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Abstract: We study the Bernstein-von Mises (BvM) phenomenon, i.e.,
Bayesian credible sets and frequentist confidence regions for the estimation
error coincide asymptotically, for the infinite-dimensional Gaussian white
noise model governed by Gaussian prior with diagonal-covariance structure.
While in parametric statistics this fact is a consequence of (a particular
form of) the BvM Theorem, in the nonparametric setup, however, the BvM
Theorem is known to fail even in some, apparently, elementary cases. In
the present paper we show that BvM-like statements hold for this model,
provided that the parameter space is suitably embedded into the support
of the prior. The overall conclusion is that, unlike in the parametric setup,
positive results regarding frequentist probability coverage of credible sets
can only be obtained if the prior assigns null mass to the parameter space.
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Introduction

In parametric statistics, the celebrated Bernstein-von Mises (BvM) Theorem
states that in a statistical model with finite-dimensional parameter θ ∈ Θ, if
the observed variable X follows some known distribution Pθ := L(X |θ) and π is
a prior probability on the parameter space Θ then, under fairly general condi-
tions over the true parameter, the model and the prior, the centered Bayesian
posterior and the sampling distribution of any asymptotically efficient estimator
centered at truth will be close for a large number of observations, where “close”
means with respect to total variation norm; see, e.g., [13]. In fact, both distri-
butions will approach the normal distribution with null mean and covariation
matrix given by the inverse Fisher information. In particular, since the poste-
rior mean is known to achieve, under some regularity conditions, asymptotic
efficiency, cf. [9], one can conclude that the centered posterior distribution and
the sampling distribution of the posterior mean centered at truth are asymp-
totically the same. If θ ∈ Θ denotes the true parameter, ϑ denotes a generic
random variable on Θ distributed according to the prior π and ϑ̂ := E[ϑ|X ]
denotes the posterior mean then the BvM statement can be re-phrased as

‖L(∆|X)− L(∆|θ)‖V Pθ−→ 0. (1)

In the above display, ∆ := ϑ̂ − ϑ, L(∆|θ) denotes the sampling distribution of
the estimation error ∆ (under Pθ) and ‖ · ‖V denotes the total variation norm.

The main importance of the BvM Theorem is that it allows one to use
Bayesian credible sets, i.e., sets which receive a fixed fraction of the total mass
under L(∆|X), which are available via Markov-chain Monte Carlo techniques,
to derive confidence regions for θ based on asymptotically efficient frequentist
estimators, e.g., MLE. A natural question is whether such a result can be also
established in a nonparametric framework, i.e., for infinite-dimensional param-
eter space Θ. The first difficulty in answering this question is to formulate a
generalization of the parametric statement. For instance, one of the conditions
in the classical statement of the theorem is that the prior should be (Lebesgue)
absolutely continuous, but it is known that no infinite-dimensional counterpart
of the Lebesgue measure exists. Moreover, one of the key assumptions of the
BvM Theorem is that the model is smooth in the sense of Hellinger differen-
tiability but differentiability w.r.t. infinite-dimensional parameters is a rather
restrictive condition, hence a weaker concept of differentiability might be suit-
able. Finally, asymptotically efficient estimators are rarely available in infinite-
dimensional models; also a tractable concept of Fisher information (operator)
is lacking. Nevertheless, it makes sense to consider the simpler version, in which
the posterior mean plays the role of the estimator for θ; see (1).

In this paper we study the BvM phenomenon for the infinite-dimensional
Gaussian white noise model, described by the linear equation

X = θ + σnε, (2)
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where θ is a square-summable sequence, X is a noisy observation of θ, ε denotes
a sequence of standard, i.i.d. Gaussian variables and σn ↓ 0; typically, we have
σ2
n = 1/n. For a Bayesian approach, one chooses a Gaussian prior π on R

∞ with
diagonal covariance structure, i.e., π makes the coordinates independent non-
degenerate Gaussian variables. The posterior distribution Ln(ϑ|X) is Gaussian

and its centered version Ln(ϑ− ϑ̂|X) = Ln(−∆|X) = Ln(∆|X) is non-random.
Moreover, Ln(∆|θ) is also a Gaussian measure, not depending on the observa-
tion X but depending on θ only through its mean, cf. [2, 3]. Hence, in this case,
one may disregard convergence in Pθ-probability in (1), which reduces to

‖Ln(∆|X)− Ln(∆|θ)‖ → 0. (3)

The validity of (3), which obviously depends on θ, has been extensively studied
in [3] in the π-a.s. sense; specifically, the prior is chosen such that ϑ is a square-
summable sequence a.s. and it is shown that (3) fails in this case, in the sense
that for almost all θ’s drawn from π the expression in (3) does not converge
to 0. The main argument is that the r.v.

∑

k≥1 ∆
2
k, which is properly defined,

has different asymptotic behavior when regarded from Bayesian and frequentist
perspectives; this is explained in Section 3. A similar result has been obtained
in [2] in a slightly more general setup, where the parameter θ belongs to some
abstract Hilbert space and the observations lie in a Banach space. Although
some positive results regarding the validity of BvM-like statements in semi- and
nonparametric models, see, e.g., [1, 11, 12] for semiparamatric and [5, 6] for
nonparametric, the results in [2] and [3] led to the widely accepted belief that
the BvM phenomenon does not occur in the nonparametric framework.

Nonetheless, some questions, of both theoretical and practical interest, are
left unanswered in [2] and [3] and we aim to elucidate these issues in this paper.
A first question is regarding the choice of the prior. Denoting by ℓ2 the space
of square-summable sequences in R

∞, we have θ ∈ ℓ2. Moreover, for the prior
considered in [3], it holds ϑ ∈ ℓ2 a.s. Since ℓ2 coincides with the reproducing
Hilbert space (RHS) of the noise ε, it follows that ε, hence the observation X ,
lies almost surely in some larger (Banach) space H in which ℓ2 appears as a
dense subspace. Furthermore, since in the Bayesian paradigm we have

X = ϑ+ σnε,

by the Cameron-Martin Theorem, the distribution of the data X is equivalent
to that of the Gaussian noise σnε, hence orthogonal w.r.t. the prior π. In other
words, the randomness induced by the prior distribution in the model is rather
insignificant w.r.t. the distribution of the data, unlike in finite-dimensional
framework where the prior is required to be Lebesgue continuous; a quasi-similar
choice is made in [2]. This abnormality occurs only in the infinite-dimensional
framework; in finite-dimensional spaces the RHS of some Gaussian measure co-
incides with its support. Therefore, it may come as no surprise that the BvM
statement, as formulated in (3), for the models considered in [2] and [3] fails.

On the other hand, in Bayesian statistics, the statistician must choose the
prior distribution π, based on some (apriori) subjective beliefs, so that one
may always question these beliefs. Therefore, a statement which is true π-a.s.
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is not always satisfactory since sets of parameters of null prior probability are
actually ignored. For example, it is known that the classical Wiener measure
does not charge the space of differentiable paths, hence statements which are
true “Wiener almost surely” are, in fact, disregarding smooth paths; this issue
appears for any infinite-dimensional Gaussian distribution. In order to cope
with this problem, we shall consider analytic BvM statements; specifically, if
Θ is some given parameter set, we investigate pointwise convergence in (3),
w.r.t. θ ∈ Θ, rather than π-a.s. convergence. Probabilistic BvM statements can
be easily derived, provided that π(Θ) = 1. The results in [3] show that, if the
prior π is supported by ℓ2, no Θ ⊂ ℓ2 with π(Θ) > 0 exists such that the BvM
statement in (3) holds for all θ ∈ Θ but no relevant conclusion can be drawn if
π(Θ) = 0. The interest in parameter sets Θ of null prior probability is raised by

the fact that, in this model, the Bayes estimator ϑ̂ achieves optimal minimax rate
of convergence when the parameter θ belongs to some linear subspace Θ0 ⊂ ℓ2

(to be defined in Section 3) of null prior mass; see [14]. Therefore, it would be
of some interest to know whether (3) holds true for θ ∈ Θ0.

The present paper is aimed to perform a thorough investigation and to pro-
vide answers to the questions stated above. There will be three main conclusions:

• If the prior π makes the coordinates ϑk centered Gaussian variables with
variance τ2k , for k ≥ 1, then the BvM statement in (3) holds true, provided
that τk → ∞ sufficiently fast. In fact, it turns out that both Ln(∆|X) and
Ln(∆|θ), when re-scaled by 1/σn, approach the Gaussian white noise (cen-
tered) distribution whose covariance operator can be formally regarded as
the inverse Fisher information of the linear model defined by (2).

• Unfortunately, when the prior π is supported by ℓ2, having diagonal power-
covariance structure as in [3], there is no sensible subspace Θ (not even of
null prior mass) such that (3) holds for all parameters θ ∈ Θ.

• The good news, however, is that if θ ∈ Θ0, i.e., the Bayes estimator ϑ̂
achieves optimal minimax rates, then the Bayesian credible ℓ2-balls have
good frequentist probability coverage, for large n, so they may be used to
derive confidence regions for θ based on the posterior mean ϑ̂.

The paper is organized as follows: Section 1 gives a brief overview of results
on Gaussian measures in Hilbert spaces which will be relevant for our analysis.
In Section 2 we formulate and prove some BvM-like statements and explain why
the ℓ2-space is too small for dealing with BvM-related issues. Also, we provide
conditions over π and θ such that (3) holds true. In Section 3 we zoom in to
the framework of [3], where the prior distribution is supported by ℓ2, and show
that there is no reasonable parameter set Θ ⊂ ℓ2 such that (3) holds true for
all θ ∈ Θ; to this end, we consider a Hilbert scale (increasing family of Hilbert
spaces) {Θδ}δ in ℓ2 and prove that there is no Θδ satisfying the requirement,
proving analytic BvM statements rather than probabilistic statements as in [3].
We also investigate in Section 3 the asymptotic frequentist probability coverage
of Bayesian credible ℓ2-balls for various classes of parameters θ. Some technical
facts and results are detailed in Section 4 (Appendix) while the proofs of the
main results are deferred to Section 5.
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Notations and conventions

Throughout this paper, R∞ will denote the linear space of all real-valued se-
quences. For convenience, we identify the sequence with components {xk}k≥1

with an element (xk) ∈ R
∞, when no confusion occurs. For sequences with dou-

ble (or multi-) index {xnk}n,k≥1, we use the notation (xnk)k to emphasize that
we are referring to the sequence labeled w.r.t. k. We denote by (ℓ2, ‖·‖) the space
of square-summable sequences endowed with the usual Hilbert space structure.
For k ≥ 1 we denote by ek the kth unit vector (direction) in R

∞, having the kth

entry equal to 1, the other elements being null. The family {ek : k ≥ 1} defines
an orthonormal basis (complete orthonormal system) in ℓ2. Also, we shall de-
note by ℓ1 the space of (absolutely) summable sequences and by ℓ∞ the space
of bounded sequences endowed with the usual norms; recall that ℓ1 ⊂ ℓ2 ⊂ ℓ∞.

If {un}n≥1 and {vn}n≥1 are sequences of positive numbers we write un ≈ vn
if limn(un/vn) = 1 and we write un ∼ vn if there exist some positive constant c
such that limn(un/vn) = c. If limn(un/vn) = 0 then we write un ≪ vn.

If X is a r.v. on some measure space X we denote by L(X) its distribution on
X and denote by L(X |·) a conditional distribution of X . Also, we shall denote
by E[X |·] and Var[X |·] the (conditional) expectation, resp. variance, of X . If X
is a Banach/Hilbert space we shall denote by N (b;S) the Gaussian measure on
X with mean b ∈ X and covariation operator S : X∗ → X; in particular, N (b;σ2)
denotes the one-dimensional Gaussian measure with mean b and variance σ2.

Let (X, d) be a metric space. On the space of signed measures on X we define
by ‖ · ‖V and ‖ · ‖H the total variation and Hellinger1 norms, respectively.
The metrics induced by these norms on the class of probability measures are
known to generate the same topology. If {Pn}n and {Qn}n are two sequences
of probability measures, by Pn ≃ Qn we mean that Pn − Qn converges to 0 in
this (common) topology. Both ‖P −Q‖V and ‖P −Q‖H attain their maximum
whenever P and Q are orthogonal measures. In that sense, each distance can be
used to measure the degree of overlapping between P and Q. The expression

A(P,Q) := 1− ‖P −Q‖2H =

∫

X

√
dP

√

dQ

is called the Hellinger affinity of P and Q. If P and Q are equivalent mea-
sures then A(P,Q) > 0; null affinity means orthogonality between P and Q.
Finally, we shall denote by ։ the weak convergence on the class of (proba-
bility) measures on X. Weak convergence is weaker than convergence in to-
tal variation/Hellinger distance, one of the main differences being that a se-
quence Pn may converge weakly to P even if Pn and P are orthogonal mea-
sures, for arbitrarily large n; this is not possible if convergence holds in total
variation/Hellinger distance. As a consequence, if Pn ։ P then the property
Pn(A) → P (A) is restricted to the class of those Borel measurable sets A ⊂ X

having P -negligible boundary, whereas convergence in total variation/Hellinger
distance implies Pn(A) → P (A), for any Borel measurable A ⊂ X.

1The Hellinger norm is defined such that
√
2‖P‖2 = 1 for any probability measure P .
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1. Preliminary results on Gaussian measures in Hilbert spaces

There is a rich literature treating Gaussian measures on separable Hilbert or,
more generally, Banach spaces. For a nice, comprehensive overview of Gaussian
measures on Banach spaces and related concepts we refer to [7, 8]. Here we
briefly present some facts which will be relevant for our analysis. To avoid a
rather technical exposition we restrict ourselves to the Hilbert space setting.

In the following H is a separable Hilbert space, b, d ∈ H and S, T : H → H are
covariance operators2 on H. The following theorems, which establish conditions
under which Gaussian measures are equivalent, will be useful in our analysis.

Cameron-Martin Theorem: N (b;S) and N (0;S) are equivalent if and only if
b ∈ H, where H :=

√
SH denotes the RHS of N (0;S) endowed with the usual

Hilbert space structure. In addition, the Radon-Nikodym derivative is given by

dN (b;S)

dN (0;S)
(h) = exp

[

〈b|h〉∼H − 1

2
‖b‖2H

]

, N (0;S)− a.s.,

where b ∈ H 7→ 〈b|·〉∼H ∈ L2(N (0;S)) denotes the extension of the linear isome-
try b ∈ H 7→ 〈b|·〉H; that is, 〈b|h〉∼H = L2− limn〈b|hn〉H, for hn → h, {hn}n ⊂ H.

Feldman-Hajek Theorem: Assume that S and T commute; in this case there ex-
ists some orthonormal basis {φn}n≥1 consisting of common eigenvectors of S and
T . If S has eigenvalues {λ2n}n≥1 and T has eigenvalues {µ2

n}n≥1 w.r.t. {φn}n≥1

then N (0;S) and N (0;T ) are equivalent if and only if

∞
∑

n=1

(

λ2n − µ2
n

λ2n + µ2
n

)2

<∞.

Otherwise, N (0;S) and N (0;T ) are orthogonal.

Equivalence Theorem: N (b;S) and N (d;T ) are equivalent if and only if

N (b;S) ≡ N (b;T ) ≡ N (d;T ) ≡ N (d;S).

Otherwise N (b;S) and N (d;T ) are orthogonal.

Finally, the following theorem gives necessary and sufficient conditions for a
sequence of Gaussian measures to converge weakly on H; see, e.g., [10].

Convergence Theorem: Let {bn}n≥1 ⊂ H and Sn, for n ≥ 1, be a family of
covariation operators on H. Then the sequence N (bn;Sn) converges weakly on
H if and only if there exist some b ∈ H and some covariation operator S on H

such that bn → b in H and Sn → S in trace-class norm, i.e., Tr(Sn −S) → 0. In
this case, we have N (bn;Sn) ։ N (b;S).

2By covariance operator we mean a positive, self-adjoint, trace-class operator S : H → H.
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2. The Gaussian white noise model

In this section we consider the linear model, defined by the equation

X = θ + σnε, (4)

where the equality holds in R
∞, θ := (θk) ∈ ℓ2 is an unknown parameter,

ε := (εk) is a sequence of i.i.d. standard Gaussian variables (noise) and σn > 0
are chosen such that σn ↓ 0 as n → ∞; typically one chooses σ2

n = 1/n. As
usual, the problem is to estimate θ from the noisy observation X .

For a Bayesian approach, one considers a prior π on R
∞ which makes the

coordinates centered independent (nondegenerate) Gaussian variables; that is,
one assumes that the parameter θ is a realization of some centered Gaussian
r.v. ϑ = (ϑk) such that Cov[ϑk, ϑl] = E[ϑkϑl] = τ2k δkl, for any k, l ≥ 1. Hence,
Ln(Xk) = N (0;σ2

n + τ2k ) and Ln(Xk|ϑk) = N (ϑk;σ
2
n) so that the posterior

distribution Ln(ϑk|Xk) can be described, cf. [3], as follows:

• the posterior mean ϑ̂ = (ϑ̂k) ∈ R
∞ satisfies

∀k ≥ 1 : ϑ̂k = E[ϑk|X ] =
τ2k

σ2
n + τ2k

Xk.

• the Bayesian estimation error ∆ := ϑ̂− ϑ satisfies

∀k ≥ 1 : ∆k =
σnτ

2
k

σ2
n + τ2k

εk −
σ2
n

σ2
n + τ2k

ϑk.

• the centered posterior Ln(∆|X) is independent of Ln(X) and satisfies

∀k ≥ 1 : Var[ϑk|X ] = E

[

(ϑk − ϑ̂k)
2
∣

∣

∣X
]

=
σ2
nτ

2
k

σ2
n + τ2k

. (5)

In fact, Ln(ϑk|X) = Ln(ϑk|Xk) and the posterior Ln(ϑ|X) can be expressed as

Ln(ϑ|X) =
⊗

k≥1

Ln(ϑk|Xk) =
⊗

k≥1

N
(

τ2k
σ2
n + τ2k

Xk;
σ2
nτ

2
k

σ2
n + τ2k

)

.

Definition. Let Θ ⊂ R
∞ and ψ be some functional. Then we say that:

• the BvM statement holds for the parameter set Θ if for all θ ∈ Θ we have

‖Ln (∆|X)− Ln (∆|θ)‖H → 0; (σn ↓ 0); (6)

• the BvM statement holds for the functional ψ and parameter set Θ if for
all θ ∈ Θ it holds that

‖Ln (ψ(∆)|X)− Ln (ψ(∆)|θ)‖H → 0; (σn ↓ 0); (7)

• the BvM statement holds (for the functional ψ) π-a.s. if (6), resp. (7),
holds for almost all θ’s drawn from the prior π.
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The support of a Gaussian measure in R
∞ is, in general, a Banach space B;

see [4]. Note that, if the BvM statement holds true for the parameter set Θ then
the BvM statement holds true for any (norm-measurable) functional ψ defined
on the support of ∆, for the same parameter set. Also, if the BvM statement
holds (for the functional ψ) for some parameter set Θ such that π(Θ) = 1 then
the BvM statement holds (for the functional ψ) π-a.s.

In the following we aim to investigate the validity, in general, of the above
statements for the model under discussion. We first consider linear functionals.
Recall that, from a frequentist perspective, we have

∀k ≥ 1 : ∆k =
σnτ

2
k

σ2
n + τ2k

εk −
σ2
nθk

σ2
n + τ2k

. (8)

Therefore, from (5) and (8) we deduce that (for all k ≥ 1)

Ln (∆k|X) = N
(

0;
σ2
nτ

2
k

σ2
n + τ2k

)

, Ln (∆k|θ) = N
( −σ2

nθk
σ2
n + τ2k

;
σ2
nτ

4
k

(σ2
n + τ2k )

2

)

.

Now we aim to prove that the BvM statement holds for any suitable linear
functional ψ. First, however, we need to make clear the kind of linear functionals
ψ we are considering and this requires a slightly technical discussion. Assume
that B ⊂ R

∞ is a Banach space which supports a Gaussian measure µ. Then
it makes sense to consider bounded linear functionals in the topological dual
B
∗; that is, if L(Y ) = µ then, for any ψ ∈ B

∗, ψ(Y ) is a r.v. finite a.s. Note,
however, that the definition of the support of a measure is closely related to
the topology under consideration, so that the support is not unique. To avoid
this inconvenience, we need to consider a class of “universal” bounded linear
functionals related to the measure itself, rather than to its topological support.

Let P be a regular probability measure on R
∞ and recall that any linear

functional ψ on R
∞ is identified with a sequence (ψk) ∈ R

∞ such that

ψ(x) =
∑

k≥1

ψkxk, (9)

the set of x’s for which the above series is convergent being a linear (sub)space.
We say that the linear functional ψ ∈ R

∞ is defined P -a.s. if the series in (9)
converges for P -almost all x ∈ R

∞. In addition, we say that the P -a.s. defined
linear functional ψ is bounded, or that ψ is a bounded linear functional de-
fined P -a.s., if the series in (9) converges absolutely for P -almost all x’s. In the
following we will denote by γ the probability distribution on R

∞ which makes
the coordinates standard i.i.d. Gaussian variables. By Kolmogorov’s three-series
Theorem it follows that a linear functional ψ ∈ R

∞ is defined γ-a.s. if and only if
ψ ∈ ℓ2 and ψ is bounded if and only if ψ ∈ ℓ1. Finally, if P = ⊗k≥1N (νk; ς

2
k) then

ψ ∈ R
∞ is a bounded linear functional defined P -a.s. if and only if (ψkνk) ∈ ℓ1

and (ψkςk) ∈ ℓ1. Indeed, if L(Y ) = P then Yk = νk + ςkξk, with L(ξ) = γ, i.e.,
∑

k≥1

ψkYk =
∑

k≥1

ψkνk +
∑

k≥1

ψkςkξk,

so the two series in the r.h.s. converge absolutely if (ψkνk) ∈ ℓ1 and (ψkςk) ∈ ℓ1.
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2.1. The BvM statement for linear functionals

The following result shows that the bounded linear functionals defined γ-a.s. are
also bounded linear functionals defined Ln(∆|X) and Ln(∆|θ)-a.s., for all n, for
almost all θ’s drawn from the prior π. In addition, a π-a.s. BvM statement holds
for such linear functionals ψ, i.e., for ψ = (ψk) ∈ ℓ1.

Lemma 1. Let ψ = (ψk) ∈ ℓ1 be a bounded linear functional defined γ-a.s.
Then it holds that

(i) ψ is a bounded linear functional defined Ln(∆|X)-a.s., for any n ≥ 1.
(ii) ψ is a bounded linear functional defined Ln(∆|θ)-a.s., for any n ≥ 1, π-a.s.
(iii) If γ ◦ ψ−1 denotes the pushforward measure3 of γ through ψ then (π-a.s.)

∥

∥Ln

(

ψ(σ−1
n ∆)|X

)

− γ ◦ ψ−1
∥

∥

H
→ 0,

∥

∥Ln

(

ψ(σ−1
n ∆)|θ

)

− γ ◦ ψ−1
∥

∥

H
→ 0.

(iv) The BvM statement holds true π-a.s. for ψ, i.e.,

‖Ln (ψ(∆)|X)− Ln (ψ(∆)|θ)‖H → 0, π − a.s.

Lemma 1 shows that the finite-dimensional projections of Ln

(

σ−1
n ∆|X

)

and

Ln

(

σ−1
n ∆|θ

)

converge to those of γ. Indeed, it is straightforward that

∀k ≥ 1 : Ln

(

ψ(σ−1
n ∆k)|X

)

≃ N (0; 1) ≃ Ln

(

ψ(σ−1
n ∆k)|θ

)

.

Consequently, if any of the sequences Ln

(

σ−1
n ∆|X

)

or Ln

(

σ−1
n ∆|θ

)

converges
in some sense, e.g., either weakly or in total variation/Hellinger distance, then
the limit is necessarily γ. In particular, we see that if the distributions under
discussion are supported by ℓ2, which is the case when (τk) ∈ ℓ2, then the con-
vergence can not hold in total variation/Hellinger norm since γ is not supported
by ℓ2; in fact, we have γ(ℓ2) = 0. In order to assess convergence to γ, it will
be useful to construct a Hilbert space H which supports all the measures under
consideration, i.e., γ, Ln(∆|X) and Ln(∆|θ), for all n. Such a space is given by

H :=

{

x ∈ R
∞ : ‖x‖2

H
:=

∞
∑

k=1

λ2kx
2
k <∞

}

, (10)

for some sequence of positive numbers (λk) ∈ ℓ2. Indeed, if {ek}k≥1 are the
canonical unit vectors in R

∞ then an orthonormal system in H is given by
{hk := λ−1

k ek}k≥1. If S denotes the covariance operator of γ in H then we have

〈Shk|hl〉H =

∫

H

〈t|hk〉H〈t|hl〉Hγ(dt).

Now t = (tk) ∈ R
∞ and tk are i.i.d. N (0; 1) variables under γ. Therefore,

〈t|hk〉H = λktk ⇒ 〈Shk|hl〉H = λ2kδkl,

3Provided that ψ : R∞ → R is measurable, γ ◦ ψ−1(B) := γ{x : ψ(x) ∈ B} always defines
a measure on the Borel sets of R, having total mass at most 1. If, in addition, ψ is defined
γ-a.s. then γ{x : ψ(x) ∈ R} = 1, hence γ ◦ ψ−1 defines a probability measure on R.
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i.e., Shk = λ2khk, for any k, hence S is a linear operator defined by the eigenval-
ues {λ2k}k≥1 w.r.t. {hk}k≥1. Therefore, the condition (λk) ∈ ℓ2 guarantees that
the covariance operator of γ in H is of trace class, hence γ = N (0;S) in H. In the
same vein, one can easily check that the covariance operators of Ln

(

σ−1
n ∆|X

)

and Ln

(

σ−1
n ∆|θ

)

are defined by the eigenvalues
{

λ2kτ
2
k

σ2
n + τ2k

}

k≥1

,

{

λ2kτ
4
k

(σ2
n + τ2k )

2

}

k≥1

, (11)

respectively, and are of trace-class if (λk) ∈ ℓ2. Clearly, ℓ2 ⊂ H, the inclusion
being proper, and both Ln(∆|X) and Ln(∆|θ) are supported by H, for any prior
π and any n ≥ 1. The space H has rather theoretical significance and will play
little role in what follows; one can take, for instance, λk = 1/k, for k ≥ 1.

Remark 1. Let H be defined by (10) for some positive sequence (λk) ∈ ℓ2, i.e.,
H supports γ, and let ψ = (ψk) denote some bounded linear functional on H.
Define x = (xk), with xk = sign(ψk), for k ≥ 1. Since |xk| = 1 for any k, it
follows that x ∈ H, hence ψ(x) = ‖ψ‖ℓ1 < ∞; that is, ψ ∈ ℓ1. Conversely, let
ψ ∈ ℓ1 and set λk :=

√

|ψk|+ (1/k2), for all k ≥ 1. It is easy to check that
these λk’s are positive, such that (λk) ∈ ℓ2 and ψ defines a linear functional on
H (defined by these λk’s) with norm less than

√

‖ψ‖ℓ1 . Indeed, for any x ∈ H,

|ψ(x)| ≤
∑

k≥1

|ψkxk| =
∑

k≥1

|ψk|
λk

· (λk|xk|) ≤
√

√

√

√

∑

k≥1

ψ2
k

λ2k
· ‖x‖H ≤

√

‖ψ‖ℓ1 · ‖x‖H.

This justifies the terminology “bounded” used for linear functionals ψ ∈ ℓ1.

Let now H ⊂ R
∞ be defined by (10), for some positive sequence (λk) ∈ ℓ2,

i.e., H supports all the measures under discussion. For simplicity, we denote by
Tn and Sn the linear operators on H having eigenvalues given by (11) w.r.t. the
canonical unit vectors in R

∞ and set

bθn := E
[

σ−1
n ∆|θ

]

=

( −σnθk
σ2
n + τ2k

)

k

.

With these notations, Ln(σ
−1
n ∆|X) = N (0;Tn) and Ln(σ

−1
n ∆|θ) = N (bθn;Sn).

The following result shows, in particular, that a weak version of the π-a.s. BvM
statement holds for Gaussian priors π having diagonal covariance structure.

Theorem 1. N (0;Tn) converges weakly to γ in H and, for almost all θ’s drawn
from π, N (bθn;Sn) converges weakly to γ in H, as well. In particular, for any
measurable set B ⊂ H satisfying γ(∂B) = 0 it holds that

lim
n→∞

P {∆ ∈ σnB|X} − P {∆ ∈ σnB|θ} = 0, π − a.s. (12)

It is important to note that, even whenN (0;Tn) andN (bθn;Sn) are supported
by ℓ2, the weak convergence in Theorem 1 does not hold in ℓ2, but in the larger
space H which supports γ. In fact, although supported by ℓ2, the two sequences
are not tight in ℓ2. The above analysis shows, in particular, that any reasonable
BvM statement for this model can only be obtained beyond the ℓ2-framework.
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2.2. The BvM statement

In this section, we seek necessary/sufficient conditions for π and θ such that

‖Ln (∆|X)− Ln (∆|θ)‖H → 0; (13)

in other words, given a prior π with diagonal covariance structure on R
∞, we

aim to characterize/determine a (maximal) parameter set Θ for which the BvM
statement holds. For a π-a.s. statement, we check whether π(Θ) = 1.

Since the Hellinger distance is invariant to re-scaling, (13) is equivalent to

‖N (0;Tn)−N (bθn;Sn)‖H → 0. (14)

A necessary condition for the convergence in the last display is that N (0;Tn)
andN (bθn;Sn) are equivalent measures, for n large; otherwise, if they are orthog-
onal along some subsequence of n’s then the limit along this subsequence will be
strictly larger than 0. By the Equivalence Theorem, Gaussian measuresN (0;Tn)
and N (bθn;Sn) are either equivalent or orthogonal and equivalence obtains if and
only if both of them are equivalent to N (0;Sn). By the Cameron-Martin The-
orem, equivalence between N (bθn;Sn) and N (0;Sn) requires that bθn ∈ √

SnH.
Now recall that

√
SnH is also a Hilbert space and a complete orthonormal sys-

tem in this space can be obtained as follows:

∀k ≥ 1 : fk :=
√

Snhk =
λkτ

2
k

σ2
n + τ2k

hk =
τ2k

σ2
n + τ2k

ek.

Hence, bθn ∈ √
SnH iff bθn =

∑

k≥1 ukfk, for some sequence (uk) ∈ ℓ2. Since

bθn =
∑

k≥1

−σnθk
σ2
n + τ2k

ek =
∑

k≥1

ukfk =
∑

k≥1

ukτ
2
k

σ2
n + τ2k

ek,

one concludes, after identifying the coefficients, that uk = −σnθk/τ2k . Hence, by
Cameron-Martin Theorem, the equivalence N (bθn;Sn) ≡ N (0;Sn) obtains iff

(

θk
τ2k

)

∈ ℓ2. (15)

On the other hand, by Feldman-Hajek Theorem, N (0;Tn) ≡ N (0;Sn) requires

Sn(π) :=
∑

k≥1





λ2
kτ

2
k

σ2
n+τ2

k
− λ2

kτ
4
k

(σ2
n+τ2

k)
2

λ2
kτ

2
k

σ2
n+τ2

k
+

λ2
kτ

4
k

(σ2
n+τ2

k)
2





2

=
∑

k≥1

σ4
n

(σ2
n + 2τ2k )

2
<∞; (16)

for the last inequality it suffices that (1/τ2k ) ∈ ℓ2. Therefore, (15) and (16)
provide necessary and sufficient conditions for the equivalence between N (0;Tn)
and N (bθn;Sn), for large n, which is a necessary condition for the validity of
(14). In particular, the conditions (θk/τ

2
k ) ∈ ℓ2 and (1/τ2k ) ∈ ℓ2 guarantee the

equivalence N (0;Tn) ≡ N (bθn;Sn). It turns out that these conditions are both
necessary and sufficient for the validity of (14). More specifically, we have:
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Lemma 2. Let θ = (θk) ∈ R
∞ be arbitrary and let π =

⊗

k≥1 N (0; τ2k ), for
some arbitrary τk > 0; k ≥ 1. Then the following statements are equivalent:

(i) (1/τ2k ) ∈ ℓ2 and (θk/τ
2
k ) ∈ ℓ2.

(ii) ‖N (0;Tn)− γ‖H → 0 and ‖N (bθn;Sn)− γ‖H → 0.
(iii) ‖N (0;Tn)−N (bθn;Sn)‖H → 0.

Lemma 2 shows that the condition (1/τ2k ) ∈ ℓ2 is crucial for the validity of
the BvM statements, regardless of θ. Namely, if the condition holds then the
BvM statement holds true for the parameter set

Θ :=
{

θ ∈ R
∞ :

(

θk/τ
2
k

)

∈ ℓ2
}

(17)

In particular, we note that in this case ℓ2 ⊂ Θ, hence if the true parameter θ
belongs to ℓ2 then the BvM statement holds for any prior satisfying (1/τ2k ) ∈ ℓ2.
Comparing the result in Lemma 2 to that in Theorem 1 we see that the above
condition is needed to obtain convergence in total variation/Hellinger norm
instead of weak convergence. Both statements, however, show that whenever a
BvM statement holds, the two measures must necessarily converge to γ.

On the other hand, if the condition is not fulfilled, e.g., if the sequence {τk}k≥1

is upper-bounded, as it is in [3], then the BvM statement does not hold, for
any (nonempty) parameter set Θ. This, in particular, shows that there is no
parameter θ ∈ ℓ2 such that (13) holds; the results in [3] only show that for most
of the θ’s in ℓ2 (in both probabilistic and topological sense) the statement fails.

Finally, the parameter set Θ defined in (17) satisfies π(Θ) = 1 if and only if
(1/τk) ∈ ℓ2; otherwise, we have π(Θ) = 0. Indeed, recall that, under the prior
π, we have ϑk = τkξk, with {ξk}k≥1 i.i.d. standard Gaussian variables. Hence,
by Kolmogorov’s three-series Theorem, one concludes that the random series
∑

k(ϑ
2
k/τ

4
k ) =

∑

k(ξk/τk)
2 either converges or diverges with probability 1 and

convergence obtains if and only if (1/τk) ∈ ℓ2. One can synthesize this analysis
into the following statement which gives a complete overview of the validity of
the BvM statements; the proof follows by Lemma 2 and by previous remarks.

Theorem 2. If the prior π in Lemma 2 satisfies (1/τk) ∈ ℓ2 then the BvM
statement holds true π-a.s. If (1/τ2k ) ∈ ℓ2 but (1/τk) /∈ ℓ2 the BvM statement
holds for the parameter set Θ in (17), having null prior probability. Finally, if
(1/τ2k ) /∈ ℓ2 the BvM statement fails for any nonempty parameter set Θ.

Let us consider T :=
{

(xk) ∈ R
∞ : (xk/τk) ∈ ℓ2

}

and Θ defined by (17).
Note that the linear spaces T and Θ become Hilbert spaces when endowed with
the norms ‖(xk)‖T := ‖(xk/τk)‖ and ‖(xk)‖Θ := ‖(xk/τ2k )‖, respectively, and T
is the RHS of π. If τk → ∞ then ℓ2 ⊂ T ⊂ Θ, the embeddings being continuous.
The condition (1/τ2k ) ∈ ℓ2 is equivalent to the fact that the covariation operator
of γ in Θ is of trace-class, hence γ is supported by Θ. Under the stronger
condition (1/τk) ∈ ℓ2, the covariation operator of γ in T (the RHS of π) becomes
of trace-class; that is, the noise ε is supported by the RHS of π or, yet, the prior
π is equivalent to the distribution of the data X (Cameron-Martin Theorem),
γ-a.s. By virtue of Theorem 2, this condition seems both necessary and sufficient
for the validity of the π-a.s. BvM statement for the model under discussion.
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2.3. Conclusions and remarks

Typically, the prior π is supported by ℓ2; see, e.g., [2, 3]. Although the BvM
statement holds for bounded linear functionals and in a weak sense, it does not
hold in the sense of (13), for any θ. In fact, in this case many irregularities occur
due to infinite-dimensional nature of the problem. For instance, the probability
measures Ln(σ

−1
n ∆|X) and Ln(σ

−1
n ∆|θ) are always, orthogonal and this is the

most evident reason why the BvM Theorem does not hold in this case. More-
over, although the two corresponding sequences of measures are supported also
by ℓ2, they are not tight in ℓ2 since their finite-dimensional projections converge
to those of γ, which is not supported by ℓ2. Intuitively, this means that compact
credible sets/confidence regions, for arbitrarily large n, do not exist in ℓ2. One
may then think of embedding ℓ2 into some larger Hilbert space H, which sup-
ports the limiting measure γ, and use the weak version in Theorem 1. Although
such a result holds for π-almost all θ, this is of no avail in terms of ℓ2-confidence
regions since one can only apply it for (credible) sets whose boundary is not
charged by γ and this is not the case for “most of” the subsets of ℓ2; recall that
γ(ℓ2) = 0, so that γ is concentrated on the boundary of ℓ2 in H. Nevertheless,
by virtue of Lemma 1, one can still use credible sets of H with γ-negligible
boundary, e.g., open balls in H, as confidence regions, cf. (12). The open balls
in H, however, are much wider than their ℓ2-counterparts. In fact, the centered
H-ball of radius δ appears intuitively as a huge ellipsoid in ℓ2, with semi-axes
{δ/λk}k≥1 tending to infinity and this might be inconvenient in applications as
it yields very slow convergence rates for many functionals of interest.

Finally, we note that if Pθ denotes the true distribution of the data X then
Pθ = N (θ;σ2

nI), where I denotes the identity operator on R
∞, and the statistical

model {Pθ : θ ∈ ℓ2} is dominated by P0, by the Cameron-Martin Theorem. The
log-likelihood w.r.t. P0 is given by (below 〈·|·〉∼ is relative to 〈·|·〉 in ℓ2)

ℓθ(X) =
〈θ|X〉∼
σ2
n

− ‖θ‖2
2σ2

n

.

The above expression is differentiable w.r.t. θ, in the Malliavin sense (hence
in quadratic mean) and we have ℓ̇θ(X) = (X − θ)/σ2

n. Since under Pθ each
(X − θ)k is a N (0;σ2

n)-variable, it readily follows that the covariance operator
of the score ℓ̇θ(X) is formally given by σ−2

n I, so that σ2
nI appears, in some sense,

as the inverse Fisher information. Provided that (1/τ2k ) ∈ ℓ2, Lemma 2 implies

Ln(ϑ− ϑ̂|X) ≃ N (0;σ2
nI), or Ln(ϑ|X) ≃ N (ϑ̂;σ2

nI) which, for σ
2
n = 1/n, looks

quasi-similar to the standard parametric statement in which the posterior mean
plays the role of the asymptotically efficient estimator. Although formal, the
above reasoning may suggest the lines along which the BvM Theorem can be
generalized to this nonparametric model. Also, statement (iii) in Lemma 1 shows
that for any ℓ1-functional ψ the frequentist distribution Ln(ψ(∆)|θ) is asymp-
totically normal with variance σ2

n‖ψ‖2. This suggests that, for well-behaved

functionals, the projected posterior mean ψ(ϑ̂) is an asymptotically efficient esti-
mator for ψ(θ). Going further on this track, one may establish a semi-parametric
BvM Theorem for such functionals, obtaining results similar to those in [1, 11].
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3. The BvM statement for the squared-norm functional

Throughout this section we shall assume that the prior π satisfies τ2k ∼ k−(1+2α),
for some α > 0, and we shall investigate the validity of the BvM statement for
the functional ψ(∆) = ‖∆‖2, for a certain class of parameter subsets in ℓ2.
The corresponding π-a.s. statement was treated in detail in [3] and it has been
proved to be invalid, as shall be explained below.

To proceed to our analysis, we set Aπ := limk k
1+2ατ2k ; by assumption, we

have 0 < Aπ < ∞. Moreover, for notational convenience, we define the family
of constants Kλ

̟,η, for λ ≥ 0, ̟ > 0 and η > 1 satisfying 1+λ < ̟η, as follows:

Kλ
̟,η :=

∫ ∞

0

tλ

(1 + t̟)η
dt.

For later reference we note that for suitable λ,̟, η we have Kλ
̟,η > 0 and for

any integer p satisfying 1 ≤ p < η and ̟(η − p) > 1 it holds that

p
∑

i=0

(

p

i

)

Ki·̟
̟,η = K0

̟,η−p, (18)

The results obtained in [3] can be aggregated into the following statement.

Theorem 3. (Freedman 99) Let τ2k ≈ k−(1+2α)Aπ, for some α > 0 and Aπ > 0
and consider the following representation:

‖∆‖2 =Mn +Qn(θ) + Zn(θ, ε); (19)

analytic expressions for Mn, Qn, and Zn are provided in the Appendix. Then:

(i) Mn are real numbers satisfying Mn ≈ A
1

1+2α
π K0

1+2α,1 n
− 2α

1+2α .
(ii) Under π, Qn(θ) are random variables with null mean satisfying

Var[Qn(ϑ)] ≈ 2A
1

1+2α
π K2+4α

1+2α,4 n
− 1+4α

1+2α .

Furthermore, Qn(θ) ≃ N (0; Var[Qn(ϑ)]), π-a.s., and it holds that

lim inf
Qn(θ)

√

Var[Qn(ϑ)]
= −∞, lim sup

Qn(θ)
√

Var[Qn(ϑ)]
= ∞, π − a.s.

(iii) For each θ, Zn(θ, ε) are random variables with null mean satisfying

Var[Zn(θ, ε)] ≈ 2A
1

1+2α
π

(

K0
1+2α,4 + 2K1+2α

1+2α,4

)

n− 1+4α
1+2α , π − a.s.

In addition, it holds that Zn(θ, ε) ≃ N (0; Var[Zn(θ, ε)]), π-a.s.
(iv) Under π, Zn(θ, ε) are random variables uncorrelated with Qn(θ), such that

Qn(ϑ) + Zn(ϑ, ε)
√

Var[Qn(ϑ)] + Var[Zn(ϑ, ε)]
≃ N (0; 1).
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By Theorem 3, the Bayesian expectation and variance of ‖∆‖2 are given by

En

[

‖∆‖2|X
]

=Mn, Varn
[

‖∆‖2|X
]

= Var[Qn(ϑ)] + Var[Zn(ϑ, ε)],

whereas their frequentist counterparts are readily given by

En

[

‖∆‖2|θ
]

=Mn +Qn(θ), Varn
[

‖∆‖2|θ
]

= Var[Zn(θ, ε)].

Moreover, (iv) shows that the asymptotic behavior of Ln(‖∆‖2|X) satisfies

Ln(‖∆‖2|X) ≃ N (Mn; Var[Qn(ϑ)] + Var[Zn(ϑ, ε)]) , (20)

while, according to (iii), the asymptotic behavior of Ln(‖∆‖2|θ) is described by

Ln(‖∆‖2|θ) ≃ N (Mn +Qn(θ); Var[Zn(θ, ε)]) , π − a.s. (21)

Defining now for any n ≥ 1

D2
n(θ) :=

Var[Zn(θ, ε)]

Var [‖∆‖2|X ]
, C2

n(θ) :=
Q2

n(θ)

(1 +D2
n(θ)) Var [‖∆‖2|X ]

,

one can approximate the Hellinger affinity of Ln(‖∆‖2|X) and Ln(‖∆‖2|θ) by
the corresponding affinity of their Gaussian approximations given by (20) and
(21), respectively; more specifically, we have

An(π, θ) :=

√

2Dn(θ)

1 +D2
n(θ)

· e− 1
4C

2
n(θ). (22)

To see now that An(π, θ) 9 1, π-a.s., note first that

Var[Zn(ϑ, ε)] =

∫

Var[Zn(θ, ε)]π(dθ) ≈ 2A
1

1+2α
π

(

K0
1+2α,4 + 2K1+2α

1+2α,4

)

n− 1+4α
1+2α .

Therefore, taking ̟ = 1+2α, η = 4 and p = 2 in (18) one obtains the estimate

Var
[

‖∆‖2|X
]

= Var[Qn(ϑ)] + Var[Zn(ϑ, ε)] ≈ 2A
1

1+2α
π K0

1+2α,2 n
− 1+4α

1+2α ,

hence, according to (iii), we obtain limnD
2
n(θ) = D2(θ), π-a.s., with

D2(θ) :=
K0

1+2α,4 + 2K1+2α
1+2α,4

K0
1+2α,2

= 1−
K2+4α

1+2α,4

K0
1+2α,2

∈ (0, 1).

In particular, we have D2
n(θ) ∼ 1 and Var

[

‖∆‖2|X
]

∼ Var[Qn(ϑ)], hence one
concludes by (ii) that lim supC2

n(θ) = ∞, π-a.s. This leads to

0 = lim inf An(π, θ) ≤ lim supAn(π, θ) ≤
√

2D(θ)

1 +D2(θ)
< 1, π − a.s. (23)
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We also note that, provided that the Gaussian approximation (21) holds true for
θ, limn An(π, θ) = 1 if and only if C2

n(θ) → 0 and D2
n(θ) → 1, or, equivalently,

Q2
n(θ) ≪ Var[‖∆‖2|θ] ≈ Var[‖∆‖2|θ]. Unfortunately, this is not the case π-a.s.

We conclude that, for almost all θ’s drawn from the prior π, the Hellinger affinity
An(π, θ) converges to 0 along some subsequence of n’s; that is, Ln(‖∆‖2|X) and
Ln(‖∆‖2|θ) will be almost orthogonal for arbitrarily large n, π-a.s. Moreover,
even for “nice” subsequences, the limiting affinity between the two measures is
strictly below 1. Intuitively, the degree of overlapping between the two measures
may not exceed a certain threshold D2(θ) < 1. Although formal, this argument
can be made precise. The conclusion is that for π-almost all θ’s the asymp-
totic behavior of the frequentist distribution Ln(‖∆‖2|θ) is essentially different
from that of the Bayesian distribution Ln(‖∆‖2|X), in the sense that the two
distributions concentrate their mass on disjoint intervals.

3.1. Parameters with given level of smoothness

A typical assumption made by statisticians is that the true parameter θ has some
pre-specified level of smoothness; see, e.g., [14], so that would be interesting to
investigate whether the BvM statement for the squared ℓ2-norm holds for sets
of parameters having certain smoothness properties. Throughout this section
we consider the Hilbert scale {(Θδ, ‖ · ‖δ) : δ ≤ α} ⊂ ℓ2 defined by

Θδ :=

{

θ = (θk) : ‖θ‖2δ :=

∞
∑

k=1

k2(α−δ)θ2k <∞
}

,

and check if the BvM statement holds for the squared ℓ2-norm for some Θδ.
Note that, for δ = α we have Θα = ℓ2 while the choice δ = −1/2 corresponds
to the RHS of the prior π. In addition, π(Θδ) = 0, for δ ≤ 0 and π(Θδ) = 1, for
0 < δ ≤ α; hence Θ0 appears as the largest Θδ of null prior probability. In what
follows, we investigate the validity of the BvM statement for the squared ℓ2-
norm, for the parameter set Θδ, for δ ≤ α. Since the family {Θδ}δ is increasing,
if the BvM statement holds for some Θδ, then it holds for any Θδ′ , with δ

′ ≤ δ.

Remark 2. By Theorem 3, there exists some (unknown) set Ω ⊂ ℓ2, such that
π(Ω) = 1 and (23) holds true for θ ∈ Ω. Since π(Θδ) = 1, for δ > 0, it follows
that Ω ∩ Θδ has π-probability 1, hence it is certainly a non-empty set. This
shows that the BvM statement for the squared ℓ2-norm fails, for any parameter
set Θδ, with δ > 0; that is, there exists parameters θ ∈ Θδ for which (23) holds
true.

In the light of the above remark, one could only hope that the BvM statement
holds true for a parameter set Θδ, with δ ≤ 0. In the reminder of this section
we shall prove that the BvM statement for the squared ℓ2-norm does not hold
for any Θδ, with δ ≤ 0, either. To this end, we consider the sets

Bω :=
{

θ = (θk) : θ
2
k ∼ k−(1+2ω)

}

,
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for ω > 0. Note that Bω ⊂ ℓ2 are mutually disjoint sets with π(Bω) = 0. The
connection between Θδ and Bω is established by the following statement.

Lemma 3. Let δ ≤ α. If ω > α − δ then Bω is a dense subset of (Θδ, ‖ · ‖δ).
Otherwise, if ω ≤ α− δ, for some δ < α, it holds that Bω ∩Θδ = ∅.

The main reason for considering these sets is that for θ ∈ Bω one can obtain
exact asymptotics for En[‖∆‖2|θ] and Varn[‖∆‖2|θ], via Lemma 8 (Appendix).
Namely, assume that θ ∈ Bω and let Lθ := limk k

1+2ωθ2k. Using the expres-
sions in (31) and (32) (Appendix), for σ2

n = 1/n and τ2k = Aπk
−(1+2α) we

obtain4

Mn +Qn(θ) =
∑

k≥1

A2
πn

(Aπn+ k1+2α)2
+

∑

k≥1

k2+4αθ2k
(Aπn+ k1+2α)2

= Tn(π) + Un(π, θ),

respectively,

Var[Zn(θ, ε)] =

∞
∑

k≥1

2A4
πn

2

(Aπn+ k1+2α)4
+

∞
∑

k≥1

4A2
πnk

2+4αθ2k
(Aπn+ k1+2α)4

= Vn(π)+Wn(π, θ).

For the choices ̟ = 1+ 2α, η = 2 and λ = 0, respectively λ = 1+ 4α− 2ω, we
obtain by Lemma 8 the following estimates:

Tn(π) ≈ A
1

1+2α
π K0

1+2α,2 n
− 2α

1+2α , Un(π, θ) ≈ LθA
− 2ω

1+2α
π K1+4α−2ω

1+2α,2 n− 2ω
1+2α ,

while for ̟ = 1 + 2α, η = 4 and λ = 0, respectively λ = 1 + 4α − 2ω, we
obtain

Vn(π) ≈ 2A
1

1+2α
π K0

1+2α,4 n
− 1+4α

1+2α , Wn(π, θ) ≈ 4LθA
− 2ω

1+2α
π K1+4α−2ω

1+2α,4 n− 1+2α+2ω
1+2α .

Therefore, one has to distinguish between the following three situations which
arise naturally when comparing Tn(π) vs. Un(π, θ) and Vn(π) vs. Wn(π, θ):

(i) the over-smoothing case corresponds to the situation 0 < ω < α. In this
case, cf. Lemma 8, it holds that Un(π, θ) ≫ Tn(π) and Wn(π, θ) ≫ Vn(π),
hence the sampling mean satisfies

En

[

‖∆‖2|θ
]

≈ LθA
− 2ω

1+2α
π K1+4α−2ω

1+2α,2 n− 2ω
1+2α , (24)

whereas the sampling variance satisfies

Varn
[

‖∆‖2|θ
]

≈ 4LθA
− 2ω

1+2α
π K1+4α−2ω

1+2α,4 n− 1+2α+2ω
1+2α . (25)

(ii) the under-smoothing case corresponds to the situation ω > α. In this case,
cf. Lemma 8, it holds that Un(π, θ) ≪ Tn(π) andWn(π, θ) ≪ Vn(π), hence
the sampling mean satisfies

En

[

‖∆‖2|θ
]

≈ A
1

1+2α
π K0

1+2α,2 n
− 2α

1+2α , (26)

4By Lemma 8, if τ2
k

≈ Aπk
−(1+2α) then we have Mn + Qn(θ) ≈ Tn(π) + Un(π, θ) and

Var[Zn(θ, ε)] ≈ Vn(π) +Wn(π, θ), so the estimates in (24)–(29) extend easily to this case.



390 H. Leahu

whereas the sampling variance satisfies

Varn
[

‖∆‖2|θ
]

≈ 2A
1

1+2α
π K0

1+2α,4 n
− 1+4α

1+2α . (27)

(iii) the correct smoothing case corresponds to the situation ω = α. In this
case, cf. Lemma 8, it holds that Un(π, θ) ∼ Tn(π) and Wn(π, θ) ∼ Vn(π),
hence the sampling mean satisfies

En

[

‖∆‖2|θ
]

≈ A
1

1+2α
π

[

K0
1+2α,2 +

Lθ

Aπ
K1+2α

1+2α,2

]

n− 2α
1+2α , (28)

and the sampling variance satisfies

Varn
[

‖∆‖2|θ
]

≈ 2A
1

1+2α
π

[

K0
1+2α,4 + 2

Lθ

Aπ
K1+2α

1+2α,4

]

n− 1+4α
1+2α . (29)

The above results suggest that the asymptotic behavior of the frequentist
distribution Ln(‖∆‖2|θ), for θ ∈ Bω, is invariant w.r.t. both θ and ω as long as
ω > α (under-smoothing). Now recall the definition of the space Θδ and note
that δ ≤ 0 entails α− δ ≥ α. Since Bω ⊂ Θδ if and only if ω > α− δ it follows
that for δ ≤ 0 the inclusion Bω ⊂ Θδ is true only if ω > α and there is no ω ≤ α
such that Bω ∩ Θδ 6= ∅; see Lemma 3. In other words, if δ ≤ 0 then Θδ may
only contain Bω’s with ω > α. Moreover, since on these Bω’s, which are dense
subsets of Θδ, the asymptotic behavior of Ln(‖∆‖2|θ) does not depend neither
on θ nor on ω, but on the smoothness of the prior only, one would expect the
same behavior on the whole space Θδ. Our next statement uses a continuity
argument to establish this fact.

Lemma 4. Let δ ≤ 0. Then for any θ ∈ Θδ it holds that

En

[

‖∆‖2|θ
]

≈ A
1

1+2α
π K0

1+2α,2 n
− 2α

1+2α , Varn
[

‖∆‖2|θ
]

≈ 2A
1

1+2α
π K0

1+2α,4 n
− 1+4α

1+2α .

In particular, it holds that Wn(π, θ) ≪ Vn(π) ≈ Varn
[

‖∆‖2|θ
]

.

To conclude our analysis, we need to prove that the Gaussian approximation
in (21) holds true for θ ∈ Θδ, for δ ≤ 0. The following result provides sufficient
conditions over θ for such an approximation, based on Lindeberg-Lévy CLT.

Lemma 5. If θ ∈ ℓ2 is such that

lim
n→∞

maxk≥1
nk2+4αθ2

k

(Aπn+k1+2α)4

Varn [‖∆‖2|θ] = 0,

then the Gaussian approximation in (21) holds true.

An immediate consequence of Lemma 5 is the following corollary.

Corollary 1. Let ω > 0. Then for any θ ∈ Bω the Gaussian approximation in
(21) holds true. Moreover, if δ ≤ 0, then the Gaussian approximation in (21)
holds true for any θ ∈ Θδ.
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Now recall the definitions of An(π, θ) and D2
n(θ). The following statement

shows that, for θ ∈ Θδ, with δ ≤ 0, the frequentist variance of ‖∆‖2 is asymp-
totically smaller than the Bayesian variance. Moreover, the asymptotic variance
ratio D2(θ), for such θ, is even worse (smaller) than the π-a.s. one.

Theorem 4. Let δ ≤ 0. Then for any θ ∈ Θδ it holds that

lim
n→∞

D2
n(θ) = lim

n→∞

Varn
[

‖∆‖2|θ
]

Varn [‖∆‖2|X ]
=
K0

1+2α,4

K0
1+2α,2

< 1.

In particular, it holds that lim supAn(π, θ) ≤
√

2D(θ)/[1 +D2(θ)] < 1.

Theorem 4, complemented by Remark 2, shows that a BvM statement for
the squared ℓ2-norm, with parameter set Θδ, may not hold, for any δ ≤ α.

3.2. Asymptotic frequentist probability coverage of credible balls

As pointed out at the beginning of this paper, one of the main features of
the BvM Theorem in the parametric framework is that it allows one to use any
Bayesian credible set as a frequentist confidence region. Specifically, let p ∈ (0, 1)
be some number close to 1. A measurable set Bn ⊂ ℓ2 is called a credible set
if Pn{∆ ∈ Bn|X} ≥ p and is called a confidence region if Pn{∆ ∈ Bn|θ} ≥ p.
The classical BvM Theorem asserts that, for n large enough, credible sets are
also confidence regions and viceversa, provided that the true parameter θ and
the prior π satisfies some regularity conditions. In applications, however, one is
happy if (certain) credible sets can be employed as confidence regions, for large
n. In the following we investigate whether centered ℓ2-balls, which are credible
sets in the sense of the above definition, can be employed as confidence regions.
In other words, we investigate whether Bayesian credible (centered) ℓ2-balls have
good frequentist probability coverage, for large n, i.e., if

∀p ∈ (0, 1) : lim
n

Pn{∆ ∈ Bn|X} > p⇒ lim inf Pn{∆ ∈ Bn|θ} > p.

Throughout this section Φ : [−∞,∞] → [0, 1] will denote the c.d.f. of the
standard normal distribution N (0; 1). Based on Theorem 3 one can construct a
credible ℓ2-ball Bp

n as follows: take some p ∈ (0, 1), close to 1 and let κp > 0 be
such that Φ(κp) > p; that is, κp must be larger than the p-quantile Φ−1(p) of
the standard Gaussian distribution. One can see now that the sets

Bp
n :=

{

x ∈ ℓ2 : ‖x‖2 < En

[

‖∆‖2|X
]

+ κp
√

Varn [‖∆‖2|X ]
}

satisfy limn Pn{∆ ∈ Bp
n|X} = Φ(κp) > p; in particular, Pn{∆ ∈ Bp

n|X} ≥ p,
for large n. Consequently, for large n, Bp

n is a credible set which will be called a
Bayesian credible ℓ2-ball. It is interesting to note that the asymptotic behavior
of the radius ρn of the Bayesian credible ℓ2-balls Bp

n is given by

ρn =
(

En

[

‖∆‖2|X
]

+ κp
√

Varn [‖∆‖2|X ]
)1/2

∼
(

En

[

‖∆‖2|X
])1/2 ∼ n− α

1+2α ,

where the above estimates follow from Theorem 3.
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To investigate the asymptotic frequentist probability of the sets Bp
n, note that

Pn {∆ ∈ Bp
n|θ} = Pn

{

‖∆‖2 − En[‖∆‖2|θ]
√

Varn[‖∆‖2|θ]
<
κp

√

Varn[‖∆‖2|X ]−Qn(θ)
√

Varn[‖∆‖2|θ]

∣

∣

∣

∣

∣

θ

}

;

that is, we normalize ‖∆‖2 under its conditional law w.r.t. θ and recall that we
have En[‖∆‖2|θ]−En[‖∆‖2|X ] = Qn(θ). Provided that Ln(‖∆‖2|θ) satisfies the
Gaussian approximation in (21), the normalized variables appearing in the last
display converge in distribution to N (0; 1), conditionally on θ. Let us define

tn(θ) :=
κp

√

Varn[‖∆‖2|X ]−Qn(θ)
√

Varn[‖∆‖2|θ]
. (30)

Our next result links the asymptotic behavior of Pn{∆ ∈ Bp
n|θ} to that of tn(θ).

Lemma 6. Let {Γn}n≥1 be a sequence of r.v. such that L(Γn) ։ N (0; 1) and
{tn}n≥1 ⊂ R. If t := lim inf tn and t̄ := lim sup tn then it holds that

lim inf P{Γn < tn} = Φ(t), lim supP{Γn < tn} = Φ(t̄);

In particular, if limn tn = t ∈ [−∞,∞] then limn P{Γn < tn} = Φ(t).

By Lemma 6, the asymptotic behavior of tn(θ) leads to relevant conclusions
on the asymptotic frequentist probability coverage of the credible ℓ2-balls Bp

n.
In the reminder of this section we analyze the asymptotic behavior of tn(θ) in
(30) for various levels of smoothness of θ, as well as the π-a.s. behavior.

The case δ ≤ 0
If δ ≤ 0, then for any θ ∈ Θδ the Gaussian approximation in (21) holds true,
cf. Corollary 1. In addition, by Lemma 4 and Theorem 3, for such θ we have

Varn[‖∆‖2|θ] ∼ Varn[‖∆‖2|X ] ∼ n− 1+4α
1+2α . Also, since Qn(θ) = E

[

‖∆‖2|θ
]

−Mn,

lim
n→∞

n
2α

1+2αQn(θ) = A
1

1+2α
π

(

K0
1+2α,2 −K0

1+2α,1

)

.

Cf. (18), for p = 1, K0
1+2α,2 −K0

1+2α,1 = −K1+2α
1+2α,2 < 0, hence tn(θ) → ∞, for

any θ ∈ Θδ. Consequently, limn Pn{∆ ∈ Bp
n|θ} = 1 > p, by Lemma 6, i.e., the

Bayesian credible ℓ2-balls Bp
n have good frequentist probability coverage.

The π-a.s. behavior
In this case Varn[‖∆‖2|θ] ∼ Varn[‖∆‖2|X ] ∼ Var[Qn(ϑ)] ∼ n− 1+4α

1+2α , for almost
all θ’s drawn from π, cf. Theorem 3 (ii) and (iii). It follows that

lim inf tn(θ) = −∞, lim sup tn(θ) = ∞,

for almost all θ’s drawn from π, hence, cf. Lemma 6 we conclude that

lim inf Pn{∆ ∈ Bp
n|θ} = 0, lim supPn{∆ ∈ Bp

n|θ} = 1, π − a.s.

A similar result is obtained in [2], in a slightly more general framework.



The BvM phenomenon for the Gaussian white noise model 393

The case δ > 0

As δ grows larger than 0, Θδ accommodates more Bω’s with α− δ < ω ≤ α; see
Lemma 3, and for any θ ∈ Bω the Gaussian approximation in (21) holds true,
by virtue of Corollary 1. For ω ∈ (α− δ, α), based on the estimates in (24),

lim
n→∞

n
2ω

1+2αQn(θ) = LθA
− 2ω

1+2α
π K1+4α−2ω

1+2α,2 > 0,

for all θ ∈ Bω, provided that θ2k ≈ Lθk
−(1+2ω). Also, for θ ∈ Bω it holds that

√

Varn[‖∆‖2|X ] ≪
√

Varn[‖∆‖2|θ] ∼ n− 1/2+α+ω
1+2α ≪ Qn(θ).

Therefore, if θ ∈ Bω, for some ω ∈ (α−δ, α), then tn(θ) defined in (30) converges
to −∞ and one concludes by Lemma 6 that limn Pn{∆ ∈ Bp

n|θ} = 0. In words,
if δ > 0 then there exist many θ’s in Θδ (in fact, a dense subset) such that
the Bayesian credible ℓ2-balls Bp

n have asymptotically null frequentist coverage
probability. On the other hand, if ω = α, taking in (18) ̟ = 1+ 2α, η = 4 and
p = 1, we obtain from (28) and (29)

lim
n→∞

n
2α

1+2αQn(θ) = A
− 2ω

1+2α
π

[

Lθ

Aπ
− 1

]

K1+2α
1+2α,2.

Since in this case we have

Varn[‖∆‖2|θ] ∼ Varn[‖∆‖2|X ] ∼ n− 1+4α
1+2α ,

it follows that for Lθ > Aπ we have tn(θ) → −∞, hence the same phenomenon
as for ω < α occurs. If Lθ < Aπ, on the other hand, then tn(θ) → ∞, hence
by Lemma 6 limn Pn{∆ ∈ Bp

n|θ} = 1, so the Bayesian credible ℓ2-balls Bp
n have

good frequentist probability coverage. Finally, if Lθ = Aπ then the limit

lim
n→∞

Qn(θ)
√

Varn [‖∆‖2|θ]
,

can take any value in [−∞,∞], depending on how fast the sequence (θk/τk)
2

converges to 1; in the special case θ2k = τ2k for all but finitely-many k’s, the limit
is null, hence, using (18) for p = 2 and the estimates in (29), we obtain

lim
n→∞

tn(θ) = κp lim
n→∞

√

Varn [‖∆‖2|X ]

Varn [‖∆‖2|θ] = κp

√

K0
1+2α,2

K0
1+2α,4 + 2K1+2α

1+2α,4

> κp.

Therefore, by Lemma 6, limn Pn{∆ ∈ Bp
n|θ} > p in this case, hence the Bayesian

credible ℓ2-balls Bp
n have again good frequentist probability coverage, provided

that the prior π approximates well enough the true parameter θ. One concludes
that, by considering parameter sets Θδ with δ > 0, virtually anything is possible
in terms of asymptotic frequentist probability coverage of the credible sets Bp

n.
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3.3. Conclusions and remarks

In [3] a probabilistic analysis of the BvM statement for ‖∆‖2 w.r.t. the prior π
was performed and the answer was negative, the main reason being that the vari-
ance of the frequentist distribution is asymptotically smaller than the variance
of the Bayesian one, π-a.s. Here we have performed a rather analytic investi-
gation, assuming that the true parameter belongs to some Sobolev subspaces
Θδ ⊂ ℓ2, for δ ≤ α, hoping that such a BvM statement would hold for some
of these parameter sets. While the choice δ > 0, which in this context coincide
with π(Θδ) > 0, is already ruled out by the results in [3], the choice δ ≤ 0, which
corresponds to π(Θδ) = 0, does not lead to a positive answer, either. Essentially,
a quasi-similar behavior (to the π-a.s. one) for the ratio of the two variances
was observed, for all θ ∈ Θδ, for δ ≤ 0, which led to the conclusion that neither
analytic nor probabilistic BvM statements for ‖∆‖2 hold for this model.

Nevertheless, the good news is that if θ is assumed to belong to Θδ, with
δ ≤ 0, then the Bayesian credible ℓ2-balls have good frequentist probability
coverage, hence one can use them to derive frequentist confidence regions for the
true parameter θ. Of particular interest is the space Θ0 which appears to be the
largest space on the Hilbert scale {Θδ}δ≤α having null prior probability and also
the largest Θδ on which the positive result stated above remains valid. Another
interesting property of the space Θ0 is that the Bayes estimator ϑ̂ computed
according to the prior π, achieves the optimal minimax rate if θ ∈ Θ0; see [14].
We complement this result by showing that, in this setup, the Bayesian credible
(centered) ℓ2-balls can be employed as frequentist confidence regions for θ.

When 0 < δ ≤ α, the asymptotic behavior of Ln(‖∆‖2|θ) seems to be rather
irregular for θ ∈ Θδ. In fact, as δ grows larger than 0, more and more Bω’s
with ω < α (over-smoothing) will lie inside Θδ, contributing with slower and
slower rates. More specifically, there will be θ’s in Θδ for which ‖∆‖ converges
to 0 at rate n− ω

1+2α , for any ω ∈ (α− δ, α), each set of such θ’s (which includes
Bω) being dense in both Θδ and ℓ2. In particular, if δ = α, i.e., Θδ = ℓ2, then

the Bayes estimator ϑ̂ may converge to θ at arbitrarily slow rates since any Bω,
with ω > 0, lies in ℓ2. This shows that a result such as Lemma 4, establishing a
constant convergence rate for ϑ̂, provided that θ ∈ Θδ, may not hold for δ > 0.
However, one can establish without much effort that for any θ ∈ ℓ2 it holds that

lim inf n
2α

1+2αE
[

‖∆‖2|θ
]

≥ A
1

1+2α
π K0

1+2α,2,

thus obtaining an upper-bound for the convergence rates. We conclude that,
although consistent for any θ ∈ ℓ2, the Bayes estimator ϑ̂ may converge to θ
at arbitrarily slow rates when θ ∈ ℓ2 \ Θ0 whereas for θ ∈ Θ0 the convergence
rates are the fastest possible. Regarding the frequentist probability coverage of
Bayesian credible balls Bp

n, for most of the aforementioned θ’s (in a topological
sense) it holds that limn Pn{∆ ∈ Bp

n|θ} = 0. In addition, for any p ∈ [0, 1] one
can find a θ ∈ Θδ such that limn Pn{∆ ∈ Bp

n|θ} = p. Finally, for most of the
θ’s in Θδ (in a probabilistic sense) it holds that lim inf Pn{∆ ∈ Bp

n|θ} = 0 and
lim supPn{∆ ∈ Bp

n|θ} = 1. This completes the picture of the irregularity of the
asymptotic behavior of Ln(‖∆‖2|θ) on parameter sets of prior probability 1.
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4. Appendix

The expressions of Mn, Qn(θ) and Zn(θ, ε) appearing in (19) are:

Mn :=

∞
∑

k=1

σ2
nτ

2
k

σ2
n + τ2k

, Qn(θ) :=

∞
∑

k=1

σ4
nτ

2
k

(σ2
n + τ2k )

2

(

ξ2k(θ)− 1
)

,

where ξk(θ) := θk/τk i.i.d. N (0; 1) variables relative to π. Furthermore, we have

Zn(θ, ε) :=

∞
∑

k=1

σ2
nτ

4
k

(σ2
n + τ2k )

2
(ε2k − 1) +

∞
∑

k=1

2σ3
nτ

3
k

(σ2
n + τ2k )

2
ξk(θ)εk.

Since εk and ε2k − 1 are uncorrelated variables and Var[ε2k − 1] = 2, we obtain

Var[Zn(θ, ε)] =

∞
∑

k=1

2σ4
nτ

8
k

(σ2
n + τ2k )

4
+

∞
∑

k=1

4σ6
nτ

6
k

(σ2
n + τ2k )

4
ξ2k(θ).

The sampling distribution of ‖∆‖2 has mean and variance given by

En

[

‖∆‖2|θ
]

=Mn +Qn(θ) =

∞
∑

k=1

σ2
nτ

4
k

(σ2
n + τ2k )

2
+

∞
∑

k=1

σ4
nθ

2
k

(σ2
n + τ2k )

2
, (31)

Var
[

‖∆‖2|θ
]

= Var[Zn(θ, ε)] =
∞
∑

k=1

2σ4
nτ

8
k

(σ2
n + τ2k )

4
+

∞
∑

k=1

4σ6
nτ

4
k θ

2
k

(σ2
n + τ2k )

4
, (32)

respectively. The next results can be used to investigate the asymptotic behavior
of the above expressions. Lemma 7 shows convergence to 0 when (τk), (θk) ∈ ℓ2

while Lemma 8 gives convergence rates for given asymptotics of (τk) and (θk).

Lemma 7. Let {σn}n≥1, {τk}k≥1 be positive numbers s.t. σn → 0 and let η > 0.
Then for any w := (wk) ∈ ℓ1 it holds that

lim
n→∞

∑

k≥1

σ2η
n wk

(σ2
n + τ2k )

η
→ 0.

Lemma 8. Let ̟, η > 1 and λ ≥ 0 be s.t. 1+λ < ̟η and f(t) := (1+ t̟)−ηtλ,
for t ≥ 0. Then, it holds that

lim
h→0

∞
∑

k=1

h f(kh) =

∫ ∞

0

f(t)dt. (33)

In addition, if ζn → ∞, uk ≈ kλ and vk ≈ k̟ it follows that

(i) For any positive integer k0 ≥ 1 we have

lim
n→∞

ζη−(1+λ)/̟
n

∞
∑

k=k0

uk
(ζn + vk)η

= lim
n→∞

ζη−(1+λ)/̟
n

∞
∑

k=k0

kλ

(ζn + k̟)η
= Kλ

̟,η.

(ii) In addition, there exist some positive constant l > 0 s.t.

lim
n→∞

ζη−(λ/̟)
n max

k≥1

uk
(ζn + vk)η

= l.



396 H. Leahu

5. Proofs of the results

Proof of Lemma 1. Let ψ ∈ R
∞. For the ease of writing, we define

∀n, k ≥ 1 : φnk :=
τkψk

√

σ2
n + τ2k

, ϕnk :=
τ2kψk

σ2
n + τ2k

, βθ
nk :=

σnθkψk

σ2
n + τ2k

,

and φn := (φnk)k, ϕn := (ϕnk)k and βθ
n := (βθ

nk)k. Then it is easy to see that
our hypothesis is equivalent to ψ ∈ ℓ1, (i) is equivalent to φn ∈ ℓ1, for all n,
while (ii) is equivalent to ϕn ∈ ℓ1 and βθ

n ∈ ℓ1, for all n, for almost all θ’s drawn
from π. Since |ϕnk| < |φnk| < |ψk|, for all n, k, entails ‖ϕn‖ℓ1 ≤ ‖φn‖ℓ1 ≤ ‖ψ‖ℓ1,
for all n, hence φn ∈ ℓ1 and ϕn ∈ ℓ1, for all n. This proves (i) and the variance
condition in (ii). Moreover, under the prior π, ϑk = τkξk, for any k ≥ 1, with
{ξk}k≥1 being i.i.d. standard Gaussian variables. Therefore, we obtain

∥

∥βϑ
n

∥

∥

ℓ1
=

∑

k≥1

σnτk|ψkξk|
σ2
n + τ2k

≤
∑

k≥1

σn
√

σ2
n + τ2k

|ψkξk| ≤ ‖(ψkξk)‖ℓ1 . (34)

The last expression in the above display is a random variable with finite mean,
hence finite almost surely. That is, (ψkξk) ∈ ℓ1 almost surely; in particular, (34)
shows that βθ

n ∈ ℓ1, for all n, for π-almost all θ’s, which concludes the proof of
(ii). To prove (iii), we assume that ψ 6= 0 (otherwise the statement is trivial)
and note that by re-scaling the distributions under consideration, we have

Ln

(

ψ
(

σ−1
n ∆

)

|X
)

= N (0; ‖φn‖2), Ln

(

ψ
(

σ−1
n ∆

)

|θ
)

= N



−
∑

k≥1

βθ
nk; ‖ϕn‖2





and γ ◦ ψ−1 = N (0; ‖ψ‖2). Therefore, since |∑k≥1 β
θ
nk| ≤ ‖βθ

n‖ℓ1, it suffices to

show that ‖βθ
n‖ℓ1 ≪ ‖φn‖ ≈ ‖ϕn‖ ≈ ‖ψ‖, π-a.s. First we prove the ≈ relations.

Indeed, applying Lemma 7 for η = 1 and wk = |ψk|, we obtain

‖ϕn − ψ‖ℓ1 =
∑

k≥1

σ2
n|ψk|

σ2
n + τ2k

→ 0.

Therefore, ϕn → ψ in ℓ1 (hence also in ℓ2) and it follows that ‖ϕn‖ → ‖ψ‖.
Moreover, ‖ϕn‖ ≤ ‖φn‖ ≤ ‖ψ‖ proves that ‖φn‖ → ‖ψ‖, which proves the
claim (recall that ‖ψ‖ > 0). Finally, to prove that ‖βϑ

n‖ℓ1 → 0 a.s., we use again
Lemma 7, with η = 1/2 and wk = |ψkξk| (recall that (ψkξk) ∈ ℓ1 a.s.) to prove
that the first majorant in (34) converges to 0 almost surely; this proves (iii).
Finally, ψ being linear, we have

‖Ln(σ
−1
n ψ(∆)|X)−Ln(σ

−1
n ψ(∆)|θ)‖H = ‖Ln(ψ(σ

−1
n ∆)|X)−Ln(ψ(σ

−1
n ∆)|θ)‖H .

Since the Hellinger distance is invariant to re-scaling, and the r.h.s. in the last
display converges to 0, π-a.s., this concludes the proof of (iv).
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Proof of Theorem 1. Recall that a sequence of Gaussian measures N (bn;Sn),
for n ≥ 1, converges weakly on a Hilbert space if bn converges to some b ∈ H

and Sn converges in trace-class norm to some (trace-class) operator S on H, in
which case the limit is N (b;S). For wk = λ2k and η = 1 in Lemma 7, we obtain

‖Tn − S‖1 =
∑

k≥1

∣

∣

∣

∣

λ2kτ
2
k

σ2
n + τ2k

− λ2k

∣

∣

∣

∣

=
∑

k≥1

σ2
nλ

2
k

σ2
n + τ2k

→ 0;

In the same vein, we obtain ‖Sn − S‖1 → 0 as follows:

‖Sn−S‖1 =
∑

k≥1

∣

∣

∣

∣

λ2kτ
4
k

(σ2
n + τ2k )

2
− λ2k

∣

∣

∣

∣

=
∑

k≥1

σ2
nλ

2
k(σ

2
n + 2τ2k )

(σ2
n + τ2k )

2
≤ 2

∑

k≥1

σ2
nλ

2
k

σ2
n + τ2k

→ 0.

This proves that N (0;Tn) converges weakly to γ and Sn converges in trace-class
norm to S. To conclude now that N (bθn;Sn) converges weakly to γ for π-almost
all θ’s, we need to show that ‖bϑn‖H → 0, almost surely. Again, since under π we
have ϑk = τkξk, with {ξk}k≥1 standard i.i.d. Gaussian variables, taking η = 1
and w = (λ2kξ

2
k) (note that w ∈ ℓ1 with probability 1) in Lemma 7 yields

‖bϑn‖2H =
∑

k≥1

σ2
nλ

2
kτ

2
k ξ

2
k

(σ2
n + τ2k )

2
≤

∑

k≥1

σ2
n(λ

2
kξ

2
k)

σ2
n + τ2k

→ 0;

For the last statement, note that both probabilities in (12) approach γ(B).

Proof of Lemma 2. (i)→(ii) Let An denote the Hellinger affinity of L(∆|θ) and
γ. The statement is now equivalent to An → 1 or log(1/An) → 0. Using the
fact that both measures are independent products of independent Gaussian
distributions and the multiplicative property of the Hellinger affinity, we obtain

An =
∏

k≥1

√

2τ2k (σ
2
n + τ2k )

σ4
n + 2σ2

nτ
2
k + 2τ4k

exp

[

− σ2
nθ

2
k

4(σ4
n + 2σ2

nτ
2
k + 2τ4k )

]

.

Now note that An ≤ 1, hence log(1/An) ≥ 0. Therefore, we have

log(1/An) ≤
σ4
n

4

∥

∥

∥

∥

(

1

τ2k

)∥

∥

∥

∥

2

+
σ2
n

8

∥

∥

∥

∥

(

θk
τ2k

)∥

∥

∥

∥

2

;

we used the fact that log(1 + x) ≤ x, for all x > 0. Letting n→ ∞ proves that
‖L(σ−1

n ∆|θ)− γ‖H → 0. A similar argument leads to ‖L(σ−1
n ∆|X)− γ‖H → 0.

(ii)→(iii) Follows by the scaling invariance property of the Hellinger distance.
(iii)→(i) As already noted, the statement in (iii) implies conditions (15) and

(16). To prove now that (16) implies (1/τ2k ) ∈ ℓ2, note first that Sn(π) < ∞
entails τ2k → ∞; in particular, the sequence 1/τ2k is bounded by some constant
M > 0. Next use the inequality ‖(1/τ2k )‖2 ≤ (M +2/σ2

n)
2 · Sn(π) to deduce that

(1/τ2k ) ∈ ℓ2. This concludes the proof.
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Proof of Lemma 3. Let ω > α − δ. The inclusion Bω ⊂ Θδ is immediate. Let
now θ ∈ Θδ and choose some arbitrary ǫ > 0. Define β := (βk) as follows

βk :=

{

θk, k ≤ nǫ

k−(1/2+ω), k > nǫ,

with nǫ chosen such that
∑

k>nǫ
k2(α−δ)θ2k < ǫ and

∑

k>nǫ
k−[1+2(ω+δ−α)] < ǫ;

this is possible since θ ∈ Θδ and ω + δ − α > 0, hence both expressions are
remainder terms from convergent series. Obviously, β ∈ Bω and we have

‖β−θ‖2δ =
∑

k>nǫ

k2(α−δ)
[

k−(1/2+ω) − θk

]2

≤ 2
∑

k>nǫ

k2(α−δ)
[

k−(1+2ω) + θ2k

]

< 4ǫ.

Finally, if ω ≤ α − δ then θ ∈ Bω yields k2(α−δ)θ2k ∼ k−[1+2(ω+δ−α)], the last
sequence defining a divergent series. Therefore, one concludes that Bω∩Θδ = ∅,
in this case. This concludes the proof.

Proof of Lemma 4. Recall first that En[‖∆‖2|θ] = Tn(π) + Un(π, θ). For the
choices λ = 0, ̟ = 1+ 2α and η = 2 in Lemma 8 (Appendix), one obtains

lim
n→∞

n
2α

1+2αTn(π) = A
1

1+2α
π K0

1+2α,2.

Letting En(θ) := n
2α

1+2αUn(π, θ), the first statement is equivalent to En(θ) → 0,
for any θ ∈ Θδ. To prove the last claim, note that for any ω > α − δ ≥ α we
have Bω ⊂ Θδ and the statement holds true for any θ ∈ Bω. Fix now ω > α− δ
and note that for arbitrary θ, β ∈ Θδ it holds that

|En(β)−En(θ)| ≤
∞
∑

k=1

n
2α

1+2α k2+4α

(Aπn+ k1+2α)2
|β2

k−θ2k| =
∞
∑

k=1

νnkk
2(α−δ)|βk−θk|·|βk+θk|,

where, for simplicity, for n, k ≥ 1 we denote

νnk :=
n

2α
1+2α k2(1+α+δ)

(Aπn+ k1+2α)2
.

Set now ν∗n := ‖(νnk)k‖ℓ∞ . Using Hölder Inequality twice, according to the
scheme ‖x · y · z‖ℓ1 ≤ ‖x‖ℓ∞‖y · z‖ℓ1 ≤ ‖x‖ℓ∞‖y‖ℓ2‖z‖ℓ2, yields

|En(β)− En(θ)| ≤ ν∗n‖β + θ‖δ‖β − θ‖δ, (35)

where (take λ = 2(1 + α+ δ), ̟ = 1 + 2α, η = 2 in Lemma 8 (ii))

ν∗n := n
2α

1+2α

∥

∥

∥

∥

(

k2(1+α+δ)

(Aπn+ k1+2α)2

)

k

∥

∥

∥

∥

ℓ∞
∼ n

2α
1+2α · n

2(1+α+δ)
1+2α −2 = n

2δ
1+2α . (36)

By hypothesis, δ ≤ 0, hence

∀n ≥ 1 : |En(β) − En(θ)| ≤ C‖β + θ‖δ‖β − θ‖δ, (37)
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for some constant C > 0, independent of n. Fix now some θ ∈ Θδ and let ǫ > 0
be arbitrary. Choose η > 0 s.t. (2‖θ‖δ+η)Cη < ǫ/2 and let β ∈ Bω be such that
‖β − θ‖δ < η. For such β, the inequality ‖β + θ‖δ ≤ 2‖θ‖δ + ‖β − θ‖δ implies

|En(β) − En(θ)| ≤ C‖β + θ‖δ‖β − θ‖δ < ǫ/2.

Finally, take n0 ≥ 1 large enough to guarantee that En(β) < ǫ/2, n ≥ n0. Then,

∀n ≥ n0 : 0 ≤ En(θ) ≤ En(β) + |En(β)− En(θ)| < ǫ.

Since ǫ > 0 was arbitrary, letting n→ ∞ proves the claim.

For the second statement, let Fn(θ) := n
1+4α
1+2αWn(π, θ), note that

Varn[‖∆‖2|θ] = Vn(π) +Wn(π, θ), Vn(π) ≈ 2A
1

1+2α
π K0

1+2α,4n
− 1+4α

1+2α ,

and prove that Fn(θ) → 0, for all θ ∈ Θδ, using a similar reasoning. Now

ν∗n = n
1+4α
1+2α

∥

∥

∥

∥

(

4A2
πnk

2(1+α+δ)

(Aπn+ k1+2α)2

)

k

∥

∥

∥

∥

ℓ∞
∼ n

1+4α
1+2α · n

2(1+α+δ)
1+2α −3 = n

2δ
1+2α ,

instead of (36), however. The last statement is straightforward.

Proof of Lemma 5. We check the Lindeberg condition. For simplicity, let

∀n, k ≥ 1 : λnk :=
A2

πn

(Aπn+ k1+2α)2
, µnk := − 2Aπ

√
nk1+2αθk

(Aπn+ k1+2α)2
.

Then we have Zn(θ, ε) =
∑

k≥1 λnk(ε
2
k − 1) +

∑

k≥1 µnkεk, for n ≥ 1, hence

S2
n := Var[Zn(θ, ε)] = 2

∑

k≥1

λ2nk +
∑

k≥1

µ2
nk = Vn(π) +Wn(π, θ). (38)

Letting λ∗n := ‖(λnk)k‖ℓ∞ , µ∗
n := ‖(µnk)k‖ℓ∞ , the Lindeberg condition becomes

∀t > 0 : lim
n→∞

1

S2
n

∑

k≥1

∫

{|Xnk|>2tSn}

X2
nkdP = 0, (39)

where Xnk = λnk(ε
2
k − 1) + µnkεk. The inequality (u+ v)2 ≤ 2(u2 + v2) shows

that the expression under the limit in (39) is bounded by

2
∑

k≥1

λ2nk
S2
n

∫

{|Xnk|>2tSn}

(ε2k − 1)2dP+ 2
∑

k≥1

µ2
nk

S2
n

∫

{|Xnk|>2tSn}

ε2kdP. (40)

By (38) we conclude that for each n ≥ 1 it holds that

0 < max

{

∑

k≥1 λ
2
nk

S2
n

,

∑

k≥1 µ
2
nk

S2
n

}

< 1,
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hence for the Lindeberg condition in (39) to be verified it suffices that the
integrals in (40) to converge to 0, uniformly in k. Now note that |u + v| > 2a
entails (at least) one of the conditions |u| > a or |v| > a. Consequently, we have

{|Xnk| > 2tSn} ⊂
{

|ε2k − 1| > tSn

|λnk|

}

∪
{

|εk| >
tSn

|µnk|

}

⊂
{

|ε2k − 1| > tSn

λ∗n

}

∪
{

|εk| >
tSn

µ∗
n

}

.

Hence, a sufficient condition for the integrals in (40) to converge to 0, uniformly
in k, is that λ∗n/Sn → 0 and µ∗

n/Sn → 0. Indeed, this follows from the fact that,
for a N (0; 1) variable Z, if tn → ∞ then, denoting C(Z, t) := {|Z| > t} and
D(Z, t) := {|Z2 − 1| > t}, for t > 0, it holds that

lim
n→∞

∫

C(Z,tn)

Z2dP = lim
n→∞

∫

D(Z,tn)

Z2dP = 0

and

lim
n→∞

∫

C(Z,tn)

(Z2 − 1)2dP = lim
n→∞

∫

D(Z,tn)

(Z2 − 1)2dP = 0,

all the integrals depending only on the distribution N (0; 1), but not on Z itself.
Finally, we note that λ∗n/Sn → 0. Indeed, by taking λ = 0, ̟ = 1 + 2α and

η = 4 in Lemma 8 we have the following estimates (as n→ ∞) and implication

(λ∗n)
2 ∼ n−2,

∑

k≥1

λ2nk ∼ n− 1+4α
1+2α =⇒

(

λ∗n
Sn

)2

≤ (λ∗n)
2

2
∑

k≥1 λ
2
nk

∼ n− 1
1+2α → 0,

hence the Lindeberg condition is fulfilled for any θ satisfying µ∗
n/Sn → 0; recall

that (unlike λ∗n) µ
∗
n depends on θ. Now the fact that

max
k≥1

nk2+4αθ2
k

(Aπn+k1+2α)4

Varn [‖∆‖2|θ] =
1

4A2
π

(

µ∗
n

Sn

)2

,

proves the Lindeberg condition, hence the claim, for the desired θ’s.

Proof of Corollary 1. For θ ∈ Bω, with ω ≤ α, taking λ = 1+4α−2ω,̟ = 1+2α
and η = 4 in Lemma 8 yields

max
k≥1

nk2+4αθ2k
(Aπn+ k1+2α)4

∼ n− 1
1+2α

∑

k≥1

nk2+4αθ2k
(Aπn+ k1+2α)4

= n− 1
1+2α

Wn(π, θ)

4A2
π

,

while by the estimates in (25) and (29) we have Varn
[

‖∆‖2|X
]

∼ Wn(π, θ).
This proves that the conditions in Lemma 5 are satisfied for such θ’s.

If θ ∈ Θδ, for δ ≤ 0, the statement follows from Wn(π, θ) ≪ Varn[‖∆‖2|X ];
see Lemma 4. Finally, for θ ∈ Bω, for ω > α, note the inclusion Bω ⊂ Θ0.
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Proof of Lemma 6. Let Φn(t) := P{Γn < t}. Since L(Γn) ։ N (0; 1) and the
limit has continuous distribution function Φ, it follows that |Φn(t)−Φ(t)| → 0,
uniformly in t ∈ R; see [13]. The proof follows using the monotony of Φn and Φ
and continuity of Φ, i.e., lim inf Φ(tn) = Φ(t) and lim supΦ(tn) = Φ(t̄).

Proof of Lemma 7. Let ǫ > 0 and choose kǫ ≥ 1 such that
∑

k>kǫ
|wk| < ǫ; that

is, kǫ only depends on the given sequence w. Therefore, we obtain

∑

k≥1

σ2η
n |wk|

(σ2
n + τ2k )

η
< ǫ +

kǫ
∑

k=1

σ2η
n |wk|

(σ2
n + τ2k )

η
.

Now each term in the finite sum in the r.h.s. converges to 0, for n→ ∞, hence

lim sup
∑

k≥1

σ2η
n |wk|

(σ2
n + τ2k )

η
≤ ǫ.

Finally, since ǫ was arbitrary, this concludes the proof. Alternatively, note that
the statement is equivalent with ψn → 0 in the weak-* topology of ℓ∞, where
the sequence ψn = (ψnk)k, defined by ψnk := σ2η

n (σ2
n + τ2k )

−η, is norm-bounded
by 1 in ℓ∞ = (ℓ1)∗. The Banach-Alaoglu Theorem can be used to conclude.

Proof of Lemma 8. Let T > 0 be some arbitrarily large number. Then,

lim
h→0

[T/h]
∑

k=1

h f(kh) =

∫ T

0

f(t)dt. (41)

On the other hand, integrability of f entails
∫∞

T
f(t)dt → 0 for T → ∞. Let

γ := ̟η − λ; by hypothesis, we have γ > 1. Since f(t) < t−γ , it follows that

∑

k>[T/h]

h f(kh) < h
∑

k>[T/h]

(

1

kh

)γ

= T 1−γ

(

T

h

)γ−1
∑

k>[T/h]

(

1

k

)γ

≤ KT 1−γ,

where K > 0 is some constant depending only on γ such that, for large x > 0,
xγ−1

∑

k>x k
−γ < K. Therefore, for large enough (T/h) one concludes that

∞
∑

k=1

h f(kh) =

[T/h]
∑

k=1

h f(kh) +
∑

k>[T/h]

h f(kh) ≤
[T/h]
∑

k=1

h f(kh) +KT 1−γ.

Letting h→ 0 in the above inequality and taking (41) into account leads to

∫ T

0

f(t)dt ≤ lim inf

∞
∑

k=1

h f(kh) ≤ lim sup

∞
∑

k=1

h f(kh) ≤ KT 1−γ +

∫ T

0

f(t)dt.

Finally, letting T → ∞ in the above display concludes (33).
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To prove now statement (i), let xn := ζ
η−(1+λ)/̟
n and note that ζn → ∞

implies that for any fixed k ≥ 1 we have

lim
n→∞

xnuk
(ζn + vk)η

= lim
n→∞

xnk
λ

(ζn + k̟)η
= 0.

Therefore, for any k0 ≥ 1, it holds that

lim
n→∞

∞
∑

k=k0

xnuk
(ζn + vk)η

= lim
n→∞

∞
∑

k=1

xnuk
(ζn + vk)η

,

i.e., if any of the above limits exists the other one exists as well and they are
necessary equal. In particular, this shows that the asymptotic behavior of the
infinite sum is dictated by the asymptotic behavior of the sequences uk and vk.

Now let h := ζ
−1/̟
n → 0, i.e., xnk

λ(ζn + k̟)−η = h f(kh). By the first part,

lim
n→∞

xn

∞
∑

k=1

kλ

(ζn + k̟)η
= Kλ

̟,η

and the same limit holds if summation starts from any fixed k0, which proves
the second equality in (i). To conclude, choose some arbitrary (small) ǫ > 0 and
take some large enough k0 ≥ 1 to ensure that

∀k ≥ k0 : k−λuk, k
−̟vk ∈ (1 − ǫ, 1 + ǫ). (42)

Then, for all n ≥ 1, it holds the following double inequality

∞
∑

k=k0

(1 − ǫ)kλ

(ζn + (1 + ǫ)k̟)η
≤

∞
∑

k=k0

uk
(ζn + vk)η

≤
∞
∑

k=k0

(1 + ǫ)kλ

(ζn + (1− ǫ)k̟)η
. (43)

We claim now that

lim
n→∞

xn

∞
∑

k=k0

(1 + ǫ)kλ

(ζn + (1− ǫ)k̟)η
=

(1 + ǫ)

(1− ǫ)(1+λ)/̟
Kλ

̟,η. (44)

Indeed, if we take h :=
(

1−ε
ζn

)1/̟

then some elementary algebra shows that

(1− ǫ)−(1+λ)/̟h f(kh) =
xnk

λ

(ζn + (1 − ǫ)k̟)η

and the claim in (44) follows by the first step. In the same vein, we obtain

lim
n→∞

xn

∞
∑

k=k0

(1− ǫ)kλ

(ζn + (1 + ǫ)k̟)η
=

(1− ǫ)

(1 + ǫ)(1+λ)/̟
Kλ

̟,η.
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Going back to (43) we see that letting n→ ∞ yields

(1− ǫ)

(1 + ǫ)(1+λ)/̟
Kλ

̟,η ≤ lim inf xn

∞
∑

k=k0

uk
(ζn + vk)η

≤ lim supxn

∞
∑

k=k0

uk
(ζn + vk)η

≤ (1 + ǫ)

(1− ǫ)(1+λ)/̟
Kλ

̟,η.

Finally, recall that limn

∑k0

k=1
xnuk

(ζn+vk)η
= 0, hence one can replace in the last

display k0 by 1, to obtain a similar inequality for the sum started at k = 1
(which, unlike k0, is independent of ε); since ǫ > 0 was arbitrary it follows that

lim
n→∞

xn

∞
∑

k=1

uk
(ζn + vk)η

= Kλ
̟,η;

again, the summation may start with any k0 ≥ 1 with no changes in the limit.
For (ii) note that f : (0,∞) → R has a unique maximum t∗ which satisfies

f ′(t∗) =
λtλ−1(1 + t̟)η −̟η(1 + t̟)η−1tλ+̟−1

(1 + t̟)2η
= 0 =⇒ t∗ :=

(

λ

̟η − λ

)1/̟

.

Therefore, the maximal value of f on (0,∞) is given by

l := f(t∗) =
λ(λ/̟)(̟η − λ)η−(λ/̟)

(̟η)η
.

First, let uk = kλ and vk = k̟ and note that in this case we have

uk
(ζn + vk)η

=
kλ

(ζn + k̟)η
= ζ(λ/̟)−η

n f(ζ−1/̟
n k).

Since f is increasing for t < t∗ and is decreasing for t > t∗, it follows that

max
k≥1

kλ

(ζn + k̟)η
= ζ(λ/̟)−η

n max
k≥1

f(ζ−1/̟
n k)

and the maximum in the r.h.s. above is attained for either kn := [ζ
1/̟
n t∗] or

kn + 1. Now the fact that ζn → ∞ and continuity of f leads to

lim
n→∞

ζ−1/̟
n kn = t∗ =⇒ max

k≥1
f(ζ−1/̟

n k) → l = f(t∗),

which concludes the proof in this case. Finally, for generic sequences (uk) and
(vk) satisfying the asymptotic conditions in the hypothesis one can use a similar
reasoning as in (i). This is possible because kn → ∞ for n → ∞. Hence, if one
chooses any small ǫ > 0 and k0 to satisfy (42) then for large n, such that kn > k0,
the maximum is not affected if we ignore the first k0 − 1 terms of the sequence.
The proof is now complete.
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