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In a smooth semiparametric estimation problem, the marginal posterior
for the parameter of interest is expected to be asymptotically normal and sat-
isfy frequentist criteria of optimality if the model is endowed with a suitable
prior. It is shown that, under certain straightforward and interpretable condi-
tions, the assertion of Le Cam’s acclaimed, but strictly parametric, Bernstein–
von Mises theorem [Univ. California Publ. Statist. 1 (1953) 277–329] holds
in the semiparametric situation as well. As a consequence, Bayesian point-
estimators achieve efficiency, for example, in the sense of Hájek’s convolu-
tion theorem [Z. Wahrsch. Verw. Gebiete 14 (1970) 323–330]. The model is
required to satisfy differentiability and metric entropy conditions, while the
nuisance prior must assign nonzero mass to certain Kullback–Leibler neigh-
borhoods [Ghosal, Ghosh and van der Vaart Ann. Statist. 28 (2000) 500–531].
In addition, the marginal posterior is required to converge at parametric rate,
which appears to be the most stringent condition in examples. The results are
applied to estimation of the linear coefficient in partial linear regression, with
a Gaussian prior on a smoothness class for the nuisance.

1. Introduction. The concept of efficiency has its origin in Fisher’s 1920s
claim of asymptotic optimality of the maximum-likelihood estimator in differen-
tiable parametric models (Fisher [13]). In 1930s and 1940s, Fisher’s ideas on op-
timality in differentiable models were sharpened and elaborated upon (see, e.g.,
Cramér [10]), until Hodges’s 1951 discovery of a superefficient estimator indi-
cated that a comprehensive understanding of optimality in differentiable estimation
problems remained elusive. Further consideration directed attention to the property
of regularity to delimit the class of estimators over which optimality is achieved.
Hájek’s convolution theorem (Hájek [17]) implies that within the class of regular
estimates, asymptotic variance is lower-bounded by the Cramér–Rao bound in the
limit experiment [29]. The asymptotic minimax theorem (Hájek [18]) underlines
the central role of the concept of regularity. An estimator that is optimal among
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regular estimates is called best-regular; in a Hellinger differentiable model, an es-
timator (θ̂n) for θ is best-regular if and only if it is asymptotically linear, that is,
for all θ in the model,

√
n(θ̂n − θ) = 1√

n

n∑
i=1

I−1
θ �̇θ (Xi) + oPθ (1),(1.1)

where �̇θ is the score for θ and Iθ the corresponding Fisher information. To ad-
dress the question of efficiency in smooth parametric models from a Bayesian
perspective, we turn to the Bernstein–von Mises theorem. In the literature many
different versions of the theorem exist, varying both in (stringency of) conditions
and (strength or) form of the assertion. Following Le Cam and Yang [31] (see also
van der Vaart [43]), we state the theorem as follows. (For later reference, define a
prior to be thick at θ0, if it has a Lebesgue density that is continuous and strictly
positive at θ0.)

THEOREM 1.1 (Bernstein–von Mises, parametric). Assume that � ⊂ R
k is

open and that the model P = {Pθ : θ ∈ �} is identifiable and dominated. Suppose
X1,X2, . . . forms an i.i.d. sample from Pθ0 for some θ0 ∈ �. Assume that the model
is locally asymptotically normal at θ0 with nonsingular Fisher information Iθ0 .
Furthermore, suppose that:

(i) the prior �� is thick at θ0;
(ii) for every ε > 0, there exists a test sequence (φn) such that

P n
θ0

φn → 0, sup
‖θ−θ0‖>ε

P n
θ (1 − φn) → 0.

Then the posterior distributions converge in total variation,

sup
B

∣∣�(θ ∈ B | X1, . . . ,Xn) − N
θ̂n,(nIθ0 )−1(B)

∣∣ → 0

in Pθ0 -probability, where (θ̂n) denotes any best-regular estimator sequence.

For a proof, the reader is referred to [31, 43] (or to Kleijn and van der Vaart [26],
for a proof under model misspecification that has a lot in common with the proof
of Theorem 5.1 below).

Neither the frequentist theory on asymptotic optimality nor Theorem 1.1 gen-
eralize fully to nonparametric estimation problems. Examples of the failure of the
Bernstein–von Mises limit in infinite-dimensional problems (with regard to the
full parameter) can be found in Freedman [14]. Freedman initiated a discussion
concerning the merits of Bayesian methods in nonparametric problems as early
as 1963, showing that even with a natural and seemingly innocuous choice of the
nonparametric prior, posterior inconsistency may result [15]. This warning against
instances of inconsistency due to ill-advised nonparametric priors was reiterated
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in the literature many times over, for example, in Cox [9] and in Diaconis and
Freedman [11, 12]. However, general conditions for Bayesian consistency were
formulated by Schwartz as early as 1965 [37]; positive results on posterior rates of
convergence in the same spirit were obtained in Ghosal, Ghosh and van der Vaart
[16] (see also, Shen and Wasserman [40]). The combined message of negative and
positive results appears to be that the choice of a nonparametric prior is a sensitive
one that leaves room for unintended consequences unless due care is taken.

This lesson must also be taken seriously when one asks the question whether
the posterior for the parameter of interest in a semiparametric estimation problem
displays Bernstein–von Mises-type limiting behavior. Like in the parametric case,
we estimate a finite-dimensional parameter θ ∈ �, but now in a model P that also
leaves room for an infinite-dimensional nuisance parameter η ∈ H . We look for
general sufficient conditions on model and prior such that the marginal posterior
for the parameter of interest satisfies

sup
B

∣∣�(√
n(θ − θ0) ∈ B | X1, . . . ,Xn

) − N
	̃n,Ĩ−1

θ0,η0
(B)

∣∣ → 0(1.2)

in Pθ0 -probability, where

	̃n = 1√
n

n∑
i=1

Ĩ−1
θ0,η0

�̃θ0,η0(Xi).(1.3)

Here �̃θ,η denotes the efficient score function and Ĩθ,η the efficient Fisher informa-
tion [assumed to be nonsingular at (θ0, η0)]. The sequence 	̃n also features on the
r.h.s. of the semiparametric version of (1.1) (see Lemma 25.23 in [43]). Assertion
(1.2) often implies efficiency of point-estimators like the posterior median, mode
or mean (a first condition being that the estimate is a functional on R, continuous
in total-variation [24, 43]) and always leads to asymptotic identification of credible
regions with efficient confidence regions. To illustrate, if C is a credible set in �,
(1.2) guarantees that posterior coverage and coverage under the limiting normal
for C are (close to) equal. Because the limiting normals are also the asymptotic
sampling distributions for efficient point-estimators, (1.2) enables interpretation
of credible sets as asymptotically efficient confidence regions. From a practical
point of view, the latter conclusion has an important implication: whereas it can be
hard to compute optimal semiparametric confidence regions directly, simulation
of a large sample from the marginal posterior (e.g., by MCMC techniques; see
Robert [36]) is sometimes comparatively straightforward.

Instances of the Bernstein–von Mises limit have been studied in various semi-
parametric models: several papers have provided studies of asymptotic normality
of posterior distributions for models from survival analysis. Particularly, Kim and
Lee [22] show that the infinite-dimensional posterior for the cumulative hazard
function under right-censoring converges at rate n−1/2 to a Gaussian centered at
the Aalen–Nelson estimator for a class of neutral-to-the-right process priors. In
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Kim [21], the posterior for the baseline cumulative hazard function and regression
coefficients in Cox’s proportional hazard model are considered with similar priors.
Castillo [6] considers marginal posteriors in Cox’s proportional hazards model
and Stein’s symmetric location problem from a unified point of view. A general
approach has been given in Shen [39], but his conditions may prove somewhat
hard to verify in examples. Cheng and Kosorok [8] give a general perspective too,
proving weak convergence of the posterior under sufficient conditions. Rivoirard
and Rousseau [35] prove a version for linear functionals over the model, using a
class of nonparametric priors based on infinite-dimensional exponential families.
Boucheron and Gassiat [4] consider the Bernstein–von Mises theorem for families
of discrete distributions. Johnstone [20] studies various marginal posteriors in the
Gaussian sequence model.

Notation and conventions. The (frequentist) true distribution of the data is de-
noted P0 and assumed to lie in P , so that there exist θ0 ∈ �, η0 ∈ H such that
P0 = Pθ0,η0 . We localize θ by introducing h = √

n(θ − θ0) with inverse θn(h) =
θ0 + n−1/2h. The expectation of a random variable f with respect to a probabil-
ity measure P is denoted Pf ; the sample average of g(X) is denoted Png(X) =
(1/n)

∑n
i=1 g(Xi) and Gng(X) = n1/2(Png(X) − Pg(X)) (for other conventions

and nomenclature customary in empirical process theory, see [45]). If hn is
stochastic, P n

θn(hn),ηf denotes the integral
∫

f (ω)(dP n
θn(hn(ω)),η/dP n

0 )(ω)dP n
0 (ω).

The Hellinger distance between P and P ′ is denoted H(P,P ′) and induces a met-
ric dH on the space of nuisance parameters H by dH (η, η′) = H(Pθ0,η,Pθ0,η

′),
for all η,η′ ∈ H . We endow the model with the Borel σ -algebra generated by the
Hellinger topology and refer to [16] regarding issues of measurability.

2. Main results. Consider estimation of a functional θ :P → R
k on a domi-

nated nonparametric model P with metric g, based on a sample X1,X2, . . . , i.i.d.
according to P0 ∈ P . We introduce a prior � on P and consider the subsequent
sequence of posteriors,

�(A | X1, . . . ,Xn) =
∫
A

n∏
i=1

p(Xi) d�(P )
/∫

P

n∏
i=1

p(Xi) d�(P ),(2.1)

where A is any measurable model subset. Typically, optimal (e.g., minimax) non-
parametric posterior rates of convergence [16] are powers of n (possibly mod-
ified by a slowly varying function) that converge to zero more slowly than the
parametric n−1/2-rate. Estimators for θ may be derived by “plugging in” a non-
parametric estimate [cf. θ̂ = θ(P̂ )], but optimality in rate or asymptotic variance
cannot be expected to obtain generically in this way. This does not preclude ef-
ficient estimation of real-valued aspects of P0: parametrize the model in terms
of a finite-dimensional parameter of interest θ ∈ � and a nuisance parameter
η ∈ H where � is open in R

k and (H,dH ) an infinite-dimensional metric space:
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P = {Pθ,η : θ ∈ �,η ∈ H }. Assuming identifiability, there exist unique θ0 ∈ �,
η0 ∈ H such that P0 = Pθ0,η0 . Assuming measurability of the map (θ, η) �→ Pθ,η,
we place a product prior �� × �H on � × H to define a prior on P . Parametric
rates for the marginal posterior of θ are achievable because it is possible for con-
traction of the full posterior to occur anisotropically, that is, at rate n−1/2 along the
θ -direction, but at a slower, nonparametric rate (ρn) along the η-directions.

2.1. Method of proof. The proof of (1.2) will consist of three steps: in Sec-
tion 3, we show that the posterior concentrates its mass around so-called least-
favorable submodels (see Stein [42] and [1, 43]). In the second step (see Sec-
tion 4), we show that this implies local asymptotic normality (LAN) for integrals
of the likelihood over H , with the efficient score determining the expansion. In
Section 5, it is shown that these LAN integrals induce asymptotic normality of the
marginal posterior, analogous to the way local asymptotic normality of parametric
likelihoods induces the parametric Bernstein–von Mises theorem.

To see why asymptotic accumulation of posterior mass occurs around so-called
least-favorable submodels, a crude argument departs from the observation that, ac-
cording to (2.1), posterior concentration occurs in regions of the model with rela-
tively high (log-)likelihood (barring inhomogeneities of the prior). Asymptotically,
such regions are characterized by close-to-minimal Kullback–Leibler divergence
with respect to P0. To exploit this, let us assume that for each θ in a neighborhood
U0 of θ0, there exists a unique minimizer η∗(θ) of the Kullback–Leibler diver-
gence,

−P0 log
pθ,η∗(θ)

pθ0,η0

= inf
η∈H

(
−P0 log

pθ,η

pθ0,η0

)
(2.2)

giving rise to a submodel P∗ = {P ∗
θ = Pθ,η∗(θ) : θ ∈ U0}. As is well known [38],

if P∗ is smooth it constitutes a least-favorable submodel and scores along P∗ are
efficient. [In subsequent sections it is not required that P∗ is defined by (2.2), only
that P∗ is least-favorable.] Neighborhoods of P∗ are described with Hellinger
balls in H of radius ρ > 0 around η∗(θ), for all θ ∈ U0,

D(θ,ρ) = {η ∈ H :dH (η, η∗(θ)) < ρ}.(2.3)

To give a more precise argument for posterior concentration around η∗(θ), con-
sider the posterior for η, given θ ∈ U0; unless θ happens to be equal to θ0, the sub-
model Pθ = {Pθ,η :η ∈ H } is misspecified. Kleijn and van der Vaart [27] show that
the misspecified posterior concentrates asymptotically in any (Hellinger) neighbor-
hood of the point of minimal Kullback–Leibler divergence with respect to the true
distribution of the data. Applied to Pθ , we see that D(θ,ρ) receives asymptotic
posterior probability one for any ρ > 0. For posterior concentration to occur [16,
27] sufficient prior mass must be present in certain Kullback–Leibler-type neigh-
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borhoods. In the present context, these neighborhoods can be defined as

Kn(ρ,M) =
{
η ∈ H :P0

(
sup

‖h‖≤M

− log
pθn(h),η

pθ0,η0

)
≤ ρ2,

(2.4)

P0

(
sup

‖h‖≤M

− log
pθn(h),η

pθ0,η0

)2

≤ ρ2
}

for ρ > 0 and M > 0. If this type of posterior convergence occurs with an appro-
priate form of uniformity over the relevant values of θ (see “consistency under per-
turbation,” Section 3), one expects that the nonparametric posterior contracts into
Hellinger neighborhoods of the curve θ �→ (θ, η∗(θ)) (Theorem 3.1 and Corol-
lary 3.3).

To introduce the second step, consider (2.1) with A = B × H for some mea-
surable B ⊂ �. Since the prior is of product form, � = �� × �H , the marginal
posterior for the parameter θ ∈ � depends on the nuisance factor only through the
integrated likelihood ratio,

Sn :� → R : θ �→
∫
H

n∏
i=1

pθ,η

pθ0,η0

(Xi) d�H(η),(2.5)

where we have introduced factors pθ0,η0(Xi) in the denominator for later conve-
nience; see (5.1). [The localized version of (2.5) is denoted h �→ sn(h); see (4.1).]
The map Sn is to be viewed in a role similar to that of the profile likelihood in semi-
parametric maximum-likelihood methods (see, e.g., Severini and Wong [38] and
Murphy and van der Vaart [34]), in the sense that Sn embodies the intermediate
stage between nonparametric and semiparametric steps of the estimation proce-
dure.

We impose smoothness through a form of Le Cam’s local asymptotic normal-
ity: let P ∈ P be given, and let t �→ Pt be a one-dimensional submodel of P
such that Pt=0 = P . Specializing to i.i.d. observations, we say that the model is
stochastically LAN at P ∈ P along the direction t �→ Pt , if there exists an L2(P )-
function gP with PgP = 0 such that for all random sequences (hn) bounded in
P -probability,

log
n∏

i=1

pn−1/2hn

p
(Xi) = 1√

n

n∑
i=1

hT
n gP (Xi) − 1

2
hT

n IP hn + oP (1).(2.6)

Here gP is the score-function, and IP = P(gP )2 is the Fisher information of the
submodel at P . Stochastic LAN is slightly stronger than the usual LAN property
[28, 31]. In examples, the proof of the ordinary LAN property often extends to
stochastic LAN without significant difficulties.

Although formally only a convenience, the presentation benefits from an adap-
tive reparametrization (see Section 2.4 of Bickel et al. [1]): based on the least-
favorable submodel η∗, we define, for all θ ∈ U0, η ∈ H ,

(θ, η(θ, ζ )) = (
θ, η∗(θ) + ζ

)
, (θ, ζ(θ, η)) = (

θ, η − η∗(θ)
)
,(2.7)
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and we introduce the notation Qθ,ζ = Pθ,η(θ,ζ ). With ζ = 0, θ �→ Qθ,0 describes
the least-favorable submodel P∗ and with a nonzero value of ζ , θ �→ Qθ,ζ de-
scribes a version thereof, translated over a nuisance direction (see Figure 2). Ex-
pressed in terms of the metric rH (ζ1, ζ2) = H(Qθ0,ζ1,Qθ0,ζ2), the sets D(θ,ρ) are
mapped to open balls B(ρ) = {ζ ∈ H : rH (ζ,0) < ρ} centered at the origin ζ = 0,

{Pθ,η : θ ∈ U0, η ∈ D(θ,ρ)} = {Qθ,ζ : θ ∈ U0, ζ ∈ B(ρ)}.
In the formulation of Theorem 2.1, we make use of a domination condition based
on the quantities

Un(ρ,h) = sup
ζ∈B(ρ)

Qn
θ0,ζ

(
n∏

i=1

qθn(h),ζ

qθ0,ζ

(Xi)

)

for all ρ > 0 and h ∈ R
k . Below, it is required that there exists a sequence (ρn)

with ρn ↓ 0, nρ2
n → ∞, such that, for every bounded, stochastic sequence (hn),

U(ρn,hn) = O(1) (where the expectation concerns the stochastic dependence of
hn as well; see Notation and conventions). For a single, fixed ζ , the requirement
says that the likelihood ratio remains integrable when we replace θn(hn) by the
maximum-likelihood estimator θ̂n(X1, . . . ,Xn). Lemma 4.3 demonstrates that or-
dinary differentiability of the likelihood-ratio with respect to h, combined with a
uniform upper bound on certain Fisher information coefficients, suffices to satisfy
U(ρn,hn) = O(1) for all bounded, stochastic (hn) and every ρn ↓ 0.

The second step of the proof can now be summarized as follows: assuming
stochastic LAN of the model, contraction of the nuisance posterior as in Figure 1
and said domination condition are enough to turn LAN expansions for the inte-
grand in (2.5) into a single LAN expansion for Sn. The latter is determined by
the efficient score, because the locus of posterior concentration, P∗, is a least-
favorable submodel (see Theorem 4.2).

The third step is based on two observations: first, in a semiparametric problem,
the integrals Sn appear in the expression for the marginal posterior in exactly the
same way as parametric likelihood ratios appear in the posterior for parametric
problems. Second, the parametric Bernstein–von Mises proof depends on likeli-
hood ratios only through the LAN property. As a consequence, local asymptotic
normality for Sn offers the possibility to apply Le Cam’s proof of posterior asymp-
totic normality in semiparametric context. If, in addition, we impose contraction
at parametric rate for the marginal posterior, the LAN expansion of Sn leads to
the conclusion that the marginal posterior satisfies the Bernstein–von Mises asser-
tion (1.2); see Theorem 5.1.

2.2. Main theorem. Before we state the main result of this paper, general con-
ditions imposed on models and priors are formulated:
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FIG. 1. A neighborhood of (θ0, η0). Shown are the least-favorable curve {(θ, η∗(θ)) : θ ∈ U0} and
(for fixed θ and ρ > 0) the neighborhood D(θ,ρ) of η∗(θ). The sets D(θ,ρ) are expected to capture
(θ -conditional) posterior mass one asymptotically, for all ρ > 0 and θ ∈ U0.

FIG. 2. A neighborhood of (θ0, η0). Curved lines represent sets {(θ, ζ ) : θ ∈ U0} for fixed ζ . The
curve through ζ = 0 parametrizes the least-favorable submodel. Vertical dashed lines delimit regions
such that ‖θ − θ0‖ ≤ n−1/2. Also indicated are directions along which the likelihood is expanded,
with score functions gζ .
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(i) Model assumptions. Throughout the remainder of this article, P is assumed
to be well specified and dominated by a σ -finite measure on the sample space and
parametrized identifiably on �×H , with � ⊂ R

k open and H a subset of a metric
vector-space with metric dH . Smoothness of the model is required but mentioned
explicitly throughout. We also assume that there exists an open neighborhood U0 ⊂
� of θ0 on which a least-favorable submodel η∗ :U0 → H is defined.

(ii) Prior assumptions. With regard to the prior � we follow the product struc-
ture of the parametrization of P , by endowing the parameterspace � × H with a
product-prior �� × �H defined on a σ -field that includes the Borel σ -field gen-
erated by the product-topology. Also, it is assumed that the prior �� is thick at θ0.

With the above general considerations for model and prior in mind, we formulate
the main result of this paper.

THEOREM 2.1 (Semiparametric Bernstein–von Mises). Let X1,X2, . . . be
distributed i.i.d.-P0, with P0 ∈ P , and let �� be thick at θ0. Suppose that for large
enough n, the map h �→ sn(h) is continuous P n

0 -almost-surely. Also assume that
θ �→ Qθ,ζ is stochastically LAN in the θ -direction, for all ζ in an rH -neighborhood
of ζ = 0 and that the efficient Fisher information Ĩθ0.η0 is nonsingular. Further-
more, assume that there exists a sequence (ρn) with ρn ↓ 0, nρ2

n → ∞ such that:

(i) For all M > 0, there exists a K > 0 such that, for large enough n,

�H(Kn(ρn,M)) ≥ e−Knρ2
n .

(ii) For all n large enough, the Hellinger metric entropy satisfies

N(ρn,H,dH ) ≤ enρ2
n

and, for every bounded, stochastic (hn).
(iii) The model satisfies the domination condition,

Un(ρn,hn) = O(1).(2.8)

(iv) For all L > 0, Hellinger distances satisfy the uniform bound,

sup
{η∈H : dH (η,η0)≥Lρn}

H(Pθn(hn),η,Pθ0,η)

H(Pθ0,η,P0)
= o(1).

Finally, suppose that
(v) for every (Mn), Mn → ∞, the posterior satisfies

�n(‖h‖ ≤ Mn | X1, . . . ,Xn)
P0−→ 1.

Then the sequence of marginal posteriors for θ converges in total variation to a
normal distribution,

sup
A

∣∣�n(h ∈ A | X1, . . . ,Xn) − N
	̃n,Ĩ−1

θ0,η0
(A)

∣∣ P0−→ 0,(2.9)

centered on 	̃n with covariance matrix Ĩ−1
θ0,η0

.
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PROOF. The assertion follows from combination of Theorem 3.1, Corol-
lary 3.3, Theorems 4.2 and 5.1. �

Let us briefly discuss some aspects of the conditions of Theorem 2.1. First, con-
sider the required existence of a least-favorable submodel in P . In many semi-
parametric problems, the efficient score function is not a proper score in the sense
that it corresponds to a smooth submodel; instead, the efficient score lies in the
L2-closure of the set of all proper scores. So there exist sequences of so-called
approximately least-favorable submodels whose scores converge to the efficient
score in L2 [43]. Using such approximations of P∗, our proof will entail extra
conditions, but there is no reason to expect problems of an overly restrictive na-
ture. It may therefore be hoped that the result remains largely unchanged if we
turn (2.7) into a sequence of reparametrizations based on suitably chosen approxi-
mately least-favorable submodels.

Second, consider the rate (ρn), which must be slow enough to satisfy condi-
tion (iv) and is fixed at (or above) the minimax Hellinger rate for estimation of
the nuisance with known θ0 by condition (ii), while satisfying (i) and (iii) as well.
Conditions (i) and (ii) also arise when considering Hellinger rates for nonparamet-
ric posterior convergence and the methods of Ghosal et al. [16] can be applied in
the present context with minor modifications. In addition, Lemma 4.3 shows that
in a wide class of semiparametric models, condition (iii) is satisfied for any rate
sequence (ρn). Typically, the numerator in condition (iv) is of order O(n−1/2), so
that condition (iv) holds true for any ρn such that nρ2

n → ∞. The above enables
a rate-free version of the semiparametric Bernstein–von Mises theorem (Corol-
lary 5.2), in which conditions (i) and (ii) above are weakened to become compa-
rable to those of Schwartz [37] for nonparametric posterior consistency. Applica-
bility of Corollary 5.2 is demonstrated in Section 7, where the linear coefficient in
the partial linear regression model is estimated.

Third, consider condition (v) of Theorem 2.1: though it is necessary [as it fol-
lows from (2.9)], it is hard to formulate straightforward sufficient conditions to sat-
isfy (v) in generality. Moreover, condition (v) involves the nuisance prior and, as
such, imposes another condition on �H besides (i). To lessen its influence on �H ,
constructions in Section 6 either work for all nuisance priors (see Lemma 6.1) or
require only consistency of the nuisance posterior (see Theorem 6.2). The latter
is based on the limiting behavior of posteriors in misspecified parametric models
[24, 26] and allows for the tentative but general observation that a bias [cf. (6.6)]
may ruin n−1/2-consistency of the marginal posterior, especially if the rate (ρn) is
sub-optimal. In the example of Section 7, the “hard work” stems from condition
(v) of Theorem 2.1: α > 1/2 Hölder smoothness and boundedness of the family of
regression functions in Corollary 7.2 are imposed in order to satisfy this condition.
Since conditions (i) and (ii) appear quite reasonable and conditions (iii) and (iv) are
satisfied relatively easily, condition (v) should be viewed as the most complicated
in an essential way.
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To conclude, consistency under perturbation (with appropriate rate) is one of
the sufficient conditions, but it is by no means clear in how far it should also hold
with necessity. One expects that in some situations where consistency under per-
turbation fails to hold fully, integral local asymptotic normality (see Section 4) is
still satisfied in a weaker form. In particular, it is possible that (4.2) holds with a
less-than-efficient score and Fisher information, a result that would have an inter-
pretation analogous to suboptimality in Hájek’s convolution theorem. What hap-
pens in cases where integral LAN fails more comprehensively is both interesting
and completely mysterious from the point of view taken in this article.

3. Posterior convergence under perturbation. In this section, we consider
contraction of the posterior around least-favorable submodels. We express this
form of posterior convergence by showing that (under suitable conditions) the con-
ditional posterior for the nuisance parameter contracts around the least-favorable
submodel, conditioned on a sequence θn(hn) for the parameter of interest with
hn = OPo(1). We view the sequence of models Pθn(hn) as a random perturbation of
the model Pθ0 and generalize Ghosal et al. [16] to describe posterior contraction.
Ultimately, random perturbation of θ represents the “appropriate form of unifor-
mity” referred to just after definition (2.4). Given a rate sequence (ρn), ρn ↓ 0, we
say that the conditioned nuisance posterior is consistent under n−1/2-perturbation
at rate ρn, if

�n

(
Dc(θ, ρn) | θ = θ0 + n−1/2hn;X1, . . . ,Xn

) P0−→ 0(3.1)

for all bounded, stochastic sequences (hn).

THEOREM 3.1 (Posterior rate of convergence under perturbation). Assume
that there exists a sequence (ρn) with ρn ↓ 0, nρ2

n → ∞ such that for all M > 0
and every bounded, stochastic (hn):

(i) There exists a constant K > 0 such that for large enough n,

�H(Kn(ρn,M)) ≥ e−Knρ2
n .(3.2)

(ii) For L > 0 large enough, there exist (φn) such that for large enough n,

P n
0 φn → 0, sup

η∈Dc(θ0,Lρn)

P n
θn(hn),η(1 − φn) ≤ e−L2nρ2

n/4.(3.3)

(iii) The least-favorable submodel satisfies dH (η∗(θn(hn)), η0) = o(ρn).

Then, for every bounded, stochastic (hn) there exists an L > 0 such that the con-
ditional nuisance posterior converges as

�
(
Dc(θ,Lρn) | θ = θ0 + n−1/2hn;X1, . . . ,Xn

) = oP0(1)(3.4)

under n−1/2-perturbation.



THE SEMIPARAMETRIC BERNSTEIN–VON MISES THEOREM 217

PROOF. Let (hn) be a stochastic sequence bounded by M , and let 0 <

C < 1 be given. Let K and (ρn) be as in conditions (i) and (ii). Choose L >

4
√

1 + K + C and large enough to satisfy condition (ii) for some (φn). By Lem-
ma 3.4, the events

An =
{∫

H

n∏
i=1

pθn(hn),η

pθ0,η0

(Xi) d�H(η) ≥ e−(1+C)nρ2
n�H(Kn(ρn,M))

}

satisfy P n
0 (Ac

n) → 0. Using also the first limit in (3.3), we then derive

P n
0 �

(
Dc(θ,Lρn) | θ = θn(hn);X1, . . . ,Xn

)
≤ P n

0 �
(
Dc(θ,Lρn) | θ = θn(hn);X1, . . . ,Xn

)
1An(1 − φn) + o(1)

[even with random (hn), the posterior �(·|θ = θn(hn);X1, . . . ,Xn) ≤ 1, by defi-
nition (2.1)]. The first term on the r.h.s. can be bounded further by the definition of
the events An,

P n
0 �

(
Dc(θ,Lρn) | θ = θn;X1, . . . ,Xn

)
1An(1 − φn)

≤ e(1+C)nρ2
n

�H(Kn(ρn,M))
P n

0

(∫
Dc(θn(hn),Lρn)

n∏
i=1

pθn(hn),η

pθ0,η0

(Xi)(1 − φn)d�H

)
.

Due to condition (iii) it follows that

D

(
θ0,

1

2
Lρn

)
⊂ ⋂

n≥1

D(θn(hn),Lρn)(3.5)

for large enough n. Therefore,

P n
0

∫
Dc(θn(hn),Lρn)

n∏
i=1

pθn(hn),η

pθ0,η0

(Xi)(1 − φn)d�H(η)

(3.6)
≤

∫
Dc(θ0,Lρn/2)

P n
θn(hn),η(1 − φn)d�H(η).

Upon substitution of (3.6) and with the use of the second bound in (3.3) and (3.2),
the choice we made earlier for L proves the assertion. �

We conclude from the above that besides sufficiency of prior mass, the crucial
condition for consistency under perturbation is the existence of a test sequence
(φn) satisfying (3.3). To find sufficient conditions, we follow a construction of tests
based on the Hellinger geometry of the model, generalizing the approach of Birgé
[2, 3] and Le Cam [30] to n−1/2-perturbed context. It is easiest to illustrate their
approach by considering the problem of testing/estimating η when θ0 is known: we
cover the nuisance model {Pθ0,η :η ∈ H } by a minimal collection of Hellinger balls
B of radii (ρn), each of which is convex and hence testable against P0 with power
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bounded by exp(−1
4nH 2(P0,B)), based on the minimax theorem [30]. The tests

for the covering Hellinger balls are combined into a single test for the nonconvex
alternative {P :H(P,P0) ≥ ρn} against P0. The order of the cover controls the
power of the combined test. Therefore the construction requires an upper bound to
Hellinger metric entropy numbers [45]

N(ρn,Pθ0,H) ≤ enρ2
n ,(3.7)

which is interpreted as indicative of the nuisance model’s complexity in the sense
that the lower bound to the collection of rates (ρn) solving (3.7) is the Hellinger
minimax rate for estimation of η0. In the n−1/2-perturbed problem, the alternative
does not just consist of the complement of a Hellinger-ball in the nuisance fac-
tor H , but also has an extent in the θ -direction shrinking at rate n−1/2. Condition
(3.8) below guarantees that Hellinger covers of H like the above are large enough
to accommodate the θ -extent of the alternative, the implication being that the test
sequence one constructs for the nuisance in case θ0 is known, can also be used
when θ0 is known only up to n−1/2-perturbation. Therefore, the entropy bound in
Lemma 3.2 is (3.7). Geometrically, (3.8) requires that n−1/2-perturbed versions of
the nuisance model are contained in a narrowing sequence of metric cones based
at P0. In differentiable models, the Hellinger distance H(Pθn(hn),η,Pθ0,η) is typ-
ically of order O(n−1/2) for all η ∈ H . So if, in addition, nρ2

n → ∞, limit (3.8)
is expected to hold pointwise in η. Then only the uniform character of (3.8) truly
forms a condition.

LEMMA 3.2 (Testing under perturbation). If (ρn) satisfies ρn ↓ 0, nρ2
n → ∞

and the following requirements are met:

(i) For all n large enough, N(ρn,H,dH ) ≤ enρ2
n .

(ii) For all L > 0 and all bounded, stochastic (hn),

sup
{η∈H : dH (η,η0)≥Lρn}

H(Pθn(hn),η,Pθ0,η)

H(Pθ0,η,P0)
= o(1).(3.8)

Then for all L ≥ 4, there exists a test sequence (φn) such that for all bounded,
stochastic (hn),

P n
0 φn → 0, sup

η∈Dc(θ0,Lρn)

P n
θn(hn),η(1 − φn) ≤ e−L2nρ2

n/4(3.9)

for large enough n.

PROOF. Let (ρn) be such that (i) and (ii) are satisfied. Let (hn) and L ≥ 4 be
given. For all j ≥ 1, define Hj,n = {η ∈ H : jLρn ≤ dH (η0, η) ≤ (j + 1)Lρn} and
Pj,n = {Pθ0,η :η ∈ Hj,n}. Cover Pj,n with Hellinger balls Bi,j,n(

1
4jLρn), where

Bi,j,n(r) = {P :H(Pi,j,n,P ) ≤ r}
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and Pi.j.n ∈ Pj,n, that is, there exists an ηi,j,n ∈ Hj,n such that Pi,j,n = Pθ0,ηi,j,n
.

Denote Hi,j,n = {η ∈ Hj,n :Pθ0,η ∈ Bi,j,n(
1
4jLρn)}. By assumption, the minimal

number of such balls needed to cover Pi,j is finite; we denote the corresponding
covering number by Nj,n, that is, 1 ≤ i ≤ Nj,n.

Let η ∈ Hj,n be given. There exists an i (1 ≤ i ≤ Nj,n) such that dH (η, ηi,j,n) ≤
1
4jLρn. Then, by the triangle inequality, the definition of Hj,n and assumption
(3.8),

H
(
Pθn(hn),η,Pθ0,ηi,j,n

)
≤ H

(
Pθn(hn),η,Pθ0,η

) + H(Pθ0,η,Pθ0,ηi,j,n
)

≤ H(Pθn(hn),η,Pθ0,η)

H(Pθ0,η,P0)
H(Pθ0,η,P0) + 1

4
jLρn(3.10)

≤
(

sup
{η∈H : dH (η,η0)≥Lρn}

H(Pθn(hn),η,Pθ0,η)

H(Pθ0,η,P0)

)
(j + 1)Lρn + 1

4
jLρn

≤ 1

2
jLρn

for large enough n. We conclude that there exists an N ≥ 1 such that for all n ≥ N ,
j ≥ 1, 1 ≤ i ≤ Nj,n, η ∈ Hi,j,n, Pθn(hn),η ∈ Bi,j,n(

1
2jLρn). Moreover, Hellinger

balls are convex and for all P ∈ Bi,j,n(
1
2jLρn), H(P,P0) ≥ 1

2jLρn. As a conse-
quence of the minimax theorem (see Le Cam [30], Birgé [2, 3]), there exists a test
sequence (φi,j,n)n≥1 such that

P n
0 φi,j,n ∨ sup

P

P n(1 − φi,j,n) ≤ e−nH 2(Bi,j,n(jLρn/2),P0) ≤ e−nj2L2ρ2
n/4,

where the supremum runs over all P ∈ Bi,j,n(
1
2jLρn). Defining, for all n ≥ 1,

φn = supj≥1 max1≤i≤Nj,n
φi,j,n, we find (for details, see the proof of Theorem 3.10

in [24]) that

P n
0 φn ≤ ∑

j≥1

Nj,ne
−L2j2nρ2

n/4, P n(1 − φn) ≤ e−L2nρ2
n/4(3.11)

for all P = Pθn(hn),η and η ∈ Dc(θ0,Lρn). Since L ≥ 4, we have for all j ≥ 1,

Nj,n = N
(1

4Ljρn,Pj,n,H
) ≤ N

(1
4Ljρn,P,H

)
(3.12)

≤ N(ρn,P,H) ≤ enρ2
n

by assumption (3.7). Upon substitution of (3.12) into (3.11), we obtain the follow-
ing bounds:

P n
0 φn ≤ e(1−L2/4)nρ2

n

1 − e−L2nρ2
n/4

, sup
η∈Dc(θ0,Lρn)

P n
θn(hn),η(1 − φn) ≤ e−L2nρ2

n/4
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for large enough n, which implies assertion (3.9). �

In preparation of Corollary 5.2, we also provide a version of Theorem 3.1
that only asserts consistency under n−1/2-perturbation at some rate while relax-
ing bounds for prior mass and entropy. In the statement of the corollary, we make
use of the family of Kullback–Leibler neighborhoods that would play a role for the
posterior of the nuisance if θ0 were known [16].

K(ρ) =
{
η ∈ H :−P0 log

pθ0,η

pθ0,η0

≤ ρ2,P0

(
log

pθ0,η

pθ0,η0

)2

≤ ρ2
}

(3.13)

for all ρ > 0. The proof below follows steps similar to those in the proof of Corol-
lary 2.1 in [27].

COROLLARY 3.3 (Posterior consistency under perturbation). Assume that for
all ρ > 0, N(ρ,H,dH ) < ∞, �H(K(ρ)) > 0 and:

(i) For all M > 0 there is an L > 0 such that for all ρ > 0 and large enough
n, K(ρ) ⊂ Kn(Lρ,M).

(ii) For every bounded random sequence (hn), supη∈H H(Pθn(hn),η,Pθ0,η) and
H(Pθ0,η

∗(θn(hn)),Pθ0,η0) are of order O(n−1/2).

Then there exists a sequence (ρn), ρn ↓ 0, nρ2
n → ∞, such that the conditional

nuisance posterior converges under n−1/2-perturbation at rate (ρn).

PROOF. We follow the proof of Corollary 2.1 in Kleijn and van der Vaart [27]
and add that, under condition (ii), (3.8) and condition (iii) of Theorem 3.1 are
satisfied. We conclude that there exists a test sequence satisfying (3.3). Then the
assertion of Theorem 3.1 holds. �

The following lemma generalizes Lemma 8.1 in Ghosal et al. [16] to the n−1/2-
perturbed setting.

LEMMA 3.4. Let (hn) be stochastic and bounded by some M > 0. Then

P n
0

(∫
H

n∏
i=1

pθn(hn),η

pθ0,η0

(Xi) d�H(η) < e−(1+C)nρ2
�H(Kn(ρ,M))

)

(3.14)

≤ 1

C2nρ2

for all C > 0, ρ > 0 and n ≥ 1.

PROOF. See the proof of Lemma 8.1 in Ghosal et al. [16] (dominating the hn-
dependent log-likelihood ratio immediately after the first application of Jensen’s
inequality). �
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4. Integrating local asymptotic normality. The smoothness condition in the
Le Cam’s parametric Bernstein–von Mises theorem is a LAN expansion of the
likelihood, which is replaced in semiparametric context by a stochastic LAN ex-
pansion of the integrated likelihood (2.5). In this section, we consider sufficient
conditions under which the localized integrated likelihood

sn(h) =
∫
H

n∏
i=1

pθ0+n−1/2h,η

pθ0,η0

(Xi) d�H(η)(4.1)

has the integral LAN property; that is, sn allows an expansion of the form

log
sn(hn)

sn(0)
= 1√

n

∞∑
i=1

hT
n �̃θ0,η0 − 1

2
hT

n Ĩθ0,η0hn + oP0(1)(4.2)

for every random sequence (hn) ⊂ R
k of order OP0(1), as required in Theorem 5.1.

Theorem 4.2 assumes that the model is stochastically LAN and requires consis-
tency under n−1/2-perturbation for the nuisance posterior. Consistency not only
allows us to restrict sufficient conditions to neighborhoods of η0 in H , but also
enables lifting of the LAN expansion of the integrand in (4.1) to an expansion of
the integral sn itself; cf. (4.2). The posterior concentrates on the least-favorable
submodel so that only the least-favorable expansion at η0 contributes to (4.2)
asymptotically. For this reason, the intergral LAN expansion is determined by the
efficient score function (and not some other influence function). Ultimately, oc-
currence of the efficient score lends the marginal posterior (and statistics based
upon it) properties of frequentist semiparametric optimality.

To derive Theorem 4.2, we reparametrize the model; cf. (2.7). While yielding
adaptivity, this reparametrization also leads to θ -dependence in the prior for ζ ,
a technical issue that we tackle before addressing the main point of this sec-
tion. We show that the prior mass of the relevant neighborhoods displays the
appropriate type of stability, under a condition on local behavior of Hellinger
distances in the least-favorable model. For smooth least-favorable submodels, typ-
ically dH (η∗(θn(hn)), η0) = O(n−1/2) for all bounded, stochastic (hn), which suf-
fices.

LEMMA 4.1 (Prior stability). Let (hn) be a bounded, stochastic sequence
of perturbations, and let �H be any prior on H . Let (ρn) be such that
dH (η∗(θn(hn)), η0) = o(ρn). Then the prior mass of radius-ρn neighborhoods of
η∗ is stable, that is,

�H(D(θn(hn), ρn)) = �H(D(θ0, ρn)) + o(1).(4.3)

PROOF. Let (hn) and (ρn) be such that dH (η∗(θn(hn)), η0) = o(ρn). Denote
D(θn(hn), ρn) by Dn and D(θ0, ρn) by Cn for all n ≥ 1. Since

|�H(Dn) − �H(Cn)| ≤ �H

(
(Dn ∪ Cn) \ (Dn ∩ Cn)

)
,
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we consider the sequence of symmetric differences. Fix some 0 < α < 1.
Then for all η ∈ Dn and all n large enough, dH (η, η0) ≤ dH (η, η∗(θn(hn))) +
dH (η∗(θn(hn)), η0) ≤ (1 + α)ρn, so that Dn ∪ Cn ⊂ D(θ0, (1 + α)ρn). Further-
more, for large enough n and any η ∈ D(θ0, (1 − α)ρn), dH (η, η∗(θn(hn))) ≤
dH (η, η0) + dH (η0, η

∗(θn(hn))) ≤ ρn + dH (η0, η
∗(θn(hn))) − αρn < ρn, so that

D(θ0, (1 − α)ρn) ⊂ Dn ∩ Cn. Therefore,

(Dn ∪ Cn) \ (Dn ∩ Cn) ⊂ D
(
θ0, (1 + α)ρn

) \ D
(
θ0, (1 − α)ρn

) → ∅,

which implies (4.3). �

Once stability of the nuisance prior is established, Theorem 4.2 hinges on
stochastic local asymptotic normality of the submodels t �→ Qθ0+t,ζ , for all ζ in
an rH -neighborhood of ζ = 0. We assume there exists a gζ ∈ L2(Qθ0,ζ ) such that
for every random (hn) bounded in Qθ0,ζ -probability,

log
n∏

i=1

qθ+n−1/2hn,ζ

qθ0,0
(Xi) = 1√

n

n∑
i=1

hT
n gζ (Xi) − 1

2
hT

n Iζ hn + Rn(hn, ζ ),(4.4)

where Iζ = Qθ0,ζ gζ g
T
ζ and Rn(hn, ζ ) = oQθ0,ζ (1). Equation (4.4) specifies the

(minimal) tangent set (van der Vaart [43], Section 25.4) with respect to which
differentiability of the model is required. Note that g0 = �̃θ0,η0 .

THEOREM 4.2 (Integral local asymptotic normality). Suppose that θ �→ Qθ,ζ

is stochastically LAN for all ζ in an rH -neighborhood of ζ = 0. Furthermore,
assume that posterior consistency under n−1/2-perturbation obtains with a rate
(ρn) also valid in (2.8). Then the integral LAN-expansion (4.2) holds.

PROOF. Throughout this proof Gn(h, ζ ) = √
nhT

Pngζ − 1
2hT Iζ h, for all h

and all ζ . Furthermore, we abbreviate θn(hn) to θn and omit explicit notation for
(X1, . . . ,Xn)-dependence in several places.

Let δ, ε > 0 be given, and let θn = θ0 + n−1/2hn with (hn) bounded in P0-
probability. Then there exists a constant M > 0 such that P n

0 (‖hn‖ > M) < 1
2δ

for all n ≥ 1. With (hn) bounded, the assumption of consistency under n−1/2-
perturbation says that

P n
0

(
log�

(
D(θ,ρn) | θ = θn;X1, . . . ,Xn

) ≥ −ε
)
> 1 − 1

2δ

for large enough n. This implies that the posterior’s numerator and denominator
are related through

P n
0

(∫
H

n∏
i=1

pθn,η

pθ0,η0

(Xi) d�H(η)

(4.5)

≤ eε1{‖hn‖≤M}
∫
D(θn,ρn)

n∏
i=1

pθn,η

pθ0,η0

(Xi) d�H(η)

)
> 1 − δ.
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We continue with the integral over D(θn,ρn) under the restriction ‖hn‖ ≤ M and
parametrize the model locally in terms of (θ, ζ ) [see (2.7)]

∫
D(θn,ρn)

n∏
i=1

pθn,η

pθ0,η0

(Xi) d�H(η) =
∫
B(ρn)

n∏
i=1

qθn,ζ

qθ0,0
(Xi) d�(ζ | θ = θn),(4.6)

where �(·|θ) denotes the prior for ζ given θ , that is, �H translated over η∗(θ).
Next we note that by Fubini’s theorem and the domination condition (2.8), there
exists a constant L > 0 such that∣∣∣∣∣P n

0

∫
B(ρn)

n∏
i=1

qθn,ζ

qθ0,0
(Xi)

(
d�(ζ | θ = θn) − d�(ζ | θ = θ0)

)∣∣∣∣∣
≤ L

∣∣�(
B(ρn) | θ = θn

) − �
(
B(ρn) | θ = θ0

)∣∣
for large enough n. Since the least-favorable submodel is stochastically LAN,
Lemma 4.1 asserts that the difference on the r.h.s. of the above display is o(1),
so that ∫

B(ρn)

n∏
i=1

qθn,ζ

qθ0,0
(Xi) d�(ζ | θ = θn)

(4.7)

=
∫
B(ρn)

n∏
i=1

qθn,ζ

qθ0,0
(Xi) d�(ζ ) + oP0(1),

where we use the notation �(A) = �(ζ ∈ A|θ = θ0) for brevity. We define for all
ζ , ε > 0, n ≥ 1 the events Fn(ζ, ε) = {suph |Gn(h, ζ )−Gn(h,0)| ≤ ε}. With (2.8)
as a domination condition, Fatou’s lemma and the fact that Fc

n (0, ε) = ∅ lead to

lim sup
n→∞

∫
B(ρn)

Qn
θn,ζ (F

c
n (ζ, ε)) d�(ζ )

(4.8)
≤

∫
lim sup
n→∞

1B(ρn)\{0}(ζ )Qn
θn,ζ (F

c
n (ζ, ε)) d�(ζ ) = 0

[again using (2.8) in the last step]. Combined with Fubini’s theorem, this suffices
to conclude that∫

B(ρn)

n∏
i=1

qθn,ζ

qθ0,0
(Xi) d�(ζ ) =

∫
B(ρn)

n∏
i=1

qθn,ζ

qθ0,0
(Xi)1Fn(ζ,ε) d�(ζ ) + oP0(1),(4.9)

and we continue with the first term on the right-hand side. By stochastic local
asymptotic normality for every ζ , expansion (4.4) of the log-likelihood implies
that

n∏
i=1

qθn,ζ

qθ0,0
(Xi) =

n∏
i=1

qθ0,ζ

qθ0,0
(Xi)e

Gn(hn,ζ )+Rn(hn,ζ ),(4.10)
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where the rest term is of order oQθ0,ζ (1). Accordingly, we define, for every ζ , the

events An(ζ, ε) = {|Rn(hn, ζ )| ≤ 1
2ε}, so that Qn

θ0,ζ
(Ac

n(ζ, ε)) → 0. Contiguity
then implies that Qn

θn,ζ (A
c
n(ζ, ε)) → 0 as well. Reasoning as in (4.9) we see that

∫
B(ρn)

n∏
i=1

qθn,ζ

qθ0,0
(Xi)1Fn(ζ,ε) d�(ζ )

(4.11)

=
∫
B(ρn)

n∏
i=1

qθn,ζ

qθ0,0
(Xi)1An(ζ,ε)∩Fn(ζ,ε) d�(ζ ) + oP0(1).

For fixed n and ζ and for all (X1, . . . ,Xn) ∈ An(ζ, ε) ∩ Fn(ζ, ε),∣∣∣∣∣log
n∏

i=1

qθn,ζ

qθ0,0
(Xi) − Gn(hn,0)

∣∣∣∣∣ ≤ 2ε,

so that the first term on the right-hand side of (4.11) satisfies the bounds

eGn(hn,0)−2ε
∫
B(ρn)

n∏
i=1

qθ0,ζ

qθ0,0
(Xi)1An(ζ,ε)∩Fn(ζ,ε) d�(ζ )

≤
∫
B(ρn)

n∏
i=1

qθn,ζ

qθ0,0
(Xi)1An(ζ,ε)∩Fn(ζ,ε) d�(ζ )(4.12)

≤ eGn(hn,0)+2ε
∫
B(ρn)

n∏
i=1

qθ0,ζ

qθ0,0
(Xi)1An(ζ,ε)∩Fn(ζ,ε) d�(ζ ).

The integral factored into lower and upper bounds can be relieved of the indica-
tor for An ∩ Fn by reversing the argument that led to (4.9) and (4.11) (with θ0
replacing θn), at the expense of an eoP0 (1)-factor. Substituting in (4.12) and using,
consecutively, (4.11), (4.9), (4.7) and (4.5) for the bounded integral, we find

eGn(hn,0)−3ε+oP0 (1)sn(0) ≤ sn(hn) ≤ eGn(hn,0)+3ε+oP0 (1)sn(0).

Since this holds with arbitrarily small 0 < ε′ < ε for large enough n, it proves (4.2).
�

With regard to the nuisance rate (ρn), we first note that our proof of Theorem 2.1
fails if the slowest rate required to satisfy (2.8) vanishes faster then the optimal rate
for convergence under n−1/2-perturbation [as determined in (3.7) and (3.2)].

However, the rate (ρn) does not appear in assertion (4.2), so if said contradic-
tion between conditions (2.8) and (3.7)/(3.2) do not occur, the sequence (ρn) can
remain entirely internal to the proof of Theorem 4.2. More particularly, if con-
dition (2.8) holds for any (ρn) such that nρ2

n → ∞, integral LAN only requires
consistency under n−1/2-perturbation at some such (ρn). In that case, we may ap-
peal to Corollary 3.3 instead of Theorem 3.1, thus relaxing conditions on model
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entropy and nuisance prior. The following lemma shows that a first-order Taylor
expansion of likelihood ratios combined with a boundedness condition on certain
Fisher information coefficients is enough to enable use of Corollary 3.3 instead of
Theorem 3.1.

LEMMA 4.3. Let � be one-dimensional. Assume that there exists a ρ > 0
such that for every ζ ∈ B(ρ) and all x in the samplespace, the map θ �→
log(qθ,ζ /qθ0,ζ )(x) is continuously differentiable on [θ0 −ρ, θ0 +ρ] with Lebesgue-
integrable derivative gθ,ζ (x) such that

sup
ζ∈B(ρ)

sup
{θ : |θ−θ0|<ρ}

Qθ,ζ g
2
θ,ζ < ∞.(4.13)

Then, for every ρn ↓ 0 and all bounded, stochastic (hn), Un(ρn,hn) = O(1).

PROOF. Let (hn) be stochastic and upper-bounded by M > 0. For every ζ and
all n ≥ 1,

Qn
θ0,ζ

∣∣∣∣∣
n∏

i=1

qθn(hn),ζ

qθ0,ζ

(Xi) − 1

∣∣∣∣∣ = Qn
θ0,ζ

∣∣∣∣∣
∫ θn(hn)

θ0

n∑
i=1

gθ ′,ζ (Xi)

n∏
j=1

qθ ′,ζ
qθ0,ζ

(Xj ) dθ ′
∣∣∣∣∣

≤
∫ θ0+M/

√
n

θ0−M/
√

n
Qn

θ ′,ζ

∣∣∣∣∣
n∑

i=1

gθ ′,ζ (Xi)

∣∣∣∣∣dθ ′

≤ √
n

∫ θ0+M/
√

n

θ0−M/
√

n

√
Qθ ′,ζ g2

θ ′,ζ dθ ′,

where the last step follows from the Cauchy–Schwarz inequality. For large enough
n, ρn < ρ and the square-root of (4.13) dominates the difference between U(ρ,hn)

and 1. �

5. Posterior asymptotic normality. Under the assumptions formulated be-
fore Theorem 2.1, the marginal posterior density πn(·|X1, . . . ,Xn) :� → R for
the parameter of interest with respect to the prior �� equals

πn(θ |X1, . . . ,Xn) = Sn(θ)
/∫

�
Sn(θ

′) d��(θ ′),(5.1)

P n
0 -almost-surely. One notes that this form is equal to that of a parametric pos-

terior density, but with the parametric likelihood replaced by the integrated like-
lihood Sn. By implication, the proof of the parametric Bernstein–von Mises the-
orem can be applied to its semiparametric generalization, if we impose sufficient
conditions for the parametric likelihood on Sn instead. Concretely, we replace the
smoothness requirement for the likelihood in Theorem 1.1 by (4.2). Together with
a condition expressing marginal posterior convergence at parametric rate, (4.2) is
sufficient to derive asymptotic normality of the posterior; cf. (1.2).
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THEOREM 5.1 (Posterior asymptotic normality). Let � be open in R
k with a

prior �� that is thick at θ0. Suppose that for large enough n, the map h �→ sn(h)

is continuous P n
0 -almost-surely. Assume that there exists an L2(P0)-function �̃θ0,η0

such that for every (hn) that is bounded in probability, (4.2) holds, P0�̃θ0,η0 = 0
and Ĩθ0,η0 is nonsingular. Furthermore suppose that for every (Mn), Mn → ∞, we
have

�n(‖h‖ ≤ Mn | X1, . . . ,Xn)
P0−→ 1.(5.2)

Then the sequence of marginal posteriors for θ converges to a normal distribution
in total variation,

sup
A

∣∣�n(h ∈ A | X1, . . . ,Xn) − N
	̃n,Ĩ−1

θ0,η0
(A)

∣∣ P0−→ 0,

centered on 	̃n with covariance matrix Ĩ−1
θ0,η0

.

PROOF. The proof is identical to that of Theorem 2.1 in [26] upon replacement
of parametric likelihoods with integrated likelihoods. �

There is room for relaxation of the requirements on model entropy and minimal
prior mass, if the limit (2.8) holds in a fixed neighborhood of η0. The following
corollary applies whenever (2.8) holds for any rate (ρn). The simplifications are
such that the entropy and prior mass conditions become comparable to those for
Schwartz’s posterior consistency theorem [37], rather than those for posterior rates
of convergence following Ghosal, Ghosh and van der Vaart [16].

COROLLARY 5.2 (Semiparametric Bernstein–von Mises, rate-free). Let X1,
X2, . . . be i.i.d.-P0, with P0 ∈ P , and let �� be thick at θ0. Suppose that for large
enough n, the map h �→ sn(h) is continuous P n

0 -almost-surely. Also assume that
θ �→ Qθ,ζ is stochastically LAN in the θ -direction, for all ζ in an rH -neighborhood
of ζ = 0 and that the efficient Fisher information Ĩθ0.η0 is nonsingular. Further-
more, assume that:

(i) For all ρ > 0, the Hellinger metric entropy satisfies, N(ρ,H,dH ) < ∞
and the nuisance prior satisfies �H(K(ρ)) > 0.

(ii) For every M > 0, there exists an L > 0 such that for all ρ > 0 and large
enough n, K(ρ) ⊂ Kn(Lρ,M).

Assume also that for every bounded, stochastic (hn):
(iii) There exists an r > 0 such that, Un(r, hn) = O(1).
(iv) Hellinger distances satisfy, supη∈H H(Pθn(hn),η,Pθ0,η) = O(n−1/2),
and that
(v) For every (Mn), Mn → ∞, the posterior satisfies,

�n(‖h‖ ≤ Mn | X1, . . . ,Xn)
P0−→ 1.
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Then the sequence of marginal posteriors for θ converges in total variation to a
normal distribution,

sup
A

∣∣�n(h ∈ A | X1, . . . ,Xn) − N
	̃n,Ĩ−1

θ0,η0
(A)

∣∣ P0−→ 0,

centered on 	̃n with covariance matrix Ĩ−1
θ0,η0

.

PROOF. Under conditions (i), (ii), (iv) and the stochastic LAN assumption, the
assertion of Corollary 3.3 holds. Due to condition (iii), condition (2.8) is satisfied
for large enough n. Condition (v) then suffices for the assertion of Theorem 5.1.

�

A critical note can be made regarding the qualification “rate-free” of Corol-
lary 5.2: although the nuisance rate does not make an explicit appearance, rate
restrictions may arise upon further analysis of condition (v). Indeed this is the case
in the example of Section 7, where smoothness requirements on the regression
family are interpretable as restrictions on the nuisance rate. However, semipara-
metric models exist, in which no restrictions on nuisance rates arise in this way: if
H is a convex subspace of a linear space, and the dependence η �→ Pθ,η is linear
(a so-called convex-linear model, e.g., mixture models, errors-in-variables regres-
sion and other information-loss models), the construction of suitable tests (cf. Le
Cam [30], Birgé [2, 3]) does not involve Hellinger metric entropy numbers or re-
strictions on nuisance rates of convergence. Consequently there exists a class of
semiparametric examples for which Corollary 5.2 stays rate-free even after further
analysis of its condition (v).

As shown in [26], the particular form of the limiting posterior in Theorem 5.1 is
a consequence of local asymptotic normality, in this case imposed through (4.2).
The marginal posterior converges exactly to the asymptotic sampling distribution
of a frequentist best-regular estimator as a consequence. Other expansions (e.g., in
LAN models for non-i.i.d. data or under the condition of local asymptotic expo-
nentiality (Ibragimov and Has’minskii [19])) can be dealt with in the same manner
if we adapt the limiting form of the posterior accordingly, giving rise to other (e.g.,
one-sided exponential) limit distributions (see Kleijn and Knapik [25]).

6. Marginal posterior convergence at parametric rate. Condition (5.2) in
Theorem 5.1 requires that the posterior measures of a sequence of model subsets
of the form

�n × H = {
(θ, η) ∈ � × H :

√
n‖θ − θ0‖ ≤ Mn

}
(6.1)

converge to one in P0-probability, for every sequence (Mn) such that Mn → ∞.
Essentially, this condition enables us to restrict the proof of Theorem 5.1 to the
shrinking domain in which (4.2) applies. In this section, we consider two distinct
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approaches: the first (Lemma 6.1) is based on bounded likelihood ratios (see also
condition (B3) of Theorem 8.2 in Lehmann and Casella [32]). The second is based
on the behavior of misspecified parametric posteriors (Theorem 6.2). The latter
construction illustrates the intricacy of this section’s subject most clearly and pro-
vides some general insight. Methods proposed here are neither compelling nor
exhaustive; we simply put forth several possible approaches and demonstrate the
usefulness of one of them in Section 7.

LEMMA 6.1 [Marginal parametric rate (I)]. Let the sequence of maps θ �→
Sn(θ) be P0-almost-surely continuous and such that (4.2) is satisfied. Furthermore,
assume that there exists a constant C > 0 such that for any (Mn), Mn → ∞,

P n
0

(
sup
η∈H

sup
θ∈�c

n

Pn log
pθ,η

pθ0,η

≤ −CM2
n

n

)
→ 1.(6.2)

Then, for any nuisance prior �H and parametric prior ��, thick at θ0,

�(n1/2‖θ − θ0‖ > Mn | X1, . . . ,Xn)
P0−→ 0(6.3)

for any (Mn), Mn → ∞.

PROOF. Let (Mn), Mn → ∞ be given. Define (An) to be the events in (6.2)
so that P n

0 (Ac
n) = o(1) by assumption. In addition, let

Bn =
{∫

�
Sn(θ) d��(θ) ≥ e−CM2

n/2Sn(θ0)

}
.

By (4.2) and Lemma 6.3, P n
0 (Bc

n) = o(1) as well. Then

P n
0 �(θ ∈ �c

n | X1, . . . ,Xn)

≤ P n
0 �(θ ∈ �c

n | X1, . . . ,Xn)1An∩Bn + o(1)

≤ eCM2
n/2P n

0

(
Sn(θ0)

−1
∫
H

∫
�c

n

n∏
i=1

pθ,η

pθ0,η

(Xi)

n∏
i=1

pθ0,η

pθ0,η0

(Xi) d�� d�H 1An

)

+ o(1)

= o(1),

which proves (6.3). �

Although applicable directly in the model of Section 7, most other examples
would require variations. Particularly, if the full, nonparametric posterior is known
to concentrate on a sequence of model subsets (Vn), then Lemma 6.1 can be pre-
ceded by a decomposition of � × H over Vn and V c

n , reducing condition (6.2) to
a supremum over V c

n (see Section 2.4 in Kleijn [24] and the discussion following
the following theorem).
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Our second approach assumes such concentration of the posterior on model
subsets, for example, deriving from nonparametric consistency in a suitable form.
Though the proof of Theorem 6.2 is rather straightforward, combination with re-
sults in misspecified parametric models [26] leads to the observation that marginal
parametric rates of convergence can be ruined by a bias.

THEOREM 6.2 [Marginal parametric rate (II)]. Let �� and �H be given. As-
sume that there exists a sequence (Hn) of subsets of H , such that the following two
conditions hold:

(i) The nuisance posterior concentrates on Hn asymptotically,

�(η ∈ H \ Hn | X1, . . . ,Xn)
P0−→ 0.(6.4)

(ii) For every (Mn), Mn → ∞,

P n
0 sup

η∈Hn

�(n1/2‖θ − θ0‖ > Mn | η,X1, . . . ,Xn) → 0.(6.5)

Then the marginal posterior for θ concentrates at parametric rate, that is,

�(n1/2‖θ − θ0‖ > Mn | η,X1, . . . ,Xn)
P0−→ 0

for every sequence (Mn), Mn → ∞.

PROOF. Let (Mn), Mn → ∞ be given, and consider the posterior for the com-
plement of (6.1). By assumption (i) of the theorem and Fubini’s theorem,

P n
0 �(θ ∈ �c

n | X1, . . . ,Xn)

≤ P n
0

∫
Hn

�(θ ∈ �c
n | η,X1, . . . ,Xn) d�(η | X1, . . . ,Xn) + o(1)

≤ P n
0 sup

η∈Hn

�(n1/2‖θ − θ0‖ > Mn | η,X1, . . . ,Xn) + o(1),

the first term of which is o(1) by assumption (ii) of the theorem. �

Condition (ii) of Theorem 6.2 has an interpretation in terms of misspecified
parametric models (Kleijn and van der Vaart [26] and Kleijn [24]). For fixed η ∈ H ,
the η-conditioned posterior on the parametric model Pη = {Pθ,η : θ ∈ �} is re-
quired to concentrate in n−1/2-neighborhoods of θ0 under P0. However, this mis-
specified posterior concentrates around �∗(η) ⊂ �, the set of points in � where
the Kullback–Leibler divergence of Pθ,η with respect to P0, is minimal. Assuming
that �∗(η) consists of a unique minimizer θ∗(η), the dependence of the Kullback–
Leibler divergence on η must be such that

sup
η∈Hn

‖θ∗(η) − θ0‖ = o(n−1/2)(6.6)
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in order for posterior concentration to occur on the strips (6.1). In other words,
minimal Kullback–Leibler divergence may bias the (points of convergence of)
η-conditioned parametric posteriors to such an extent that consistency of the
marginal posterior for θ is ruined.

The occurrence of this bias is a property of the semiparametric model rather than
a peculiarity of the Bayesian approach: when (point-)estimating with solutions to
score equations, for example, the same bias occurs (see, e.g., Theorem 25.59 in
[43] and subsequent discussion). Frequentist literature also offers some guidance
toward mitigation of this circumstance. First of all, it is noted that the bias in-
dicates the existence of a better (i.e., bias-less) choice of parametrization to ask
the relevant semiparametric question. If the parametrization is fixed, alternative
point-estimation methods may resolve bias, for example, through replacement of
score equations by general estimating equations (see, e.g., Section 25.9 in [43]),
loosely equivalent to introducing a suitable penalty in a likelihood maximization
procedure.

For a so-called curve-alignment model with Gaussian prior, the no-bias prob-
lem has been addressed and resolved in a fully Bayesian manner by Castillo [5]:
like a penalty in an ML procedure, Castillo’s (rather subtle choice of) prior guides
the procedure away from the biased directions and produces Bernstein–von Mises
efficiency of the marginal posterior. A most interesting question concerns general-
ization of Castillo’s intricate construction to more general Bayesian context.

Recalling definitions (2.5) and (4.1), we conclude this section with a lemma
used in the proof of Lemma 6.1 to lower-bound the denominator of the marginal
posterior.

LEMMA 6.3. Let the sequence of maps θ �→ Sn(θ) be P0-almost-surely con-
tinuous and such that (4.2) is satisfied. Assume that �� is thick at θ0 and denoted
by �n in the local parametrization in terms of h. Then

P n
0

(∫
sn(h) d�n(h) < ansn(0)

)
→ 0(6.7)

for every sequence (an), an ↓ 0.

PROOF. Let M > 0 be given, and define C = {h :‖h‖ ≤ M}. Denote the rest-
term in (4.2) by h �→ Rn(h). By continuity of θ �→ Sn(θ), suph∈C |Rn(h)| con-
verges to zero in P0-probability. If we choose a sequence (κn) that converges to
zero slowly enough, the corresponding events Bn = {supC |Rn(h)| ≤ κn}, satisfy
P n

0 (Bn) → 1. Next, let (Kn), Kn → ∞ be given. There exists a π > 0 such that
infh∈C d�n/dμ(h) ≥ π , for large enough n. Combining, we find

P n
0

(∫
sn(h)

sn(0)
d�n(h) ≤ e−K2

n

)
(6.8)

≤ P n
0

({∫
C

sn(h)

sn(0)
dμ(h) ≤ π−1e−K2

n

}
∩ Bn

)
+ o(1).
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On Bn, the integral LAN expansion is lower bounded so that, for large enough n,

P n
0

({∫
C

sn(h)

sn(0)
dμ(h) ≤ π−1e−K2

n

}
∩ Bn

)
(6.9)

≤ P n
0

(∫
C

ehT Gn�̃θ0,η0 dμ(h) ≤ π−1e−K2
n/4

)

since κn ≤ 1
2K2

n and suph∈C |hT Ĩθ0,η0h| ≤ M2‖Ĩθ0,η0‖ ≤ 1
4K2

n , for large enough n.
Conditioning μ on C, we apply Jensen’s inequality to note that, for large enough n,

P n
0

(∫
C

ehT
Gn�̃θ0,η0 dμ(h) ≤ π−1e−K2

n/4
)

≤ P n
0

(∫
hT

Gn�̃θ0,η0 dμ(h|C) ≤ −1

8
K2

n

)

since −logπμ(C) ≤ 1
8K2

n , for large enough n. The probability on the right is
bounded further by Chebyshev’s and Jensen’s inequalities and can be shown to
be of order O(K−4

n ). Combining with (6.8) and (6.9) then proves (6.7). �

7. Semiparametric regression. The partial linear regression model de-
scribes the observation of an i.i.d. sample X1,X2, . . . of triplets Xi = (Ui,Vi, Yi) ∈
R

3, each assumed to be related through the regression equation

Y = θ0U + η0(V ) + e,(7.1)

where e ∼ N(0,1) is independent of (U,V ). Interpreting η0 as a nuisance param-
eter, we wish to estimate θ0. It is assumed that (U,V ) has an unknown distribu-
tion P , Lebesgue absolutely continuous with density p : R2 → R. The distribution
P is assumed to be such that PU = 0, PU2 = 1 and PU4 < ∞. At a later stage,
we also impose P(U − E[U |V ])2 > 0 and a smoothness condition on the condi-
tional expectation v �→ E[U |V = v].

As is well known [1, 7, 33, 43], penalized ML estimation in a smoothness class
of regression functions leads to a consistent estimate of the nuisance and efficient
point-estimation of the parameter of interest. The necessity of a penalty signals
that the choice of a prior for the nuisance is a critical one. Kimeldorf and Wahba
[23] assume that the regression function lies in the Sobolev space Hk[0,1] (see
[44] for definition), and define the nuisance prior through the Gaussian process

η(t) =
k∑

i=0

Zi

ti

i! + (I k
0+W)(t),(7.2)

where W = {Wt : t ∈ [0,1]} is Brownian motion on [0,1], (Z0, . . . ,Zk) form a
W -independent, N(0,1)-i.i.d. sample and I k

0+ denotes (I 1
0+f )(t) = ∫ t

0 f (s) ds or

I i+1
0+ f = I 1

0+I i
0+f for all i ≥ 1. The prior process η is zero-mean Gaussian of

(Hölder-)smoothness k + 1/2 and the resulting posterior mean for η concentrates
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asymptotically on the smoothing spline that solves the penalized ML problem
[39, 46]. MCMC simulations based on Gaussian priors have been carried out by
Shively, Kohn and Wood [41].

Here, we reiterate the question of how frequentist sufficient conditions are ex-
pressed in a Bayesian analysis based on Corollary 5.2. We show that with a nui-
sance of known (Hölder-)smoothness greater than 1/2, the process (7.2) provides a
prior such that the marginal posterior for θ satisfies the Bernstein–von Mises limit.
To facilitate the analysis, we think of the regression function and the process (7.2)
as elements of the Banach space (C[0,1],‖ · ‖∞). At a later stage, we relate to
Banach subspaces with stronger norms to complete the argument.

THEOREM 7.1. Let X1,X2, . . . be an i.i.d. sample from the partial linear
model (7.1) with P0 = Pθ0,η0 for some θ0 ∈ �, η0 ∈ H . Assume that H is a subset of
C[0,1] of finite metric entropy with respect to the uniform norm and that H forms
a P0-Donsker class. Regarding the distribution of (U,V ), suppose that PU = 0,
PU2 = 1 and PU4 < ∞, as well as P(U −E[U |V ])2 > 0, P(U −E[U |V ])4 < ∞
and v �→ E[U |V = v] ∈ H . Endow � with a prior that is thick at θ0 and C[0,1]
with a prior �H such that H ⊂ supp(�H). Then the marginal posterior for θ

satisfies the Bernstein–von Mises limit,

sup
B∈B

∣∣�(√
n(θ − θ0) ∈ B | X1, . . . ,Xn

) − N
	̃n,Ĩ−1

θ0,f0
(B)

∣∣ P0−→ 0,(7.3)

where �̃θ0,η0(X) = e(U − E[U |V ]) and Ĩθ0,η0 = P(U − E[U |V ])2.

PROOF. For any θ and η, −Pθ0,η0 log(pθ,η/pθ0,η0) = 1
2Pθ0,η0((θ − θ0)U +

(η − η0)(V ))2, so that for fixed θ , minimal KL-divergence over H obtains at
η∗(θ) = η0 − (θ − θ0)E[U |V ], P -almost-surely. For fixed ζ , the submodel θ �→
Qθ,ζ satisfies

log
n∏

i=1

pθ0+n−1/2hn,η∗(θ0+n−1/2hn)+ζ

pθ0,η0+ζ

(Xi)

= hn√
n

n∑
i=1

gζ (Xi) − 1

2
hn

2Pθ0,η0+ζ gζ
2(7.4)

+ 1

2
hn

2(Pn − P)(U − E[U |V ])2

for all stochastic (hn), with gζ (X) = e(U − E[U |V ]), e = Y − θ0U − (η0 +
ζ )(V ) ∼ N(0,1) under Pθ0,η0+ζ . Since PU2 < ∞, the last term on the right
is oPθ0,η0+ζ (1) if (hn) is bounded in probability. We conclude that θ �→ Qθ,ζ is
stochastically LAN. In addition, (7.4) shows that h �→ sn(h) is continuous for ev-
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ery n ≥ 1. By assumption, Ĩθ0,η0 = P0g0
2 = P(U − E[U |V ])2 is strictly positive.

We also observe at this stage that H is totally bounded in C[0,1], so that there
exists a constant D > 0 such that ‖H‖∞ ≤ D.

For any x ∈ R
3 and all ζ , the map θ �→ logqθ,ζ /qθ0,ζ (x) is continuously dif-

ferentiable on all of �, with score gθ,ζ (X) = e(U − E[U |V ]) + (θ − θ0)(U −
E[U |V ])2. Since Qθ,ζ g

2
θ,ζ = P(U − E[U |V ])2 + (θ − θ0)

2P(U − E[U |V ])4 does
not depend on ζ and is bounded over θ ∈ [θ0 − ρ, θ0 + ρ], Lemma 4.3 says that
U(ρn,hn) = O(1) for all ρn ↓ 0 and all bounded, stochastic (hn). So for this
model, we can apply the rate-free version of the semiparametric Bernstein–von
Mises theorem, Corollary 5.2, and its condition (iii) is satisfied.

Regarding condition (ii) of Corollary 5.2, we first note that, for M > 0, n ≥ 1,
η ∈ H ,

sup
‖h‖≤M

− log
pθn(h),η

pθ0,η0

= M2

2n
U2 + M√

n

∣∣U (
e − (η − η0)(V )

)∣∣

− e(η − η0)(V ) + 1

2
(η − η0)

2(V ),

where e ∼ N(0,1) under Pθ0,η0 . With the help of the boundedness of H , the inde-
pendence of e and (U,V ) and the assumptions on the distribution of (U,V ), it is
then verified that condition (ii) of Corollary 5.2 holds. Turning to condition (i), it
is noted that for all η1, η2 ∈ H , dH (η1, η2) ≤ −Pθ0,η2 log(pθ0,η1/pθ0,η2) = 1

2‖η1 −
η2‖2

2,P ≤ 1
2‖η1 − η2‖2∞. Hence, for any ρ > 0, N(ρ,Pθ0, dH ) ≤ N((2ρ)1/2,H ,

‖ · ‖∞) < ∞. Similarly, one shows that for all η both −P0 log(pθ0,η/pθ0,η0) and
P0(log(pθ0,η/pθ0,η0))

2 are bounded by (1
2 +D2)‖η−η0‖2∞. Hence, for any ρ > 0,

K(ρ) contains a ‖ · ‖∞-ball. Since η0 ∈ supp(�H), we see that condition (i) of
Corollary 5.2 holds. Noting that (pθn(h),η/pθ0,η(X))1/2 = exp((h/2

√
n)eU − (h2/

4n)U2), one derives the η-independent upper bound,

H 2(
Pθn(hn),η,Pθ0,η

) ≤ M2

2n
PU2 + M3

6n2 PU4 = O(n−1)

for all bounded, stochastic (hn), so that condition (iv) of Corollary 5.2 holds.
Concerning condition (v), let (Mn), Mn → ∞ be given and define �n as

in Section 6. Rewrite supη∈H supθ∈�c
n
Pn log(pθ,η/pθ0,η) = supθ∈�c

n
((θ − θ0) ×

(supζ PnZW) − 1
2(θ − θ0)

2
PnW

2), where Z = e0 − ζ(V ), W = U − E[U |V ].
The maximum-likelihood estimate θ̂n for θ is therefore of the form θ̂n = θ0 + Rn,
where Rn = supζ PnZW/PnW

2. Note that P0ZW = 0 and that H is assumed to
be P0-Donsker, so that supζ GnZW is asymptotically tight. Since, in addition,
PnW

2 → P0W
2 almost surely and the limit is strictly positive by assumption,
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P n
0 (

√
n|Rn| > 1

4Mn) = o(1). Hence,

P n
0

(
sup
η∈H

sup
θ∈�c

n

Pn log
pθ,η

pθ0,η

> −CM2
n

n

)

≤ P n
0

(
sup
θ∈�c

n

(
1

4
|θ − θ0| Mn

n1/2 − 1

2
(θ − θ0)

2
)

PnW
2 > −CM2

n

n

)
+ o(1)

≤ P n
0 (PnW

2 < 4C) + o(1).

Since P0W
2 > 0, there exists a C > 0 small enough such that the first term on

the right-hand side is of order o(1) as well, which shows that condition (6.2) is
satisfied. Lemma 6.1 asserts that condition (v) of Corollary 5.2 is met as well.
Assertion 7.3 now holds. �

In the following corollary we choose a prior by picking a suitable k in (7.2) and
conditioning on ‖η‖α < M . The resulting prior is shown to be well defined below
and is denoted �k

α,M .

COROLLARY 7.2. Let α > 1/2 and M > 0 be given; choose H = {η ∈
Cα[0,1] :‖η‖α < M} and assume that η0 ∈ Cα[0,1]. Suppose the distribution of
the covariates (U,V ) is as in Theorem 7.1. Then, for any integer k > α − 1/2, the
conditioned prior �k

α,M is well defined and gives rise to a marginal posterior for
θ satisfying (7.3).

PROOF. Choose k as indicated; the Gaussian distribution of η over C[0,1]
is based on the RKHS Hk+1[0,1] and denoted �k . Since η in (7.2) has smooth-
ness k + 1/2 > α, �k(η ∈ Cα[0,1]) = 1. Hence, one may also view η as a Gaus-
sian element in the Hölder class Cα[0,1], which forms a separable Banach space
even with strengthened norm ‖ · ‖ = ‖η‖∞ + ‖ · ‖α , without changing the RKHS.
The trivial embedding of Cα[0,1] into C[0,1] is one-to-one and continuous, en-
abling identification of the prior induced by η on Cα[0,1] with the prior �k on
C[0,1]. Given η0 ∈ Cα[0,1] and a sufficiently smooth kernel φσ with bandwidth
σ > 0, consider φσ � η0 ∈ Hk+1[0,1]. Since ‖η0 − φσ � η0‖∞ is of order σα ,
and a similar bound exists for the α-norm of the difference [44], η0 lies in the
closure of the RKHS both with respect to ‖ · ‖∞ and to ‖ · ‖. Particularly, η0
lies in the support of �k , in Cα[0,1] with norm ‖ · ‖. Hence, ‖ · ‖-balls centered
on η0 receive nonzero prior mass, that is, �k(‖η − η0‖ < ρ) > 0 for all ρ > 0.
Therefore, �k(‖η − η0‖∞ < ρ,‖η‖α < ‖η0‖α + ρ) > 0, which guarantees that
�k(‖η − η0‖∞ < ρ,‖η‖α < M) > 0, for small enough ρ > 0. This implies that
�k(‖η‖α < M) > 0, and

�k
α,M(B) = �k(B | ‖η‖α < M)
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is well defined for all Borel-measurable B ⊂ C[0,1]. Moreover, it follows that
�k

α,M(‖η − η0‖∞ < ρ) > 0 for all ρ > 0. We conclude that k times integrated
Brownian motion started at random, conditioned to be bounded by M in α-norm,
gives rise to a prior that satisfies supp(�k

α,M) = H . As is well-known [45], the en-
tropy numbers of H with respect to the uniform norm satisfy, for every ρ > 0,
N(ρ,H,‖ · ‖∞) ≤ Kρ−1/α , for some constant K > 0 that depends only on α

and M . The associated bound on the bracketing entropy gives rise to finite brack-
eting integrals, so that H universally Donsker. Then, if the distribution of the co-
variates (U,V ) is as assumed in Theorem 7.1, the Bernstein–von Mises limit (7.3)
holds. �
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