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Abstract: Given a number of different studies estimating the same ef-
fect size, it is often desired to explain heterogeneity of outcomes using
concomitant covariates. For very large sample sizes, effect size estimates
are approximately normally distributed and a straightforward application
of weighted least squares is appropriate. However in practice within study
sample variances are often small to moderate, casting doubt on the normal-
ity assumption for effect sizes and results based on weighted least squares.
One can alternatively variance stabilize the effect size estimates and adopt
a generalized linear model. Both methods are compared on two examples
when effect sizes are the standardized difference of means. Then simula-
tion studies are conducted to compare the coverage and width of confi-
dence intervals for the meta-regression coefficients. These simulations show
that the coverage probability associated with weighted least squares can be
well below the nominated level for small to moderate sample sizes. Further
empirical investigations reveal a bias in estimation due to using estimated
weights which were assumed to be known. For these models, the generalized
linear model approach resulted in much improved coverage probabilities.
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1. Introduction

The combination of results of several studies of a specific topic to increase the
accuracy of findings and decisions is called meta-analysis. Meta-regression anal-
ysis investigates how the study outcomes in the form of estimated effect sizes
are dependent on explanatory variables, often called moderators or covariates in
the meta-analytic literature. Estimated effect sizes include standardized mean
differences, log odds ratios, log relative risks and risk differences.

When explanatory variables are assumed to explain all the variation outside
of random error in the effect sizes of the studies, the appropriate meta-regression
model is one assuming fixed effects. The purpose of this paper is to analyze and
compare two fixed effects meta-regression approaches for the investigation of
explanatory variables when the effect sizes are standardized mean differences.
The first approach is weighted least squares with inverse variance weights. The
second approach is generalized linear models involving variance stabilization,
first introduced in Chapter 14 of [11].

While there are a large number of meta-regression articles in the literature, see
for example, [7–10] and [15], as well as overview publications about how to use
meta-regression and interpret its results, see for example, [2, 14] and [17], there
does not appear to be any until now that investigate how well these methods
perform, even for the fixed effects model. The random effects model in meta-
regression is a subject for further research.

In Section 2, we introduce the models and notation and derive a closed form
expression for the Hessian matrix of the maximum likelihood estimates of the
regression parameters following variance stabilization. Then we evaluate this
expression for the standardized difference of means, which simplifies the appli-
cation of generalized linear models.

In Section 3, two practical examples are analyzed by each method, and in Sec-
tion 4, the methods are investigated through simulations from which it is shown
that when within study samples are small to moderate in size, the generalized
linear model approach is preferable as it maintains better coverage probability
for most of the model coefficient estimates.

2. Fixed effects meta-regression for the standardized difference of

means

2.1. The setting

Suppose we have a meta-analysis with K two-sample studies where each study
consists of a control group (Group 1) and a treatment group (Group 2). Further
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assume that the populations are normal. Letting the sample size of each arm
be denoted by nki, (k = 1, . . . ,K), (i = 1, 2), denote the total sample size in the
kth group by Nk = nk1 + nk2 and the proportion of observations in the kth
treatment group by qk = nk2/Nk.

In addition, let µki and σ2
ki denote the kth population mean and variance for

the ith arm, estimated by their sample counterparts ȳki and s2ki, respectively.
The simplest case is to assume common population variances σ2

k1 = σ2
k2 = σ2

k

within each study. The effect size of interest is the standardized mean difference
dk = (µk2 − µk1)/σk which is typically estimated by d̂k = (ȳk2 − ȳk1)/sk,pool
where sk,pool =

√
{(nk1 − 1)s2k1 + (nk2 − 1)s2k2}/(Nk − 2).

Let δk =
√
qk(1− qk)dk for which an estimator is δ̂k =

√
qk(1 − qk)d̂k. Then

the two-sample t-test statistic

tk,pool =
√
Nkδ̂k ∼ tνk(λk) (1)

which has a known non-central t-distribution where νk = Nk − 2 is the degrees
of freedom and λk the non-centrality parameter.

2.2. The model and estimation

Consider the following model

E
(
d̂k|xk

)
= β⊤xk (2)

where xk = [1, xk1, . . . , xkp]
⊤ ∈ R

p+1 is a vector of study level explanatory
variables for the kth study, β = [β0, . . . , βp]

⊤ ∈ R
p+1 is a vector of unknown

explanatory variable coefficients and d̂k = (ȳk2 − ȳk1)/sk,pool is the estimated
standardized difference in mean for the kth study. Two methods are considered
for the fitting of the proposed model in (2), weighted least squares and the
generalized linear model following variance stabilization.

2.2.1. The weighted least squares approach

To apply weighted least squares (WLS) directly, the non-central t effect sizes
are assumed to be approximately normally distributed with ‘known’ weights
wk = 1/[se(d̂k)]

2, where

se(d̂k) =

√
Nk/(nk1nk2) + d̂2k/(2Nk) (3)

[6, p.86]. Equation (3) is an approximate large sample estimator of the standard

error of d̂k. Although there are other estimation formulae for [se(d̂k)]
2, see for

example [18], we will be assuming (3) for this procedure as it is commonly found
in the literature and used in practice.

In this setting, a WLS approach assumes that, approximately,

d̂k = β⊤xk + εk
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where εk ∼ N(0, [se(d̂k)]
2) and the [se(d̂k)]

2, given in (3), is assumed to be
known, even though it is estimated.

In typical application of the WLS approach, the variances of the dependent
variables are unknown and assumed to be of the form σ2/w where σ2 needs to
be estimated and w is some fixed weight. Standard WLS estimates σ2 via the
mean square error (MSE) and the standard errors of the coefficient estimates are
a scalar multiple of

√
MSE. In our case, there is no unknown component in the

variance and the equivalence here is fixing σ2 = 1. As such, the correct standard
errors to use are the traditional WLS standard errors divided by

√
MSE. Also,

since there is no variance component to estimate, (1 − α/2)100% confidence

intervals for βj (j = 0, 1, . . . , p) are then of the form β̂j ± z1−α/2se(β̂j) where

the se(β̂j) = [(X⊤WX)−1]
1/2
(j+1)(j+1), X = [xk] which is a K × (p + 1) design

matrix of full rank with kth row equal to x⊤

k andW is aK×K constant diagonal
matrix whose elements are w1, . . . , wK . Here z1−α/2 is the 1−α/2 percentile of
the standard normal distribution. For more about WLS, see p.176 of [13].

2.2.2. The generalized linear model approach

The generalized linear model (GLM) approach cannot be applied directly to

the d̂k’s, because their distributions do not belong to an exponential family. By
application of a variance stabilizing transformation one obtains approximately
normal transformed effect sizes. The transformation we apply, from [1] [also see
11, Ch.20], is

K(δk) =
√
2 sinh−1(δk/

√
2) (4)

where sinh−1(x) = ln (x+
√
x2 + 1). This produces approximately normal trans-

formed effect sizes Yk = K(δ̂k)
a∼ N(K(δk), N

−1
k ) where

a∼ is the symbol for
‘approximately distributed as’ and the observed transformed effect sizes are
denoted by y1, . . . , yK .

Now consider the following model

Yk = µβ(xk) + εk (5)

where µβ(xk) is a function of the unknown β and the fixed xk, εk ∼ N(0, 1/Nk)
and, subsequently, Yk ∼ N(µβ(xk), 1/Nk). Under the setting described in Sec-
tion 2.1 and an appropriate choice of µβ in (5), we propose that this model
holds approximately for our transformed effect sizes. We now consider the Hes-
sian matrix associated with parameter β in the following proposition. A simple
proof can be found in Appendix A or one may utilize, for example, Chapter 3 of
[5] for general results with the distribution of Yk belonging to the exponential
family. For more about GLM’s, see for example, [12].

Proposition 2.1. Under the model in (5), the Hessian matrix associated with

the vector of explanatory variable coefficients β is

H(β) = X⊤DX
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where X is the design matrix whose kth row is x⊤

k and D is the diagonal matrix

with kth diagonal element

Dkk =−Nk

{(
∂µβ(xk)

∂β⊤xk

)2

− [yk − µβ(xk)]
∂2µβ(xk)

∂(β⊤xk)2

}
.

Consequently, for β̂ denoting the maximum likelihood estimate (MLE) of β
in (5), we have that

Var(β̂) ≈ −H−1(β̂)

for H(·) given in Proposition 2.1.
Restricting attention to the setting presented in Section 2.1, the generalized

linear model of (5) will require the link function g(y) =
√
2 sinh(y/

√
2)/

√
q(1 − q)

where q is the proportion of cases in the second arm of the study. Then the in-
verse link function is

g−1(x) =
√
2 sinh−1

{
[q(1 − q)/2]1/2x

}

which in turn gives, for the kth study

µβ(xk) =
√
2 sinh−1

{
[qk(1− qk)/2]

1/2β⊤xk

}
. (6)

From (6), we have that

µβ(xk)/
√
2 = sinh−1

{
[qk(1− qk)/2]

1/2β⊤xk

}

so that
sinh

(
µβ(xk)/

√
2
)

√
qk(1− qk)/2

= β⊤xk. (7)

From (7)

∂β⊤xk

∂µβ(xk)
=

1√
qk(1− qk)

cosh(µβ(xk)/
√
2)

which, since cosh2(µβ(xk)/
√
2) = 1+sinh2(µβ(xk)/

√
2) and using (7), becomes

∂β⊤xk

∂µβ(xk)
=

1√
qk(1 − qk)

√
1 +

qk(1− qk)

2

(
β⊤xk

)2

=

√
1

qk(1 − qk)
+

1

2

(
β⊤xk

)2
.

Consequently,
∂µβ(xk)

∂β⊤xk
=

1√
1

qk(1−qk)
+ 1

2

(
β⊤xk

)2 . (8)
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For the second derivative, from (8) we have

∂2µβ(xk)

∂(β⊤xk)2
=

−
√
2(β⊤xk)(

2
qk(1−qk)

+ (β⊤xk)2
)3/2

. (9)

Hence, from (8) and (9), D in Proposition 2.1 for the standardized difference of
means effect size is the matrix whose kth diagonal element is

Dkk = −Nk

ck

{
2 +

[yk − µβ(xk)]β
⊤xk√

ck/2

}

where

ck =
2

qk(1 − qk)
+ (β⊤xk)

2.

Given a maximum likelihood estimate for β, the unknown β in (8) and (9) can
be replaced with this estimate to obtain an estimate of the associated Hessian
matrix.

3. Examples

In this section, we will consider application of both the WLS and GLM ap-
proaches to two data sets. The first is an example consisting of just the one
explanatory variable (i.e. p = 1) and the second extends this to consider an
example with p = 3 explanatory variables. Throughout this section the freely
available statistical software package R [see 16] was used. For the minimization
required for the maximum likelihood estimates, we have used the R optimization
function nlminb which utilizes PORT routines [see for example, 4].

3.1. Effect of open versus traditional education on student creativity

Data with effect size estimates from K = 10 studies of the effect of open versus
traditional education on students creativity are given in Table 1. This example
has previously been considered by [6] and more recently by [11] from which
Table 1 was reproduced.

The question of interest is whether there is a significant difference between
younger and older grade levels in regards to their impact on student creativity
when open education is the learning mechanism. The explanatory variable is
the grade level for which the study was conducted and we want to include an
intercept coefficient so that each explanatory variable vector is equal to [1, xk]

⊤

for k = 1, . . . ,K.
Note that, each study has the same number of cases in both arms (i.e. nk1 =

nk2) so that qk = 1/2 for all k. Equal variances in both arms is assumed and
the variance stabilizing transformation (vst) given in (4) was used to produce
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Table 1

Effect size (d̂k) and transformed effect size (yk) estimates from K = 10 studies investigating
the effect of open versus traditional education on student creativity

Study n1 = n2

Grade
d̂k ykLevel

1 90 6 −0.581 −0.288
2 40 5 0.530 0.263
3 36 3 0.771 0.381
4 20 3 1.031 0.505
5 22 2 0.553 0.275
6 10 4 0.295 0.147
7 10 8 0.078 0.039
8 10 1 0.573 0.284
9 39 3 −0.176 −0.088

10 50 5 −0.232 −0.116
Note: n1 – sample size of the students undertaking open education;

n2 – sample size of the students undertaking traditional education.

Table 2

Meta-regression results of the WLS and GLM approaches when fitting model (10) to the
open versus traditional education on student creativity data

Method RSS βj β̂j se(β̂j) 95% CI P-value

WLS 27.254 β0 1.023 0.237 [0.558, 1.487] 0.000
β1 −0.218 0.050 [−0.317,−0.120] 0.000

GLM 27.742 β0 1.053 0.238 [0.587, 1.519] 0.000
β1 −0.224 0.051 [−0.323,−0.125] 0.000

Note: The P-values are z-test p-values; RSS – residual sum of squares;

βj – jth coefficient; β̂j – jth coefficient estimate;

se(β̂j) – standard error of jth coefficient estimate; CI – confidence interval.

the yk’s, that is, the estimated transformed effect sizes. The linear regression
model fitted to this data set, from (2), is

E(d̂k|xk) = β0 + β1xk (10)

where xk is the grade level of interest.

Table 2 gives the results of the data analysis when fitting (10) using both the
traditional WLS technique and the GLM approach. As can be seen in Table 2,
both methods produce very similar parameter estimates and standard errors
with the GLM method estimates being marginally larger. As a result, the 95%
confidence intervals for β0 and β1 were also alike.

Furthermore, it is clear the parameter estimates of both methods are signif-
icant at the 0.05 level as all were found to have z-test p-values < 0.001. Also,
when comparing the residual sum of squares (RSS) for each approach (both of
which have 8 degrees of freedom), we can see that they are very similar with
the WLS value being marginally smaller. Consequently, the null hypothesis of
both procedures that all the model coefficients are equal to zero is rejected in
favor of the alternative that at least one coefficient is non-zero at the 0.01 level
using a chi-squared distribution with 8 degrees of freedom.
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The question this example leaves us with is which methods results are prefer-
able in this instance? Simulations based on this example, which are discussed
in Section 4, were used to investigate this question.

3.2. The neuropsychological impact of sports-related concussion on

“exposed” athletes

Data with effect size estimates from K = 9 studies of the neuropsychological
impact on athletes which participate in a sport where the head is “exposed” to
knocks are given in Table 3. This table was reproduced from [3].

The questions of interest are firstly whether there is a significant difference
between soccer and boxing on the neuropsychological function of a participating
athlete, and secondly, does the standard at which the athlete competes have a
significant affect on their neuropsychological function as well.

The sport the athletes participated in and the standard or level of play at
which they compete at are the explanatory variables investigated. The levels of
play considered in the studies are amateur (A) and professional (P) with some
studies considering both (A,P). Athletes that participated in sports where the
head is generally not “exposed” to knocks, such as track and field, were the
control sample. Furthermore, sample sizes are not equal in every study so the
qk are calculated individually. The assumption of equal variances in each arm is
made. The 9 studies results in effect sizes d̂k are transformed by (4) to obtain
approximately normal yk’s. As in the previous example, we include an intercept
coefficient.

The linear regression model fitted to this data set, from (2), is

E(d̂k|xk) = β0 + β1xk1 + β2xk2 + β3xk3 (11)

where xk1 is the level of play which is equal to 1 when the standard is amateur
and 0 otherwise, xk2 is also the level of play which is equal to 1 when the standard

Table 3

Effect size (d̂k) and transformed effect size (yk) estimates from K = 9 studies of the
neuropsychological impact on athletes which participate in a sport where the head is

“exposed” to knocks

Study
Athletes Controls

Sport
Level

d̂k ykn1 n2 of Play
1 31 31 Soccer A −0.18 −0.090
2 29 19 Boxing A 0.41 0.200
3 32 29 Soccer A,P 0.39 0.194
4 19 10 Boxing P 1.08 0.503
5 10 10 Boxing A,P 0.31 0.155
6 25 25 Boxing A 0.22 0.110
7 37 20 Soccer P 0.49 0.233
8 60 20 Soccer A,P 0.21 0.091
9 21 12 Soccer A 0.27 0.130

Note: A – amateur level of play; P – professional level of play;

A,P – combination of both amateur and professional level of play.
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Table 4

Meta-regression results of the WLS and GLM approaches when fitting model (11) to the
neuropsychological impact on athletes which participate in a sport where the head is

“exposed” to knocks data

Method RSS βj β̂j se(β̂j) 95% CI P-value

WLS 2.186 β0 0.577 0.256 [0.074, 1.079] 0.024
β1 −0.277 0.238 [−0.744, 0.190] 0.245
β2 0.319 0.291 [−0.251, 0.888] 0.273
β3 −0.321 0.224 [−0.760, 0.119] 0.153

GLM 2.192 β0 0.580 0.258 [0.075, 1.085] 0.024
β1 −0.279 0.239 [−0.747, 0.190] 0.243
β2 0.319 0.291 [−0.251, 0.889] 0.273
β3 −0.323 0.224 [−0.763, 0.117] 0.150

Note: The P-values are z-test p-values; RSS – residual sum of squares;

βj – jth coefficient; β̂j – jth coefficient estimate;

se(β̂j) – standard error of jth coefficient estimate; CI – confidence interval.

is professional and 0 otherwise, and xk3 which is the sport played which is equal
to 1 when the sport is soccer and 0 when the sport is boxing. Table 4 lists the
results of using both the WLS and GLM approaches when fitting (11) to the
data.

It is clear from Table 4 that both meta-regression procedures produce very
similar parameter, standard error and 95% confidence interval estimates. When
comparing the p-values of each coefficient from both approaches, they were also
alike, of which only β0 was found to be significant at the 0.05 level for both
procedures.

Furthermore, when considering the RSS of WLS and GLM (both of which
have 5 degrees of freedom), the WLS value was found to be slightly smaller.
However, the null hypothesis of both procedures is not rejected at the 0.01 level
using a chi-squared distribution with 5 degrees of freedom.

4. Simulations

In this section, we consider simulations for the comparison between the WLS and
GLM approaches. Certain subtleties require mention here with regards to simu-
lating data according to (2). Firstly, from (1) we have that

√
Nkqk(1− qk)d̂k ∼

tνk(λk) so that (2) can be rewritten as

E(
√
Nkqk(1− qk)d̂k|xk) =

√
Nkqk(1− qk)(β

⊤xk). (12)

Using the fact that, for T ∼ tν(λ), E(T ) = λ
√

(ν/2)Γ((ν − 1)/2)/Γ(ν/2), we
have, from (12), that

√
Nkqk(1− qk)β

⊤xk = λk

√
νk
2

Γ((νk − 1)/2)

Γ(νk/2)

which then gives us

λk =

√
2

νk

√
Nkqk(1− qk)β

⊤xk

Γ((νk − 1)/2)/Γ(νk/2)
. (13)
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Using (13), we are therefore able to simulate data under the model in (2) for
fixed qk, Nk, xk and a proposed β, by randomly generating values for each√
Nk δ̂k from the tνk(λk) distribution where νk = Nk − 2 and the non-centrality

parameter λk, which is provided in (13).
Let us consider again the example described in Section 3.1. Simulations ap-

plying the WLS and GLMmethods to the proposed model in (2) were conducted
for comparative purposes with the parameter of interest being β1. In all the sim-
ulations β0 was fixed at 1.05, the estimated value from the example of Section
3.1, and β1 was selected over the range −3 to 3 in increments of 0.02.

For each value of β1, 10000 trials were performed from which coverage prob-
abilities and average confidence interval widths were estimated. Coverage prob-
ability is the proportion of times that the true parameter value of interest (in
this simulation, the β1 parameter) falls within the estimated confidence interval
bounds. The nominal confidence level for these estimated intervals was set at
the usual 95%.

Recall from Section 2.2.1 that the approximate confidence interval formula
for the model coefficients is β̂j ± z1−α/2se(β̂j). The first simulations performed
looked at the effect that varying K in a meta-analysis would have on the model
estimates of each procedure. For these simulations, K was set equal to 10, 20, 30
and 50. As K = 10 in the example, both the within study sample sizes and the
explanatory variable vector from the example were simply replicated to account
for the changes in K. The results of each K are plotted in Figure 1.

It is clear from the output in Figures 1 (a) and (b) that for small to moderate
size meta-analyses, the estimated coverage probabilities for both methods are
similar. We can see that for small to moderate K, the estimated coverage prob-
ability for GLM approach remains very stable and consistently ranges between
94% and 95% for majority of the β1 values.

When considering the WLS approach, the coverage also remains very con-
sistent for small to moderate K. We can see in Figures 1 (a) and (b) that its
coverage probability for negative values of β1 performs as well as the GLM’s
and even slightly better for positive values.

However, when meta-analyses contain larger K, the WLS coverage fluctuates
a little. As can be seen in Figures 1 (c) and (d), its coverage tends to be slightly
lower than that of the GLM method for negative values of β1, dropping as low
as 93% for some β1 values when K = 50. Whereas for positive values of β1, the
coverage remains between the 94% and 95% range.

In regard to the average confidence interval widths estimated, it can clearly be
seen in Figure 1 that despite the size of the meta-analysis, there is no significant
difference in the interval widths produced by both methods. As expected, the
width of the intervals increase as the value of β1 becomes larger in the negative
and positive directions.

Although there are marginal differences in the coverage between the methods,
the results of the average confidence interval widths and the coverage indicates
that as K increases, the use of either approach is appropriate under the assump-
tion that (2) is the true underlying model.
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Fig 1. Estimated coverage probabilities (ĈP) and average 95% confidence interval widths (W)
for the GLM and WLS approaches where (a) K = 10, (b) K = 20, (c) K = 30 and (d) K = 50
with the sample sizes from the study used, β0 fixed to 1.05 and β1 ∈ [−3, 3].

It is important to note that the within study sample sizes from the example
used in the above simulation varied a bit in size. Some of the sample sizes where
quite big, for example, both arms in study one had sample sizes of 90. Whereas,
some of the studies sample sizes were quite small. For example, both arms in
studies six, seven and eight had sample sizes of 10. Noting this, an obvious
question that needed investigation was how do these methods perform when all
the within study sample sizes in each arm of a meta-analysis are small?

To understand the effect that small within study sample sizes may have on
each approaches parameter estimates, the above simulation was conducted again
except the size of the samples for both arms were set to 10. The results of each
K are displayed in Figure 2.
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Fig 2. Estimated coverage probabilities (ĈP) and average 95% confidence interval widths (W)
for the GLM and WLS approaches where (a) K = 10, (b) K = 20, (c) K = 30 and (d) K = 50
with n1 = n2 = 10, β0 fixed to 1.05 and β1 ∈ [−3, 3].

From the output in Figure 2 (a), it is clear that when within study sample
sizes are small with small K, the GLM approach for majority of the choices of
β1 outperforms WLS in terms of coverage. Its coverage seems to consistently
range between 92% and 94%. On the other hand, the WLS coverage is not
as stable. Its coverage continually decreases as β1 becomes larger in both the
positive or negative directions. Although, for a small range of β1 values around
0, the coverage of WLS is as good as and even outperforms the GLM method.

Similarly, the results in Figures 2 (b), (c) and (d) show that as K increases,
the difference in performance in terms of coverage probability increases signifi-
cantly in favor of the GLM procedure. For example, when K was increased into
50, the coverage probability when applying the GLM approach remains above
90% across the range of β1 whereas the WLS coverage drops to below 70% for
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some values of β1. However, for a small range of β1 values, again around 0, the
coverage of WLS is comparable with the GLM methods.

When considering the average confidence interval widths, it is clear from
Figure 2 that even with small within study sample sizes, there is no significant
difference in the interval widths produced by both methods.

Thus, regardless of the size of the meta-analysis, when the within study
sample sizes are all small in both arms, the GLM method may be the preferable
approach when (2) is the assumed true underlying model as better coverage is
maintained for most values of the estimated model coefficient.

Meta-analyses with moderate sample sizes were also considered. Setting the
size of the samples for both arms to 30, simulations for varyingK were conducted
with the results shown in Figure 3.
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Fig 3. Estimated coverage probabilities (ĈP) and average 95% confidence interval widths (W)
for the GLM and WLS approaches where (a) K = 10, (b) K = 20, (c) K = 30 and (d) K = 50
with n1 = n2 = 30, β0 fixed to 1.05 and β1 ∈ [−3, 3].
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We can see from Figure 3 that the GLM approach for majority of the β1

values outperforms WLS in terms of coverage, regardless of the choice ofK. This
difference tends to increase as K increases, with the GLM coverage consistently
ranging between 94% and 95% for all choices of K. This is in contrast to WLS
where for larger positive and negative values of β1, its coverage drops when K
becomes larger. For example, when K = 10, the larger positive and negative
values of β1 records a coverage that is only slightly lower than the GLM by
about 1%. But when K = 50, this difference is quite significant with some
choices of β1 having a coverage around 6% lower than the GLM. However, for
β1 values around 0, the coverage of WLS is as good as and even outperforms
the GLM method.

In addition, it is important to note that the difference in the methods coverage
is not as significant as when the within study sample sizes were small. This
indicates, and as would be expected, that the WLS method performs much
better when sample sizes in studies are larger. Moreover, when looking at the
average confidence interval widths for both approaches, it is evident that there
is no significant difference in the interval widths produced by both methods.

Hence, with the increase in sample sizes in both arms of each study, the
performance of WLS improves in terms of coverage. However, it is obvious that
when dealing with a meta-analysis of any size K with small to moderate within
study samples, the GLM approach may be the preferred method.

Table 5 lists estimated coverage probabilities and average confidence interval
widths for three choices β1, as well as standard deviation estimates for the
average confidence interval widths, which are noted in parentheses. The three
values of β1 considered were β1 = −1, 0 and 1, to which 10000 trials were
performed for each value. The sample sizes in each study for both arms were
set equal (i.e. n1 = n2), β0 was fixed to 1.05 and the grade level again was our
explanatory variable of interest.

We can see that for most choices of K and sample size, the average confi-
dence interval widths and their respective standard deviation estimates of both
methods are almost equivalent (at least to 3 decimal places) for each value
of β1. As well as providing more evidence that there is no significant differ-
ence in width of confidence intervals between these two approaches, the results
in Table 5 further verifies that for larger meta-analyses, both methods main-
tain similar coverage probabilities for most β1 values. However, it also shows
that if a meta-analysis has small to moderate within study sample sizes, that
regardless of the size of K, the GLM will have better coverage for most β1

values.
The outcomes of these simulations raised the following question. Given that

the average estimated confidence widths are similar, why is the estimated cover-
age probability for the WLS approach comparatively well below the nominated
level of 95% as the parameter moves further from zero?

The results suggest that the confidence intervals are based on a biased esti-
mate of the parameter and where this bias grows with |β1|. When the weights
for WLS are fixed (i.e. when the true dk’s are used in the weights) it is straight-
forward to show that the corresponding WLS estimate is unbiased.
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Table 5

Estimated coverage probabilities (ĈP) and average 95% confidence interval widths (W) with
standard deviation estimates in parentheses for the GLM and WLS approaches and β0 fixed

to 1.05

n1 = n2

10 20 50 100

β1 K Method ĈP W ĈP W ĈP W ĈP W
−1 10 WLS 0.923 0.467 0.941 0.332 0.944 0.211 0.946 0.149

(0.023) (0.011) (0.004) (0.002)
GLM 0.929 0.469 0.940 0.333 0.946 0.211 0.947 0.149

(0.020) (0.010) (0.004) (0.002)
20 WLS 0.901 0.330 0.926 0.235 0.943 0.149 0.943 0.105

(0.011) (0.005) (0.002) (0.001)
GLM 0.932 0.332 0.939 0.235 0.948 0.149 0.947 0.105

(0.010) (0.005) (0.002) (0.001)
50 WLS 0.814 0.208 0.895 0.148 0.932 0.094 0.938 0.067

(0.004) (0.002) (0.001) (0.000)
GLM 0.925 0.210 0.938 0.149 0.945 0.094 0.948 0.067

(0.004) (0.002) (0.001) (0.000)
0 10 WLS 0.947 0.306 0.949 0.215 0.949 0.136 0.952 0.096

(0.009) (0.004) (0.002) (0.001)
GLM 0.941 0.304 0.949 0.215 0.953 0.136 0.950 0.096

(0.007) (0.003) (0.001) (0.001)
20 WLS 0.954 0.216 0.951 0.152 0.946 0.096 0.947 0.068

(0.004) (0.002) (0.001) (0.000)
GLM 0.935 0.215 0.944 0.152 0.949 0.096 0.957 0.068

(0.004) (0.002) (0.001) (0.000)
50 WLS 0.954 0.137 0.951 0.096 0.957 0.061 0.951 0.043

(0.002) (0.001) (0.000) (0.000)
GLM 0.940 0.136 0.943 0.096 0.946 0.061 0.952 0.043

(0.001) (0.001) (0.000) (0.000)
1 10 WLS 0.932 0.602 0.941 0.430 0.949 0.272 0.944 0.193

(0.037) (0.018) (0.007) (0.004)
GLM 0.932 0.606 0.946 0.431 0.946 0.273 0.946 0.193

(0.029) (0.014) (0.006) (0.003)
20 WLS 0.912 0.424 0.933 0.303 0.945 0.192 0.949 0.136

(0.018) (0.009) (0.004) (0.002)
GLM 0.928 0.428 0.943 0.304 0.950 0.193 0.950 0.137

(0.015) (0.007) (0.003) (0.001)
50 WLS 0.861 0.267 0.911 0.191 0.938 0.122 0.942 0.086

(0.007) (0.004) (0.001) (0.001)
GLM 0.930 0.271 0.942 0.192 0.950 0.122 0.946 0.086

(0.006) (0.003) (0.001) (0.001)
Note: K – number of studies; n1 – sample size of group 1; n2 – sample size of group 2.

On the other hand, this is a totally impractical scenario since it is the dk’s
themselves that need to be estimated and subsequently modeled. The bias term
for the WLS without fixing the weights remains elusive due to the complexity of
the WLS estimator that allows for random weights and responses. However, we
shed some light on this in Figure 4 by considering estimated densities of GLM,
WLS and WLS with true weights (which we will denote as WLS∗) for three
choices of β1 which are β1 = −2, 0 and 2. All the densities estimated were over
10000 trials and with β0 fixed to 1.05.

Figure 4 (a)–(c) plots the results for K = 50 with n1 = n2 = 10. For β1 = −2
we see that the estimated densities for the GLM and WLS∗ are approximately
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Fig 4. Estimated density plots of the GLM, traditional WLS with estimated weights and WLS
with the true weights (denoted by WLS∗) for (a) β1 = −2, (b) β1 = 0 and (c) β1 = 2 where
K = 50, n1 = n2 = 10 and β0 fixed to 1.05.

centered around the true β1. However, for the WLS approach, the estimated den-
sity is similar in shape but is shifted to the left indicating an obvious negative
bias in estimation. When β1 is set to zero this difference in estimated densities
disappears and for β1 = 2 the bias for the WLS is then positive. These findings
support those shown in Figures 2 and 3 where the GLM and WLS approaches
are comparable when β1 is small, but where the performance of WLS declines
when β1 is chosen further from 0. In addition, it is clear from the earlier sim-
ulations that this estimation bias is a problem when a meta-analysis has small
to moderate within study sample sizes. When the within study sample sizes are
large, the bias is significantly reduced.

5. Discussion

Two meta-regression approaches (GLM and WLS) have been analyzed and com-
pared under the assumption that a linear model explains the true relationship
between the effect size of interest and the covariates under consideration. Tra-
ditionally, WLS has been used in this capacity, though the GLM approach has
received some recent attention [11]. There has been very little in the way of
comparisons made between them.

Through simulation we have shown that the amount of studies and their
respective sample sizes in a meta-analysis plays a role in the effectiveness and
accuracy of a meta-regression method when applied to an assumed underlying
model. Both WLS and GLM were found to perform comparably in terms of their
width of confidence intervals regardless of the number of studies or their within
sample sizes. Likewise, the coverage probabilities of both methods β1 were also
found to be similar but only in the case where a meta-analysis contained large
within study sample sizes. On the other hand, when within study sample sizes
are small to moderate in size, significant differences in the estimation of the true
β1 are evident.

It was shown through the simulations that if within study sample sizes are
small to moderate in size, WLS unfortunately contains an estimation bias of
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the model parameter and where this bias grows with |β1|. As a result, its per-
formance in terms of coverage probability significantly reduces the further β1 is
chosen from 0. On the other hand, the GLM approach was found to maintain
significantly higher coverage as the |β1| increases, although for a small range β1

values around 0, the coverage of WLS is comparable to GLM’s.
It is clear from these results that one must take care in the method of choice

when conducting a meta-regression analysis while assuming (2). Whilst the cov-
erage probabilities for WLS were typically smaller than the GLM, with large
enough study sample sizes, both methods would be appropriate when assum-
ing (2) as their respective coverage probabilities are very close to the nominated
coverage level. In contrast, if a meta-analyses contains small to moderate within
study samples, the GLM approach may be the preferred option as it maintains a
superior coverage for many parameter choices with respect to our chosen models.

Although the simulations conducted were for a linear model with one co-
variate, we did investigate a multiple covariate model based on the example in
Section 3.2. The results of these simulations were very similar to the one covari-
ate case already included and were thus not reported here. A natural extension
to this paper that we are currently pursuing is the random effects model to
which considerations for coverage probability and confidence interval width via
example and simulation will be duly considered.

Appendix A: Proof of Proposition 2.1

Let X ∈ R
K×(p+1) be the design matrix where the kth row of X is xk. Further-

more, let y = [y1, . . . , yK ]⊤ denote the observed transformed effects. Under the
model in (5), we have that Yk ∼ N(µβ(xk), 1/Nk). Then a likelihood function
for β with fixed y and X is, for n = [N1, . . . , NK ]⊤,

L(β;y,X,n) = exp

{
−1

2

K∑

k=1

Nk [yk − µβ(xk)]
2

}

and the corresponding log-likelihood function is

l(β;y,X,n) = ln L(β;y,X,n) = −1

2

K∑

k=1

Nk [yk − µβ(xk)]
2
. (14)

Using the Chain Rule, the first derivative of (14) with respect to β is the vector

∂

∂β
l(β;y,X,n) =

K∑

k=1

Nk [yk − µβ(xk)]
∂

∂β
µβ(xk)

whose ith element is

∂

∂βi
l(β;y,X,n) =

K∑

k=1

Nk [yk − µβ(xk)]
∂

∂βi
µβ(xk).
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It then follows that the Hessian matrix is equal to the (p+ 1)× (p+ 1) matrix

H [l(β;y,X,n)] =

[
−

K∑

k=1

Nk

{
∂µβ(xk)

∂βi
.
∂µβ(xk)

∂βj
− [yk −µβ(xk)]

∂2µβ(xk)

∂βi∂βj

}]

ij

=

[
−

K∑

k=1

Nk

{(
∂µβ(xk)

∂β⊤xk

)2

xkixkj

− [yk − µβ(xk)]
∂2µβ(xk)

∂(β⊤xk)2
xkixkj

}]

ij

=−
K∑

k=1

Nk

{(
∂µβ(xk)

∂β⊤xk

)2

− [yk − µβ(xk)]
∂2µβ(xk)

∂(β⊤xk)2

}
xkx

⊤

k

= X⊤DX

where D is the diagonal matrix with kth diagonal element

Dkk = −Nk

{(
∂µβ(xk)

∂β⊤xk

)2

− [yk − µβ(xk)]
∂2µβ(xk)

∂(β⊤xk)2

}
.
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