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Abstract: We consider the problem of predictive density estimation for
normal models under Kullback-Leibler loss (KL loss) when the parame-
ter space is constrained to a convex set. More particularly, we assume that
X ∼ Np(µ, vxI) is observed and that we wish to estimate the density of Y ∼

Np(µ, vyI) under KL loss when µ is restricted to the convex set C ⊂ R
p. We

show that the best unrestricted invariant predictive density estimator p̂U is
dominated by the Bayes estimator p̂πC associated to the uniform prior πC

on C. We also study so called plug-in estimators, giving conditions under
which domination of one estimator of the mean vector µ over another under
the usual quadratic loss, translates into a domination result for certain cor-
responding plug-in density estimators under KL loss. Risk comparisons and
domination results are also made for comparisons of plug-in estimators and
Bayes predictive density estimators. Additionally, minimaxity and domina-
tion results are given for the cases where: (i) C is a cone, and (ii) C is a ball.
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1. Introduction

We consider the problem of predictive density estimation for Gaussian models
under Kullback-Leibler loss (KL loss) when the parameter space is constrained
to a convex set. More precisely, let X |µ ∼ Np(µ, vxI) and Y |µ ∼ Np(µ, vyI) be
two independent random vectors having a normal distribution, with common
unknown mean µ that we assume to be restricted to a convex set C ⊂ R

p.
The scale parameters vx and vy are assumed to be known and we denote by
p(x|µ, vx) and p(y|µ, vy) the conditional densities of X and Y.

Under the above restriction, we seek to determine efficient predictive density
estimators p̂(y|x) of the density p(y|µ, vy), based on observing only X = x,
relative to the Kullback-Leibler loss

L(µ, p̂(y|x)) =
∫

Rp

p(y|µ, vy) log
p(y|µ, vy)
p̂(y|x) dy (1.1)

and the associated Kullback-Leibler(KL) risk

RKL(µ, p̂) =

∫

Rp

p(x|µ, vx)L(µ, p̂(y|x))dx. (1.2)

This model was considered by George, Liang and Xu [6] when the mean
µ is is unrestricted, that is, µ ∈ R

p. The reference density is the generalized
Bayes predictive density p̂U (y|x) associated to the noninformative prior on R

p,
π(µ) ≡ 1. Its expression may be derived from a more general result due to
Aitchison (see [1]), as the conditional density of Y given X = x associated with
prior measure π, and given by

p(y|x) =
∫

Rp p(y|µ, vy) p(x|µ, vx)π(µ) dµ
∫

Rp p(x|µ, vx)π(µ) dµ
. (1.3)
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Komaki [10] noticed that expression (1.3) with π(µ) ≡ 1 reduces to

p̂U (y|x) =
1

[2π(vx + vy)]
p/2

exp

[

−1

2

‖y − x‖2
vx + vy

]

, (1.4)

and Murray [17] showed that p̂U is best invariant with constant risk, under
translations and non singular linear transformations. For a location family, Ng
[18] extended this invariance property and Liang and Barron [12] proved that
p̂U is minimax.

In the normal case, George, Liang and Xu [6] gave a simple direct proof of
the minimaxity of p̂U in (1.4) and showed, among other results, that p̂U can be
improved by Bayes predictive densities p̂π under superharmonic priors π and
for p ≥ 3, thus adding to previous findings due to Komaki [10]. We refer to a
recent review of Bayesian predictive estimation by George and Xu [7] for further
exposition and description of recent research in this area.

We will make use of the following key representation for Bayesian estimators
given by George, Liang and Xu. Hereafter, we let W = (vy X+ vx Y )/(vx+ vy),
vw = (vx vy)/(vx + vy), and we let mπ(W ; vw) and mπ(X ; vx) be the marginal
densities of W and X respectively under prior π.

Lemma 1.1. ([6] Lemma 2)
We have

p̂π(y|X) =
mπ(W ; vw)

mπ(X ; vx)
p̂U (y|X) , (1.5)

where p̂U (·|X) is the Bayes estimator associated with the uniform prior on R
p

given by (1.4).

It is also shown that, for any prior π, the difference between the KL risks of
p̂U (.|x) and the Bayesian predictive density p̂π(.|x) is given by

RKL(µ, p̂U )−RKL(µ, p̂π)=Eµ,vw [log mπ(W ; vw)]−Eµ,vx [log mπ(X ; vx)] (1.6)

where Eµ,v stands for the expectation with respect to the normal distribution
Np(µ, vI).

George, Liang and Xu underlined the fact that there exists a parallel between
this predictive density estimation problem and the estimation of the mean vector
µ under quadratic loss ‖µ̂− µ‖2 giving rise to the quadratic risk

Rv
Q(µ, µ̂) = Eµ,v

[

‖µ̂− µ‖2
]

. (1.7)

More precisely, they show that the predictive density p̂U plays a similar role as
the standard estimator X of µ which is best invariant and minimax under the
quadratic risk (1.7), but inadmissible for p > 2.

Our findings here involve the elaboration and the use of similar connec-
tions between the risks Rv

Q and RKL to draw inferences regarding domination
and minimaxity for predictive density estimation problems when the mean µ
is restricted to a convex set C. These findings parallel, and rely on several
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results applicable to estimating a bounded multivariate mean with risk RQ

([2, 5, 8, 14, 15, 20], among others). In Section 2, using a result of Brown,
George and Xu [3], our first result formalizes a link between the two risks RKL

and Rv
Q, the quantities involving RKL being expressed as integrated quantities

involving Rv
Q. This link is used to express the risk differences between Bayes

and plug-in estimators and between Bayes estimators as well.

In Section 3, various applications are given for restricted parameter spaces C.
First, referring to Hartigan [8] who showed that the Bayes estimator of µ with
respect to the uniform prior πC on a convex set with a non-empty interior C
dominates X under the quadratic risk (1.7), we obtain, via two different paths,
a similar result for the domination of p̂πC over p̂U . We also show that our proof
of dominance for KL-loss implies dominance for quadratic, thus providing an
alternative proof of Hartigan’s result. Secondly, we turn our attention to plug-in
densities. When an estimator δ1 for µ ∈ C is dominated by a Bayes estimator
µ̂π,v, associated to a prior π, and to a scale factor v, we give conditions under
which the Bayes predictive density estimator p̂π dominates the plug-in density
estimator p̂1(X) ∼ Np(δ1(X), vy Ip). In the case when p = 1, we apply these
results to obtain improvements on the plug-in maximum likelihood estimator
p̂mle(X) ∼ Np(δmle(X), vy Ip).

In Section 4, we deal with the minimaxity of Bayes predictive density esti-
mators when µ is restricted to a ball or to a cone. As a specific result, we show
that, when ‖µ‖ ≤ m, the boundary uniform Bayes estimator is minimax for risk
RKL wheneverm ≤ c0(p)

√
vw where c0(p) is the constant given by Berry [2] and

Marchand and Perron [15]. When µ belongs to a convex cone C with non-empty
interior, we prove that the unrestricted predictive density estimator p̂U in (1.4)
remains minimax (as it is when no restriction is assumed) for risk RKL when
µ ∈ C. This finding parallels the result of Tsukuma and Kubokawa [20] who
established that X is still minimax for estimating µ under the restriction to a
polyhedral cone.

In Section 5 we expand on some additional considerations concerning plug-in
estimators. Section 6 contains concluding remarks, and Section A is an appendix
with details on some of the proofs.

2. Context and preliminary results

In this section, we expand upon a link between estimation under risks Rv
Q

and risk RKL. The following lemma and theorem concern plug-in estimators
p̂1 ∼ Np(δ1(X), vyIp) and Bayesian estimators p̂π(·|X). Theorem 2.1 provides
a useful expression for a RKL risk difference in terms of integrated Rv

Q risk
differences.

Lemma 2.1. For a prior π, and a plug-in estimator p̂1 ∼ Np(δ1(X), vyIp), we
have

(a) EX,Y

[

log

(

mπ(W ; vw)

mπ(X ; vx)

)]

=
1

2

∫ vx

vw

1

v2
(

Rv
Q(µ,X)−Rv

Q(µ, µ̂π,v)
)

dv
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and

(b) EX,Y

[

log

(

p̂U (Y |X)

p̂1(Y |X)

) ]

=
1

2

∫ vx

vw

1

v2

(

Rvx
Q (µ, δ1)−Rv

Q(µ,X)
)

dv ,

where p̂U is, as above, the generalized Bayes estimator with respect to the flat
prior on R

p.

Proof. Part (a) is taken from Brown, George, and Xu ([3], Theorem 1). For part
(b), since

∫ vx

vw

1

v2
Rvx

Q (µ, δ1) dv = Rvx
Q (µ, δ1)(1/vw − 1/vx) = Rvx

Q (µ, δ1)/vy ,

and
∫ vx

vw

1

v2
Rv

Q(µ,X) dv = p

∫ vx

vw

1

v
dv = p log((vx + vy)/vy) ,

we need to show that

EX,Y

[

log

(

p̂U (Y |X)

p̂1(Y |X)

)]

= −p

2
log

(

vx + vy
vy

)

+
Rvx

Q (µ, δ1)

2 vy
. (2.1)

A direct expansion yields

EX,Y

[

log

(

p̂U (Y |X)

p̂1(Y |X)

)]

= EX,Y

[

−p

2
log

(

vx + vy
vy

)

+
‖Y − δ1(X)‖2

2vy
− ‖Y −X‖2

2(vx + vy)

]

= −p

2
log

(

vx + vy
vy

)

+
1

2vy

[

EX,Y (‖Y − µ‖2) + EX,Y (‖δ1(X)− µ‖2)
]

− p

2
,

which indeed matches (2.1).

Theorem 2.1. For a plug-in estimator p̂1 ∼ Np(δ1(X), vyIp) and for Bayes
estimators p̂π and p̂π′ , we have

(a) RKL(µ, p̂1)−RKL(µ, p̂π) =
1

2

∫ vx

vw

1

v2

(

Rvx
Q (µ, δ1)−Rv

Q(µ, µ̂π,v)
)

dv

and

(b) RKL(µ, p̂π′)−RKL(µ, p̂π) =
1

2

∫ vx

vw

1

v2
(

Rv
Q(µ, µ̂π′,v)−Rv

Q(µ, µ̂π,v)
)

dv .

Proof. Part (b) follows immediately from part (a) (or, alternatively, from (1.6)
and part (a) of Lemma 2.1). From the definition of the risk RKL, we have for (a):

RKL(µ, p̂1)−RKL(µ, p̂π) = EX,Y

[

log

(

p̂π(Y |X)

p̂1(Y |X)

)]

.
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Upon applying (1.5), we obtain equivalently

RKL(µ, p̂1)−RKL(µ, p̂π) = EX,Y

[

log

(

mπ(W ; vw)

mπ(X ; vx)

)]

+EX,Y

[

log

(

p̂U (Y |X)

p̂1(Y |X)

)]

and the result now follows from Lemma 2.1.

Note that Corollary 1 of Brown et al. [3] is an integrated version of (b).
We will make use of Theorem 2.1 to obtain dominance results applicable for

risk RKL by working inside the above integrals and relying on the associated
comparisons for the risks Rv

Q, v ∈ (vw , vx). As an illustration, take δ1(X) =
X , π to be the flat prior on R

p. We have Rvx
Q (µ, δ1) = pvx, µ̂π,v(X) = X ,

Rv
Q(µ, µ̂π,v) = pv, and, from part (a) of Theorem 2.1:

RKL(µ, p̂1)−RKL(µ, p̂U ) =
p

2

∫ vx

vw

1

v2
(vx − v) dv

=
p

2

(

vx
vw

− log

(

vx
vw

)

− 1

)

,

which is positive. The finding that p̂U dominates p̂1 is not new of course (e.g.,
Aitchison [1]), but the objective here was rather to illustrate Theorem 2.1 above.

Finally, we expand on some definitions and notations with respect to convex
sets and cones in R

p. A subset C of Rp will be called a (positively homogeneous)
cone if it is closed under positive scalar multiplication, i.e. αx ∈ C when x ∈ C
and α > 0 (e.g., [19][ ]). In the above, C is a cone with vertex the origin. More
generally, for such a C and for any g ∈ R

p, the set Cg = C + g is an affine cone
with vertex g, where we adopt hereafter the notation: for α ∈ R, θ ∈ R

p and
A ⊂ R

p, αA+ θ = {αa+ θ | a ∈ A}.

3. Applications for restricted parameter spaces

3.1. Improving on p̂U

For the problem of estimating, under risk Rvx
Q , with µ restricted to a convex

subset C of Rp with a non-empty interior, but otherwise arbitrary, Hartigan [8]
showed quite generally that the Bayes estimator with respect to a uniform prior
on C dominates the estimator X . We obtain an analogous result here for the
predictive density estimation problem with risk RKL. A first proof follows from
Hartigan’s result and Theorem 2.1. A second proof with a much different flavor
circumvents the explicit use of Hartigan’s result and Theorem 2.1 and follows,
surprisingly, a more direct route to establishing the result. The second part of
this subsection parallels a result by Kubokawa [11] in providing a class of priors
for which we obtain Bayesian improvements to p̂U in the univariate case with µ
bounded to an interval.
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Theorem 3.1. Let C ⊂ R
p be convex set a with a non-empty interior, and let

πC = 1C(µ) be the noninformative prior restricted to C. Then p̂πC dominates
p̂U in (1.4) for risk RKL and µ ∈ C.

First proof. We apply part (b) of Theorem 2.1 with p̂π′ ≡ p̂U , p̂π ≡ p̂πC ,
µ̂π′,v(X) = X for all v, and µ̂π,v(X) the Bayes estimator of µ for Rv

Q un-
der prior πC . We infer from Hartigan [8] that Rv

Q(µ, µ̂π′,v) −Rv
Q(µ, µ̂π,v) ≥ 0,

for all µ ∈ C, v > 0, with equality iff C is a cone and µ is its vertex. Making
use of this and Theorem 2.1, the result follows immediately.

Second proof. Using the expression of the risk difference in (1.6), the risk dif-
ference between p̂U and p̂πC equals

△R(µ) = RKL(µ, p̂U )−RKL(µ, p̂πC )

= Eµ;vw logmπC (W ; vw)− Eµ;vx logmπC (X ; vx)

=

∫

Rp

p(w|µ, vw) log
[
∫

C

p(w|θ, vw)dθ
]

dw

−
∫

Rp

p(x|µ, vx) log
[
∫

C

p(x|θ, vx)dθ
]

dx

by expressing the marginals mπC . Then, applying the successive changes of
variables z = 1√

vw
(w−µ), s = 1√

vw
(θ−w), z = 1√

vx
(x−µ) and s = 1√

vx
(θ−x),

we obtain

△R(µ) =

∫

Rp

p(z|0, 1) log
[
∫

C1

p(s|0, 1) ds
∫

C2

p(s|0, 1) ds

]

dz (3.1)

where C1 = 1√
vw

{C −µ}− z and C2 = 1√
vx
{C −µ}− z. We need to prove that,

for any µ ∈ C,△R(µ) ≥ 0. Let µ ∈ C. Clearly it suffices to show that, for any
z ∈ R

p, we have

C2 =
1√
vx

{C − µ} − z ⊂ C1 =
1√
vw

{C − µ} − z . (3.2)

This is equivalent to showing that

1√
vx

{C − µ} ⊂ 1√
vw

{C − µ} . (3.3)

Let c1 ∈ 1√
vx
{C−µ}. Then there exists c ∈ C such that c1 = 1√

vx
(c−µ). Hence

we can write c1 = 1√
vw

(c′ − µ), with c′ =
√
vw√
vx

c+ (1−
√
vw√
vx

)µ. As vw < vx, the

last quantity is a convex combination of c and µ. Since c ∈ C, µ ∈ C and C is
a convex then c′ ∈ C, which implies that (3.3) is satisfied.

Finally, since {C − µ} is a convex set containing the origin, (3.3) is satisfied
with equality iff C is a cone and µ is its vertex which means that △R(µ) > 0,
except when C is a cone and µ is its vertex. This completes the proof.
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It is worth noting that this second proof of Theorem 3.1 and part (b) of
Theorem 2.1 guarantee that the domination of p̂πC over p̂U implies Hartigan’s
result, that is, the domination of µ̂πC over X when C is convex with a non-
empty interior. Indeed, for any vx > 0 and vy > 0 fixed, the domination of p̂πC

over p̂U indicates that

1

2

∫ vx

vw

1

v2
(

Rv
Q(µ,X)−Rv

Q(µ, µ̂πc,v)
)

dv ≥ 0 , (3.4)

for all vx > vw > 0. Hence, for any 0 < a < b, the integral on (a, b) of the
integrand term in (3.4) is non negative, which implies that this integrand term
is non negative almost everywhere. Finally, by continuity of this function in v,
it follows that Rv

Q(µ,X) − Rv
Q(µ, µ̂πc,v) ≥ 0. Hence, our method provides an

independent proof of Hartigan’s result.

We now turn to the particular case where p = 1 and C is a compact interval,
say [−m,m] without loss of generality. Kubokawa [11] obtained a class of priors
that lead to improvements on the minimum risk equivariant estimator X for
risk Rv

Q. Here, in analogous manner as above, we give a parallel result for our
density estimation problem with risk RKL.

Theorem 3.2. Let p = 1 and µ ∈ [−m,m]. Let π be a prior with a symmetric
density supported on [−m,m], which is also increasing and logconcave on [0,m].
Then p̂π dominates p̂U for risk RKL and µ ∈ [−m,m].

Proof. Since Kubokawa [11] showed that µ̂π,v(X) dominates X for µ ∈ [−m,m]
for all v > 0 under the given assumptions on π, the result follows directly from
Theorem 2.1 with p̂π′ ≡ p̂U .

3.2. Improving on a maximum likelihood estimator

In this subsection, we give other direct implications of Theorem 2.1 and further
applications when the mean µ is restricted to a ball centered at 0 of radius m.
As in the above Hartigan type result, we can borrow known or easy to derive
results for the analogous estimation problem with riskRv

Q. However, in contrast,
we seek to dominate here the plug-in density based on the maximum likelihood
estimator for a univariate bounded normal mean, rather than the generalized
Bayes estimator p̂U .

Corollary 3.1. Suppose that the Bayesian estimator µ̂π,v dominates a given
estimator δ1 for µ ∈ C, and for all v ∈ (vw , vx) under risk Rv

Q. Suppose further
that either

(A)
∫ vx
vw

1
v2

(

Rvx
Q (µ, δ1)−Rv

Q(µ, δ1)
)

dv ≥ 0 for all µ ∈ C
or

(B) Rv
Q(µ, δ1) increases in v for v ∈ (vw, vx), for all µ ∈ C.

Then p̂π(X) improves upon p̂1(X) ∼ Np(δ1(X), vyIp) under risk RKL for µ ∈ C.
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Proof. The proof is straightforward. First, (B) implies (A). Secondly, by virtue
of Theorem 2.1 and given our assumptions, we have

RKL(µ, p̂1)−RKL(µ, p̂π) =
1

2

∫ vx

vw

1

v2
(Rv

Q(µ, δ1)−Rv
Q(µ, µ̂π,v) dv

+
1

2

∫ vx

vw

1

v2
(Rvx

Q (µ, δ1)−Rv
Q(µ, δ1) dv

> 0

Proceeding in analogous manner, we also have the following potentially useful
result which focusses on the risk behavior of the Bayes estimators µ̂π,vx , for
vw < v < vx, instead of that of δ1.

Corollary 3.2. Suppose that the Bayesian estimator µ̂π,vx dominates a given
estimator δ1 for µ ∈ C under risk Rvx

Q . Suppose further that either

(A’)
∫ vx
vw

1
v2 (Rvx

Q (µ, µ̂π,vx)−Rv
Q(µ, µ̂π,v) dv ≥ 0 for all µ ∈ C

or
(B’) Rv

Q(µ, µ̂π,v) increases in v for v ∈ (vw, vx), for all µ ∈ C.

Then p̂π(X) improves upon p̂1(X) ∼ Np(δ1(X), vyIp) under risk RKL for µ ∈ C.

We now turn to an application of Corollary 3.1 for a univariate normal mean
which is bounded to an interval, but, in view of making use of its condition (B),
we require the following preliminary result.

Lemma 3.1. For estimating a univariate normal mean µ bounded to an interval
[a, b], the risk Rv

Q(µ, δmle) increases in v ∈ (0,∞) for all µ ∈ [a, b], where
δmle(X) is the maximum likelihood estimator of µ.

Proof. Let X ∼ N (µ, v) with a ≤ µ ≤ b, and let φ(t) = (1/
√
2π) e−t2/2 be the

standard normal density function. The maximum likelihood estimator of µ is
given by

δmle(X) = a1(−∞,a)(X) +X1[a,b](X) + b1(b,∞)(X) =







a if X ≤ a
X if a ≤ X ≤ b .
b if X ≥ b

Let σ =
√
v. Then the risk of δmle at µ, Rv

Q(µ, δmle), equals

R(µ, σ, δmle)=Eµ

[

(δmle(X)− µ)2
]

= (a− µ)2
∫ a

−∞

1

σ
φ

(

x− µ

σ

)

dx + (b− µ)2
∫ +∞

b

1

σ
φ

(

x− µ

σ

)

dx

+

∫ b

a

(x− µ)2
1

σ
φ

(

x− µ

σ

)

dx
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=(a− µ)2
∫ (a−µ)/σ

−∞
φ(y)dy + (b − µ)2

∫ +∞

(b−µ)/σ

φ(y)dy

+σ2

∫ (b−µ)/σ

(a−µ)/σ

y2φ(y)dy .

By differentiating under the integral sign with respect to σ we obtain

∂

∂σ
R(µ, σ, δmle) =

(µ− a)3

σ2
φ

(

a− µ

σ

)

+
(b − µ)3

σ2
φ

(

b− µ

σ

)

+2σ

∫ (b−µ)/σ

(a−µ)/σ

y2φ(y)dy + σ2 (b− µ)2

σ2
φ

(

b− µ

σ

)

µ− b

σ2

−σ2 (a− µ)2

σ2
φ

(

a− µ

σ

)

µ− a

σ

= 2σ

∫ (b−µ)/σ

(a−µ)/σ

y2φ(y)dy

> 0 ,

after simplification. Hence R(µ, σ, δmle) increases in σ and we have the desired
result.

For risk Rv
Q, µ ∈ [a, b], Marchand and Perron [14], as well as Casella and

Strawderman [4] (for δBU below), showed that:

• δBU (X) dominates δmle(X) for (i) (b − a)/2 ≤ √
v ;

• all Bayes estimators δπ(X) with π a symmetric measure about (a + b)/2
supported on [a, b] dominate δmle(X) for (ii) (b− a)/2 ≤ c1

√
v ;

• and δFU (X) dominates δmle(X) for (iii) (b− a)/2 ≤ c2
√
v ;

with c1 ≈ 0.4837, c2 ≈ 0.5230, and where δBU (X) is the Bayes estimator with
respect to the two-point uniform prior on {−m,m}, δFU (X) is the Bayes es-
timator with respect to the uniform U(a, b) prior. For the density estimating
problem, we denote p̂BU (X), p̂FU (X) as the corresponding Bayes estimators
for the boundary uniform and fully uniform priors respectively. In view of the
above dominance results for risk Rv

Q, part (B) of Corollary 3.1, and Lemma
3.1, we now derive improvements on the plug-in maximum likelihood estimator
p̂mle(X) ∼ Np(δmle(X), vyIp).

Corollary 3.3. For estimating pY (·|µ; νy) under risk RKL, with p = 1, µ ∈
[a, b],

(a) p̂BU (X) dominates p̂mle(X) for (i) (b − a)/2 ≤ √
vw;

(b) all Bayes estimators p̂π(X), with π a symmetric measure about (a+ b)/2
supported on [a, b], dominate p̂mle(X) for (ii) (b− a)/2 ≤ c1

√
vw ;

(c) p̂FU (X) dominates p̂mle(X) for (iii) (b − a)/2 ≤ c2
√
vw.

The Bayesian estimators p̂π(X), p̂BU (X) and p̂FU (X) may be evaluated di-
rectly by computing the predictive density p̂(·|x) as in (1.3), or via (1.5). For
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instance, in the case of the two-point uniform prior on {−m,m}, we obtain
the predictive density p̂BU (X) as being the density of a mixture of the two
normal distributions N(−m, vy) and N(m, vy) with respective weights w(x) =
(1 + e2mx/vx)−1 and 1− w(x).

3.3. Bayesian improvements on the plug-in Np(x, vyIp) estimator

under a constraint

Here is an instructive example in relationship with Corollaries 3.1 and 3.2. Con-
sider normal priors πτ ∼ Np(0, τI) and the corresponding Bayes estimators
µ̂πτ ,v(x) = τ/(τ + v)x under squared error loss. Now, for cases where µ is
constrained to the ball Bm = {µ ∈ R

p : ‖µ‖ ≤ m}, one may verify that aX
dominates X under risk Rv

Q iff a ∈ [(m2 − pv)/(m2 + pv), 1), which tells us

that µ̂πτ ,v(X) lowers the risk of δ1(X) on Bm iff τ ≥ (m2/2p) − v/2. Since,
Rv

Q(µ,X) = pv is increasing in v, part (B) of Corollary 3.1 tells us that p̂πτ (X)

lowers the risk RKL of the plug-in Np(X, vyIp) whenever τ ≥ (m2/2p)− v/2 for
all v ∈ (vw, vx), that is

τ ≥ m2

2p
− vw

2
. (3.5)

So sufficiently large prior variances lead here to improvements, with the dom-
inance for τ → ∞ interpretable as the dominance of p̂U on Bm for all m > 0,
which is of course already known.

Alternatively, in view of applying Corollary 3.2, we begin with the weaker
condition τ ≥ (m2/2p)− vx/2 for µ̂πτ ,vx(X) to dominate δ1(X) = X under risk
Rvx

Q . However, turning to condition (B’), we observe that the quadratic risk of

µ̂πτ ,v(X), given by Rv
Q(µ, µ̂π,v) =

τ2

(τ+v)2 pv+
v2

(τ+v)2 ‖µ‖2, is only increasing in

v ∈ (vw, vx) for all µ ∈ Bm (or µ ∈ R
p) iff R(0, µ̂π,v) is increasing in v for all

v ∈ (vw, vx), or equivalently τ ≥ vx. We hence obtain τ ≥ max(vx, (m
2/2p) −

vx/2) as an alternative sufficient condition to (3.5), and the improved sufficient
condition

τ ≥ min

(

m2

2p
− vw

2
,max

(

vx,
m2

2p
− vx

2

))

,

for p̂πτ (X) to dominate the plug-in Np(X, vyIp) under risk RKL with µ ∈ Bm.
Finally, we point out that yet a stronger result can be arrived at by working
with condition (A’) of Corollary 3.2.

4. Minimax results

In this section, we derive minimaxity results for cases where µ is restricted.
First, we fully exploit Section 2’s relationships between the risks RKL and RQ,
as well as known minimaxity results for cases where the mean is restricted to a
ball. Secondly, we establish that the estimator p̂U remains minimax when the
mean µ is restricted to a cone yielding a general result analogous to Tsukuma
and Kubokawa’s result [20] under squared error loss.
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4.1. Minimaxity when the mean is restricted to a ball

Here is a general framework which we will seek to apply in cases where the mean
µ is restricted to a ball of radius m centered around the origin.

Theorem 4.1. Consider our general problems of estimating µ with risk Rv
Q and

the density pY (·|µ, vy) with risk RKL, where µ ∈ C ⊆ R
p. Suppose there exists a

prior measure π∗ and a subset C0 of C such that π∗(C0) = 1; Rv
Q(µ, µ̂π∗,v) = R̄v

for µ ∈ C0; and supµ∈C{Rv
Q(µ, µ̂π∗,v)} = R̄v for all v ∈ (vw, vx). Then p̂π∗ is

minimax for risk RKL among all Bayesian estimators that have constant risk
Rv

Q on C0.

Remark 4.1. Note that these assumptions imply that, for all v ∈ (vw , vx),
µ̂π∗,v is minimax under Rv

Q and π∗ is least favorable.

Proof of Theorem 4.1. For any π′ such thatRv
Q(·, µ̂π′,v) is constant on C0, there

exists µ0 ∈ C0 (independent of v) such that Rv
Q(µ0, µ̂π′,v) ≥ R̄v for all v ∈

(vw, vx), since R̄v is the Bayes risk associated with π∗. Now, making use of
Theorem 2.1 with p̂π′ ≡ p̂U and the constant RKL risk of p̂U , we obtain indeed
for any Bayes estimator p̂π′ ,

sup
µ∈C

RKL(µ, p̂π′) ≥ RKL(µ0, p̂π′)

= RKL(µ0, p̂U ) +
1

2

∫ vx

vw

1

v2
(

Rv
Q(µ0, µ̂π′,v)− pv

)

dv

≥ RKL(µ, p̂U ) +
1

2

∫ vx

vw

1

v2
( sup
µ∈C

{Rv
Q(µ, µ̂π∗,v)} − pv ) dv

≥ sup
µ∈C

{

RKL(µ, p̂U ) +
1

2

∫ vx

vw

1

v2
(

Rv
Q(µ, µ̂π∗,v)− pv

)

dv

}

= sup
µ∈C

RKL(µ, p̂π∗).

As an example, consider a constraint to a ball where µ ∈ C = {µ ∈ R
p : ‖µ‖ ≤

m}. For this problem, Bayes estimators form a complete class and a minimax
estimator can be found among orthogonally invariant estimators. Since such
estimators have constant risk on spheres where ‖µ‖ = λ, a minimax estimator
can be found among orthogonally invariant Bayes estimators, or equivalently
among Bayes estimators with spherically symmetric priors ([9]). Now take C0 =
{µ ∈ C : ‖µ‖ = m} and π∗ to be the uniform prior measure on C0. As studied in
Berry [2], Marchand and Perron [15], or Casella and Strawderman [4] (p = 1),

the corresponding Bayes estimator is given by µ̂π∗,v(x) =
Ip/2(m‖x‖/v)

Ip/2−1(m‖x‖/v)
mx
‖x‖ ,

where Ik(·) is the modified Bessel function of order k, and µ̂π∗,v(X) is unique
minimax for risk Rv

Q with supµ∈C{Rv
Q(µ, µ̂π∗,v)} = supµ∈C0

{Rv
Q(µ, µ̂π∗,v)} =

R̄v iff m ≤ c0(p)
√
v. Hence, to satisfy the assumptions of Theorem 4.1, we

require simply m ≤ c0(p)
√
v for all v ∈ (vw, vx), which yields the following.
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Corollary 4.1. For estimating the density p(·|µ, vy) with the constraint ‖µ‖ ≤
m, the boundary uniform Bayes estimator p̂π∗ is minimax for risk RKL whenever
m ≤ c0(p)

√
vw, where c0(p) is the constant defined and evaluated by Berry [2],

and Marchand and Perron [15].

We conclude this subsection by pointing out that, as at the end of Section 3.2,
p̂π∗ may be evaluated directly as in (1.3), or by using (1.5), and that Marchand
and Perron [15] provide various properties of c0(p), including the lower bound:√
p ≤ c0(p).

4.2. Minimaxity of p̂U when the mean is restricted to a cone

In this section, we deal with the minimaxity of p̂U in (1.4) when the mean µ is
restricted to a cone. We point out that another potential and related approach
to the problem is given by the recent work of Marchand and Strawderman [16].

Theorem 4.2. Let C be a convex cone, with non-empty interior. Then the
unrestricted predictive density estimator p̂U in (1.4) is minimax under the KL
loss (1.1), when µ is restricted to C.

Proof. Let r be the constant risk of p̂U . We will show that r is a limit of Bayes
risks of a sequence of Bayes predictive densities p̂πk

(y|x) with respect to a se-
quence of proper priors πk lying in C. Let Ck = C ∩ Bk = {c ∈ C | ‖c‖ ≤ k}
where Bk denotes the ball of radius k centered at 0. By the positive homogeneity
of C, we can express Ck as

kC1 = {kc | c ∈ C1}. (4.1)

Consider, as a sequence of proper priors, the uniform distributions on the convex
sets Ck, that is,

πk(µ) =
1

λ(Ck)
1Ck

(µ) =
1

kp
1

λ(C1)
1Ck

(µ) (4.2)

where λ is the Lebesgue measure on R
p.

Using (4.2) and the expression of the risk difference in (1.6), the difference
of Bayes risks between p̂U and p̂πk

is

r − r(πk, p̂πk
) =

∫

Rp

[RKL(p̂U , µ)−RKL(p̂πk
, µ)]πk(µ) dµ

=
1

λ(Ck)

∫

Ck

[Eµ,vw [logmπk
(W ; vw)]−Eµ;vx[logmπk

(X, vx)]]dµ .

(4.3)

Now, using the second expression of πk(µ) in (4.2) and expressing the marginal
mπk

in the bracketed term in (4.3), we have

r − r(πk, p̂πk
) =

1

λ(C1)
[L(vw, k)− L(vx, k)] (4.4)
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where

L(v, k) =
1

kp

∫

Ck

Eµ,v

[

log

∫

Ck

p(Z|a, v)da
]

dµ

=
1

kp

∫

Ck

[
∫

Rp

p(z|µ, v) log
[
∫

Ck

p(z|a, v)da
]

dz

]

dµ . (4.5)

Then with the changes of variables s = 1√
v
(a− z), z′ = 1√

v
(z−µ), and r = 1

k µ,

L(v, k) becomes

L(v, k) =
1

kp

∫

Ck

[

∫

Rp

p(z|µ, v) log
[

∫

1√
v
Ck− 1√

v
z

p(s|0, 1)ds
]

dz

]

dµ

=
1

kp

∫

Ck

[

∫

Rp

p(z′|0, 1) log
[

∫

1√
v
Ck− 1√

v
µ−z′

p(s|0, 1)ds
]

dz′
]

dµ (4.6)

=

∫

C1

[

∫

Rp

p(z|0, 1) log
∫

k√
v
C1− k√

v
r−z

p(s|0, 1)ds dz
]

dr . (4.7)

It remains to show that the limit of L(v, k) = L∗(k/
√
v) when k goes to

infinity exists and hence does not depend on v, which will imply that limk→∞(r−
r(πk, p̂πk

)) = 0. Let Ak,r = k√
v
{C1 − r}. As the interior of C is non-empty, for

any interior point r of C1, there exists a ball Bǫ in R
p of radius ǫ > 0, centered

at 0, such that
Bǫ ⊂ C1 − r.

Then it follows that

R
p ⊇ lim inf

k→∞
Ak,r ⊇ lim inf

k→∞
B k√

v
ǫ = R

p (4.8)

and hence

lim
k→∞

∫

k√
v
C1− k√

v
r−z

p(s|0, 1)ds = 1 . (4.9)

Now the convexity of C, and hence of C1, allows, according to Lemma A.1, to
apply the Lebesgue dominated convergence theorem to the expression in (4.7).
Thus we obtain limk→∞ L(k, v) = 0 for any fixed v. Therefore limk→∞(r −
r(πk, p̂πk

)) = 0, which establishes the minimaxity of p̂U .
1

As an immediate consequence of Theorem 3.1 and Theorem 4.2, we have the
following corollary.

Corollary 4.2. Let C ⊂ R
p be a convex cone with non-empty interior, and let

πC = 1C(µ) be the flat prior restricted to C. Then p̂πC is minimax for risk RKL

and µ ∈ C.

1Note that we implicitly use the fact that the boundary of C1 is negligible with respect to
the Lebesgue measure as a boundary of a convex subset in R

p (cf. [13]).



186 D. Foudrinier et al.

Note that Theorem 4.2 holds also for affine convex cones with non-empty
interiors. Indeed, it suffices to consider the sequence of proper priors πk(µ) =

1
λ(Ck)

1Ck
(µ− g). More generally, we can generalize Theorem 4.2 to cones which

are not necessarily convex. The proof is analogous to the one of Theorem 4.2
and is relegated to the appendix.

Theorem 4.3. Suppose C is a finite disjoint union of (affine) convex cones, in
the sense that the restriction is given by

C = ∪n
i=1

(

Ci + gi
)

(4.10)

where C1, . . . , Cn are convex cones with non-empty interiors, and g1, . . . , gn are
n fixed points in R

p where, for any i 6= j,

λ
((

Ci + gi
)

∩
(

Cj + gj
))

= 0. (4.11)

Then p̂U is still minimax when µ is restricted to C.

5. Plug-in estimators: Some additional considerations

We now expand on a general phenomenon concerning plug-in estimators and
how they can be improved upon within the class of normal density estima-
tors. Below, we set Gm(c) = (1 − 1

c )m − log c for c > 1,m > 1, and we let
c0(m) denote the root of Gm(c) that lies in (m,∞). It is easy to show that
Gm(c) is positive for c ∈ (1,m], is maximized on (1,∞) at c = m, and does
indeed have a single root on (m,∞). As above, we denote Rvx

Q (µ, δ) as the risk

Eµ,vx [‖δ(X)− µ‖2].
Theorem 5.1. Suppose δ(X) is an estimator of µ, µ ∈ C, such that infµ∈C

Rvx
Q (µ, δ) > 0. Consider the estimator p̂c ∼ Np(δ(X), cvyIp) and the plug-in

version p̂1 ∼ Np(δ(X), vyIp). We then have the following.

(a) For any given µ, the optimal value of c is

m(µ) = 1 +
Rvx

Q (µ, δ)

pvy
,

and p̂c improves upon p̂1 iff c ∈ (1, c0(m(µ)));
(b) For µ ∈ C, p̂c dominates p̂1 iff c ∈ (1, c0(infµ∈C m(µ))) or c = c0(infµ∈C

m(µ)) with m(·) not constant on C.

Proof. We have

RKL(µ, p̂1)−RKL(µ, p̂c) = EX,Y

[

log(
p̂c(Y ;X)

p̂1(Y ;X)
)

]

= EX,Y

[

log

(

(2πcvy)
−p/2e−‖Y−δ(X)‖2/2cvy

(2πvy)−p/2e−‖Y−δ(X)‖2/2vy

)]
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= −p

2
log c+ EX,Y

[

(1 − 1/c)

2vy
‖Y − δ(X)‖2

]

=
p

2
(− log c+ (1 − 1/c)m(µ)),

since EX,Y [‖Y − δ(X)‖2] = EX,Y [‖Y − µ‖2] + EX,Y [‖µ − δ(X)‖2] = pvy +
Rvx

Q (µ, δ). The result then follows from the above expression, the properties of
Gm(·) and c0, and since m(µ) ≥ infµ∈C m(µ) > 1 for all µ ∈ C.

Remark 5.1. In the setup of part (b) of Theorem 5.1, it may be easily derived
from a similar analysis to the one above that, among estimators p̂c, those with
c ∈ [infµ∈C m(µ), supµ∈C m(µ)] form a complete subclass, while the estimators
p̂c with c ∈ [infµ∈C m(µ), c0(infµ∈C m(µ))] form a complete subclass among
those that dominate p̂1.

Example 5.1. Take δ(X) = aX with 0 < a ≤ 1, C = R
p. Since Eµ,vx [‖aX −

µ‖2] = a2pvx+(1−a)2µ′µ, we havem(µ) = 1+ a2pvx+(1−a)2µ′µ
pvy

and infµ∈Rp m(µ)

= 1 + a2 vx
vy
. Part (b) of Theorem 5.1 tells us that p̂1 is dominated by p̂c under

RKL iff c ∈ (1, c0(1 + a2 vx
vy
)] (with c0(1 + a2 vx

vy
) > 1 + a2 vx

vy
). For the specific

case a = 1, the optimal value of c reduces to 1 + vx
vy

regardless of µ, yielding

the optimal choice p̂1+ vx
vy

∼ Np(X, (vx + vy)Ip) and recovering its well known

optimality property among the estimators p̂c ∼ Np(X, cvyIp).

Example 5.2. Take the James-Stein estimator δ(X) = (1 − (p−2) vx
X′X )X for

p ≥ 3 and C = R
p. δ(X) is minimax with infµ∈Rp Rvx

Q (µ, δ) = 2 vx and
supµ∈Rp Rvx

Q (µ, δ) = p vx. Both Theorem 5.1 and Remark 5.1 then be applied

with infµ∈Rp m(µ) = 1+ 2 vx
p vy

and supµ∈Rp m(µ) = 1+ vx
vy
. Notice that, here and

for any case where µ ∈ R
p, the supremum value of m(µ) is bounded below by

1 + vx
vy
, since the supremum risk of any estimator δ(X) surpasses the minimax

risk which is p vx and, hence, the estimator p̂1+ vx
vy

∼ Np(δ(X), (vx + vy)Ip) is

admissible among the estimators p̂c regardless of δ(X). This provides an inter-
esting extension of its outright optimality among the p̂c’s when δ(X) = X .

Theorem 5.1 and Remark 5.1 encompass the general phenomenon that plug-
in estimators Np(δ(X), vyIp) can generally be improved upon by inflating the
variance by a certain explicit factor, regardless of the efficiency (or inefficiency)
of δ(X) for estimating µ. Moreover, the prescribed range of inflation is directly
proportional to the risk Rvx

Q (µ, δ), for all δ, and p. Alternatively, estimators
p̂c for which δ(X) is inadmissible for estimating µ (e.g., Example 5.2) can be
improved upon as follows.

Theorem 5.2. Let c > 0, µ ∈ C, and δ1(X) and δ2(X) be two estimators of
µ based on X. Then, the plug-in estimator p̂2 ∼ Np(δ2(X), cvyIp) dominates
the plug-in estimator p̂1 ∼ Np(δ1(X), cvyIp) under RKL for µ ∈ C iff δ2(X)
dominates δ1(X) as an estimator of µ, for µ ∈ C.
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Proof. The result follows directly with the decomposition

RKL(µ, p̂2)−RKL(µ, p̂1) = EX,Y

[

log

(

p̂1(Y ;X)

p̂2(Y ;X)

)]

= EX,Y

[‖δ2(X)− µ‖2 − ‖δ1(X)− µ‖2
2cvy

]

.

6. Conclusion

In [6], George et al. put forth an interesting parallel between minimax conditions
for estimating a multivariate normal mean vector under quadratic risks Rv

Q and
minimax conditions for a predictive density estimator under Kullback-Leibler
risk RKL. Similar connections with regards to admissibility were also developed
by Brown et al. ([3]). In this paper, we obtain similar connections for dominance
and minimaxity results when the mean is restricted to a convex set or to a cone.
For instance, in the case where the mean is restricted to a convex set C, we
prove domination of the Bayes predictive density estimator p̂πC with respect
to the uniform prior πC over the generalized Bayes predictive density p̂U (y|x)
associated with the flat prior on R

p.
An essential use is made of an explicit link between a collection of risks

Rv
Q and the Kullback-Leibler risk RKL. It allows us to create settings where a

Bayesian predictive density estimator p̂π dominates a plug-in density estimator
p̂1(X) ∼ Np(δ1(X), vy Ip). Examples including improvements on the plug-in
maximum likelihood estimator p̂mle(X) ∼ Np(δmle(X), vy Ip) are derived when
the dimension p is 1.

Minimaxity results are also obtained when the mean is restricted to a ball as
we derive conditions for which the boundary uniform Bayes estimator is minimax
for risk RKL. Also, when the restricted parameter space is a convex cone C with
non-empty interior, we prove that the unrestricted predictive density estimator
p̂U remains minimax (as it is when no restriction is assumed).

Appendix A: Appendix

We expand first here on a technical lemma useful in the proof of Theorem 4.2,
and we conclude with a proof of Theorem 4.3. For convenience, we denote by
φ(s) the normal density p(s|0, 1).

Let C1 ⊂ B1 be a convex set in R
p with non-empty interior. For t > 0, write

L∗(t) =

∫

C1

∫

Rp

φ(z) log

[
∫

tC1−tr−z

φ(s)ds

]

dz dr

=

∫

C1×Rp

φ(z) gt(r, z) d(r, z)

with

gt(r, z) = log

[
∫

tC1−tr−z

φ(s)ds

]

. (A.1)
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We showed in the proof of Theorem 4.2 that, for any z ∈ R
p and for any r ∈

◦
C1,

the interior of C1, we have limt→∞ gt(r, z) = 0 , implying limt→∞ L∗(t) = 0 as
long as dominated convergence can be applied. We now justify this.

Lemma A.1. The function |gt(·, ·)| given in (A.1) is bounded by an integrable
function.

Proof. Let 0 < t1 < t2. Then, similarly to (3.3) in the proof of Theorem 3.1, we
can see that t1(C1 − r) ⊂ t2(C1 − r). Hence gt(r, z) is non decreasing in t > 0,
for any z ∈ R

p and any r ∈ C1.
We have |gt(r, z)| ≤ |g1(r, z)| for all t ≥ 1 since gt(r, z) ≤ 0. By applying the

Jensen inequality to the logarithmic function, we obtain

|g1(r, z)| = − log

{

λ (C1 − r − z)

∫

C1−r−z

1

λ (C1 − r − z)
φ(s) ds

}

≤ − logλ (C1)−
∫

C1−r−z

1

λ (C1)
logφ(s)ds

= − logλ (C1) +
1

λ (C1)

∫

C1−r−z

[‖s‖2
2

+
p

2
log(2π)

]

ds .

Using the inequality

‖a+ b+ c‖2 ≤ 3 (‖a‖2 + ‖b‖2 + ‖c‖2)

for any a, b, c in R
p, it follows that, for any s ∈ C1 − r − z, that is s = c1− r− z

with c1 ∈ C1,

‖s‖2 ≤ 3 (‖c1‖2 + ‖r‖2 + ‖z‖2) ≤ 3 (2 + ‖z‖2)

and hence

|g1(r, z)| ≤ p

2
log(2π)− logλ (C1) +

1

λ (C1)

∫

C1−r−z

(

3 + 3
‖z‖2
2

)

ds

=
p

2
log(2π)− logλ (C1) + 3 +

3

2
‖z‖2 .

Therefore
∫

C1×Rp

φ(z) |g1(r, z)| d(r, z)≤
∫

C1×Rp

φ(z)

[

p

2
log 2π − log λ (C1) + 3 +

3

2
‖z‖2

]

d(r, z)

=λ(C1)

[

p

2
log 2π − logλ (C1) + 3 +

3 p

2

]

<∞ .

Proof of Theorem 4.3. Define for k ≥ 1, and i = 1, . . . , n, Ci
k = k Ci

1 where

Ci
1 = {c ∈ Ci | ‖c‖ ≤ 1}.
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Then define
Ck = ∪n

i=1

(

Ci
k + gi

)

= ∪n
i=1

(

kCi
1 + gi

)

.

Note that λ(Ck) = kpλ(C1) and, for any k1 ≤ k2, we have Ck1
⊂ Ck2

. Using
the sequence of proper priors πk(µ) =

1
kp

1
λ(C1)

1Ck
(µ), we have, as in the proof

of Theorem 4.2,

r − r(πk , p̂πk
) =

1

λ(C1)

n
∑

i=1

Li(vw, k)− Li(vx, k)

with, for i = 1, . . . n,

Li(v, k) =
1

kp

∫

Ci
k+gi

∫

Rp

φ(z) log

[

∫

1√
v
Ck− 1√

v
µ−z

φ(s)ds

]

dz dµ

=
1

kp

∫

Ci
k+gi

∫

Rp

φ(z) log





n
∑

j=1

∫

1√
v
Cj

k+
1√
v
gj− 1√

v
µ−z

φ(s)ds



 dz dµ

thanks to (4.6). Then

Li(v, k) ≥ L̄i(v, k) (A.2)

where

L̄i(v, k) =
1

kp

∫

Ci
k+gi

∫

Rp

φ(z) log

[

∫

1√
v
Ci

k+
1√
v
gi− 1√

v
µ−z

φ(s)ds

]

dz dµ

=
1

kp

∫

Ci
k

∫

Rp

φ(z) log

[

∫

1√
v
Ci

k− 1√
v
µ′−z

φ(s)ds

]

dz dµ′ ,

by the change of variables µ = µ′ + gi.
Note that the expression of L̄i(v, k) corresponds to the expression of L(v, k) in

(4.6) which has been shown to satisfy limk→∞ L(v, k) = 0.Hence limk→∞ L̄i(v, k) =
0 and from (A.2) we get limk→∞ Li(v, k) ≥ 0. Since Li(v, k) ≤ 0, it follows that
limk→∞ Li(v, k) = 0. Therefore limk→∞(r − r(πk, p̂πk

)) = 0, which completes
the proof.

Acknowledgements

The authors are grateful to a referee for a careful reading of the paper and for
his/her constructive suggestions.

References

[1] Aitchison, J. (1975) Goodness of prediction fit. Biometrika, 62 547–554.
MR0391353

http://www.ams.org/mathscinet-getitem?mr=0391353


Predictive density estimation under constraints 191

[2] Berry, C. (1990) Minimax estimation of a bounded normal mean vector.
Journal of Multivariate Analysis, 35 130–139. MR1084946

[3] Brown, L. D., George, E. I. and Xu, X. (2008) Admissible predictive
density estimation. Annals of Statistics, 36 1156–1170. MR2418653

[4] Casella, G. and Strawderman, W. E. (1981) Estimating a bounded
normal mean. Annals of Statistics, 9 870–878. MR0619290

[5] Fourdrinier, D. and Marchand, É. (2010) On Bayes estimators with
uniform priors on spheres and their comparative performance with max-
imum likelihood estimators for estimating bounded multivariate normal
means. Journal of Multivariate Analysis, 101 1390–1399. MR2609500

[6] George, E. I., Feng, L. and Xu, X. (2006) Improved minimax predic-
tive densities under Kullback-Leibler loss. Annals of Statistics, 34 78–91.
MR2275235

[7] George, E. I. and Xu, X. (2010) Bayesian predictive density estimation.
Frontiers of Statistical Decision Making and Bayesian Analysis. In honor
of James O. Berger, 83–95. Springer.

[8] Hartigan, J. A. (2004) Uniform priors on convex sets improve risk. Statis-
tics and Probability Letters, 67 285–288. MR2060127

[9] Kiefer, J. (1957) Invariance, minimax sequential estimation, and con-
tinuous time processes. Annals of Mathematical Statistics, 28 573–601.
MR0092325

[10] Komaki, F. (2001) A shrinkage predictive distribution for multivariate
normal observables. Biometrika, 88 859–864. MR1859415

[11] Kubokawa, T. (2005) Estimation of bounded location and scale parame-
ters. Journal of the Japanese Statistical Society, 35 221–249. MR2328426

[12] Liang, F. and Barron, A. (2004) Exact minimax strategies for pre-
dictive density estimation, data compression and model selection. IEEE
Transactions on Information Theory, 50 2708–2726. MR2096988

[13] Liang, R. (1986) A note on the measurability of convex sets. Arch. Math,
47 90–92. MR0855142
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