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1. Introduction

1.1. A statistical deformable model for curve and image analysis

In many applications, one observes a set of curves or grayscale images which
are high-dimensional data. In such settings, it is reasonable to assume that the
data at hand Y ℓ

j , denoting the ℓ-th observation for the j-th curve (or image),
satisfy the following regression model:

Y ℓ
j = fj(tℓ) + σεℓj , j = 1, . . . , J, and ℓ = 1, . . . , n, (1.1)

where fj : Ω −→ R are unknown regression functions (possibly random) with Ω
a convex subset of Rd, the tℓ’s are non-random points in Ω (deterministic design),
the error terms εℓj are i.i.d. normal variables with zero mean and variance 1, and
σ > 0. In this paper, we will suppose that the fj’s are random elements which
vary around the same mean pattern. Our goal is to estimate such a mean pattern
and to study the consistency of the proposed estimators in various asymptotic
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settings: either when both the number n of design points and the number J of
curves (or images) tend to infinity, or when n (resp. J) remains fixed while J
(resp. n) tends to infinity.

In many situations, data sets of curves or images exhibit a source of geometric
variations in time or shape. In such settings, the usual Euclidean mean Ȳ ℓ =
1
J

∑J
j=1 Y

ℓ
j in model (1.1) cannot be used to recover a meaningful mean pattern.

Indeed, consider the following simple model of randomly shifted curves (with
d = 1) which is commonly used in many applied areas such as neuroscience
[TIR10] or biology [Røn01],

fj(tℓ) = f(tℓ − θ∗
j ), j = 1, . . . , J, and ℓ = 1, . . . , n, (1.2)

where f : Ω −→ R is the mean pattern of the observed curves, and the θ∗
j ’s

are i.i.d. random variables in R with density g and independent of the εℓj ’s. In
model (1.2), the shifts θ∗

j represent a source of variability in time. However, in
(1.2) the Euclidean mean is not a consistent estimator of the mean pattern f
since by the law of large numbers

lim
J→∞

Ȳ ℓ = lim
J→∞

1

J

J∑

j=1

f(tℓ − θ∗
j ) =

∫

f(tℓ − θ)g(θ)dθ a.s.

The randomly shifted curves model (1.2) is close to the perturbation model
introduced by [Goo91] in shape analysis for the study of consistent estimation
of a mean pattern from a set of random planar shapes. The mean pattern to
estimate in [Goo91] is called a population mean, but to stress the fact that it
comes from a perturbation model [Huc10] uses the term perturbation mean. To
achieve consistency in such models, a Procrustean procedure is used in [Goo91],
which leads to the statistical analysis of sample Fréchet means [Fré48] which
are extensions of the usual Euclidean mean to non-linear spaces using non-
Euclidean metrics. For random variables belonging to a nonlinear manifold, a
well-known example is the computation of the mean of a set of planar shapes
in the Kendall’s shape space [Ken84] which leads to the Procrustean means
studied in [Goo91]. Consistent estimation of a mean planar shape has been
studied by various authors, see e.g. [Goo91, KM97, KBCL99, Le98, LK00]. A
detailed study of some properties of the Fréchet mean in finite dimensional
Riemannian manifolds (such as consistency and uniqueness) has been performed
in [Zie77, OC95, BP03, BP05, Huc10, Huc11, Afs11].

The main goal of this paper is to introduce statistical deformable models for
curve and image analysis that are analogue to Goodall’s perturbation models
[Goo91], and to build consistent estimators of a mean pattern in such models.
Our approach is inspired by Grenander’s pattern theory which considers that
the curves or images fj in model (1.1) are obtained through the deformation
of a mean pattern by a Lie group action [Gre93, GM07]. In the last decade,
there has been a growing interest in transformation Lie groups to model the
geometric variability of images, and the study of the properties of such defor-
mation groups is now an active field of research (see e.g. [MY01, TY05] and



1056 J. Bigot and B. Charlier

references therein). There is also currently a growing interest in statistics on the
use of Lie group actions to analyze geometric modes of variability of a data set
[HHM10a, HHM10b].

To describe more formally geometric variability, denote by L2(Ω) the set of
square integrable real-valued functions on Ω, and by P an open subset of Rp.
To the set P , we associate a parametric family of operators (Tθ)θ∈P such that
for each θ ∈ P the operator Tθ : L2(Ω) −→ L2(Ω) represents a geometric
deformation (parametrized by θ) of a curve or an image. Examples of such
deformation operators include the cases of:

- Shifted curves: Tθf(t) := f(t− θ), with Ω = [0, 1], f ∈ L2
per([0, 1]) (the space

of periodic functions in L2([0, 1]) with period 1) and P an open set of R.
- Rigid deformation of two-dimensional images:

Tθf(t) := f (eaRαt− b) , for θ = (a, α, b) ∈ P ,

with Ω = R
2, P ⊂ R×R×R

2 where Rα =
(
cos(α) − sin(α)
sin(α) cos(α)

)

is a rotation

matrix in R
2, ea is an isotropic scaling and b a translation in R

2.
- Deformation by a Lie group action: the two above cases are examples of a

Lie group action on the space L2(Ω) (see [Hel01] for an introduction to
Lie groups). More generally, assume that G is a connected Lie group of
dimension p acting on Ω, meaning that for any (g, t) ∈ G×Ω the action ·
of G onto Ω is such that g ·t ∈ Ω. In general, G is not a linear space but can
be locally parametrized by a its Lie algebra G ≃ R

p using the exponential
map exp : G → G. If P ⊂ R

p. This leads for (θ, f) ∈ P × L2(Ω) to define
the deformation operators

Tθf(t) := f (exp(θ) · t) .

- Non-rigid deformation of curves or images: assume that one can construct
a family (ψθ)θ∈P of parametric diffeomorphisms of Ω (see e.g. [BGL09]).
Then, for (θ, f) ∈ P × L2(Ω), define the deformation operators

Tθf(t) := f (ψθ(t)) .

Then, in model (1.1), we assume that the fj ’s have a certain homogeneity in
structure in the sense that there exists some f ∈ L2(Ω) such that

fj(t) = Tθ∗

j

[
f + Zj

]
(t), for all t ∈ Ω, and j = 1, . . . , J, (1.3)

where θ∗
j ∈ P , j = 1, . . . , J are i.i.d. random variables (independent of the εℓj ’s)

with an unknown density g with compact support Θ included in P satisfying:

Assumption 1.1. The density g of the θ∗
j ’s is continuously differentiable on

P and has a compact support Θ included in P ⊂ R
p. We assume that Θ can be

written
Θ =

{
θ = (θ1, . . . , θp) ∈ R

p, |θp1 | ≤ ρ, 1 ≤ p1 ≤ p
}

(1.4)

where ρ > 0.
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The function f in model (1.3) represents the unknown mean pattern of the
fj’s. The Zj ’s are supposed to be independent of the εℓj ’s and are i.i.d. realiza-

tions of a second order centered Gaussian process Z taking its values in L2(Ω).
The Zj’s represent the individual variations in intensity around f , while the ran-
dom operators Tθj

model geometric deformations in time or space. Then, if we
assume that the Tθ’s are linear operators, equation (1.3) leads to the following
statistical deformable model for curve or image analysis

Y ℓ
j = Tθ∗

j
f(tℓ) + Tθ∗

j
Zj(tℓ) + σεℓj , j = 1, . . . , J, and ℓ = 1, . . . , n, (1.5)

where εℓj are i.i.d. normal variables with zero mean and variance 1.
Model (1.5) could be also called a perturbation model using the terminology

in [Goo91, Huc10] for shape analysis. To be more precise, let Y ∈ R
n×2 be a set

of n points in R
2 representing a planar shape. Define a deformation operator Tθ

for θ = (a, α, b) ∈ Θ = R× [0, 2π]× R
2 acting on R

n×2 in the following way

TθY = eaYRα + 1nb
′, where Rα =

(
cos(α) − sin(α)
sin(α) cos(α)

)

,

and 1n = (1, . . . , 1)′ ∈ R
n. Consistent estimation of a mean shape has been first

studied in [Goo91] when a set of random shapes Y1, . . . ,YJ is drawn from the
following perturbation model

Yj = Tθ∗

j
(µ+ ζj), j = 1, . . . , J. (1.6)

Model (1.6) is similar to the statistical deformable model (1.5), where µ ∈
R

n×2 is the unknown perturbation mean to estimate, and ζj are i.i.d. random
vectors in R

n×2 with zero mean. Nevertheless, there exists major differences be-
tween our approach and the one in [Goo91]. First, in model (1.5), the deforma-
tions parameters θ∗

j are assumed to be random variables following an unknown
distribution, whereas they are just nuisance parameters in model (1.6) for shape
analysis, see [Goo91, KM97]. In some applications (e.g. in biomedical imaging
[JDJG04]), it is of interest to reconstruct the unobserved parameters θ∗

j and to
estimate their distribution. One of the main contribution of this paper is then
to construct upper and lower bounds for the estimation of such deformation pa-
rameters. Moreover, in model (1.5), they are too additive error terms, whereas
the model (1.6) only include the error term ζj . In model (1.5), the εℓj is an
additive noise modeling the errors in the measurements, while the Zj ’s model
(possibly smooth) variations in intensity of the individuals around the mean
pattern f .

In [KM97], the authors studied the relationship between isotropicity of the
additive noise ζj and the convergence of Procrustean procedures to the pertur-
bation mean µ as J → +∞. It is shown in [KM97] that, for isotropic errors,
Procrustean means are consistent, but that, for non-isotropic errors, they may
not converge to µ. For a recent discussion on the issues of consistency of sample
Procrustes means in perturbation models and extension to non-metrical Fréchet
means, we refer to [Huc10] and [Huc11]. In this paper, we carefully analyze the
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role of the dimension n and the number of samples J on the consistency of
Procrustean means in model (1.5). To obtain consistent procedures, we show
that it is not required to impose very restrictive conditions on the error terms
Zj such as isotropicity for the ζj in (1.6) for shape analysis. Here, the key quan-
tity is the dimension n of the data (number of design points) which plays the
central role to guarantee the converge of our estimators. This point is another
major difference with the approach of statistical shape analysis [Goo91] that
does not take into account the dimensionality of the shape space to analyze the
consistency of Procrustean estimators.

Note that a subclass of the deformable model (1.5) is the so-called shape
invariant model (SIM)

Y ℓ
j = Tθ∗

j
f(tℓ) + σεℓj , j = 1, . . . , J, and ℓ = 1, . . . , n, (1.7)

i.e. without incorporating in (1.5) the additive terms Zj .
The goal of this paper is twofold. First, we propose a general methodology for

estimating f and the θ∗
j ’s based on observations coming from model (1.5). For

this purpose, we show that an appropriate tool is the notion of sample Fréchet
mean of a data set [Fré48, Zie77, BP03] that has been widely studied in shape
analysis [Goo91, KM97, Le98, LK00, Huc10] and more recently in biomedical
imaging [JDJG04, Pen06]. Secondly, we study the consistency of the resulting
estimators in various asymptotic settings: either when n and J both tend to
infinity, or when n is fixed and J → +∞, or when J is fixed and n→ +∞.

1.2. Organization of the paper

Section 2 contains a description of our estimating procedure and a review of
previous work in mean pattern estimation. In Section 3, we derive a lower bound
for the quadratic risk of estimators of the deformation parameters. In Section
4, we discuss some identifiability issues in model (1.5). In Section 5 we derive
consistency results for the Fréchet mean in the case (1.2) of randomly shifted
curves. In Section 6 and Section 7, we give general conditions to extend these
results to the more general deformable model (1.5). Section 8 contains some
numerical experiments. A small conclusion with some perspectives are given in
Section 9. All proofs are postponed to a technical Appendix.

2. The estimating procedure

2.1. A dissimilarity measure based on deformation operators

To define a notion of sample Fréchet mean for curves or images, let us suppose
that the family of deformation operators (Tθ)θ∈P is invertible in the sense that
there exists a family of operators (T̃θ)θ∈P such that for any (θ, f) ∈ P ×L2(Ω)

T̃θf ∈ L2(Ω) and T̃θTθf = f.
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Then, for two functions f, h ∈ L2(Ω) introduce the following dissimilarity mea-
sure

d2T (h, f) = inf
θ∈P

∫

Ω

(

T̃θh(t)− f(t)
)2

dt.

If d2T (h, f) = 0 then there exists θ ∈ P such that f = T̃θh meaning that the
functions f and h are equal up to a geometric deformation. Note that dT is
not necessarily a distance on L2(Ω), but it can be used to define a notion of
sample Fréchet mean of data from model (1.5). For this purpose let F denote

a subspace of L2(Ω) and suppose that f̂j are smooth functions in F ⊂ L2(Ω)
obtained from the data Y ℓ

j , ℓ = 1, . . . , n for j = 1, . . . , J , see Section 5.2 and
Section 6.2 for precise definitions. Following the definition of a Fréchet mean in
general metric space [Fré48], define an estimator of the mean pattern f as

f̂ = argmin
f∈F

1

J

J∑

j=1

d2T (f̂j , f). (2.1)

Note that f̂ falls into the category of non-metrical sample Fréchet means whose
definitions and asymptotic properties are discussed in [Huc10] for random vari-
ables belonging to Riemannian manifolds. However, unlike the usual approach
in shape analysis, the Fréchet mean (2.1) is based on smoothed data. In what
follows, we show that smoothing is a key preliminary step to obtain the conver-
gence of f̂ to the mean pattern f in the deformable model (1.5). It can be easily

shown that the computation of f̂ can be done in two steps: first minimize the
following criterion

(θ̂1, . . . , θ̂J ) = argmin
(θ1,...,θJ )∈ΘJ

M(θ1, . . . , θJ), (2.2)

where

M(θ1, . . . , θJ ) =
1

J

J∑

j=1

∫

Ω

(

T̃θj
f̂j(t)−

1

J

J∑

j′=1

T̃θj′
f̂j′ (t)

)2

dt, (2.3)

which gives an estimation of the deformation parameters θ∗
1, . . . , θ

∗
J , and then

in a second step take

f̂(t) =
1

J

J∑

j=1

T̃
θ̂j
f̂j(t), for t ∈ Ω, (2.4)

as an estimator of the mean pattern f .

Note that this two steps procedure belongs to the category of Procrustean
methods (see e.g [DM98, Goo91]). A similar approach to (2.2) has been de-
veloped by [JDJG04] in the context of biomedical images using diffeomorphic
deformation operators.
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2.2. Previous work in mean pattern estimation and geometric

variability analysis

Estimating the mean pattern of a set of curves that differ by a time trans-
formation is usually referred to as the curves registration problem, see e.g.
[GK92, Big06, RL01, WG97, LM04]. However, in these papers, studying con-
sistent estimators of the mean pattern f as the number of curves J and design
points n tend to infinity is not considered. For the SIM (1.7), a semiparametric
point of view has been proposed in [GLM07] and [Vim10] to estimate non-
random deformation parameters (such as shifts and amplitudes) as the number
n of observations per curve grows, but with a fixed number J of curves. A
generalisation of this semiparametric approach for two-dimensional images is
proposed in [BGV09]. The case of image deformations by a Lie group action is
also investigated in [BLV10] from a semiparametric point of view using a SIM.

In the simplest case of randomly shifted curves in a SIM, [BG10] have stud-
ied minimax estimation of the mean pattern f by letting only the number J
of curves going to infinity. Self-modelling regression (SEMOR) methods pro-
posed by [KG88] are semiparametric models where each observed curve is a
parametric transformation of the same regression function. However, the SE-
MOR approach does not incorporate a random fluctuations in intensity of the
individuals around a mean pattern f through an unknown process Zj as in
model (1.5). The authors in [KG88] studied the consistency of the SEMOR ap-
proach using a Procrustean algorithm. Recently, there has also been a grow-
ing interest on the development of statistical deformable models for image
analysis and the construction of consistent estimators of a mean pattern, see
[GM01, BGV09, BGL09, AAT07, AKT09].

3. Lower bounds for the estimation of the deformation parameters

In this section, we derive non-asymptotic lower bounds for the quadratic risk
of an arbitrary estimator of the deformation parameters under the following
smoothness assumption of the mapping (θ, t) 7−→ Tθf(t).

Assumption 3.1. For all θ = (θ1, . . . , θp) ∈ P, Tθ : L2(Ω) −→ L2(Ω) is a
linear operator such that the function t 7−→ ∂θp1Tθf(t) exists and belongs to
L2(Ω) for any p1 = 1, . . . , p. Moreover, there exists a constant C(Θ, f) > 0 such
that

‖∂θp1Tθf‖2L2 ≤ C(Θ, f),

for all p1 = 1, . . . , p and θ ∈ Θ.

3.1. Shape invariant model

Theorem 3.1. Consider the SIM (1.7) and suppose that Assumption 3.1 holds.

Assume that g satisfies Assumption 1.1, and that
∫

Θ ‖∂θ log (g(θ))‖2 g(θ)dθ <
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+∞. Let θ̂ ∈ PJ be any estimator (a measurable function of the data) of θ∗ =
(θ∗

1, . . . , θ
∗
J). Then, for any n ≥ 1 and J ≥ 1,

E

[
1

J
‖θ̂ − θ∗‖2

RpJ

]

≥ σ2n−1

C(Θ, f) + σ2n−1
∫

Θ ‖∂θ log (g(θ))‖2 g(θ)dθ
. (3.1)

where C(Θ, f) is the constant defined in Assumption 3.1, and ‖·‖
RpJ is the

standard Euclidean norm in R
pJ .

The lower bound given in inequality (3.1) does not decrease as J increases. Thus,
if the number n of design points is fixed, increasing the number J of curves
(or images) does not improve the quality of the estimation of the deformation

parameters for any estimator θ̂. Nevertheless, this lower bound is going to 0 as
the dimension n→ +∞.

3.2. General model

The main difference between the general model (1.5) and the SIM (1.7) is the
extra error terms Tθ∗

j
Zj , j = 1, . . . , J . In what follows, Eθ[ · ] denotes expec-

tation conditionally to θ ∈ ΘJ . Since the random processes Zj ’s are observed
through the action of the random deformation operators Tθ∗

j
it is necessary to

specify how the Tθ∗

j
’s modify the law of the process Zj.

Assumption 3.2. There exists a positive semi-definite symmetric n×n matrix
Σn(Θ) such that the covariance matrix of Z = [Z(tℓ)]

n
ℓ=1 satisfies

Eθ

[
TθZ(TθZ)

′
]
= Σn(Θ).

This assumption means that the law of the random process Z is somewhat
invariant by the deformation operators Tθ. Such an hypothesis is similar to the
condition given in [KM97] to ensure consistency of Fréchet mean estimators
in Kendall’s shape space using model similar to (1.5) with σ = 0. After a
normalization step, the deformations considered in [KM97] are rotations of the
plane, and the authors in [KM97] study the case where the law of the error term
Z is isotropic, that is to say, invariant by the action of rotations.

Theorem 3.2. Consider the general model (1.5). Suppose that Assumption
3.1 and 3.2 hold. Assume that the density g satisfies Assumption 1.1 and that
∫

Θ ‖∂θ log (g(θ))‖2 g(θ)dθ < +∞. Let θ̂ ∈ PJ be any estimator (a measurable
function of the data) of θ∗ = (θ∗

1, . . . , θ
∗
J). Then, for any n ≥ 1 and J ≥ 1, we

have

E

[
1

J
‖θ̂ − θ

∗‖2
RpJ

]

≥ (σ2 + s2n(Θ))n−1

C(Θ, f) + (σ2 + s2n(Θ))n−1
∫

Θ ‖∂θ1
log (g(θ))‖2 g(θ)dθ

.

(3.2)

where C(Θ, f) is the constant defined in Assumption 3.1, and s2n(Θ) denotes the
smallest eigenvalue of Σn(Θ).
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Again, the lower bound (3.2) does not depends on J . Thus, increasing the
number J of observations does not decrease the quadratic risk of any estimator
of the deformations parameters. Moreover, the lower bound (3.2) tends to zero
as n→ +∞ only if limn→+∞ n−1s2n(Θ) = 0.

3.3. Application to the shifted curves model

Consider the shifted curves model (1.2) with an equi-spaced design, namely

Y ℓ
j = f

(
ℓ
n − θ∗

j

)
+ Zj

(
ℓ
n − θ∗

j

)
+ σεℓj , j = 1, . . . , J, and ℓ = 1, . . . , n. (3.3)

Theorem 3.3. Consider the model (3.3). Assume that f is continuously dif-
ferentiable on [0, 1] and that Z is a centered stationary process with value in

L2
per([0, 1]). Suppose that Θ = [−ρ, ρ] with ρ < 1

2 and
∫

Θ
(∂θ log (g(θ)))

2 g(θ)dθ <

+∞. Let θ̂ ∈ R
J be any estimator of the true random shifts θ∗ = (θ∗

1, . . . , θ
∗
J),

i.e. a measurable function of the data in model (3.3). Then, for any n ≥ 1 and
J ≥ 1

E

[
1

J
‖θ̂ − θ∗‖2

RJ

]

≥ n−1σ2

‖∂tf‖2∞ + n−1σ2
∫

Θ
(∂θ log (g(θ)))

2
g(θ)dθ

, (3.4)

where ‖∂tf‖∞ = supt∈[0,1] {|∂tf(t)|} with ∂tf denoting the first derivative of f .

4. Identifiability conditions

4.1. The shifted curves model

Without any further assumptions, the randomly shifted curves model (3.3) is
not identifiable. Indeed, if θ0 ∈ Θ satisfies θ∗

j + θ0 ∈ Θ, j = 1, . . . , J , then
replacing f(·) by f(·−θ0) and θ

∗
j by θ

∗
j +θ0 does not change the formulation of

model (3.3). Choosing identifiability conditions amounts to impose constraints
on the minimization of the criterion

D(θ) =
1

J

J∑

j=1

∫

Ω

(

f(t− θ∗
j + θj)−

1

J

J∑

j′=1

f(t− θ∗
j′ + θj′ )

)2

dt, (4.1)

for θ = (θ1, . . . , θJ ) ∈ ΘJ , which can be interpreted as a version without noise

of the criterion (2.2) using the ideal smoothers f̂j(·) = f(· −θ∗
j ). Obviously, the

criterion D(θ) has a minimum at θ∗ = (θ∗
1, . . . , θ

∗
J) such that D(θ∗) = 0, but

this minimizer of D on ΘJ is clearly not unique. If the true shifts are supposed to
have zero mean (i.e.

∫

Θ θg(θ)dθ = 0) it is natural to introduce the constrained
set

Θ0 = {(θ1, . . . , θJ) ∈ ΘJ , θ1 + · · ·+ θJ = 0}. (4.2)

It is shown in [BG10] Lemma 6, that if f ∈ L2([0, 1]) is such that
∫ 1

0
f(t)e−i2πtdt 6=

0 and if ρ < 1/4 (recall that Θ = [−ρ, ρ]), then the criterion D(θ) has a unique
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minimum on Θ0 in the sense that D(θ) > D(θ∗
Θ0

) for all θ ∈ Θ0 with θ 6= θ∗
Θ0

where

θ∗
Θ0

= (θ∗
1 − θ̄

∗
, . . . , θ∗

J − θ̄
∗
) with θ̄

∗
=

1

J

J∑

j=1

θ∗
j . (4.3)

Under such assumptions, we will compute estimators of the random shifts by
minimizing the criterion (2.2) over the constrained set Θ0 and not directly on
ΘJ . Consistency of such constrained estimators will then be studied under the
following identifiability conditions:

Assumption 4.1. The mean pattern f is such that
∫ 1

0 f(t)e
−i2πtdt 6= 0.

Assumption 4.2. The support of the density g is included in [−ρ′, ρ′] for some
0 < ρ′ ≤ ρ

2 < 1/4 and is such that
∫

Θ
θg(θ)dθ = 0.

Under such assumptions, D(θ) can be bounded from below by the quadratic
function 1

J ‖θ− θ
∗
Θ0

‖2 which will be an important property to derive consistent
estimators.

Proposition 4.1. Suppose that Assumptions 4.1 and 4.2 hold with ρ < 1/16.
Then, for any θ = (θ1, . . . , θJ) ∈ Θ0, one has that

D(θ)−D(θ∗
Θ0

) ≥ C(f, ρ)
1

J
‖θ − θ∗

Θ0
‖2,

where C(f, ρ) > 0 is a constant depending only on f and ρ.

Assumption 4.2 and the condition that ρ < 1/16 in Proposition 4.1 mean
that the support of the density g of the shifts is sufficiently small, and that
the shifted curves fj(t) = f(t− θ∗

j ) are in some sense concentrated around the
mean pattern f . Such an assumption of concentration of the data around the
same mean pattern has been used in various papers to prove the uniqueness and
the consistency of Fréchet means for random variables lying in a Riemannian
manifold, see [Kar77, Le98, BP03, Afs11, Ken90].

4.2. The general case

In the case of general deformation operators, define for θ = (θ1, . . . , θJ) ∈ ΘJ

the criterion

D(θ) =
1

J

J∑

j=1

∫

Ω

(

T̃θj
Tθ∗

j
f(t)− 1

J

J∑

j′=1

T̃θj′
Tθ∗

j′
f(t)

)2

dt. (4.4)

Obviously, using that for all θ ∈ Θ, T̃θTθf = f , the criterion D(θ) has a
minimum at θ∗ = (θ∗

1, . . . , θ
∗
J) such that D(θ∗) = 0. However, without any

further restrictions the minimizer of D(θ) is not necessarily unique on ΘJ .

Assumption 4.3. Let Θ ⊂ ΘJ such that there exists a unique θ∗
Θ

∈ Θ satis-
fying D(θ∗

Θ) = 0.
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L1

L0

PJ

θ
∗

Θ0

θ
∗

Θ1

{θ∗ + θ01J , θ0 ∈ R}

θ
∗

Figure 1. Choice of identifiability conditions for shifted curves in the case J = 2.

Then, Θ is the set onto which we will carry the minimization of the criterion
M(θ) (2.3). In the case of shifted curves and under Assumption 4.1 and 4.2, the
only set onto which the criterion D vanishes is the line {θ∗ + θ01J , θ0 ∈ R} ⊂
R

J , where 1J = (1, . . . , 1)′ ∈ R
J . An easy way to choose the set Θ is to take a

linear subset of ΘJ , see Figure 1 for an illustration. By considering the subset

Θ0 = ΘJ ∩ 1
⊥
J = {(θ1, . . . , θJ ) ∈ ΘJ , θ1 + · · ·+ θJ = 0},

where 1J
⊥ is the orthogonal of 1J in R

J , then Assumption 4.3 is satisfied
with θ∗

Θ0
given in (4.3). More generally, if the deformation parameters θj , j =

1, . . . , J are supposed to be random variables with zero mean, then optimizing
D(θ) on Θ0 is a natural choice. Another identifiability condition for shifted
curves is proposed in [GLM07] and [Vim10] by taking

Θ1 = ΘJ ∩ e1⊥ = {(θ1, . . . , θJ) ∈ ΘJ , θ1 = 0}. (4.5)

where e1 = (1, 0, . . . , 0) ∈ R
J . In this case, θ∗

Θ1
= (0, θ∗

2 − θ∗
1, . . . , θ

∗
J − θ∗

1).
Choosing to minimize D(θ) on Θ1 amounts to choose the first curve as a ref-
erence onto which all the others curves are aligned, meaning that the first shift
θ∗
1 is not random, see Figure 1.
Following the classical guidelines in M-estimation (see e.g. [vdV98]), a neces-

sary condition to ensure the convergence of M -estimators such as (2.2) is that
the local minima of D(θ) over Θ are well separated from the global minimum
of D(θ) at θ = θ∗

Θ
(satisfying D(θ∗

Θ
) = 0). The following assumption can be

interpreted in this sense.

Assumption 4.4. For all θ ∈ Θ we have

D(θ)−D(θ∗
Θ
) ≥ C(Θ,F)

1

J
‖θ − θ∗

Θ
‖2 (4.6)

for a constant C(Θ,F) > 0 independent of J .
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In the shifted curve model, Assumption 4.4 is verified if Assumption 4.1 and 4.2
hold (see Proposition 4.1).

5. Consistent estimation in the shifted curves model

In this section, we give conditions to ensure consistency of the estimators defined
in Section 2 in the shifted curves model (3.3) with an equi-spaced design.

5.1. The random perturbations Zj

Following the assummtions of Theorem 3.3, Z will be supposed to be a stationary
process Z with covariance function R : [0, 1] −→ R. The law of Z is thus
invariant by the action of a shift. Conditionally to θ∗

j ∈ Θ, the covariance of the

vector Tθ∗

j
Zj =

[
Zj(

ℓ
n − θ∗

j )
]n

ℓ=1
is a Toeplitz matrix equals to

Σn = Eθ∗

j

[
Tθ∗

j
Zj(Tθ∗

j
Zj)

′
]
=
[

E

[

Z
(
ℓ
n

)
Z
(

ℓ′

n

)]]n

ℓ,ℓ′=1
=
[

R
(

|ℓ−ℓ′|
n

)]n

ℓ,ℓ′=1
.

(5.1)
Let γmax(Σn) be the largest eigenvalue of the matrix Σn. It follows from stan-
dard results on Toeplitz matrices (see e.g. [HJ90]) that

γmax

(
Σn

)
≤ lim

n→+∞

1

n

n∑

k=1

∣
∣R
(
k
n

)∣
∣ = γ (5.2)

where γ =
∫ 1

0 |R(t)| dt is a positive constant independent of n representing an
upper bound of the variance of Z.

5.2. Choice of the smoothed estimators f̂j

A convenient choice for the smoothing of the observed curves in (3.3) is to do low-

pass Fourier filtering. Let ĉj,k = 1
n

∑n
ℓ=1 Y

ℓ
j e

−i2πk ℓ
n for k = −(n−1)/2, . . . , (n−

1)/2 (assuming for simplicity that n is odd), and define for a spectral cut-off
parameter λ ∈ N and t ∈ [0, 1] the linear estimators

f̂λ
j (t) =

∑

|k|≤λ

ĉj,ke
i2πkt. (5.3)

Then, define the Sobolev ball Hs(A) of radius A > 0 and regularity s > 0 as

Hs(A) =
{

f ∈ L2
per([0, 1]),

∑

k∈Z

(1 + |k|2)s |ck(f)|2 < A
}

. (5.4)

with ck(f) =
∫ 1

0 f(t)e
−i2πktdt, k ∈ Z for a function f ∈ L2

per([0, 1]), and take
F = Hs(A) as the smoothness class to which the mean pattern f is supposed
to belong.
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5.3. Consistent estimation of the random shifts

Using low-pass filtering, and following the discussion in Section 4.1 on identifi-
ability issues, the estimators of the random shifts θ∗

1, . . . , θ
∗
J are given by

θ̂
λ
= (θ̂

λ

1 , . . . , θ̂
λ

J) = argmin
(θ1,...,θJ )∈Θ0

Mλ(θ1, . . . , θJ ). (5.5)

where the criterion Mλ(θ) =Mλ(θ1, . . . , θJ) for θ ∈ ΘJ is

Mλ(θ) =
1

J

J∑

j=1

∫

Ω

(

f̂λ
j (t+ θj)−

1

J

J∑

j′=1

f̂λ
j′(t+ θj′ )

)2

dt

and Θ0 is the constrained set defined in (4.2).

Theorem 5.1. Consider the model (3.3) and let θ̂
λ
be the estimator defined

by (5.5). Assume that F = Hs(A) for some A > 0 and s ≥ 1, and that Z is
a centered stationary process with value in L2

per([0, 1]) and covariance function
R : [0, 1] → R. Suppose that Assumptions 4.1 and 4.2 hold with ρ < 1/16. Then,
for any λ ≥ 1 and x > 0

P

(
1

J
‖θ̂λ − θ∗‖2

RJ ≥ C1(Θ,F , f)A1(x, J, n, λ, σ
2, γ) +A2(x, J)

)

≤ 4e−x,

with A1(x, J, n, λ, σ
2, γ) = (σ2+γ)

(√

υ(x, J, n, λ)+υ(x, J, n, λ)
)
+
(√

B(λ, n)+

B(λ, n)
)
and A2(x, J) =

(
√

2x
J + x

3J

)2
, where C1(Θ,F , f) > 0 is constant

depending only on Θ,F , f , υ(x, J, n, λ) = 2λ+1
n

(
1 + 4 x

J +
√
4 x
J

)
, B(λ, n) =

2λ+1
n + λ−2s. and γ =

∫ 1

0
|R(t)| dt.

First, remark that for fixed values of n and λ, then limJ→+∞ A2(x, J) = 0.
The term A1(x, J, n, λ, σ

2, γ) depends on the spectral cutoff λ via the bias

B(λ, n) and the variance υ(x, J, n, λ) of the estimators f̂j . By choosing a se-
quence λ = λn such that limn→+∞ λn = +∞ and limn→+∞

λn

n = 0 (trade-
off between low variance and low bias) it follows that for fixed J and x >
0, then limn→+∞A1(x, J, n, λn, σ

2, γ) = 0. However, if n remains fixed, then
limJ→+∞ A1(x, J, n, λ, σ

2, γ) > 0.
Thus, Theorem 5.1 is consistent with the conclusions of Theorem 3.3, that

is, if n is fixed, then it is not possible to estimate θ∗ by letting only J grows
to infinity. Hence, under the assumptions of Theorem 5.1, one can only prove

the convergence in probability of θ̂
λ
to the true shifts θ∗ by taking the double

asymptotic n→ +∞ and J → +∞, provided the smoothing parameter λ = λn
is well chosen.

5.4. Consistent estimation of the mean pattern

In the case of randomly shifted curves, the Fréchet mean estimator (2.1) of f is

f̂λ(t) = 1
J

∑J
j=1 f̂

λ
j (t+ θ̂

λ

j ).
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Theorem 5.2. Under the assumptions of Theorem 5.1, for any λ ≥ 1 and
x > 0

P

(

‖f̂λ − f‖2L2 ≥ C2(Θ,F , f)A1(x, J, n, λ, σ
2, γ) + C3(Θ, f)A2(x, J)

)

≤ 4e−x,

where A1(x, J, n, λ, σ
2, γ) and A2(x, J) are defined in Theorem 5.1, C2(Θ,F , f)

and C3(Θ, f) are positive constants depending only on Θ,F , f , and ‖f̂λ−f‖2L2 =
∫ 1

0

∣
∣fλ(t)− f(t)

∣
∣
2
dt.

Similar comments to those made on the consistency of the estimators of the
shifts can be made. A double asymptotic in n and J is needed to show that the
Fréchet mean f̂λ converges in probability to the true mean pattern f . Moreover,
if λn is too large (e.g. such that limn→+∞

λn

n 6= 0, which correspond to under-

smoothing), then Theorem 5.2 cannot be used to prove that f̂λ converges to f
in probability. This illustrates the fact that, to achieve consistency, a sufficient
amount of pre-smoothing is necessary before computing the Fréchet mean (2.1).

5.5. A lower bound for the Fréchet mean

From the results of Theorem 3.3, it is expected that the Fréchet mean f̂λ does
not converge to f in the setting n fixed and J → +∞. To support this argument,
consider the following ideal estimator

f̃(t) =
1

J

J∑

j=1

fj(t+ θ̂
λ

j ) =
1

J

J∑

j=1

f(t− θ∗
j + θ̂

λ

j ), for all t ∈ [0, 1], (5.6)

where fj(t) = f(t − θ∗
j ), j = 1, . . . , J . This corresponds to the case of an ideal

smoothing step from the data (3.3) that would yield f̂j = fj for all j = 1, . . . , J .

Obviously, f̃(t) is not an estimator since it depends on the unobserved quantities
f and θ∗

j , but we can consider it as a benchmark to analyse the converge of the

Fréchet mean f̂λ to f .

Theorem 5.3. Suppose that the assumptions of Theorem 3.3 are satisfied with
ρ < 3

4π . Then, for any n ≥ 1, there exists J0 ∈ N such that J ≥ J0 implies

E[‖f̃ − f‖L2] ≥ C(f, ρ)
n−1σ2

‖∂tf‖2∞ + n−1σ2
∫

Θ
(∂θ log (g(θ)))

2 g(θ)dθ
, (5.7)

where the constant C(f, ρ) > 0 depends on f and ρ.

Hence, in the setting n fixed and J → +∞, even the ideal estimator f̃ does
not converge to f for the expected quadratic risk. This illustrates the central
role played by the dimension n of the data to obtain consistent estimators.
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6. Notations and main assumptions in the general case

6.1. Smoothness of the mean pattern and the deformation operators

In this part, the notation (Lθ)θ∈P is used to denote either (Tθ)θ∈P or their
inverse (T̃θ)θ∈P .

Assumption 6.1. For all θ ∈ P, Lθ : L2(Ω) −→ L2(Ω) is a linear operator
satisfying Lθf ∈ F for all f ∈ F . There exists a constant C(Θ) > 0 such that
for any f ∈ L2(Ω) and θ ∈ Θ

‖Lθf‖2L2 ≤ C(Θ) ‖f‖2L2 ,

and a constant C(F ,Θ) > 0 such that for any f ∈ F and θ1, θ2 ∈ Θ,

‖T̃θ1
f − T̃θ2

f‖2L2 ≤ C(F ,Θ) ‖θ1 − θ2‖2 .

Assumption 6.1 can be interpreted as a Lipschitz condition on the mapping
(f, θ) 7−→ Lθf . The first inequality, that is ‖Lθf‖2L2 ≤ C(Θ) ‖f‖2L2 , means that
the action of the operator Lθ does not change too much the norm of f when θ

varies in Θ. Such an assumption on Tθ and its inverse T̃θ forces the optimization
problem (2.2) to have non trivial solutions by avoiding the functional M(θ) in
(2.3) being arbitrarily small. It can be easily checked that Assumption 6.1 is
satisfied in the case (1.2) of shifted curves with F = Hs(A) and s ≥ 1 .

6.2. The preliminary smoothing step

For j = 1, . . . , J the f̂j ’s are supposed to belong to the class of linear estimators
in the sense of the following definition:

Definition 6.1. Let Λ denote either N or R+ (set of smoothing parameters). To
every λ ∈ Λ is associated a non-random vector valued function Sλ : Ω −→ R

n

such that for all j = 1, . . . , J and all t ∈ Ω

f̂j(t) = f̂λ
j (t) = 〈Sλ(t),Yj〉,

where 〈·, ·〉 denotes the standard inner product in R
n and Yj =

(
Y ℓ
j

)n

ℓ=1
∈ R

n.

Assumption 6.2. For all λ ∈ Λ and all ℓ = 1, . . . , n, the function t 7−→ Sℓ
λ(t)

belong to L2(Ω), where Sℓ
λ(t) denotes the ℓ-th component of the vector Sλ(t).

Moreover, for all λ ∈ Λ, f ∈ F and θ ∈ Θ, the function t 7−→ 〈Sλ(t),Tθf〉
belongs to F where Tθf =

(
Tθf(tℓ)

)n

ℓ=1
.

In the case (1.2) of randomly shifted curves with an equi-spaced design, then

Assumption 6.2 holds with Sλ(t) =
[
1
n

∑

|k|≤λ e
i2πk(t− ℓ

n
)
]n

ℓ=1
. Let us now spec-

ify how the bias/variance behavior of the linear estimators f̂λ
j depends on the

smoothing parameter λ. For this, consider for some function f ∈ F the following
regression model

Y ℓ = f(tℓ) + σεℓ, ℓ = 1, . . . , n,
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where the εℓ’s are i.i.d normal variables with zero mean and variance 1. The
performances of a linear estimator f̂λ(t) = 〈Sλ(t),Y〉, where Y = (Yℓ)

n
ℓ=1, can

be evaluated in term of the expected quadratic risk Rλ(f̂
λ, f) defined by

Rλ(f̂
λ, f) := E

∥
∥
(
f̂λ − f

)∥
∥
2

L2 =

∫

Ω

|Bλ(f, t)|2 dt+ σ2

∫

Ω

Vλ(t)dt,

where Bλ and Vλ denote the usual bias and variance of f̂λ given by Bλ(f, t) =

〈Sλ(t), f〉 − f(t) and Vλ(t) = ‖Sλ(t)‖2Rn , for t ∈ Ω, where f =
(
f(tℓ)

)n

ℓ=1
.

Define also V (λ) =
∫

Ω
Vλ(t)dt, and let us make the following assumption on the

asymptotic behavior of the bias/variance of f̂λ:

Assumption 6.3. There exist a constant κ(F) > 0 and a real-valued function
λ 7−→ B(λ), such that for all f ∈ F ,

‖Bλ(f, ·)‖2L2 = ‖〈Sλ(·), f〉 − f(·)‖2L2 ≤ κ(F)B(λ).

Moreover there exists a sequence of smoothing parameters (λn)n∈N ∈ ΛN with
limn→+∞ λn = +∞ such that limn→+∞B(λn) = 0 and limn→+∞ V (λn) = 0.

Let us illustrate Assumption 6.3 in the case of shifted curves with an equi-
spaced design, and a smoothing step obtained by low-pass Fourier filtering. As
in Section 5, take F = Hs(A) defined in (5.4). In this setting, V (λ) = 2λ+1

n . It

can be also checked that ‖Bλ(f, ·)‖2L2 ≤ C(A)B(λ) for some positive constant
C(A) depending only on A, and B(λ) = 2λ+1

n + λ−2s. Thus, Assumption 6.3

holds with λn = n
1

2s+1 .

6.3. Random perturbation of the mean pattern f by the Zj’s

Assumption 6.4. For any n ≥ 1, there exists a real γn(Θ) > 0 such that for
any θ ∈ Θ

γmax

(
Eθ

[
TθZ(TθZ)

′
])

≤ γn(Θ)

where TθZ =
(
TθZ(tℓ)

)n

ℓ=1
∈ R

n, and γmax(A) denotes the largest eigenvalue
of a symmetric matrix A. Moreover,

lim
n→∞

γn(Θ)
√

V (λn) = 0, (6.1)

where V (λn) is the variance defined in Assumption 6.3.

Intuitively, the condition (6.1) means that the variance of the linear smoother
Sλ(·) has to be asymptotically smaller that the maximal correlations (measured
by γn(Θ)) between TθZ(tℓ) and TθZ(tℓ′) for ℓ, ℓ

′ = 1, . . . , n and all θ ∈ Θ. In the
case of randomly shifted curves with an equi-spaced design, a simple condition
for which Assumption 6.4 holds is the case where Z is stationary process (see
the arguments in Section 5.1).
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7. Consistency in the general case

7.1. Consistent estimation of the deformation parameters

Consider for λ ∈ Λ the following estimator of the deformation parameters

θ̂
λ
= argmin

θ∈Θ

Mλ(θ),

where

Mλ(θ) =
1

J

J∑

j=1

∫

Ω

(

T̃θj
〈Sλ(t),Yj〉 −

1

J

J∑

j′=1

T̃θj′
〈Sλ(t),Yj′ 〉

)2

dt, (7.1)

and Θ is the constrained set introduced in Assumption 4.3. The estimator θ̂
λ

thus depends on the choice of Θ, and it will be shown that θ̂
λ
is a consistent

estimator of the vector θ∗
Θ

∈ R
pJ defined in Assumption 4.3. Note that depend-

ing on the problem at hand and the choice of the constrained set Θ, it can be
shown that θ∗

Θ
is close to the true deformation parameters θ∗. For example, in

the case of shifted curves, if Θ = Θ0 defined in (4.2) and if the density g of the

shifts has zero mean, then θΘ0
= (θ∗

1 − θ̄
∗
, . . . , θ∗

J − θ̄
∗
) with θ̄

∗
= 1

J

∑J
j=1 θ

∗
j

can be shown to be close to θ∗ (see Lemma C.1 in the Appendix). This allows

to show the consistency of θ̂
λ
to θ∗ as formulated in Theorem 5.1. Therefore,

the next result only bounds the distance between θ̂
λ
and θ

∗
Θ.

Theorem 7.1. Consider the model (1.5) and suppose that Assumptions 1.1,
4.3, 4.4 and 6.1 to 6.4 hold with n ≥ 1 and J ≥ 2. Then, for any λ ∈ Λ and
x > 0

P

(
1

J
‖θ̂λ − θ∗

Θ
‖2
RpJ ≥C1(Θ,Θ,F , f)

[

(γn(Θ) + σ2)
(√

υ(x, J, λ) + υ(x, J, λ)
)

+
(√

B(λ) +B(λ)
)])

≤ 2e−x, (7.2)

with C1(Θ,Θ,F , f) > 0, υ(x, J, λ) := V (λ)
(
1 + 4 x

J +
√
4 x
J

)
.

Using Assumptions 6.3 and 6.4, it follows that limn→+∞ γn(Θ)
(√

υ(x, J, λn)+

υ(x, J, λn)
)
= 0 for any x > 0 and J ≥ 2. If J remains fixed, Theorem 7.1 thus

implies that θ̂
λ
converges in probability to θ∗

Θ
as n → +∞. To the contrary,

let us fix n, and consider an asymptotic setting where only J → +∞. For any
x > 0 and λ ∈ Λ, limJ→+∞ υ(x, J, λ) = V (λ). Therefore, Theorem 7.1 cannot

be used to prove that θ̂
λ
converges to θ∗

Θ as J → +∞. This confirms that θ̂
λ

is not a consistent estimator of θ∗
Θ (and thus of θ∗) as n remains fixed and J

tends to infinity.
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7.2. Consistent estimation of the mean pattern

Recall that the estimator f̂λ of the mean pattern f is defined as

f̂λ =
1

J

J∑

j=1

T̃
θ̂
λ

j

f̂λ
j .

We study the consistency of f̂λ with respect to the shape function

f∗
Θ

:=
1

J

J∑

j=1

T̃[θ∗

Θ
]jTθ∗

j
f,

defined for θ∗
Θ

= ([θ∗
Θ
]1, . . . , [θ

∗
Θ
]J). Again, depending on the problem at hand

and the choice of the constrained set Θ, it can be shown that f∗
Θ

is close to the
true mean pattern f . For example, in the case of shifted curves with Θ = Θ0

defined in (4.2), then θΘ0
= (θ∗

1 − θ̄
∗
, . . . , θ∗

J − θ̄
∗
) with θ̄

∗
= 1

J

∑J
j=1 θ

∗
j . In

this case f∗
Θ0

(t) := 1
J

∑J
j=1 f(t − θ∗

j + [θ∗
Θ0

]j) = f(t − θ̄
∗
). Hence, under the

condition that
∫

Θ
θg(θ)dθ = 0, then θ̄

∗ ≈ 0 for J sufficiently large, and thus

f∗
Θ
(t) is close to f which allows to show the consistency of f̂λ to f as formulated

in Theorem 5.2.

Theorem 7.2. Consider the model (1.5) and suppose that Assumptions 1.1,
4.3, 4.4 and 6.1 to 6.4 hold. Then, for any λ ∈ Λ and x > 0

P

(

‖f̂λ − f∗
Θ
‖2L2 ≥C2(Θ,Θ,F , f)

[

(γn(Θ) + σ2)
(√

υ(x, J, λ) + υ(x, J, λ)
)

+
(√

B(λ) +B(λ)
)])

≤ 2e−x, (7.3)

where C2(Θ,Θ,F , f) > 0 is a constant depending only Θ, Θ, F , and f .

The consistency of f̂λ to f∗
Θ

is thus guaranteed when n goes to infinity
provided the level of smoothing λ = λn is chosen so that limn→+∞ V (λn) =
limn→+∞B(λn) = 0. Again, if n remains fixed and only J is let going to infinity

then Theorem 7.2 cannot be used to prove the convergence of f̂λ to f∗
Θ
.

8. Numerical experiments for randomly shifted curves

Consider the model (3.3) with random shifts θj having a uniform density g with
compact support equal to [− 1

5 ,
1
5 ], and f(t) = 9 sin(2πt)+2 cos(8πt) for t ∈ [0, 1]

as a mean pattern, see Figure 2(a). For the constrained set we took

Θ0 =
{

θ ∈
[
− 1

2 ,
1
2

]J
, θ1 + · · ·+ θJ = 0

}

.

We use Fourier low pass filtering with spectral cut-off to λ = 7 which is rea-
sonable value to reconstruct f representing a good tradeoff between bias and
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Figure 2. (a) mean pattern f . (b) J = 3 noisy curves in the SIM with σ = 2. (c) J = 3 noisy
curves with σ = 0 and a stationary process Z with ς = 4.

variance. We present some results of simulations under various assumptions of
the process Z and the level σ of additive noise in the measurements.

Shape invariant model (SIM). The first numerical applications illustrate
the role of n and J in the SIM model. Figure 2(b) gives a sample of the data
used with σ = 2. The factors in the simulations are the number J of curves and
the number of design points n. For each combination of these two factors, we
simulate M = 20 repetitions of model (3.3). For each repetition we computed
1
J ‖θ̂

λ−θ∗‖2 and ‖f̂λ−f‖2L2. Boxplot of these quantities are displayed in Figure
3(a) and 3(b) respectively, for J = 20, 40, . . . , 100 and n = 512 (in gray) and
n = 1024 (in black). As the smoothing parameter is fixed to λ = 7, increasing

n simply reduces the variance of the linear smoothers f̂λ
j . Recall that the lower

bound given in Theorem 3.3 shows that 1
JE[‖θ

∗ − θ̂
λ‖2] does not decrease as

J increases but should be smaller when the number of point n increases. This
is exactly what we observe in Figure 3. Similarly, the quantity ‖f̂λ − f‖2L2 is
clearly smaller with n = 1024 than with n = 512.

Complete model.We now add the terms Zj in (3.3) to model linear variations
in amplitude of the curves around the template f . First, we generate a stationary
periodic Gaussian process. To do this, the covariance matrix must be a particular
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Figure 3. Boxplot of 1

J
‖θ̂

λ
− θ

∗

Θ0
‖2 (a) and ‖f̂λ − fΘ0

‖2
L2 (b) over M = 20 repetitions

from a SIM model of shifted curves. Boxplot in gray correspond to n = 512, and in black to
n = 1024.
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Figure 4. Boxplot of 1

J
‖θ̂

λ
− θ

∗

Θ0
‖2 (a) and 1

J
‖f̂λ − fΘ0

‖2 (b) in model (3.3) with a sta-
tionnary error term Z. Boxplot in gray correspond to n = 512, and in black to n = 1024.

Toeplitz matrix. As suggested in [Gre93] one possibility is to choose

R(t) = ς2
eφ(t−1/2) + e−φ(t−1/2)

eφ/2 + e−φ/2
,

where φ is a strictly positive parameter (we took φ = 4) and ς a variance
parameter. The level of additive noise is σ = 8, and we took ς = 4. As an
illustration, in Figure 2(c) we plot f +Zj , j = 1, 2, 3 with ς = φ = 4. Over M =

20 repetitions, we have computed the values of 1
J ‖θ̂

λ−θ
∗
Θ0

‖2 and ‖f̂λ−fΘ0
‖2L2

for J is varying from 20 to 100 and n = 512, 1024. The results are displayed in
Figure 4(a) and 4(b). We observe the same behaviors than in the simulations

with the SIM model: the variance of 1
J ‖θ̂

λ − θ∗
Θ0

‖2 does not decrease as J

increases (see Figure 4(a)) and ‖f̂λ− fΘ0
‖2 has a smaller mean and variance as

n increases.
We finally run the same simulations with a non stationary noise Zj(t) =

αjψ(t) where ψ is a positive periodic smooth deterministic function such that
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Figure 5. Boxplot of 1

J
‖θ̂

λ
− θ

∗

Θ0
‖2 (a) and 1

J
‖f̂λ − fΘ0

‖2 (b) in model (3.3) with a non-
stationnary error term Z. Boxplot in gray correspond to n = 512, and in black to n = 1024.

‖ψ‖L2 = 1 and αj ∼ N (0, ς2) with ς = 4. Note that, in this case, the sequence
γn(Θ) is of order n and Assumption 6.4 is not verified. The levels of noise
(σ and ς) are the same than in the stationary case in order to make things
comparable. The results are presented in the same manner in Figure 5(a) for
1
J ‖θ̂

λ−θ∗
Θ0

‖2 and in Figure 5(b) for ‖f̂λ−fΘ0
‖2L2 . One can see that the results

are very different. The estimators of the shifts have a much larger mean and

variance, and the variance of 1J ‖θ̂
λ − θ∗

Θ0
‖2 remains rather high even when n or

J increases (see Figure 5(a)). The convergence to zero of ‖f̂λ − fΘ0
‖2L2 which

was clear in the stationary case, is now not so obvious in view of the numerical
results displayed in Figure 5(b).

9. Conclusion and perspectives

We have proposed to use a Fréchet mean of smoothed data to estimate a mean
pattern of curves or images satisfying a non-parametric regression model includ-
ing random deformations. Upper and lower bounds (in probability and expec-
tation) for the estimation of the deformation parameters and the mean pattern
have been derived. Our main result is that these bounds go to zero as the di-
mension n of the data (the number of sample points) goes to infinity, but that
an asymptotic setting only in J (the number of observed curves or images) is
not sufficient to obtain consistent estimators. An interesting topic for future
investigation would be to study the rate of convergence of such estimators and
to analyze their optimality (e.g. from a minimax point of view).

Appendix A: Proof of the results in Section 3

A.1. Proof of Theorem 3.1

Write θ∗
j = ([θ∗]1j , . . . , [θ

∗]pj ), and let Y = (Y1, . . . ,YJ ) ∈ R
nJ be the column

vector of the observations generated by model (1.7). Conditionally to θ∗, Y is
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a Gaussian vector and its log-likelihood is equal to

log(p(Y|θ∗)) = −Jn
2

log(2π) +
J

2
log(det(Λ))

−1

2

J∑

j=1

(Yj −Tθ∗

j
f)′Λ(Yj −Tθ∗

j
f), (A.1)

where Λ = σ−2Idn. Therefore, we have that Eθ∗ [∂[θ∗]
p1
j1

log(p(Y|θ∗))] = 0 for all

j1 = 1, . . . , J and p1 = 1, . . . , p and

Eθ∗

[
∂[θ∗]

p1
j1

log(p(Y|θ∗))∂[θ∗]
p2
j2

log(p(Y|θ∗))
]
=

{

0 if j1 6= j2,

−
[
(∂[θ∗]

p1
j1

Tθ∗

j1
f)′ Λ (∂[θ∗]

p2
j1

Tθ∗

j1
f)
]p

p1,p2=1
if j1 = j2,

(A.2)

where ∂[θ∗]
p1
j1

Tθ∗

j1
f =

[
∂[θ∗]

p1
j1

Tθ∗

j1
f(tℓ)

]n

ℓ=1
. Then, for each j1 = 1, . . . , J and

p1 = 1, . . . , p we have

(∂[θ∗]
p1
j1

Tθ∗

j1
f)′ Λ (∂[θ∗]

p1
j1

Tθ∗

j1
f) ≤ σ−2‖∂[θ∗]

p1
j1

Tθ∗

j1
f‖2 ≤ C(Θ, f)nσ−2, (A.3)

where the last inequality is a consequence of Assumption 3.1. From now on,
θ̂ = θ̂(Y) = (θ̂1(Y), . . . , θ̂1(Y)) is an arbitrary estimator (i.e any measurable

function of Y) of the true parameter θ∗. Let also U = θ̂ − θ∗ and

V =
[

[∂[θ∗]
p1
1

log(p(Y|θ∗)g(θ∗))]pp1=1, . . . , [∂[θ∗]
p1
J

log(p(Y|θ∗)g(θ∗))]pp1=1

]

be a matrix of column vectors of RpJ . Then, Cauchy-Schwarz inequality implies

(E[U ′V ])2 ≤ E[U ′U ]E[V ′V ]. (A.4)

In the sequel we note gJ(θ)dθ = g(θ1) . . . g(θJ)dθ1 . . . dθJ . We have

E[U ′V ] =

J∑

j=1

p
∑

p1=1

∫

RnJ

∫

ΘJ

(θ̂p1

j (y)− [θ]p1

j )∂[θ∗]
p1
j
(p(y|θ)gJ(θ))dθdy

=
J∑

j=1

p
∑

p1=1

∫

RnJ

θ̂p1

j (y)

∫

ΘJ

∂[θ∗]
p1
j
(p(y|θ)gJ(θ))dθdy

−
J∑

j=1

p
∑

p1=1

∫

RnJ

∫

ΘJ

[θ]p1

j ∂[θ∗]
p1
j
(p(y|θ)gJ(θ))dθdy

Assumption 1.1 and the differentiability of g imply that for all p1 = 1, . . . , p and
all θ ∈ Θ we have limθp1→ρ g(θ) = 0. Then, an integration by part and Fubini’s
theorem give

∫

ΘJ ∂[θ∗]
p1
j
(p(y|θ)gJ (θ))dθ = 0. Again, with the same arguments,

∫

ΘJ [θ]
p1

j ∂[θ∗]
p1
j
(p(y|θ)gJ(θ))dθ = −

∫

ΘJ p(y|θ)gJ (θ)dθ and thus E[U ′V ] = pJ.
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Now, using that the expected score is zero and equation (A.2) we have

E[V ′V ] =

J∑

j=1

p
∑

p1=1

E[(∂[θ∗]
p1
j

log(p(Y|θ∗))2] + E[(∂[θ∗]
p1
j

log(g(θ∗))2]

=

J∑

j=1

p
∑

p1=1

∫

ΘJ

(∂[θ]p1
j
Tθj

f)′ Λ (∂[θ∗]
p1
j
Tθj1

f)gJ(θ)dθ

+ J

∫

Θ

‖∂θ1
log (g(θ1))‖2 g(θ1)dθ1.

where ∂θ1
log (g(θ1)) = [∂[θ]11 log (g(θ1)) , . . . , ∂[θ]p

1
log (g(θ1))] ∈ R

p. Then, using
inequality A.3, it gives

E[V ′V ] ≤ pJnC(Θ, f)σ−2 + J

∫

Θ

‖∂θ1
log (g(θ1))‖2 g(θ1)dθ1.

Hence, using equation (A.4) for any estimator θ̂ = θ̂(Y) (see Theorem 1 in
[GL95])

E

[

‖θ̂ − θ∗‖2
]

≥ pJ

nC(Θ, f)σ−2 + p−1
∫

Θ
‖∂θ1

log (g(θ1))‖2 g(θ1)dθ1

≥ σ2n−1pJ

C(Θ, f) + n−1p−1σ2
∫

Θ ‖∂θ1
log (g(θ1))‖2 g(θ1)dθ1

.

And since p ≥ 1, the claim in Theorem 3.1 is proved.

A.2. Proof of Theorem 3.2

As above, let Y ∈ R
nJ is the column vector generated by model (1.5). Then,

conditionally to θ∗, Y is a Gaussian vectors and Assumption 3.2 ensures that
its log-likelihood has the same expression as in equation (A.1) but with

Λ = Λ(Θ) = (σ2Idn + Eθ∗

[
Tθ∗

j
Zj(Tθ∗

j
Zj)

′
]
)−1 = (σ2Idn +Σn(Θ))−1

As the matrixΣn(Θ) is positive semi definite with it smallest eigenvalue denoted
by s2n(Θ) (see Assumption 3.2), the uniform bound (A.3) becomes

(∂[θ∗]
p1
j1

Tθ∗

j1
f)′ Λ(Θ) (∂[θ∗]

p1
j1

Tθ∗

j1
f) ≤ (σ2 + s2n(Θ))−1‖∂[θ∗]

p1
j1

Tθ∗

j1
f‖2

≤ C(Θ, f)n(σ2 + s2n(Θ))−1,

for all p1 = 1, . . . , p and j = 1, . . . , J . As above the last inequality is a conse-
quence of Assumption 3.1 and the rest of the proof is identical to the proof of
Theorem 3.1.
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A.3. Proof of Theorem 3.3

For all θ ∈ R the operators Tθf(·) = f(· − θ) are isometric from L2([0, 1]) to

L2([0, 1]) as a change of variable implies immediately that ‖Tθf‖2L2 = ‖f‖2L2 . For
all continuously differentiable function f , we have ∂θTθf(t) = −sign(θ)∂tf(t−
θ), where sign(·) is the sign function. Then, for all θ ∈ Θ, ‖∂θTθf‖2L2 =
‖∂tf‖2L2 ≤ ‖∂tf‖2∞ and Assumption 3.1 is satisfied with C(Θ, f) = ‖∂tf‖2∞.
Finally, as the error terms Zj ’s are i.i.d stationary random process the covari-
ance function is invariant by the action of the shifts and Assumption 3.2 is
satisfied with Σn(Θ) = Σn defined in (5.1) (see Section 5.1 for further details).
Then, the result of Theorem 3.3 follows as an application of Theorem 3.2.

Appendix B: Proof of the results in Section 4

B.1. Proof of Proposition 4.1

Remark that D(θ) =
∑

k∈Z
|c∗k|2

(

1 −
∣
∣
∣
∣
1
J

∑J
j=1 e

i2πk(θj−θ∗

j )

∣
∣
∣
∣

2)

, where c∗k =

∫ 1

0 f(t)e
−i2πktdt. Thanks to Assumption 4.1, it follows that for any θ ∈ Θ,

D(θ) ≥ |c∗1|2
(

1−
∣
∣
∣
∣

1

J

J∑

j=1

ei2π(θj−θ∗

j )

∣
∣
∣
∣

2)

(B.1)

with c∗1 6= 0. Then, remark that

∣
∣
∣
∣

1

J

J∑

j=1

ei2π(θj−θ∗

j )

∣
∣
∣
∣

2

=
1

J
+

2

J2

J−1∑

j=1

J∑

j′=j+1

cos
(
2π
(
(θj − θ∗

j )− (θj′ − θ∗
j′ )
))
.

Using a second order Taylor expansion and the mean value theorem, one has
that cos(2πu) ≤ 1 − C(ρ)|u|2 for any real u such that |u| ≤ 4ρ < 1/4 with
C(ρ) = 2π2 cos(8πρ) > 0. Therefore, the above equality implies that for any
θ ∈ Θ

∣
∣
∣
∣

1

J

J∑

j=1

ei2π(θj−θ∗

j )

∣
∣
∣
∣

2

≤ 1

J
+

2

J2

J−1∑

j=1

J∑

j′=j+1

1− C(ρ)
∣
∣(θj − θ∗

j )− (θj′ − θ∗
j′)
∣
∣
2

≤ 1− 2

J2

J−1∑

j=1

J∑

j′=j+1

C(ρ)
∣
∣(θj − θ∗

j )− (θj′ − θ∗
j′ )
∣
∣
2
,

since |(θj − θ∗
j )− (θj′ − θ∗

j′)| ≤ 4ρ < 1/4 for all m, q = 1, . . . , n by Assumption
4.2 and the hypothesis that ρ < 1/16. Hence, using the lower bound (B.1), it
follows that for all θ ∈ Θ

D(θ) ≥ C(f, ρ)
1

J2

J−1∑

j=1

J∑

j′=j+1

∣
∣(θj − θ∗

j )− (θj′ − θ∗
j′ )
∣
∣
2

(B.2)
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with C(f, ρ) = 2|c∗1|2C(ρ). Now assume that θ ∈ Θ0. Using the properties that
∑J

j=1 θj = 0 and
∑J

j=1(θj − θ∗
j ) = −∑J

j=1 θ
∗
j = J θ̄

∗
, it follows from ele-

mentary algebra that 1
J

∑J−1
j=1

∑J
j′=j+1

∣
∣(θj − θ∗

j )− (θj′ − θ∗
j′ )
∣
∣
2
=
∑J

j=1(θj −
(θ∗

j − θ̄
∗
))2. This equality together with the lower bound (B.2) completes the

proof.

Appendix C: Proof of the results in Section 5

C.1. Proof of Theorem 5.1

Let us state the following lemma which is direct consequence of Bernstein’s
inequality for bounded random variables (see e.g. Proposition 2.9 in [Mas07]):

Lemma C.1. Suppose that Assumption 4.2 holds. Then, for any x > 0

P

(
1

J
‖θ∗

Θ0
− θ∗‖2 ≥ ρ2

(√

2x

J
+

x

3J

)2)

≤ 2e−x.

Using the inequality 1
J ‖θ̂λ−θ∗‖2 ≤ 2

J ‖θ̂λ−θ∗
Θ0

‖2+ 2
J ‖θ

∗
Θ0

−θ∗‖2, it follows
that Theorem 5.1 is a consequence of Lemma C.1 and Theorem 7.1. Indeed,
it can be easily checked that, under the assumptions of Theorem 5.1, Assump-
tions 6.1 to 6.4 are satisfied in the case of randomly shifted curves with an
equi-spaced design and low-pass Fourier filtering, see the various arguments
given in Section 6). The identifiability condition of Assumption 4.4 is given by
Proposition 4.1.

C.2. Proof of Theorem 5.2

Consider the following inequality ‖f̂λ−f‖2 ≤ 2‖f̂λ−fΘ0
‖2+2‖fΘ0

−f‖2, where
fΘ0

(t) = f(t− θ̄
∗
) and θ̄

∗
= 1

J

∑J
j=1 θ

∗
j ∈ Θ. As f is assumed to be in Hs(A),

there exists a constant C(Θ, f) > 0 such that ‖fΘ0
− f‖2L2 ≤ C(Θ, f)|θ̄∗|2 =

C(Θ, f) 1J ‖θ
∗
Θ0

−θ∗‖2. As explained in part C.1 the assumptions of Theorem 5.2
are satisfied in the case of randomly shifted curves with an equi-spaced design
and low-pass Fourier filtering. The result then follows from Theorem 7.2.

C.3. Proof of Theorem 5.3

Let n ≥ 1. We have that

E[‖f̃ − f‖L2] = E‖f̃ − fΘ0
+ fΘ0

− f‖L2 ≥
∣
∣
∣ E‖f̃ − fΘ0

‖L2

︸ ︷︷ ︸

A

−E‖fΘ0
− f‖L2

︸ ︷︷ ︸

B

∣
∣
∣

(C.1)

where for all t ∈ [0, 1], f̃(t) = 1
J

∑J
j=1 f(t − θ∗

j + θ̂
λ

j ), and fΘ0
(t) = f(t + θ̄

∗
),

with θ̄
∗
= 1

J

∑J
j=1 θ

∗
j . In the rest of the proof, we show that A is bounded
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from below by a quantity C0(f, g, n, σ
2, ρ) = C(f, ρ) n−1σ2

‖∂tf‖
2
∞

+n−1σ2
∫
Θ
(∂θ log(g(θ)))2

independent of J (this statement is made precise later) and that B goes to zero
as J goes to infinity. Then, these two facts imply that there exists a J0 ∈ N such
that J ≥ J0 implies that E‖f̃ − f̃‖L2 ≥ 1

2C0(f, g, n, σ
2, ρ), which will yield the

desired result.

Lower bound on A. Recall that c∗k =
∫ 1

0
f(t)e−i2πktdt, then

‖f̃ − fΘ0
‖L2 = ‖ 1

J

J∑

j=1

f(· − θ∗
j + θ̂

λ

j )− f(·+ θ̄
∗
)‖L2

=

(
∑

k∈Z

∣
∣
∣
∣

1

J

J∑

j=1

(

ei2πk(−θ∗

j+θ̂
λ

j ) − ei2πkθ̄
∗

)

c∗k

∣
∣
∣
∣

2)
1
2

≥ |c∗1|
∣
∣
∣
∣

1

J

J∑

j=1

(ei2π(θ̂
λ

j −[θ∗

Θ0
]j) − 1)

∣
∣
∣
∣
,

where θ
∗
Θ0

= (θ∗
1 − θ̄

∗
, . . . , θ∗

J − θ̄
∗
), the right hand side of the preceding

inequality being positive since Assumption 4.2 ensures that c∗1 6= 0 for all

j = 1, . . . , J . Let uj = 2π(θ̂
λ

j − [θ∗
Θ0

]j), j = 1, . . . , J . Since
∑J

j=1 uj = 0 and
|uj| ≤ 4πρ < 3, j = 1, . . . , J (by our assumption on ρ), Lemma E.1 implies that

‖f̃ − fΘ0
‖L2 ≥ C(f, ρ)

1

J
‖θ̂λ − θ∗

Θ0
‖2. (C.2)

Now, remark that E
[
1
J ‖θ̂

λ − θ∗
Θ0

‖2
]
≥ E

[
1
J ‖θ̂

λ − θ∗‖2
]
−C with

C = 2E
[ ∣
∣θ̄

∗∣
∣
1

J

J∑

j=1

|θ̂λ

j − θ∗
j |
]
.

By applying Theorem 3.3 we get that

E
[
1
J ‖θ̂

λ − θ∗‖2
]
≥ C(f, g, n, σ2),

with C(f, g, n, σ2) = n−1σ2

‖∂tf‖
2
∞

+n−1σ2
∫
Θ
(∂θ log(g(θ)))2

. Then, remark that C ≤

4ρ

√

E
∣
∣θ̄

∗∣
∣
2 ≤ C(ρ, g)J−1/2. Hence C tends to 0 as J goes to infinity. There-

fore, using equation (C.2), it follows that there exists C0(f, g, n, σ
2, γ, ρ) > 0

and J1 ∈ N such that J ≥ J1 implies that

A = E
[
‖f̃λ − f̃‖L2

]
≥ C0(f, g, n, σ

2, ρ). (C.3)

Upper bound on B. By assumption, f is continuously differentiable on [0, 1]
implying that ‖fΘ0

− f‖L2 = ‖f(· + θ̄
∗
) − f‖L2 ≤ ‖∂tf‖∞ |θ̄∗|. Therefore,

E‖fΘ0
− f‖L2 ≤ ‖∂tf‖∞

√

E
∣
∣θ̄

∗∣
∣
2 ≤ C(f, g)J−1/2. Hence, there exists a J2 ∈ N



1080 J. Bigot and B. Charlier

such that J ≥ J2 implies

B = E[‖f̃Θ0
− f̃‖L2 ] ≤ 1

2
C0(f, g, n, σ

2, ρ). (C.4)

To conclude the proof, equations (C.1), (C.3) and (C.4) imply that there exists a

J0 ∈ N such that J ≥ J0 implies E‖f̂λ−f̃‖L2 ≥ |A−B| ≥ 1
2C0(f, g, n, σ

2, ρ).

Appendix D: Proof of the results in Section 7

D.1. Proof of Theorem 7.1

We explain here the main arguments of the proof of Theorem 7.1. Technical
Lemmas are given in the second part of the Appendix. Let θ = (θ1, . . . , θJ ) =
(θ11 , . . . , θ

p
1 , . . . , θ

1
J , . . . , θ

p
J ) ∈ R

pJ and decompose the criterion (7.1) as follows,

Mλ(θ) =
1

J

J∑

j=1

∫

Ω

(

T̃θj
〈Sλn

(t),Yj〉 −
1

J

J∑

j′=1

T̃θj′
〈Sλn

(t),Yj′ 〉
)2

dt

= D(θ) +
[

Rλ(θ) +Qλ(θ)
]

+
[

QZ
λ (θ) +RZ

λ (θ) +RZ,ε
λ (θ) +Qε

λ(θ) +Rε
λ(θ)

]

,

where D(θ) = 1
J

∑J
j=1

∫

Ω

(
T̃θj

Tθ∗

j
f(t)− 1

J

∑J
j′=1 T̃θj′

Tθ∗

j′
f(t)

)2
dt, the terms Rλ

and Qλ are due to the smoothing, namely,

Qλ(θ) =
1

J

J∑

j=1

∫

Ω

(

T̃θj
Bλ(Tθ∗

j
f, t)− 1

J

J∑

j′=1

T̃θj′
Bλ(Tθ∗

j′
f, t)

)2

dt

Rλ(θ) =
1

J

J∑

j=1

∫

Ω

(

T̃θj
Tθ∗

j
f(t)− 1

J

J∑

j′=1

T̃θj′
Tθ∗

j′
f(t)

)

×
(

T̃θj
Bλ(Tθ∗

j
f, t)− 1

J

J∑

j′=1

T̃θj′
Bλ(Tθ∗

j′
f, t)

)

dt,

and the others terms contain the Zj ’s and εj ’s error terms. Let Tθ∗

j
Zj =

(
Tθ∗

j
Zj(tℓ)

)n

ℓ=1
and Tθ∗

j
f =

(
Tθ∗

j
f(tℓ)

)n

ℓ=1
, then

QZ
λ (θ) =

1

J

J∑

j=1

∫

Ω

(

T̃θj

〈

Sλ(t),Tθ∗

j
Zj

〉

− 1

J

J∑

j′=1

T̃θj′

〈

Sλ(t),Tθ∗

j′
Zj′

〉)2

dt

RZ
λ (θ) =

2

J

J∑

j=1

∫

Ω

(

T̃θj

〈

Sλ(t),Tθ∗

j
f
〉

− 1

J

J∑

j′=1

T̃θj′

〈

Sλ(t),Tθ∗

j′
f
〉)

×
(

T̃θj

〈

Sλ(t),Tθ∗

j
Zj

〉

− 1

J

J∑

j′=1

T̃θj′

〈

Sλ(t),Tθ∗

j′
Zj′

〉)

dt,
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RZ,ε
λ (θ) =

2σ

J

J∑

j=1

∫

Ω

(

T̃θj

〈

Sλ(t),Tθ∗

j
Zj

〉

− 1

J

J∑

j′=1

T̃θj′

〈

Sλ(t),Tθ∗

j′
Zj′

〉)

×
(

T̃θj
〈Sλ(t), εj〉 −

1

J

J∑

j′=1

T̃θj′
〈Sλ(t), εj′〉

)

dt

Qε
λ(θ) =

σ2

J

J∑

j=1

∫

Ω

(

T̃θj
〈Sλ(t), εj〉 −

1

J

J∑

j′=1

T̃θj′
〈Sλ(t), εj′ 〉

)2

dt

Rε
λ(θ) =

2σ

J

J∑

j=1

∫

Ω

(

T̃θj

〈

Sλ(t),Tθ∗

j
f
〉

− 1

J

J∑

j′=1

T̃θj′

〈

Sλ(t),Tθ∗

j′
f
〉)

×
(

T̃θj
〈Sλ(t), εj〉 −

1

J

J∑

j′=1

T̃θj′
〈Sλ(t), εj′〉

)

dt.

At this stage, recall that θ
∗
Θ = argminθ∈ΘD(θ) and θ̂

λ
= argminθ∈ΘMλ(θ).

The proof follows a classical guideline in M-estimation: we show that the uni-
form (over Θ) convergence in probability of the criterion Mλ to D, yielding the

convergence in probability of their argmins θ∗
Θ

and θ̂
λ
respectively. Assumption

4.4 ensures that there is a constant C(Θ,F , f) > 0 such that,

1

J
‖θ̂λ − θ∗

Θ
‖2 ≤ C(Θ,Θ,F , f)

∣
∣
∣D(θ̂

λ
)−D(θ∗

Θ
)
∣
∣
∣ (D.1)

Then, a classical inequality in M-estimation and the decomposition of Mλ(θ)
given above yield
∣
∣
∣D(θ̂

λ
)−D(θ∗

Θ
)
∣
∣
∣ ≤ 2 sup

θ∈Θ

|D(θ)−Mλ(θ)| (D.2)

= 2 sup
θ∈Θ

{

Rλ(θ) +Qλ(θ)
}

︸ ︷︷ ︸

B

(D.3)

+ 2 sup
θ∈Θ

{

QZ
λ (θ) +RZ

λ (θ) +RZ,ε
λ (θ) +Qε

λ(θ) +Rε
λ(θ)

}

︸ ︷︷ ︸

V

The rest of the proof is devoted to control the B and V terms.

Control of B. Using Assumption 6.3 and 6.1, we have that

Qλ(θ) ≤
C(Θ)

J

J∑

j=1

∥
∥
∥Bλ(Tθ∗

j
f, t)

∥
∥
∥

2

L2
≤ C(Θ,F)B(λ).

Now by applying the Cauchy-Schwarz inequality,

|Rλ(θ)| ≤ sup
θ∈Θ

{
√

D(θ)}
√

Qλ(θ).
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By Assumption 6.1, there exists a constant such supθ∈Θ{D(θ)} ≤ C(Θ,F , f)
and thus

B ≤ C(Θ,F , f)
(
B(λ) +

√

B(λ)
)
. (D.4)

Control of V. We give a control in probability of the stochastic quadratic
term QZ

λ and Qε
λ. As previously, one can show that there is a positive constant

C(Θ,F , f) > 0 such that,

∣
∣
∣QZ

λ (θ) +RZ
λ (θ) +RZ,ε

λ (θ) +Qε
λ(θ) +Rε

λ(θ)
∣
∣
∣ ≤ C(Θ,F , f)

(√

QZ
λ (θ)+

QZ
λ (θ) +Qε

λ(θ) +
√

Qε
λ(θ)

)

,

where we have used the inequality 2ab ≤ a2+b2, valid for any a, b > 0 to control
the term RZ,ε

λ . The quadratic terms QZ
λ and Qε

λ are controlled by Corollaries
E.1 and E.2 respectively. It yields immediately to

P

(

V ≥ C(Θ,F , f)(γmax(n) + σ2)
(
υ(x, J, λ) +

√

υ(x, J, λ)
))

≤ 2e−x, (D.5)

where υ(x, J, λ) = V (λ)
(
1 + 4 x

J +
√
4 x
J

)
.

Putting together equations (D.1), (D.2), (D.4) and (D.5), we have

P

(
1

J
‖θ∗

Θ − θ̂
λ‖2 ≥ C(Θ,Θ,F , f)

[

(γmax(n) + σ2)
(√

υ(x, J, λ)

+υ(x, J, λ)
)

+
(

B(λ) +
√

B(λ)
)])

≤ 2e−x,

which completes the proof of Theorem 7.1.

D.2. Proof of Theorem 7.2

In this part, we use the notations introduced in the proof of Theorem 7.1. We
have,

∥
∥
∥f∗

Θ
− f̂λ

∥
∥
∥

2

L2
≤ 2

J

J∑

j=1

∥
∥
∥T̃[θ∗

Θ
]jTθ∗

j
f − T̃[θ∗

Θ
]j

〈

Sλ(·),Tθ∗

j
f
〉∥
∥
∥

2

L2

︸ ︷︷ ︸

B′

+
2

J

J∑

j=1

∥
∥
∥T̃[θ∗

Θ
]j

〈

Sλ(·),Tθ∗

j
f
〉

− T̃
θ̂
λ

j

〈Sλ(·),Yj〉
∥
∥
∥

2

L2

︸ ︷︷ ︸

V′

.

Again, the first term above depends on the bias, and the second term (stochastic)
can be controlled in probability. Under Assumptions 6.1 and 6.3 we have that

B′ ≤ C(Θ)

J

J∑

j=1

∥
∥
∥

〈

Sλ(·),Tθ∗

j
f
〉

− Tθ∗

j
f
∥
∥
∥

2

L2
≤ C(Θ,F)B(λ),
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and

V′ =
2

J

J∑

j=1

∥
∥
∥T̃[θ∗

Θ
]j

〈

Sλ(·),Tθ∗

j
f
〉

− T̃
θ̂
λ

j

〈

Sλ(·),Tθ∗

j
f
〉

+T̃
θ̂
λ

j

〈

Sλ(·),Tθ∗

j
f
〉

− T̃
θ̂
λ

j

〈Sλ(·),Yj〉
∥
∥
∥

2

L2

≤ C(Θ,F)

J

J∑

j=1

(

‖θ̂λ

j − [θ∗
Θ
]j‖2 +

∥
∥
∥

〈

Sλ(·),Yj −Tθ∗

j
f
〉∥
∥
∥

2

L2

)

,

≤ C(Θ,F)

(
1

J
‖θ̂λ − θ∗

Θ‖2 + 1

J

J∑

j=1

∥
∥
∥

〈

Sλ(·),Tθ∗

j
Zj + εj

〉∥
∥
∥

2

L2

)

The stochastic term 1
J

∑J
j=1‖〈Sλ(·),Tθ∗

j
Zj + εj〉‖2L2 in the above inequality

can be been controlled using Lemma E.2 and the arguments in the proof of
Corollaries E.1 and E.2 to obtain that for any x > 0

P

(
1

J

J∑

j=1

∥
∥
∥

〈

Sλ(·),Tθ∗

j
Zj + εj

〉∥
∥
∥

2

L2
≥ C(Θ,F , f)(γmax(n) + σ2)

(√

υ(x, J, λ)

+υ(x, J, λ)
))

≤ e−x.

Then, from Theorem 7.1 it follows that

P

(

B′ +V′ ≥ C(Θ,Θ,F , f)
[

(γmax(n) + σ2)
(√

υ(x, J, λ) + υ(x, J, λ)
)

+
(

B(λ) +
√

B(λ)
)])

≤ 2e−x,

which completes the proof.

Appendix E: Technical Lemmas

Lemma E.1. Let u = (u1, . . . , uJ) such that
∑J

j=1 uj = 0 with |uj | ≤ δ for
some 0 ≤ δ < 3 for all j = 1, . . . , J . Then, there exists a constant C(δ) > 0

such that
∣
∣ 1
J

∑J
j=1(e

iuj − 1)
∣
∣ ≥ C(δ)

J ‖u‖2 where ‖u‖2 = u21 + · · ·+ u2J .

Proof. Let F (u1, . . . , uJ) =
1
J

∑J
j=1 e

iuj . A Taylor expansion implies that there
exits tj ∈ [−δ, δ], j = 1, . . . , J such that

F (u1, . . . , uJ) = 1 +
i

J

J∑

j=1

uj −
1

2J

J∑

j=1

u2j −
i

6J

J∑

j=1

u3je
itj ,
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holds for all |uj| ≤ δ. Now, since
∑J

j=1 uj = 0 it follows that

∣
∣
∣
∣

1

J

J∑

j=1

eiuj − 1

∣
∣
∣
∣
=

∣
∣
∣
∣
− 1

2J

J∑

j=1

u2j −
i

6J

J∑

j=1

u3je
itj

∣
∣
∣
∣
≥ 1

2J

∣
∣
∣
∣

J∑

j=1

u2j −
∣
∣
∣
∣

i

3

J∑

j=1

u3je
itj

∣
∣
∣
∣

∣
∣
∣
∣
.

Since |uj | ≤ δ, we have that
∣
∣ i
3

∑J
j=1 u

3
je

itj
∣
∣ ≤ δ

3

∑J
j=1 |uj |

2
which finally implies

that
∣
∣ 1
J

∑J
j=1 e

iuj − 1
∣
∣ ≥ 3−δ

6
1
J

∑J
j=1 u

2
j , which proves the result by letting

C(δ) = 3−δ
6 > 0 since δ < 3.

Lemma E.2. Let ξλ,J (A1, . . . , AJ ) =
1
J

∑J
j=1 ‖〈Sλ(·), Ajεj〉‖2L2 , where the Aj ’s

are nonrandom non-negative n×n symmetric matrices and εj ∼ N (0, In). Then,
for all x > 0 and all n ≥ 1,

P

(

ξλ,J (A1, . . . , AJ ) ≥
1

J
‖A‖

(

1 + 4
x

J
+

√

4
x

J

))

≤ e−x.

where ‖A‖ =
∑J

j=1

∑n
ℓ=1 rj,ℓ with rj,ℓ being the ℓ-th eigenvalue of the matrix

Aj = Aj

[
〈Sℓ

λ, S
ℓ′

λ 〉L2

]n

ℓ,ℓ′=1
Aj .

Proof. Some parts of the proof follows the arguments in [BM98] (Lemma 8, part
7.6). We have

ξλ,J =
1

J

J∑

j=1

∥
∥
∥
∥

n∑

ℓ=1

Sℓ
λ(·)[Aεj ]ℓ

∥
∥
∥
∥

2

L2

=
1

J

J∑

j=1

n∑

ℓ,ℓ′=1

〈Sℓ
λ, S

ℓ′

λ 〉L2 [Ajεj]
ℓ[Ajεj ]

ℓ′

=
1

J

J∑

j=1

ε′jAjεj ,

where Aj = AjSλAj with Sλ =
[
〈Sℓ

λ, S
ℓ′

λ 〉L2

]n

ℓ,ℓ′=1
. Now, denote by rj,1 ≥ · · · ≥

rj,n the eigenvalues of Aj with rj,1 ≥ · · · ≥ rj,n ≥ 0 and r1 = maxj,ℓ{rj,ℓ}.
We can write Aj = (Sλ

1
2Aj)

′(Sλ
1
2Aj) and is positive semi-definite. Then, let

ξ̃λ,J = Jξλ,J − JEξλ,J =
∑J

j=1(ε
′
jAjεj − trAj). Let α > 0, by Markov’s

inequality it follows that for all u ∈
(
0, 1

2r1

)
, P
(
ξ̃λ,J ≥ α

)
= P

(
euξ̃λ,J ≥ euα

)
≤

e−uα
∏J

j=1 E
[
euεj

′
Ajεj−u trAj

]
, since the εj ’s are independent. The log-Laplace

transform of ϕ̃λ,j = εj
′Ajεj − trAj is

log
(
E
[
euϕ̃λ,j

])
=

n∑

ℓ=1

−urj,ℓ −
1

2
log (1− 2urj,ℓ) .

We now use the inequality −x− 1
2 log(1 − 2x) ≤ x2

1−2x for all 0 < x < 1
2 which

holds since u ∈
(
0, 1

2r1

)
. This implies that log

(
E
[
euϕ̃λ,j

])
≤ ∑n

ℓ=1
u2rj,ℓ

2

1−2urj,ℓ
≤

u2‖rj‖
2

1−2ur1
, where ‖rj‖2 = r2j,1 + · · ·+ r2n,j . Finally, we have
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P (ϕ̃λ,J ≥ α) ≤ exp

(

−
(

uα−
J∑

j=1

‖rj‖2 u2
1− 2r1u

))

= exp

(

−
(

uα− ‖r‖2 u2
1− 2r1u

))

,

(E.1)

where ‖r‖2 =
∑J

j=1

∑n
ℓ=1 rj,ℓ

2. The right hand side of the above inequality

achieves its minimum at u = 1
2r1

(
1 − ‖r‖√

2αr1+‖r‖2

)
. Evaluating (E.1) at this

point and using the inequality (1 + x)1/2 ≤ 1 + x
2 , valid for all x ≥ −1, one has

that

P

(

ξ̃λ,J ≥ α
)

≤ exp

(

− α2

2r1α+ 2 ‖r‖2 + 2 ‖r‖2 (1 + 4αr1/(2 ‖r‖2))1/2

)

≤ exp

(

− α2

4r1α+ 4 ‖r‖2

)

,

by setting x = α2

4r1α+4‖r‖2
. We derive the following concentration inequality for

ξλ,J = 1
J ξ̃λ,J + 1

J

∑J
j=1 tr(Aj), P

(
ξλ,J ≥ 1

J

∑J
j=1

∑n
ℓ=1 rj,ℓ +4 r1

J x+
‖r‖
J

√
4x
)
≤

e−x. To finish the proof, remark that

‖r‖2 =

J∑

j=1

∑

ℓ=1

r2j,ℓ ≤





J∑

j=1

n∑

ℓ=1

rj,ℓ





2

since all the rj,ℓ’s are positive.

Corollary E.1. Under Assumptions 6.1 to 6.3, there exists a positive constant
C(Θ,F) > 0 such that for all x > 0,

P

(

sup
θ∈Θ

Qε
λ(θ) ≥ C(Θ,F)σ2V (λ)

(

1 + 4
x

J
+

√

4
x

J

))

≤ e−x.

Proof. Assumption 6.1 gives the uniform bound

Qε
λ(θ) ≤

1

J

J∑

j=1

∫

Ω

(

T̃θj
〈Sλ(t), σεj〉

)2

dt ≤ C(Θ,F)

J

J∑

j=1

‖〈Sλ(t), σεj〉‖2L2

= C(Θ,F)ξλ,J (σIdn, . . . , σIdn),

where ξλ,J (σIdn, . . . , σIdn) is defined in Lemma E.2 and does not depend on θ.
Thus, the result immediately follows from Lemma E.2.

Corollary E.2. Under Assumptions 6.1 to 6.4, there exists a positive constant
C(Θ,F) > 0 such that for all x ≥ 0,

P

(

sup
θ∈Θ

QZ
λ (θ) ≥ C(Θ,F)γn(Θ)V (λ)

(

1 + 4
x

J
+

√

4
x

J

))

≤ e−x.
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Proof. Assumption 6.1 gives the uniform bound

QZ
λ (θ) ≤

1

J

J∑

j=1

∫

Ω

(

T̃θj

〈

Sλ(t),Tθ∗

j
Zj

〉)2

dt ≤ C(Θ,F)

J

J∑

j=1

∥
∥
∥

〈

Sλ,Tθ∗

j
Zj

〉∥
∥
∥

2

L2
.

Hence, conditionally on θ
∗ we have that

sup
θ∈ΘJ

QZ
λ (θ) ≤ C(Θ,F)ξλ,J

(
A1, . . . , AJ

)
,

where ξλ,J
(
A1, . . . , AJ

)
is defined in Lemma E.2 with

Aj = Eθ∗

[
Tθ∗

j
Zj(Tθ∗

j
Zj)

′
] 1

2 .

Let us now give an upper bound on the largest eigenvalues of the matrices
Aj = AjSλAj with Sλ =

[
〈Sℓ

λ, S
ℓ′

λ 〉L2

]n

ℓ,ℓ′=1
. Under Assumption 6.4 we have that

tr(Aj) ≤ γmax(Aj) trSλ ≤ γn(Θ)V (λ), for all j = 1, . . . , J and any θ∗ ∈ ΘJ .
Thus, the result follows by arguing as in the proof of Lemma E.2 and by taking
expectation with respect to θ∗.
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