4]) showed that indeed that the fully uniform prior Bayes
estimator δU dominates δmre quite generally with respect to f0 and convex ρ,
(or again logconcave f0 and strict bowl-shaped ρ). The result is achieved, in an
unified way with respect to f0 and ρ and by using Kubokawa’s [3] IERD method,
via general conditions for an estimator δ to dominate δmre and showing then
that δU satisfies these conditions. By making use of such conditions, Kubokawa
([4], Proposition 3.1) provides quite elegant, simple and useful conditions on f0
and π for δπ to dominate δmre for squared error ρ, reproduced here in a slightly
weaker version.

Lemma 1 (Kubokawa, [4]). For problem (1) with f0 even, unimodal and log-
concave1, and squared error ρ, δπ dominates δmre whenever the density π is
symmetric about a+b

2 , logconcave on (a, b), and nondecreasing on (a+b
2 , b).

We see indeed that the conditions for dominance are qualitatively appealing.
Moreover, we argue that they capture the essential features of priors which lead
to dominance. Indeed, these prior densities are bowled shaped in contrast to
unimodal priors π which may lead to large frequentist risk R(θ, δπ) for θ on or
near the boundary {a, b}. They also do not rise too sharply from the center, as
controlled by the logconcavity condition, as otherwise, such as the case of too
sharply increasing densities moving away from the center, the frequentist risk
may be too large in the center a+b

2 of the parameter space.
However, while Marchand and Strawderman’s dominance conditions and proof

of the superiority of δU on δmre applies for a large class of losses ρ, Lemma 1 is
limited to squared error ρ and Kubokawa’s proof does indeed exploit analytical
properties of δπ specific to squared error loss. The main motivation and finding
below thus consists of a generalization (Theorem 1) of Lemma 1 to a larger class
of losses, where convex ρ and logconcave ρ′ (the latter is a weak condition) are
required. Moreover, the proof is unified with respect to (f0, ρ), and we believe
that it even simplifies some of the intricate analysis of Kubokawa’s proof for the
squared error case. It also brings into focus precise analytical properties (Lem-
mas 4 and 5) of Bayes estimators in restricted parameter spaces which will be

1It is true that the symmetry and unimodality would suffice as these imply unimodality.
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of use in similar problems. An illustration of our results (Example 1) completes
the presentation.

In contrast to the problem of dominating the (more plausible) truncation of
δmre, where conditions applicable to δπ ([6, 7, 8, 9]) are limited to not too large
parameter spaces (i.e., b − a not too large), the results of Lemma 1 and those
below apply regardless of the given parameter space [a, b]. There has been a
fair amount of work on decision theoretic approaches to restricted parameter
space problems (see for instance [10, 13]), with many remaining challenges such
as those solved with Lemma 1 and its generalization below. As an example,
Hartigan [2] studies a multivariate version of problem (1) with X ∼ Np(θ, Ip),
loss ‖d − θ‖2, θ ∈ C where C is a convex set with a non-empty interior, and
shows that the fully uniform Bayes estimator δU (although here the prior can be
improper) dominates quite generally X regardless of C and p. His results apply
to problem (1) but have not been extended to other priors, or to other models
or losses for p > 1.

2. Main results

For problem (1), a minimum risk equivariant estimator δmre exists and is, under
mild conditons which we assume, uniquely given by X + c0, where c0 minimizes
the constant risk R(θ,X+ c) = E0[ρ(X+ c)] in c. Unless specified otherwise, we
take throughout in (1) a = −m, b = m without loss of generality, we assume f0
to be even, logconcave, and we further assume that ρ is absolutely continuous,
symmetric about 0, and strict bowled-shaped such that ρ ≥ 0, ρ(0) = 0, ρ′(u) <
0 for u < 0 and ρ′(u) > 0 for u > 0. We point out that the logconcave assumption
on f0 equates to a strict monotone likelihood ratio (mlr) property for the family
of densities ofX . Under the above assumptions, the MRE estimator is simplyX .

Marchand and Strawderman’s conditions for an estimator X+h(X) to dom-
inate δmre specialize as follows for Bayesian estimators δπ associated with sym-
metric densities π. The conditions are rather simple, qualitatively appealing,
and bring into play the benchmark fully uniform Bayes estimator δU .

Lemma 2. For problem (1) with f0 even, with ρ symmetric about 0, logconcave
and strict bowled-shaped, the Bayes estimator δπ(x) = x + hπ(x) with respect
to a symmetric about 0 prior density π, dominates δmre(X) = X whenever

(i) hπ(x) decreases in x, for x > 0;
(ii) and |δπ| ≥ |δU |.

Proof. From Marchand and Strawderman’s ([11], Theorem 5.1(ii) and Remark
5.1) sufficient conditions for dominance, we require for X + hπ(X) to dominate
δmre(X): (a) hπ(·) to be nonincreasing on ℜ, (b) there exists x0 such that
δπ(x0) = δU (x0) = δmre(x0), and (c) and |h| ≤ |hU |; where x + hU (x) is the
fully uniform Bayes estimator. Now, under the given symmetry assumptions on
f0, ρ, and π, δπ(·) will be an odd function (i.e., equivariant with respect to a
sign change) and hence δπ(x) = −δπ(−x), or equivalently hπ(x) = −hπ(−x).
Thus, (a) is equivalent to (i), (b) is satisfied with x0 = 0, and (c) is equivalent
to (ii), thus establishing the result.
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Synthesizing the previous lemma, our task is simple to describe: select Bayesian
estimators which shrink (towards 0) on the δmre and increasingly as |x| increases
(i.e., |x− δπ(x)| increases in |x|), but at the same time expand (away from 0) on
the fully uniform Bayes estimator δU . The difficulty, of course, is relating these
features to the prior π. We pursue with a useful lemma.

Lemma 3. Suppose g1 and g0 are two distinct, positive densities on (a, b) with
respect to a σ− finite measure µ, such that g1

g0
increases on (a, b). Consider a

function k(·) that changes signs exactly once from − to + on (a, b), in the sense
that there exists y0 ∈ (a, b) such that k(y) < 0 for y < y0, and k(y) > 0 for
y > y0. Then, we have Eg0 [k(Y )] = 0 ⇒ Eg1 [k(Y )] > 0, and Eg1 [k(Y )] = 0 ⇒
Eg0 [k(Y )] < 0.

Proof. The result is known. Here is a short proof for completeness. We have

Eg0 [k(Y )] =

∫ y0

a

k(y)
g0(y)

g1(y)
g1(y) dµ(y) +

∫ b

y0

k(y)
g0(y)

g1(y)
g1(y) dµ(y)

<
g0(y0)

g1(y0)

∫ b

a

k(y) g1(y)dµ(y) =
g0(y0)

g1(y0)
Eg1 [k(Y )],

and the result follows directly.

Here below is a key lemma which addresses condition (i) of Lemma 2, showing
that priors with logconcave densities on (−m,m) lead to Bayes estimates δπ(x)
such that δπ(x)−x decreases in x. The result, which applies for location models
and invariant losses with strict mlr densities and strict bowl-shaped losses, or
positive densities and convex losses; generalizes Marchand and Strawderman’s
([11], Lemma 5.1) uniform prior result, as well as Kubokawa’s ([4], Proposition
3.1.) squared error loss result. We do not assume for this lemma that f0 is
symmetric, nor that ρ or π is symmetric so that the phenomenon is actually
much more general than required here.

Lemma 4. For problem (1) with b= -a=m, logconcave f0, and strict bowled-
shaped ρ, the Bayes estimator δπ(x) = x + hπ(x) possesses the property that
hπ(x) = δπ(x) − x decreases in x, for all x ∈ ℜ, as long as the prior density π

is logconcave on (−m,m).

Proof. The Bayes estimate δπ(x) minimizes the expected posterior loss E(ρ(d−
θ)|x) in d, and hence satisfies the equation

∫
(−m,m) ρ

′(δπ(x)−θ) f0(x−θ)π(θ)dθ =

0, for all x, or equivalently

Ex[ρ
′(hπ(x) + c0 + U)] = 0;x ∈ ℜ; (2)

where U =d X − θ|x has density fU,x(u) supported on (x − m,x + m) and
proportional to f0(u)π(−u + x) . Now observe that, for x1 > x0, the ratio
fU,x1 (u)

fU,x0 (u)
∝

π(−u+x1) 1(x1−m,x1+m)(u)

π(−u+x0) 1(x0−m,x0+m)(u)
is increasing in u given the logconcavity of π.

Hence, the family of densities fU,x possesses an increasing monotone likelihood
ratio (in U) with parameter x. Now, take any x1 > x0 and suppose in order to
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arrive at a contradiction that a′ = hπ(x1) − hπ(x0) > 0. Then, on one hand,
with equation (2) and the mlr property of the densities fU,x, Lemma 3 would
tell us that

0 = Ex1 [ρ
′(hπ(x1) + c0 + U)] > Ex0 [ρ

′(hπ(x1) + c0 + U)] .

On the other hand, observe that the family of densities of T = hπ(x0)+c0+a+U ,
with a > 0 possesses an increasing mlr property as well with parameter a, so
that a further application of (2) and Lemma 3 would tell us that

Ex0 [ρ
′(hπ(x1) + c0 + U)] = Ea′ [ρ′(T )] > Ea=0[ρ

′(T )]

= Ex0 [ρ
′(hπ(x0) + c0 + U)] = 0 ,

and would thus lead to a contradiction. Hence, we must have hπ(x1) ≤ hπ(x0).

Remark 1. The result also holds for positive densities and convex losses as the
key property of a decreasing monotone likelihood ratio of the posterior densities
of U = θ− x, with parameter x, follows from the logconcavity of the prior, and
the sign change argument of Lemma 3 is not required when ρ′ is increasing.
In both this case, and the situation in the lemma, the Bayes estimators δπ are
(essentially) unique (see [11], page 133, for a similar situation).

There remains to address condition (ii) of Lemma 2. We prove in what follows
a more general result ordering the absolute value of Bayes estimates δπ1 and δπ0

in cases where the ratio of densities π1(θ)
π0(θ)

is monotone in |θ|. This quite plausible

property, which we will exploit for δπ0 ≡ δU , is very useful as it involves simple
conditions for which δπ1 expands, or shrinks, on δπ0 . A squared error loss version
of the following lemma was given by [9], while a multivariate normal and squared
error loss version was previously established by [7], so that the novel feature
below lies with the departure from squared error loss. We assume below that ρ
is convex, even, and that ρ′ is logconcave on (0,∞). The latter assumption is
weak, includes Lp losses |d− θ|p, with p ≥ 1, Linex loss ρα(t) = eαt−αt− 1 and
the symmetrized version ρα(t) + ρα(−t) = eαt + e−αt − 2 , but discounts very
sharp penalizing losses such as e|d−θ|p with p > 1.

Lemma 5. Consider problem (1) with b=-a=m, f0 logconcave and even, ρ

convex and even, and such that ρ′ is logconcave on (0,∞). Suppose that π0 and
π1 are symmetric about 0 prior densities with respect to a σ-finite measure µ

such that π1(θ)
π0(θ)

increases in θ ∈ [0,m]. Then, we have |δπ1(x)| ≥ |δπ0(x)| for all

x ∈ ℜ.

Proof. As in Lemma 2, δπ1(·) and δπ0(·) will be odd given the assumptions on
(f0, ρ, π1, π0), so that we only need consider x > 0. Now, for an even density π,
the Bayes estimator δπ satisfies, for all x > 0:∫

[−m,m]

f0(x− θ)π(θ) ρ′(δπ(x) − θ) dµ(θ) = 0,

⇐⇒

∫
[0,m]

kπ(x, λ)π(λ) dµ(λ) = 0 , (3)
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where kπ(x, λ) = ρ′(δπ(x) − λ) f0(x − λ) + ρ′(δπ(x) + λ) f0(x + λ), x > 0,
λ ∈ [0,m]. Turning to the sign of kπ(x, ·) for a fixed x > 0, observe that kπ(x, ·)
must change sign at least once on [0,m] given (3), and that kπ(x, ·) is positive
on [0, δπ(x)] given the properties of ρ. For λ > δπ(x), we write with f0 even and
ρ′ odd:

kπ(x, λ) = {
ρ′(λ+ δπ(x))

ρ′(λ− δπ(x))
−

f0(λ− x)

f0(λ+ x)
}f0(λ+ x) ρ′(λ− δπ(x)) .

We infer from the above that kπ(x, ·) changes signs once from + to − on

(δπ(x),m] since: (i) ρ′(λ+δπ(x))
ρ′(λ−δπ(x))

decreases in λ given the logconcavity of ρ′, (ii)
f0(λ−x)
f0(λ+x) increases in λ given the logconcavity of f0, and (iii) ρ′(λ − δπ(x)) > 0

for λ > δπ(x). Now, we fix x > 0 and we assume in order to arrive at a con-
tradiction that δπ1(x) < δπ0(x) which would imply kπ1(x, λ) < kπ0(x, λ) given
that ρ′ is increasing (i.e., ρ convex). We apply Lemma 3 to −kπ(x, λ) to infer
that under this assumption, we would have

∫
[0,m]

kπ0(x, λ)π0(λ)dµ(λ) >

∫
[0,m]

kπ0(x, λ)π1(λ)dµ(λ)

>

∫
[0,m]

kπ1(x, λ)π1(λ)dµ(λ) ,

which is not possible given (3) applied to π0 and π1, and concludes the proof.

Remark 2. We point out that Lemma 5 holds for non-symmetric π0 or π1 by

replacing the condition of the monotone increasing ratio π1(·)
π0(·)

by the monotone

increasing ratio
π∗

1(·)
π∗

0(·)
(on [0,m]), where π∗ is the density of λ = |θ|.

Having addressed conditions (i) and (ii) of Lemma 2, our main result, which
generalizes Lemma 1, follows immediately from Lemma 2, Lemma 4 and Lemma 5.

Theorem 1. For problem (1) with f0 even and logconcave, with ρ convex and
even, and such that ρ′ is logconcave on (0,∞), we have that δπ dominates δmre
whenever the density π is symmetric about a+b

2 , logconcave on (a, b), and non-

decreasing on (a+b
2 , b).

We pursue with an illustration.

Example 1. We study applications of our findings for a normal model with
X ∼ N(θ, 1) and θ ∈ [−m,m], m > 0. Consider prior densities πa(θ) ∝
ea|θ|1(−m,m)(θ) with a ≥ 0. Such choices satisfy the conditions of Theorem 1
(nondecreasing on (0,m), even, logconcave) and include the uniform on (−m,m)
case for a = 0. Noting φ and Φ the pdf and cdf respectively of a standard normal
distribution, we obtain that the posterior density is given by

πa(θ|x) =
1

k
{φ(θ − (x − a)) 1(−m,0)(θ) + φ(θ − (x+ a)) 1(0,m)(θ)} ,
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with k = Φ(a− x)−Φ(−m+ a− x) +Φ(m− x− a)−Φ(−x− a) . Interestingly,
this posterior density is seen to as a superimposition of two truncated normals
on (−m, 0) and (0,m) with means x − a and x + a respectively. When a = 0,
these means coincide and we simply obtain a truncated N(x, 1) on (−m,m).
Now, Theorem 1 tells us that the associated Bayes estimators δπa

dominates
necessarily δmre for all a ≥ 0 and for losses ρ that satisfy the given conditions.
Such losses include the interesting case of absolute value loss. In this case, the
posterior median is computable directly from the above posterior density yield-
ing the dominating estimator δπa

(x) = x − a + Φ−1(k2 + Φ(−m + a − x)) , for
x ≤ 0, and δπa

(x) = −δπ(−x) for x > 0.
Recapitulating the dominance findings of this paper in an historical context

which are applicable to the normal case and to the πa’s above, we begin by
pointing out that the dominance result for the specific case a = 0 and ρ(t) = t2

is due to [1]. Extensions for a = 0 to other losses ρ are due to [11], while
extensions to a > 0 with ρ(t) = t2 follow from [4](i.e., Lemma 1). The main
dominance findings of this paper unifies and generalizes the above for a > 0 and
for losses ρ satisfying the conditions of Theorem 1. Finally, we do reemphasize
the greater generality of Kubokawa’s and our findings to other (than normal)
symmetric and logconcave densities (and to other priors); as well as Marchand
and Strawderman’s results for the uniform prior with respect to many other
asymmetric pairs (f0, ρ).

3. Concluding remarks

We have demonstrated that essential features of the prior density π on [−m,m],
namely symmetry, bowl-shapedness and logconcavity are persistent conditions
for a Bayes estimator δπ to dominate δmre in problem (1), for a wide class
of models f0 and losses ρ. Moreover, the approach is unified and extends or
complements previous results of Kubokawa, and Marchand and Strawderman.
The main application for a finite i.i.d. sample undoubtedly arises for a normal
model f0 giving sufficiency (but see [4] or [11] for some developments in this
regard). Implications for some scale parameter problems X1 ∼ 1

σ
f1(

x1

σ
) with

σ restricted to a interval are available as corollaries with the transformation
X1 → log(X1) to a location problem (see [12]), but are not pursued here. Given
the symmetric condition on the location density, the original scale parameter

problem will require the equidistributional property X1

σ
∼ (X1

σ
)
−1

with common
examples of such distributions given by lognormal, half-Cauchy and Fisher with
equal degrees of freedom on numerator and denominator.

Potential findings for other unsolved problems may well benefit by the meth-
ods and results of this paper. These include: (i) asymmetric versions where
either f0 or ρ is not symmetric; and (ii) extensions to location-scale problems
with a bounded coefficient of variation (e.g., [5]). Finally, with Hartigan’s re-
sult applying for the model X ∼ Np(θ, Ip) with a constraint to a ball, such as
‖θ‖ ≤ m, and guaranteeing that the fully uniform Bayes estimator dominates
X under loss ‖d − θ‖2, extensions to other spherically symmetric priors, or to
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other losses, or to other spherically symmetric models, such as those obtained
here for p = 1, seem plausible and quite interesting to pursue.
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