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COMPUTATIONAL APPROACHES FOR EMPIRICAL BAYES
METHODS AND BAYESIAN SENSITIVITY ANALYSIS

BY EUGENIA BUTA AND HANI DOSS1

Yale University and University of Florida

We consider situations in Bayesian analysis where we have a family of
priors νh on the parameter θ , where h varies continuously over a space H, and
we deal with two related problems. The first involves sensitivity analysis and
is stated as follows. Suppose we fix a function f of θ . How do we efficiently
estimate the posterior expectation of f (θ) simultaneously for all h in H? The
second problem is how do we identify subsets of H which give rise to rea-
sonable choices of νh? We assume that we are able to generate Markov chain
samples from the posterior for a finite number of the priors, and we develop a
methodology, based on a combination of importance sampling and the use of
control variates, for dealing with these two problems. The methodology ap-
plies very generally, and we show how it applies in particular to a commonly
used model for variable selection in Bayesian linear regression, and give an
illustration on the US crime data of Vandaele.

1. Introduction. In the Bayesian paradigm we have a data vector Y with den-
sity pθ for some unknown θ ∈ �, and we wish to put a prior density on θ . The
available family of prior densities is {νh,h ∈ H}, where h is called a hyperparam-
eter. Typically, the hyperparameter is multivariate and choosing it can be difficult.
But this choice is very important and can have a large impact on subsequent infer-
ence. There are two issues we wish to consider:

(A) Suppose we fix a quantity of interest, say, f (θ), where f is a function.
How do we assess how the posterior expectation of f (θ) changes as we vary h?
More generally, how do we assess changes in the posterior distribution of f (θ) as
we vary h?

(B) How do we determine if a given subset of H constitutes a class of reason-
able choices?

The first issue is one of sensitivity analysis and the second is one of model selec-
tion.

As an example of the kind of problem we wish to deal with, consider the prob-
lem of variable selection in Bayesian linear regression. Here, we have a response
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variable Y and a set of predictors X1, . . . ,Xq , each a vector of length m. For every
subset γ of {1, . . . , q} we have a potential model Mγ given by

Y = 1mβ0 + Xγ βγ + ε,

where 1m is the vector of m 1’s, Xγ is the design matrix whose columns consist
of the predictor vectors corresponding to the subset γ , βγ is the vector of coeffi-
cients for that subset, and ε ∼ Nm(0, σ 2I ). Let qγ denote the number of variables
in the subset γ . The unknown parameter is θ = (γ, σ,β0, βγ ), which includes the
indicator of the subset of variables that go into the linear model. A very com-
monly used prior distribution on θ is given by a hierarchy in which we first choose
the indicator γ from the “independence Bernoulli prior”—each variable goes into
the model with a certain probability w, independently of all the other variables—
and then choose the vector of regression coefficients corresponding to the selected
variables. In more detail, the model is described as follows:

Y ∼ Nm(1mβ0 + Xγ βγ ,σ 2I ),(1.1a)

(σ 2, β0) ∼ p(σ 2, β0) ∝ 1/σ 2;
(1.1b)

given σ,βγ ∼ Nqγ (0, gσ 2(X′
γ Xγ )−1),

γ ∼ wqγ (1 − w)q−qγ .(1.1c)

The prior on (σ,β0, βγ ) is Zellner’s g-prior introduced in Zellner (1986), and is
indexed by a hyperparameter g. Although this prior is improper, the resulting pos-
terior distribution is proper.

Note that we have used the word “model” in two different ways: (i) a model is
a specification of the hyperparameter h, and (ii) a model in regression is a list of
variables to include. The meaning of the word will always be clear from context.

To summarize, the prior on the parameter θ = (γ, σ,β0, βγ ) is given by the two-
level hierarchy (1.1c) and (1.1b), and is indexed by h = (w,g). Loosely speaking,
when w is large and g is small, the prior encourages models with many variables
and small coefficients, whereas when w is small and g is large, the prior con-
centrates its mass on parsimonious models with large coefficients. Therefore, the
hyperparameter h = (w,g) plays a very important role, and in effect determines
the model that will be used to carry out variable selection.

A standard method for approaching model selection involves the use of Bayes
factors. For each h ∈ H, let mh(y) denote the marginal likelihood of the data un-
der the prior νh, that is, mh(y) = ∫

pθ(y)νh(θ) dθ . We will write mh instead of
mh(y). The Bayes factor of the model indexed by h2 vs. the model indexed by h1
is defined as the ratio of the marginal likelihoods of the data under the two models,
mh2/mh1 , and is denoted throughout by B(h2, h1). Bayes factors are widely used
as a criterion for comparing models in Bayesian analyses. For selecting models
that are better than others from the family of models indexed by h ∈ H, our strat-
egy will be to compute and subsequently compare all the Bayes factors B(h,h1),
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for all h ∈ H, and a fixed hyperparameter value h1. We could then consider as good
candidate models those with values of h that result in the largest Bayes factors.

Suppose now that we fix a particular function f of the parameter θ ; for in-
stance, in the example, this might be the indicator that variable 1 is included in the
regression model. It is of general interest to determine the posterior expectation
Eh(f (θ) | Y) as a function of h and to determine whether or not Eh(f (θ) | Y) is
very sensitive to the value of h. If it is not, then two individuals using two different
hyperparameters will reach approximately the same conclusions and the analysis
will not be controversial. On the other hand, if for a function of interest the pos-
terior expectation varies considerably as we change the hyperparameter, then we
will want to know which aspects of the hyperparameter (e.g., which components
of h) produce big changes and we may want to see a plot of the posterior expecta-
tions as we vary those aspects of the hyperparameter. Except for extremely simple
cases, posterior expectations cannot be obtained in closed form, and are typically
estimated via Markov chain Monte Carlo (MCMC). It is slow and inefficient to
run Markov chains for every hyperparameter value h. Section 2 reviews an exist-
ing method for estimating Eh(f (θ) | Y) that bypasses the need to run a separate
Markov chain for every h. The method has an analogue for the problem of esti-
mating Bayes factors. Unfortunately, the method has severe limitations, which we
also discuss.

In this paper we address the sensitivity analysis and model selection issues dis-
cussed above. Our approach involves running Markov chains corresponding to
a few values of the hyperparameter, say, h1, . . . , hk , and using these to estimate
Eh(f (θ) | Y) for all h ∈ H and also the Bayes factors B(h,h1) for all h ∈ H. The
difficulty we face is that there is a severe computational burden caused by the re-
quirement that we handle a very large number of values of h. Our approach for
estimating large families of posterior expectations and Bayes factors is based on a
combination of MCMC, importance sampling, and the use of control variates. The
main contribution of this work is the development of theory to support the method.
This theory can be used when dealing with implementation issues. The paper is
organized as follows. In Section 2 we describe our methodology for estimating
Bayes factors and posterior expectations, and give statements of theoretical results
associated with the methodology. In Section 3 we discuss estimation of the vari-
ance and implementation issues. In Section 4 we return to the problem of variable
selection in Bayesian linear regression, and show how our methodology applies in
that model. The Appendix gives proofs of the theorems stated in the paper.

The idea of doing importance sampling using data streams from multiple den-
sities has been investigated in several papers before. In Vardi (1985), Gill, Vardi
and Wellner (1988), Geyer (1994), Meng and Wong (1996), Kong et al. (2003) and
Tan (2004), it is assumed that we have samples from each density and that each
density is known except for a normalizing constant. The objective is to estimate
all possible ratios of normalizing constants, and expectations of a given function
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with respect to each of the densities. The estimates in all these papers are iden-
tical, although the computational schemes to obtain them given in these papers
are different. Gill, Vardi and Wellner (1988) and Tan (2004) obtain the asymptotic
distribution of the estimates when the samples are i.i.d., and Geyer (1994) gives
the asymptotic distribution when the samples are Markov chains satisfying certain
regularity conditions.

Our Bayesian framework is the same as the framework described above. Let
νh,y denote the posterior density of θ given Y = y when the prior is νh. The poste-
rior densities νhj ,y are given by νhj ,y(θ) = pθ(y)νhj

(θ)/mhj
, where the functional

form pθ(y)νhj
(θ) is known, but the normalizing constant mhj

is not. Our perspec-
tive is different from that of the previous authors in that we are interested in esti-
mation of the ratios mh/mh1 and of posterior expectations

∫
f (θ)νh,y(θ) dθ for a

very large number of h’s. Consequently, in addition to the obvious computational
demands for handling many h’s, we also have to deal with the fact that we will
not have a sample from νh,y for every h ∈ H, but only from νhj ,y, j = 1, . . . , k.
Thus, we are concerned with computational efficiency, in addition to statistical
efficiency. These issues are discussed in detail in Section 2.

2. Estimation of Bayes factors and posterior expectations. Suppose that
we have a sample θ1, . . . , θn (i.i.d. or ergodic Markov chain output) from the pos-
terior density νh1,y for a fixed h1 and we are interested in the posterior expectation

Eh

(
f (θ) | Y = y

) =
∫

f (θ)
νh,y(θ)

νh1,y(θ)
νh1,y(θ) dθ(2.1)

for different values of h. Using the fact that∫
pθ(y)νh(θ)/mh

pθ(y)νh1(θ)/mh1

νh1,y(θ) dθ = 1,

we see that this expectation may be written as∫
f (θ)

pθ (y)νh(θ)/mh

pθ(y)νh1(θ)/mh1

νh1,y(θ) dθ =
∫

f (θ)(νh(θ)/νh1(θ))νh1,y(θ) dθ∫
(νh(θ)/νh1(θ))νh1,y(θ) dθ

,(2.2)

where the right-hand side of (2.2) does not involve the ratio mh/mh1 . The idea
to express

∫
f (θ)νh,y(θ) dθ in this way was proposed in a different context by

Hastings (1970). The right-hand side of (2.2) is the ratio of two integrals with
respect to νh1,y , each of which may be estimated from the sequence θ1, . . . , θn. We
may estimate the numerator and the denominator by

1

n

n∑
i=1

f (θi)[νh(θi)/νh1(θi)] and
1

n

n∑
i=1

[νh(θi)/νh1(θi)],(2.3)

respectively, and
∫

f (θ)νh,y(θ) dθ is estimated by the ratio of these two quantities.
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The disappearance of the likelihood function on the right-hand side of (2.2)
is very convenient because its computation requires considerable effort in some
cases (e.g., when we have missing or censored data, the likelihood is a possibly
high-dimensional integral). Note that the second average in (2.3) is an estimate
of mh/mh1 , that is, the Bayes factor B(h,h1). Ideally, we would like to use the
estimates in (2.3) for multiple values of h using only a sample from the posterior
distribution corresponding to the fixed hyperparameter value h1. But, when the
prior νh differs from νh1 greatly, the two estimates in (2.3) are unstable because
of the potential that only a few observations will dominate the sums. Their ratio
suffers the same defect.

A natural approach for dealing with the instability of these simple estimates
is to choose k values h1, . . . , hk ∈ H and in (2.1) replace νh1,y with a mixture∑k

s=1 asνhs,y , where as ≥ 0, for s = 1, . . . , k, and
∑k

s=1 as = 1. For concreteness,
consider the estimate of the Bayes factor. Let ν·y = ∑k

s=1 asνhs,y , and let ds =
mhs/mh1, s = 1, . . . , k. Note that

B(h,h1) =
∫

νh(θ)∑k
s=1 asνhs (θ)/ds

ν·y(θ) dθ(2.4)

and ∫
f (θ)νh,y(θ) dθ = (B(h,h1))

−1
∫

f (θ)
νh(θ)∑k

s=1 asνhs (θ)/ds

ν·y(θ) dθ

(2.5)

=
∫

f (θ)(νh(θ)/
∑k

s=1 asνhs (θ)/ds)ν·y(θ) dθ∫
(νh(θ)/

∑k
s=1 asνhs (θ)/ds)ν·y(θ) dθ

.

[These two identities are valid under the condition that νh(θ) = 0 whenever
νhs (θ) = 0 for all s.] Suppose that for each l = 1, . . . , k we have Markov chain
samples θ

(l)
i , i = 1, . . . , nl , from the posterior density νhl,y . Letting n = ∑k

s=1 ns ,
if as = ns/n, then the pooled sample is a stratified sample from ν·y . Doss (2010)
considers the case where the vector d = (d2, . . . , dk)

′ is known. In this situation,
the right-hand side of (2.4) is the integral of a known function with respect to the
mixture density ν·y . He shows that under certain regularity conditions, the estimate
of B(h,h1) obtained by replacing the right-hand side of (2.4) by its natural Monte
Carlo estimate using the pooled sample is consistent and asymptotically normal.

In virtually all applications, the value of the vector d is unknown. The estimates
of B(h,h1) and

∫
f (θ)νh,y(θ) dθ that we consider in this paper are constructed by

first forming an estimate d̂ of d , and then using the natural Monte Carlo estimates
of the integral in (2.4) and of the two integrals in (2.5) with d̂ substituted for d .
The MCMC scheme we will use involves the following two stages:

Stage 1. Generate samples θ
(l)0
i , i = 1, . . . ,Nl , from νhl,y , the posterior density

of θ given Y = y, assuming that the prior is νhl
, for each l = 1, . . . , k, and use

these N = ∑k
l=1 Nl observations to form an estimate of d .
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Stage 2. Independently of stage 1, again generate samples θ
(l)
i , i = 1, . . . , nl ,

from νhl,y , for each l = 1, . . . , k, and construct the estimate of the Bayes factor
B(h,h1) based on this second set of n = ∑k

l=1 nl observations and the estimate of
d from stage 1.

The estimate of d in stage 1 is formed using a method introduced by Vardi (1985),
and this estimate is discussed in the beginning of Section 2.1. From now on, for
l = 1, . . . , k, we use the notation Al and al to identify the ratios Nl/N and nl/n,
respectively.

It is natural to ask why we use two steps of sampling, instead of estimating
the vector d and B(h,h1) from a single sample. The quantity considered in Doss
(2010) is

B̂(h,h1, d) =
k∑

l=1

nl∑
i=1

νh(θ
(l)
i )∑k

s=1 nsνhs (θ
(l)
i )/ds

,(2.6)

and it involves the vector d . The estimate considered in the present paper is
B̂(h,h1, d̂), where d̂ is an estimate of d . The variance of B̂(h,h1, d̂) turns out
to be greater than that of B̂(h,h1, d) (and this is true whether we use two steps of
sampling or a single step). Thus, the variance decomposes as Var(B̂(h,h1, d̂)) =
Var(B̂(h,h1, d)) + Vd , where Vd is the increase in variance resulting from using
d̂ instead of d . Because we wish to estimate B(h,h1) for a large number of h’s
and for each h the computational time needed is linear in the total sample size, this
total sample size cannot be very large. On the other hand, d needs to be estimated
only once. So if generating the chains is not computationally demanding, then one
can use very long chains to estimate d and so greatly reduce the term Vd . A precise
statement regarding the benefits of the two-stage scheme would have to take into
account the cost of computing the typical term in (2.6) and the cost of generating
a point in the chain, and no such statement can be made at the level of generality
considered in this paper. However, in all the examples we have encountered, for
fixed computational resources, the two-stage scheme gives estimates with consid-
erably smaller variance. We mention here that our theoretical results are stated for
the two-stage schemes, but these results have analogues for the case where a single
sample is used to estimate both d and the family of Bayes factors B(h,h1), h ∈ H,
and these are given in Buta (2010).

A summary of the main contributions of the present work is as follows:

(1) We develop a complete characterization of the asymptotic distribution of the
estimate (2.6) and also of a variant involving the use of control variates developed
by Doss (2010) for the realistic case where d is estimated from stage 1 sampling.
Included in our results is an explicit formula for the increase in variance resulting
from using an estimate of d instead of d itself. (This contradicts statements in the
literature to the effect that using a

√
n-consistent estimate of d rather than d itself

does not inflate the variance; see our discussion in the Appendix.)
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(2) We develop an analogous theory for the problem of estimating a family of
posterior expectations Eh(f (θ) | Y = y),h ∈ H.

(3) For any of our estimators, the variance is a sum of two components, and
we discuss how each of these may be estimated. An important problem is how
to properly select the skeleton points h1, . . . , hk , and ideally we would like to
position these in such a way that the variance is minimized. We show how the
variance estimates can be used to suggest good sets of skeleton points.

(4) We apply the methodology to the problem of Bayesian variable selection
discussed earlier. In particular, we show how our methods enable us to select good
values of h = (w,g) and to also see how the probability that a given variable is
included in the regression varies with (w,g).

2.1. Estimation of Bayes factors. Here, we analyze the asymptotic distribu-
tional properties of the estimator that results if in (2.6) we replace d with an es-
timate. Geyer (1994) proposes an estimator for d based on the “reverse logistic
regression” method and Theorem 2 therein shows that this estimator is asymptot-
ically normal when the samplers used satisfy certain regularity conditions. This
estimator is obtained by maximizing with respect to d2, . . . , dk the log quasi-
likelihood

lN (d) =
k∑

l=1

Nl∑
i=1

log

(
Alνhl

(θ
(l)0
i )/dl∑k

s=1 Asνhs (θ
(l)0
i )/ds

)
.(2.7)

As was mentioned earlier, the estimate is the same as the estimates obtained by
Vardi (1985), Meng and Wong (1996) and Kong et al. (2003). We assume that for
all the Markov chains we use a Strong Law of Large Numbers (SLLN) holds for
all integrable functions [for sufficient conditions see, e.g., Theorem 2 of Athreya,
Doss and Sethuraman (1996)]. In the next theorem we show that if d̂ is the estimate
produced by Geyer’s (1994) method, or any of the equivalent estimates discussed
above, then the estimate of the Bayes factor given by

B̂(h,h1, d̂) =
k∑

l=1

nl∑
i=1

νh(θ
(l)
i )∑k

s=1 nsνhs (θ
(l)
i )/d̂s

(2.8)

is asymptotically normal if certain regularity conditions are met. In (2.8), d̂1 = 1.
Before we state the theorem, we need to define the expressions that appear in

the asymptotic variance. For l = 1, . . . , k, i = 1, . . . , nl , let

Yi,l = νh(θ
(l)
i )∑k

s=1 asνhs (θ
(l)
i )/ds

(2.9)

(the Yi,l’s depend on h, but this dependence is suppressed to lighten the notation),
and let

τ 2
l (h) = Var(Y1,l) + 2

∞∑
g=1

Cov(Y1,l , Y1+g,l), τ 2(h) =
k∑

l=1

alτ
2
l (h).
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Also, let c(h) be the vector of length k − 1 for which the (j − 1)th coordinate is

[c(h)]j−1 = B(h,h1)

d2
j

∫
ajνhj

(θ)∑k
s=1 asνhs (θ)/ds

· νh,y(θ) dθ,

(2.10)
j = 2, . . . , k.

THEOREM 1. Let h ∈ H be fixed. Suppose the chains in stage 2 satisfy condi-
tions (A1) and (A2) in Doss (2010):

(A1) For each l = 1, . . . , k, the chain {θ(l)
i }∞i=1 is geometrically ergodic.

(A2) For each l = 1, . . . , k, there exists ε > 0 such that

E

(∣∣∣∣ νh(θ
(l)
1 )∑k

s=1 asνhs (θ
(l)
1 )/ds

∣∣∣∣2+ε)
< ∞.(2.11)

In the expectation in (2.11), θ
(l)
1 ∼ νhl,y . Assume also that the chains in stage 1

satisfy the conditions in Theorem 2 of Geyer (1994) that imply
√

N(d̂ − d)
d→

N (0,
). In addition, suppose the total sample sizes for the two stages, N and n,
satisfy n → ∞, and N → ∞ in such a way that n/N → q ∈ [0,∞). Then

√
n
(
B̂(h,h1, d̂) − B(h,h1)

) d→ N
(
0, qc(h)′
c(h) + τ 2(h)

)
.

As alluded to earlier, there are two components to the expression for the vari-
ance. The first component arises from estimating d , and the second component is
the variance that we would have if we had estimated the Bayes factor knowing
what d is. As can be seen from the formula, the first component vanishes if q = 0,
that is, if the sample size for estimating the parameter d converges to infinity at
a faster rate than does the sample size used to estimate the Bayes factor. In this
case the Bayes factor estimator (2.8) using the estimate d̂ has the same asymptotic
distribution as the estimator in (2.6) which uses the true value of d . Otherwise,
the variance of (2.8) is greater than that of (2.6), and the difference between the
variances depends on the parameter q . This parameter is determined by the user
and should be chosen in such a way as to minimize the variance given computer
resources; this is discussed in Section 3.

2.2. Estimation of Bayes factors using control variates. Recall that we have
samples θ

(l)
i , i = 1, . . . , nl , from νhl,y, l = 1, . . . , k, with independence across

samples (stage 2 of sampling) and that, based on an independent set of preliminary
MCMC runs (stage 1 of sampling), we have estimated the constants d2, . . . , dk .
Also, nl/n = al and n = ∑k

l=1 nl . Let

Y(θ) = νh(θ)∑k
s=1 asνhs (θ)/ds

.(2.12)
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Recalling that ν·y := ∑k
s=1 asνhs,y , we have Eν·y (Y (θ)) = B(h,h1), where the

subscript ν·y to the expectation indicates that θ ∼ ν·y . Also, for j = 2, . . . , k, let

Z(j)(θ) = νhj
(θ)/dj − νh1(θ)∑k
s=1 asνhs (θ)/ds

(2.13)

= νhj ,y(θ) − νh1,y(θ)∑k
s=1 asνhs,y(θ)

.(2.14)

Expression (2.14) shows that Eν·y (Z
(j)(θ)) = 0. This is true even if the priors νhj

and νh1 are improper, as long as the posteriors νhj ,y and νh1,y are proper, exactly
our situation in the Bayesian variable selection example of Section 1. On the other
hand, the representation (2.13) shows that Z(j)(θ) is computable if we know the
dj ’s—it involves the priors and not the posteriors. [A similar remark applies to
(2.12).] Therefore, if as in Doss (2010) we define for l = 1, . . . , k, i = 1, . . . , nl

Z
(1)
i,l = 1, Z

(j)
i,l = νhj

(θ
(l)
i )/dj − νh1(θ

(l)
i )∑k

s=1 asνhs (θ
(l)
i )/ds

, j = 2, . . . , k,(2.15)

then for any fixed β = (β2, . . . , βk),

Î d
β = 1

n

k∑
l=1

nl∑
i=1

(
Yi,l −

k∑
j=2

βjZ
(j)
i,l

)
(2.16)

is an unbiased estimate of B(h,h1). The value of β that minimizes the variance of
Î d
β is unknown. As is commonly done when one uses control variates, we use in-

stead the estimate obtained by doing ordinary linear regression of the response Yi,l

on the predictors Z
(j)
i,l , j = 2, . . . , k, and to emphasize that this estimate depends

on d , we denote it by β̂(d). Doss (2010) shows that β̂(d) converges almost surely
to a finite limit, β lim. His Theorem 1 states that the estimator B̂reg(h,h1) = Î d

β̂(d)
,

obtained under the assumption that we know the constants d2, . . . , dk , has an
asymptotically normal distribution. As mentioned earlier, d2, . . . , dk are typically
unknown, and must be estimated. Let d̂2, . . . , d̂k be estimates obtained from previ-
ous MCMC runs and let

Î d̂

β̂(d̂)
= 1

n

k∑
l=1

nl∑
i=1

(
Ŷi,l −

k∑
j=2

β̂j (d̂)Ẑ
(j)
i,l

)
,(2.17)

where Ŷi,l and Ẑ
(j)
i,l are as in (2.9) and (2.15), except using d̂ for d , and β̂(d̂) is

the least squares regression estimator from regressing Ŷi,l on predictors Ẑ
(j)
i,l , j =

2, . . . , k.
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The next theorem gives the asymptotic distribution of this new estimator, and
before we state it we introduce some notation. Let

Ui,l = Yi,l −
k∑

j=2

βj,limZ
(j)
i,l(2.18)

and let

σ 2
l (h) = Var(U1,l) + 2

∞∑
g=1

Cov(U1,l ,U1+g,l), σ 2(h) =
k∑

l=1

alσ
2
l (h).(2.19)

Also, let w(h) be the vector of length k − 1 for which the (t − 1)th coordinate
(t = 2, . . . , k) is

[w(h)]t−1 = B(h,h1)

d2
t

∫
atνht (θ)∑k

s=1 asνhs (θ)/ds

· νh,y(θ) dθ + βt,lim
1

dt

+
k∑

j=2

βj,lim

∫
atνht (θ)

d2
t

∑k
s=1 asνhs (θ)/ds

(2.20)

× (
νh1,y(θ) − νhj ,y(θ)

)
dθ.

THEOREM 2. Suppose all the conditions from Theorem 1 are satisfied. More-
over, assume that R, the k × k matrix defined by

Rj,j ′ = E

(
k∑

l=1

alZ
(j)
1,l Z

(j ′)
1,l

)
, j, j ′ = 1, . . . , k,

is nonsingular. Then
√

n
(
Î d̂

β̂(d̂)
− B(h,h1)

) d→ N
(
0, qw(h)′
w(h) + σ 2(h)

)
.

As mentioned above, for any β , Î d
β in (2.16) is an unbiased estimate of B(h,h1),

which leads to the question of what is the optimal value of β to use. It is not
difficult to see that when each of the sequences {θ(l)

i }nl

i=1 is i.i.d., the value of β

that minimizes the variance of Î d
β is

βopt,i.i.d. := arg min
β

Varν·y

(
Y(θ) −

k∑
j=2

βjZ
(j)(θ)

)
,

that is, the optimal value is the same whether we have a random sample from ν·y
or a stratified sample. It is natural to ask whether βopt,i.i.d. is still optimal when the

k sequences {θ(l)
i }nl

i=1 are Markov chains. It turns out that:

(i) βopt,i.i.d. is not optimal,
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(ii) using βopt,i.i.d. can actually increase the variance (when the Markov chains
mix at significantly different rates, chains that are of the same length do not have
the same “effective sample sizes,” but βopt,i.i.d. does not reflect this fact).

In our experience, using βopt,i.i.d., or, more precisely, the least squares estimate
[which in Doss (2010) was shown to converge almost surely to βopt,i.i.d.], typically
gives a significant reduction in variance. Buta and Doss (2011) prove points (i) and
(ii) above and also discuss an approach for estimating the value of β that is optimal
in the Markov chain case.

2.3. Estimation of posterior expectations. In this section we describe a
method for estimating the posterior expectation of a function f when the prior
is νh. Let us denote this quantity by

I [f ](h) =
∫

f (θ)νh,y(θ) dθ.

Define

Y
[f ]
i,l = f (θ

(l)
i )νh(θ

(l)
i )∑k

s=1 asνhs (θ
(l)
i )/ds

= f (θ
(l)
i )νh(θ

(l)
i )/mh∑k

s=1 asνhs (θ
(l)
i )/mhs

· mh

mh1

= f (θ
(l)
i )νh,y(θ

(l)
i )∑k

s=1 asνhs,y(θ
(l)
i )

B(h,h1).

With the view of applying identity (2.5), we note that, assuming a SLLN holds for

the Markov chains θ
(l)
i , l = 1, . . . , k, i = 1, . . . , nl , we have

1

n

k∑
l=1

nl∑
i=1

Y
[f ]
i,l =

k∑
l=1

1

nl

nl∑
i=1

nl

n
Y

[f ]
i,l

a.s.−→
∫

f (θ)νh,y(θ)∑k
s=1 asνhs,y(θ)

k∑
l=1

alνhl,y(θ) dθ · B(h,h1)

= I [f ](h) · B(h,h1)

and

1

n

k∑
l=1

nl∑
i=1

Yi,l
a.s.−→ B(h,h1).

[The Yi,l’s are defined in (2.9); note that Yi,l = Y
[f ]
i,l when f ≡ 1.] Letting

Î [f ](h, d) =
∑k

l=1
∑nl

i=1 Y
[f ]
i,l∑k

l=1
∑nl

i=1 Yi,l

,(2.21)
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we see that Î [f ](h, d)
a.s.−→ I [f ](h), and replacing d with the estimate d̂ obtained

from stage 1 sampling, we form

Î [f ](h, d̂) =
∑k

l=1
∑nl

i=1 f (θ
(l)
i )νh(θ

(l)
i )/(

∑k
s=1 asνhs (θ

(l)
i )/d̂s)∑k

l=1
∑nl

i=1 νh(θ
(l)
i )/(

∑k
s=1 asνhs (θ

(l)
i )/d̂s)

.(2.22)

The following theorem concerns the asymptotic behavior of this estimator, and
to state it, we first define the expressions that appear in the asymptotic variance.
Let

γ11 = Var
(
Y

[f ]
1,l

) + 2
∞∑

g=1

Cov
(
Y

[f ]
1,l , Y

[f ]
1+g,l

)
,

γ12 = γ21 = Cov
(
Y

[f ]
1,l , Y1,l

) +
∞∑

g=1

[
Cov

(
Y

[f ]
1,l , Y1+g,l

) + Cov
(
Y1,l , Y

[f ]
1+g,l

)]
,

γ22 = Var(Y1,l) + 2
∞∑

g=1

Cov(Y1,l , Y1+g,l)

and

�l(h) =
(

γ11 γ12
γ21 γ22

)
, �(h) =

k∑
l=1

al�l(h).(2.23)

Since (2.21) and (2.22) are ratios to which we will apply the delta method, we will
consider the function g(u, v) = u/v, whose gradient is ∇g(u, v) = (1/v,−u/v2)′.
Let

ρ(h) = ∇g
(
I [f ](h)B(h,h1),B(h,h1)

)′
(2.24)

× �(h) · ∇g
(
I [f ](h)B(h,h1),B(h,h1)

)
.

Finally, let v(h) be the vector of length k − 1 for which the (j − 1)th coordinate is

[v(h)]j−1 =
∫ [f (θ) − I [f ](h)]ajνhj

(θ)/d2
j∑k

s=1 asνhs (θ)/ds

νh,y(θ) dθ,

(2.25)
j = 2, . . . , k.

THEOREM 3. Suppose the conditions stated in Theorem 1 are satisfied and, in
addition, for each l = 1, . . . , k, there exists an ε > 0 such that

E
(∣∣Y [f ]

1,l

∣∣2+ε)
< ∞.(2.26)

Then
√

n
(
Î [f ](h, d̂) − I [f ](h)

) d→ N
(
0, qv(h)′
v(h) + ρ(h)

)
.
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The numerator of Î [f ](h, d̂) is an estimate of I [f ](h)B(h,h1) and the denom-
inator is an estimate of B(h,h1). It is possible to adjust both the numerator and
denominator through the use of control variates and thus arrive at a variant of
Î [f ](h, d̂); the theory for this is developed in Buta (2010). As for the case of es-
timating the Bayes factors, the variant is not guaranteed to give an improvement,
but a large improvement is often noted.

3. Variance estimation and selection of the skeleton points. Estimation of
the variance of our estimates is important for several reasons. In addition to the
usual need for providing error margins for our point estimates, variance estimates
are of great help in selecting the skeleton points. The main approaches for estima-
tion of the variance are (i) spectral methods, (ii) methods based on batching, and
(iii) methods based on regeneration; see Flegal and Jones (2010) and Mykland,
Tierney and Yu (1995) for a review. Methods based on batching are difficult to use
in our framework because of two complications, namely, that we are dealing with
multiple chains, and we have a two-stage scheme; and procedures based on regen-
eration are often difficult to implement. Here we describe a way of estimating the
variance using spectral methods.

For the sake of concreteness, consider B̂(h,h1, d̂), whose asymptotic variance
is the expression κ2(h) = qc(h)′
c(h) + τ 2(h) (see Theorem 1). The term τ 2(h)

is the asymptotic variance of the quantity B̂(h,h1, d) in (2.6), and since the k

Markov chains are independent, τ 2(h) = ∑k
l=1 alτ

2
l (h), where τ 2

l (h) is the asymp-
totic variance of

1

nl

nl∑
i=1

νh(θ
(l)
i )∑k

s=1 asνhs (θ
(l)
i )/ds

.(3.1)

Now for each l we will estimate τ 2
l (h) by the asymptotic variance of

1

nl

nl∑
i=1

νh(θ
(l)
i )∑k

s=1 asνhs (θ
(l)
i )/d̂s

,(3.2)

where d̂ is formed from stage 1 runs. It is not too difficult to show that under
our asymptotic regime where n/N → q ∈ [0,∞), standard consistent spectral es-
timates of the asymptotic variance of (3.2) are also consistent estimates of the
asymptotic variance of (3.1); details are given in Buta and Doss (2011). Geyer
(1994) gives an expression for 
 that is explicit enough to enable us to estimate
it via standard spectral methods. Now, c(h) is a vector each of whose components
is an integral with respect to the posterior νh,y [see (2.10)]. The estimate derived
in Section 2.3 [see (2.22)] is designed precisely to estimate such posterior expec-
tations. Combining, we arrive at an overall estimate of κ2(h), and the asymptotic
variances of our other estimates are handled similarly.
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Selection of the skeleton points. The asymptotic variances of any of our esti-
mates depend on the choice of the points h1, . . . , hk . For concreteness, consider
B̂(h,h1, d̂), and to emphasize this dependence, let V (h,h1, . . . , hk) denote the
asymptotic variance of B̂(h,h1, d̂). For fixed h1, . . . , hk , identifying the set of h’s
for which V (h,h1, . . . , hk) is finite is typically a feasible problem. For instance,
Doss (1994) considered the pump data example discussed in Tierney (1994), for
which the hyperparameter h has dimension 3, and determined this set for the case
k = 1. He showed that one can go as far away from h1 as one wants in certain
directions, but in other directions the range is limited. (The calculation can be ex-
tended to any k.) Suppose now that we fix a range H over which h is to vary.
A necessary first step is to select h1, . . . , hk such that V (h,h1, . . . , hk) < ∞ for
all h ∈ H. Typically, however, we will want more, and we will face the problem
below.

Design problem: find the values of the skeleton points h1, . . . , hk that minimize
maxh∈H V (h,h1, . . . , hk).

Unfortunately, except for extremely simple cases, it is not possible to calculate
V (h,h1, . . . , hk) analytically [even if k = 1, V (h,h1) is an infinite sum each of
whose terms depends on the Markov transition function in a complicated way],
and maximizing it over h ∈ H would present additional difficulties. Furthermore,
even if we were able to calculate maxh∈H V (h,h1, . . . , hk), the design problem
would involve the minimization of a function of k × dim(H) variables, and, in
general, solving the design problem is hopeless.

In our experience, we have found that the following method works reasonably
well. Having specified the range H, we select trial values h1, . . . , hk and plot the
estimated variance as a function of h, using one of the methods described above.
If we find a region in H where this variance is unacceptably large, we “cover” this
region by moving some hl’s closer to the region, or by simply adding new hl’s in
that region, which increases k. This is illustrated in the example in Section 4.

The relative lengths of the stages 1 and 2 chains. The parameter q affects the
performance of any of the methods, and the optimal value involves a trade-off be-
tween time spent calculating density ratios in stage 2 and time spent generating the
chains in stage 1. Consider, for instance, the estimate (2.8), whose asymptotic vari-
ance is given by Theorem 1 and which we will write as κ2(h) = qv1(h) + v2(h).
In the discussion below, we assume that we have run a small pilot experiment
that has enabled us to adequately estimate the components v1(h) and v2(h), and
we assume that the total sample sizes n and N are both large. The discussion is
heuristic in that we assume that v1(h) and v2(h) are nearly constant in h. Let t1
denote the time it typically takes to generate a single step in a chain, let t2 denote
the time it takes to compute the typical term in (2.8), and let g denote the number
of values in H for which we wish to compute the estimate (2.8). Suppose we are
given a computational budget of T units of time. For any q ∈ (0,∞), the time
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it takes to compute (2.8) for g values of h is t (q) = (n/q)t1 + nt1 + ngt2, and
setting this equal to T determines n to be qT /((q + 1)t1 + qgt2). The variance
of the estimate is then V (q) = T −1(v1(h) + v2(h)/q)((q + 1)t1 + qgt2). Clearly,
V (q) is unbounded as q → 0 or q → ∞. The function has a unique minimum,
which occurs at qopt = √[v2(h)t1]/[v1(h)(t1 + gt2)]. This last formula expresses
in a usable manner the intuitive notion that if g is large, or if the cost of evaluating
the density ratios in (2.8) is high relative to the cost of running the chains, then a
small value of q should be used.

4. Illustration on variable selection in Bayesian linear regression. There
exist many classes of problems in Bayesian analysis in which the sensitivity anal-
ysis and model selection issues discussed earlier arise; see Section 5. Here we
give an illustration involving the hierarchical prior used in variable selection in
the Bayesian linear regression model discussed in Section 1. For this model, the
parameter is the vector θ = (γ, σ,β0, βγ ), and the prior on θ is given by the hi-
erarchy (1.1c) and (1.1b). There exist several MCMC-based methods for estimat-
ing the posterior distribution of θ given Y = y, and the algorithm we use here is
based on the Gibbs sampler of Smith and Kohn (1996), which runs on the space of
model indicators. Our algorithm, developed in Buta (2010), is a Markov chain on
θ that is uniformly ergodic and also computationally efficient (it avoids the need
for repeated time-consuming matrix inversion). It is implemented in the R package
bvslr, available from http://www.stat.ufl.edu/~ebuta/BVSLR.

In Sections 1 and 2, νh and νh,y refer to the prior and posterior densities, and all
estimates in Section 2 involve ratios of these prior densities. In the Bayesian linear
regression model that we are considering here, the priors νh on (γ, σ,β0, βγ ) are
actually probability measures on {0,1}q × (0,∞) × R

q+1, which in fact are not
absolutely continuous with respect to the product of counting measure on {0,1}q
and Lebesgue measure on (0,∞) × R

q+1. For h1 = (w1, g1) and h2 = (w2, g2),
the Radon–Nikodym derivative of νh1 with respect to νh2 is given by[

dνh1

dνh2

]
(γ, σ,β0, βγ ) =

(
w1

w2

)qγ
(

1 − w1

1 − w2

)q−qγ

(4.1)

× φqγ (βγ ;0, g1σ
2(X′

γ Xγ )−1)

φqγ (βγ ;0, g2σ 2(X′
γ Xγ )−1)

,

where φqγ (u;a,V ) is the density of the qγ -dimensional normal distribution with
mean a and covariance V , evaluated at u [Doss (2007)]. It is immediate that all
formulas in Section 2 remain valid if ratios of the form νh(θ)/νh1(θ) [see, e.g.,
equation (2.3)] are replaced by the Radon–Nikodym derivative [dνh/dνh1](θ).
Fortunately, evaluation of (4.1) requires neither matrix inversion nor calculation
of a determinant, so can be done very quickly. Note that in view of (4.1), it is not
enough to have Markov chains running on the γ ’s and we need Markov chains
running on the θ ’s [or at least (γ, σ,βγ )].

http://www.stat.ufl.edu/~ebuta/BVSLR
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There is a large literature on dealing with the hyperparameter in models in-
volving Zellner’s g-prior [with or without the variable inclusion line (1.1c)]. Some
of the proposals involve putting a prior on g, or on both g and w. Liang et al.
(2008) propose and discuss priors on g; priors on w are generally taken to be
beta distributions. Other proposals give g as a deterministic function of m and q

[e.g., g = max{m,q2} in Fernández, Ley and Steel (2001)]. Liang et al. (2008)
contains an extensive and critical review of the recommendations given in this lit-
erature. The most common deterministic choice for w is w = 1/2. George and
Foster (2000) recommend the empirical Bayes (EB) approach for estimating the
pair (w,g): the marginal likelihood of (w,g) is computed over a grid, and the
value of (w,g) that maximizes it is taken as the estimate of (w,g). As with many
likelihood-based methods, special care needs to be taken when the maximizing
value is at the boundary. Cui and George (2008) give evidence that the EB method
outperforms fully Bayes methods in this problem. Unfortunately, the EB method
is in general computationally demanding because the likelihood is a sum over all
2q models γ , so it is practically feasible only for relatively small values of q . Our
methodology handles this problem by estimating ratios of marginal likelihoods,
that is, Bayes factors, and, besides giving the maximizing values of w and g, gives
a plot which shows the behavior of the Bayes factors for a wide range of other
values of w and g.

We illustrate our methods on the US crime data of Vandaele (1978), which can
be found in the R library MASS under the name UScrime. This data set seems
ideal, because it has been studied in several papers already, so we can compare
our results with previous analyses, and also because its modest size enables a
closed-form calculation of the marginal likelihood mh, so we can compare our
estimates with the gold standard. The data set gives, for each of m = 47 states of
the USA, the crime rate, defined as number of offenses per 100,000 individuals
(the response variable), and q = 15 predictors measuring different characteristics
of the population, such as average number of years of schooling, average income,
unemployment rate, etc.

To be consistent with what is done in the literature, we applied a log transfor-
mation to all variables, except the indicator variable. We took the baseline hyper-
parameter to be h1 = (w1, g1) = (0.5,15), and our goal was to estimate B(h,h1)

for the 924 values of h obtained when w ranges from 0.1 to 0.91 by increments of
0.03, and g ranges from 4 to 100 by increments of 3. We used (2.17) and this esti-
mate was based on 16 chains each of length 10,000, corresponding to the skeleton
grid of hyperparameter values

(w,g) ∈ {0.3,0.5,0.6,0.8} × {15,50,100,225}(4.2)

for the stage 1 samples, and 16 new chains, each of length 1,000, corresponding
to the same hyperparameter values, for the stage 2 samples. The plots in Figure 1
give graphs of the estimate (2.17) as w and g vary, from two different angles. These
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FIG. 1. Estimates of Bayes factors for the US crime data. The plots give two different views of the
graph of the Bayes factor as a function of w and g when the baseline value of the hyperparameter is
given by w = 0.5 and g = 15. The estimate is (2.17), which uses control variates.

indicate that values for w around 0.65 and for g around 20 seem appropriate, while
values of w less than 0.3 and values of g greater than 60 should be avoided. A side
calculation showed that, interestingly, for g = max{m,q2} (= 225), the estimate of
B((w,g), (0.65,20)) is less than 0.008 regardless of the value of w, so this choice
should not be used for this data set. With the long chains used and the estimate
that uses control variates, the Bayes factor estimates in Figure 1 are extremely
accurate—root mean squared errors are less than 0.04 uniformly over the entire
domain of the plot and considerably less in the convex hull of the skeleton grid
(our calculation of the root mean squared errors used the closed-form expression
for the Bayes factors based on complete enumeration). The figure took about a
half hour to generate on an Intel 2.8 GHz Q9550 running Linux. (The accuracy we
obtained is overkill and the figure can be created in a few minutes if we use more
typical Markov chain lengths.)

Table 1 gives the posterior inclusion probabilities for each of the fifteen predic-
tors, that is, P(γi = 1 | y) for i = 1, . . . ,15, under several models. Line 2 gives
the inclusion probabilities when we use model (1.1) with the values w = 0.65 and
g = 20, which are the values at which the graph in Figure 1 attains its maximum.
Line 4 gives the inclusion probabilities when the hyper-g prior “HG3” in Liang
et al. (2008) is used. As can be seen, the inclusion probabilities we obtained under
the EB model are comparable to, but somewhat larger than, the probabilities when
the HG3 prior is used. This is not surprising since our model allows w to be cho-
sen, and the data-driven choice gives a value (0.65) greater than the value w = 0.5
used in Liang et al. (2008). [Table 2 of Liang et al. (2008) gives a comparison of
posterior inclusion probabilities for a total of ten models taken from the literature.]
Line 3 of Table 1 gives the inclusion probabilities under model (1.1) when we use
w = 0.5 and the value of g that maximizes the likelihood with w constrained to be
0.5. It is interesting to note that the inclusion probabilities are then strikingly close
to those under the HG3 model.
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TABLE 1
Posterior inclusion probabilities for the fifteen predictor variables in the US crime data set, under

three models. Names of the variables are as in Table 2 of Liang et al. (2008) (but all variables
except for the binary variable S have been log transformed)

Age S Ed Ex0 Ex1 LF M N

EB(0.65,20) 0.93 0.39 0.99 0.70 0.51 0.34 0.35 0.52
EB(0.5,20) 0.85 0.29 0.97 0.67 0.45 0.22 0.22 0.38
HG3 0.84 0.29 0.97 0.66 0.47 0.23 0.23 0.39

NW U1 U2 W X Prison Time

EB(0.65,20) 0.83 0.40 0.76 0.55 1.00 0.96 0.55
EB(0.5,20) 0.70 0.27 0.62 0.38 1.00 0.90 0.39
HG3 0.69 0.27 0.61 0.38 0.99 0.89 0.38

Buta (2010) uses the estimates in Section 2.3 to produce plots of posterior inclu-
sion probabilities for several of the predictors, as w and g vary. The plots enable
one to read the posterior inclusion probabilities under various choices for g and w

proposed in the literature, and also show that the extent to which these probabilities
change with the choices is striking.

Selection of the skeleton points was discussed at the end of Section 3, and we
now return to this issue. Consider the Bayes factor estimate based on the skele-
ton (4.2), which was chosen in an ad-hoc manner. The left panel in Figure 2 gives
a plot of the variance of this estimate, as a function of h. As can be seen from

FIG. 2. Variance functions for two versions of Î d̂

β̂(d̂)
. The left panel is for the estimate based on the

skeleton (4.2). The points in this skeleton were shifted to better cover the problematic region near the

back of the plot (g small and w large), creating the skeleton (4.3). The maximum variance is then
reduced by a factor of 9 (right panel).
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the plot, the variance is greatest in the region where g is small and w is large. We
changed the skeleton from (4.2) to

(w,g) ∈ {0.5,0.7,0.8,0.9} × {10,15,50,100}(4.3)

and reran the algorithm. The variance for the estimate based on (4.3) is given by
the right panel of Figure 2, from which we see that the maximum variance has
been reduced by a factor of about 9.

5. Discussion. The following fact is obvious, but it may be worthwhile to
state it explicitly. If h1 is fixed, maximizing B(h,h1) and maximizing the marginal
likelihood mh are equivalent. Choosing the value of h that maximizes mh is by
definition the empirical Bayes method. Thus, the development in Section 2 can be
used to implement empirical Bayes methods.

Our methodology for dealing with the sensitivity analysis and model selection
problems discussed in Section 1 can be applied to many classes of Bayesian mod-
els. In addition to the usual parametric models, we mention also Bayesian non-
parametric models involving mixtures of Dirichlet processes [Antoniak (1974)],
in which one of the hyperparameters is the so-called total mass parameter—very
briefly, this hyperparameter controls the extent to which the nonparametric model
differs from a purely parametric model. [Among the many papers that use such
models, we mention in particular Burr and Doss (2005), who give a more detailed
discussion of the role of the total mass parameter.] The approach developed in
Sections 2.1 and 2.2 can be used to select this parameter.

When the dimension of h is low, it will be possible to plot B(h,h1), or at least
plot it as h varies along some of its dimensions. Empirical Bayes methods are
notoriously difficult to implement when the dimension of the hyperparameter h

is high. In this case, it is possible to use the methods developed in Sections 2.1
and 2.2 to enable approaches based on stochastic search algorithms. These require
the calculation of the gradient ∂B(h,h1)/∂h. We note that the same methodology
used to estimate B(h,h1) can also be used to estimate its gradient. For example,
in (2.8), νh(θ

(l)
i ) is simply replaced by ∂νh(θ

(l)
i )/∂h.

APPENDIX

PROOF OF THEOREM 1. We begin by writing
√

n
(
B̂(h,h1, d̂) − B(h,h1)

)
(A.1)

= √
n
(
B̂(h,h1, d̂) − B̂(h,h1, d)

) + √
n
(
B̂(h,h1, d) − B(h,h1)

)
.

The second term on the right-hand side of the equation in (A.1) involves random-
ness coming only from the second stage of sampling. This term was analyzed
by Doss (2010), who showed that it is asymptotically normal, with mean 0 and
variance τ 2(h). The first term ostensibly involves randomness from both stage 1
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and stage 2 sampling. However, as will emerge from our proof, the randomness
from stage 2 is of lower order, and effectively all the randomness is from stage 1.
This randomness is nonnegligible. We mention here the often-cited work of Geyer
(1994) (whose nice results we use in the present paper). In the context of a setup
very similar to ours, his Theorem 4 states that using an estimated d and using the
true d results in the same asymptotic variance. From our proof [refer also to the
extension of our Theorem 1 to the case of a simple sample given in Buta (2010)],
we see that this statement is not correct.

To analyze the first term on the right-hand side of (A.1), define the function
F(u) = B̂(h,h1, u), where u = (u2, . . . , uk)

′ is a real vector with ul > 0, l =
2, . . . , k. Then, by the Taylor series expansion of F about d , we get

√
n
(
B̂(h,h1, d̂) − B̂(h,h1, d)

)
= √

n
(
F(d̂) − F(d)

)
(A.2)

= √
n∇F(d)′(d̂ − d) +

√
n

2
(d̂ − d)′∇2F(d∗)(d̂ − d),

where d∗ is between d and d̂ .
First, we show that the gradient ∇F(d) = (∂F (d)/∂d2, . . . , ∂F (d)/∂dk)

′ con-
verges almost surely to a finite constant. Recall that c(h) is defined in (2.10). For
j = 2, . . . , k, the (j − 1)th component of ∇F(d) converges almost surely since,
with the SLLN assumed to hold for the Markov chains used, we have

[∇F(d)]j−1 =
k∑

l=1

1

nl

nl∑
i=1

ajalνh(θ
(l)
i )νhj

(θ
(l)
i )

d2
j (

∑k
s=1 asνhs (θ

(l)
i )/ds)2

a.s.−→ [c(h)]j−1.

Next, we show that the random Hessian matrix ∇2F(d∗) of second-order
derivatives of F evaluated at d∗ is bounded in probability. To this end, it suf-
fices to show that each element of this matrix, say, [∇2F(d∗)]t−1,j−1, where

t, j ∈ {2, . . . , k}, is Op(1). Since ‖d∗ −d‖ ≤ ‖d̂ −d‖ p→ 0, it follows that d∗ p→ d .
Let ε ∈ (0,min(d2, . . . , dk)). Then we have P(‖d∗ − d‖ ≤ ε) → 1. We now

show that, on the set {‖d∗ − d‖ ≤ ε}, ∇2F(d∗) is bounded in probability. Let

I = I (‖d∗ − d‖ ≤ ε).

For t �= j , we have

|[∇2F(d∗)]t−1,j−1| · I

=
k∑

l=1

2

nl

nl∑
i=1

ajalatνh(θ
(l)
i )νhj

(θ
(l)
i )νht (θ

(l)
i )

d∗
j

2d∗
t

2(
∑k

s=1 asνhs (θ
(l)
i )/d∗

s )3
· I

≤
k∑

l=1

2

nl

nl∑
i=1

ajalatνh(θ
(l)
i )νhj

(θ
(l)
i )νht (θ

(l)
i )

(dj − ε)2(dt − ε)2[∑k
s=1 asνhs (θ

(l)
i )/(ds + ε)]3
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a.s.−→
k∑

l=1

B(h,hl)

∫ {
ajalatνhj

(θ)νht (θ)νhl
(θ)

[∑k
s=1 asνhs (θ)/(ds + ε)]3

}
νh,y(θ) dθ

(A.3)

× 2

(dj − ε)2(dt − ε)2 .

Note that the expression inside the braces in (A.3) is clearly bounded above by
a constant, so expression (A.3) is finite. Similarly, for t = j , we can show that
|[∇2F(d∗)]j−1,j−1| · I is Op(1). Since P(‖d∗ − d‖ ≤ ε) → 1, it follows that
∇2F(d∗) is bounded in probability. Now, by combining (A.1) and (A.2), we obtain√

n
(
B̂(h,h1, d̂) − B(h,h1)

)
=

√
n

N
∇F(d)′

√
N(d̂ − d)

+ 1

2
√

N

√
n

N

[√
N(d̂ − d)

]′∇2F(d∗)
[√

N(d̂ − d)
]

+ √
n
(
B̂(h,h1, d) − B(h,h1)

)
= √

qc(h)′
√

N(d̂ − d) + √
n
(
B̂(h,h1, d) − B(h,h1)

) + op(1),

where the last line follows from the fact that ∇F(d)
a.s.−→ c(h) established ear-

lier, the assumptions of Theorem 1 that
√

n/N → √
q and that

√
N(d̂ − d) con-

verges in distribution [hence is Op(1)]. Because the two sampling stages [for es-
timating d and B(h,h1)] are assumed to be independent, using the assumption

that
√

N(d̂ − d)
d→ N (0,
) in conjunction with the result

√
n(B̂(h,h1, d) −

B(h,h1))
d→ N (0, τ 2(h)) established in Theorem 1 of Doss (2010) under con-

ditions (A1) and (A2), we conclude that
√

n
(
B̂(h,h1, d̂) − B(h,h1)

) d→ N
(
0, qc(h)′
c(h) + τ 2(h)

)
. �

PROOF OF THEOREM 2. We begin by writing
√

n
(
Î d̂

β̂(d̂)
− B(h,h1)

) = √
n
(
Î d̂

β̂(d̂)
− Î d

β̂(d)

) + √
n
(
Î d

β̂(d)
− B(h,h1)

)
,(A.4)

where the second term on the right-hand side of (A.4) was analyzed by Doss (2010)
who showed that it is asymptotically normal, with mean 0 and variance σ 2(h). Our
plan is to show that β̂(d) and β̂(d̂) converge in probability to the same limit, which
we denote β lim. We then expand the first term on the right-hand side of (A.4) by
writing

√
n
(
Î d̂

β̂(d̂)
− Î d

β̂(d)

) = √
n
(
Î d̂

β̂(d̂)
− Î d̂

β lim

) + √
n(Î d̂

β lim
− Î d

β lim
)

(A.5)
+ √

n
(
Î d
β lim

− Î d

β̂(d)

)
.

Our proof is organized as follows:
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• We note that the third term on the right-hand side of (A.5) was shown to con-
verge to 0 in probability by Doss (2010).

• We will show that the first term on the right-hand side of (A.5) also converges
to 0 in probability.

• The second term on the right-hand side of (A.5) involves randomness from both
stage 1 and stage 2. However, we will show that the randomness from stage 2 is
asymptotically negligible, and that this term is asymptotically equivalent to an
expression of the form w(h)′(d̂ − d), where w(h) is a deterministic vector. This
will show that the second term is asymptotically normal.

Now we prove that the first term on the right-hand side of (A.5) is op(1), and, to
do this, we begin by showing that β̂(d) and β̂(d̂) converge in probability to the
same limit. Let Z be the n × k matrix whose transpose is

Z′ =

⎛
⎜⎜⎜⎜⎝

1 · · · 1 1 · · · 1 · · · 1 · · · 1
Z

(2)
1,1 · · · Z

(2)
n1,1

Z
(2)
1,2 · · · Z

(2)
n2,2

· · · Z
(2)
1,k · · · Z

(2)
nk,k

...
. . .

...
...

. . .
...

. . .
...

. . .
...

Z
(k)
1,1 · · · Z

(k)
n1,1

Z
(k)
1,2 · · · Z

(k)
n2,2

· · · Z
(k)
1,k · · · Z

(k)
nk,k

⎞
⎟⎟⎟⎟⎠(A.6)

and let Y be the vector

Y = (Y1,1, . . . , Yn1,1, Y1,2, . . . , Yn2,2, . . . , Y1,k, . . . , Ynk,k)
′.(A.7)

Let Ẑ be the n × k matrix corresponding to Z when we replace d by d̂ . Similarly,
Ŷ is like Y, but using d̂ for d .

For fixed j, j ′ ∈ {2, . . . , k}, consider the function

G(u) = 1

n

k∑
l=1

nl∑
i=1

νhj
(θ

(l)
i )/uj − νh1(θ

(l)
i )∑k

s=1 asνhs (θ
(l)
i )/us

· νhj ′ (θ
(l)
i )/uj ′ − νh1(θ

(l)
i )∑k

s=1 asνhs (θ
(l)
i )/us

,(A.8)

where u = (u2, . . . , uk)
′ and ul > 0, for l = 2, . . . , k. [On the right-hand side

of (A.8), u1 is taken to be 1.] Note that setting u = d gives

G(d) = 1

n

k∑
l=1

nl∑
i=1

Z
(j)
i,l Z

(j ′)
i,l .

By the mean value theorem, we know that there exists a d∗ between d and d̂ such
that

G(d̂) = G(d) + ∇G(d∗)′(d̂ − d) = Rj,j ′ + ∇G(d∗)′(d̂ − d) + op(1).

Note that the last equality above comes from applying the SLLN. An argument
similar to that used in Theorem 1 to show that ∇2F(d∗) = Op(1) can now be
applied to show that ∇G(d∗) = Op(1).
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Therefore,

G(d̂) = Rj,j ′ + ∇G(d∗)′(d̂ − d) + op(1)

= Rj,j ′ + Op(1)op(1) + op(1)
p→ Rj,j ′ .

Similar arguments extend to the case j = 1 or j ′ = 1. By the fact that R is assumed
invertible, we have

n(Ẑ′Ẑ)−1 p→ R−1.(A.9)

In a similar way, it can be shown that

Ẑ′Ŷ/n
p→ v,(A.10)

where v is the same limit vector to which Z′Y/n has been proved to converge in
Doss (2010). Combining (A.9) and (A.10), we have

(β̂0(d̂), β̂(d̂)) = [n(Ẑ′Ẑ)−1][Ẑ′Ŷ/n] p→ (β0,lim,β lim) = R−1v.

Let e(j, l) = E(Z
(j)
1,l ). We now have

√
n
(
Î d̂

β̂(d̂)
− Î d̂

β lim

) =
k∑

j=2

(
βj,lim − β̂j (d̂)

)( k∑
l=1

aln
1/2

nl∑
i=1

(
Ẑ

(j)
i,l − e(j, l)

nl

))

(A.11)

=
k∑

j=2

op(1)

(
k∑

l=1

aln
1/2

nl∑
i=1

(
Ẑ

(j)
i,l − e(j, l)

nl

))
.

To show that (A.11) converges to 0 in probability, it suffices to show that for each
l and j

n
1/2
l

nl∑
i=1

(
Ẑ

(j)
i,l − e(j, l)

nl

)
= Op(1).(A.12)

For fixed j ∈ {2, . . . , k} and l ∈ {1, . . . , k}, define

H(u) = n
−1/2
l

nl∑
i=1

νhj
(θ

(l)
i )/uj − νh1(θ

(l)
i )∑k

s=1 asνhs (θ
(l)
i )/us

for u = (u2, . . . , uk)
′ with ul > 0, l = 2, . . . , k, u1 = 1. Note that H(d) = n

−1/2
l ×∑nl

i=1 Z
(j)
i,l . To see why (A.12) is true, we begin by writing

n
1/2
l

nl∑
i=1

(
Ẑ

(j)
i,l − e(j, l)

nl

)
= n

1/2
l

nl∑
i=1

(
Ẑ

(j)
i,l − Z

(j)
i,l

nl

)

+ n
1/2
l

nl∑
i=1

(
Z

(j)
i,l − e(j, l)

nl

)
(A.13)

= H(d̂) − H(d) + Op(1).
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Note that the fact that n
1/2
l

∑nl

i=1([Z(j)
i,l − e(j, l)]/nl) = Op(1), which was used to

establish the second equality in (A.13), is proved in Doss (2010). Now, applying
the mean value theorem to the function H , we know that there exists a point d∗
between d and d̂ such that (A.13) becomes

n
1/2
l

nl∑
i=1

(
Ẑ

(j)
i,l − e(j, l)

nl

)
= ∇H(d∗)′(d̂ − d) + Op(1)

= √
al

√
n

N
n

−1/2
l ∇H(d∗)′

√
N(d̂ − d)(A.14)

+ Op(1),

so that the right-hand side of (A.14) is Op(1). We now consider
√

n(Î d̂
β lim

− Î d
β lim

),
the middle term in (A.5). Define

K(u) = 1

n

k∑
l=1

nl∑
i=1

(
νh(θ

(l)
i )∑k

s=1 asνhs (θ
(l)
i )/us

−
k∑

j=2

βj,lim
νhj

(θ
(l)
i )/uj − νh1(θ

(l)
i )∑k

s=1 asνhs (θ
(l)
i )/us

)
,

where u = (u2, . . . , uk)
′, and ul > 0 for l = 2, . . . , k. By the Taylor series expan-

sion, we have
√

n(Î d̂
β lim

− Î d
β lim

) = √
n∇K(d)′(d̂ − d)

(A.15)
+ √

n1
2(d̂ − d)′∇2K(d∗)(d̂ − d),

where d∗ is between d̂ and d . We now consider ∇K(d). For t = 2, . . . , k we have

[∇K(d)]t−1
a.s.−→ [w(h)]t−1,

where [w(h)]t−1 was defined in (2.20). The Hessian matrix ∇2K(d∗) can be
shown to be bounded in probability, using an argument similar to the one used
in the proof of Theorem 1. Therefore, using the fact that ∇2K(d∗) is bounded in
probability, we can now rewrite (A.15) as

√
n(Î d̂

β lim
− Î d

β lim
) =

√
n

N
w(h)′

√
N(d̂ − d)

+
√

n

N

1

2
√

N

√
N(d̂ − d)′Op(1)

√
N(d̂ − d)

= √
qw(h)′

√
N(d̂ − d) + op(1).

Together with (A.4), this gives
√

n
(
Î d̂

β̂(d̂)
− B(h,h1)

) = √
qw(h)′

√
N(d̂ − d) + √

n
(
Î d

β̂(d)
− B(h,h1)

) + op(1)

d→ N
(
0, qw(h)′
w(h) + σ 2(h)

)
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by the independence of the two stages of sampling, the assumption that
√

N(d̂ −
d) is asymptotically normal with mean 0 and variance 
, and the result from
Doss (2010) that

√
n(Î d

β̂(d)
− B(h,h1)) is asymptotically normal with mean 0 and

variance σ 2(h). �

PROOF OF THEOREM 3. First, we note that√
n
(
Î [f ](h, d̂) − I [f ](h)

) = √
n
(
Î [f ](h, d̂) − Î [f ](h, d)

)
(A.16)

+ √
n
(
Î [f ](h, d) − I [f ](h)

)
.

We begin by analyzing the second term on the right-hand side of (A.16), which
only involves randomness from the second stage of sampling, and show that it is
asymptotically normal. As for the first term, a closer examination reveals that it
is also asymptotically normal, with all its randomness coming from stage 1. The
asymptotic normality of the sum of these two terms then follows immediately from
the independence of the two stages of sampling.

Note that
∑k

l=1 alE(Y
[f ]
1,l ) = I [f ](h) · B(h,h1), and, in particular, when f ≡ 1,

this gives
∑k

l=1 alE(Y1,l) = B(h,h1). Also, we have

n1/2

⎛
⎜⎜⎜⎜⎜⎝

1

n

k∑
l=1

nl∑
i=1

Y
[f ]
i,l − I [f ](h) · B(h,h1)

1

n

k∑
l=1

nl∑
i=1

Yi,l − B(h,h1)

⎞
⎟⎟⎟⎟⎟⎠

= n1/2

⎛
⎜⎜⎜⎜⎜⎝

1

n

k∑
l=1

nl∑
i=1

Y
[f ]
i,l −

k∑
l=1

alE
(
Y

[f ]
1,l

)
1

n

k∑
l=1

nl∑
i=1

Yi,l −
k∑

l=1

alE(Y1,l)

⎞
⎟⎟⎟⎟⎟⎠(A.17)

=
k∑

l=1

al
1/2 · 1

nl
1/2

nl∑
i=1

[(
Y

[f ]
i,l

Yi,l

)
−

(
E

(
Y

[f ]
1,l

)
E(Y1,l)

)]
.

By condition (2.26), assumption (A2) of Theorem 1, and the assumed geometric
ergodicity and independence of the k Markov chains used, the vector in (A.17)
converges in distribution to a normal random vector with mean 0 and covari-
ance matrix �(h) where �(h) is defined in (2.23). Since Î [f ](h, d) is given
by the ratio (2.21), in view of (A.17), its asymptotic distribution may be ob-
tained by applying the delta method to the function g(u, v) = u/v. This gives√

n(Î [f ](h, d) − I [f ](h))
d→ N (0, ρ(h)), where ρ(h) is given in (2.24).

We now consider the first term on the right-hand side of (A.16). Define

L(u) =
∑k

l=1
∑nl

i=1(f (θ
(l)
i )νh(θ

(l)
i )/

∑k
s=1 asνhs (θ

(l)
i )/us)∑k

l=1
∑nl

i=1(νh(θ
(l)
i )/

∑k
s=1 asνhs (θ

(l)
i )/us)
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for u = (u2, . . . , uk)
′ with ul > 0 for l = 2, . . . , k. Then

L(d) = Î [f ](h, d) =
∑k

l=1
∑nl

i=1 Y
[f ]
i,l∑k

l=1
∑nl

i=1 Yi,l

and
√

n(Î [f ](h, d̂) − Î [f ](h, d)) = √
n(L(d̂) − L(d)). Now, by the Taylor series

expansion of L about d , we get

√
n
(
Î [f ](h, d̂)− Î [f ](h, d)

) = √
n∇L(d)′(d̂ − d)+

√
n

2
(d̂ − d)′∇2L(d∗)(d̂ − d),

where d∗ is between d and d̂ . First, we show that the gradient ∇L(d) converges
almost surely to a finite constant vector by proving that each one of its components,
[L(d)]j−1, j = 2, . . . , k, converges almost surely. We have

[∇L(d)]j−1
a.s.−→ [v(h)]j−1, j = 2, . . . , k,

where [v(h)]j−1 is given in (2.25). As in the proof of Theorem 1, it can be shown
that each element of the second-derivative matrix ∇2L(d∗) is Op(1). Now, we can
rewrite (A.16) as

√
n
(
Î [f ](h, d̂) − I [f ](h)

)
=

√
n

N
∇L(d)′

√
N(d̂ − d) + √

n
(
Î [f ](h, d) − I [f ](h)

)

+ 1

2
√

N

√
n

N

[√
N(d̂ − d)

]′∇2L(d∗)
[√

N(d̂ − d)
]

= √
qv(h)′

√
N(d̂ − d) + √

n
(
Î [f ](h, d) − I [f ](h)

) + op(1).

Since the two sampling stages are assumed to be independent, we conclude that

√
n
(
Î [f ](h, d̂) − I [f ](h)

) d→ N
(
0, qv(h)′
v(h) + ρ(h)

)
. �
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SUPPLEMENTARY MATERIAL

Additional technical details (DOI: 10.1214/11-AOS913SUPP; .pdf). We show
that when estimating the Bayes factors using control variates, the estimate that
is optimal when the samples are i.i.d. sequences is no longer optimal when the
samples are Markov chains. We also give technical arguments regarding the con-
sistency of spectral estimates of the variance of our estimators.
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