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STATISTICAL INFERENCE FOR TIME-CHANGED LÉVY
PROCESSES VIA COMPOSITE CHARACTERISTIC FUNCTION

ESTIMATION

BY DENIS BELOMESTNY

Duisburg-Essen University

In this article, the problem of semi-parametric inference on the param-
eters of a multidimensional Lévy process Lt with independent components
based on the low-frequency observations of the corresponding time-changed
Lévy process LT (t), where T is a nonnegative, nondecreasing real-valued
process independent of Lt , is studied. We show that this problem is closely
related to the problem of composite function estimation that has recently got-
ten much attention in statistical literature. Under suitable identifiability condi-
tions, we propose a consistent estimate for the Lévy density of Lt and derive
the uniform as well as the pointwise convergence rates of the estimate pro-
posed. Moreover, we prove that the rates obtained are optimal in a minimax
sense over suitable classes of time-changed Lévy models. Finally, we present
a simulation study showing the performance of our estimation algorithm in
the case of time-changed Normal Inverse Gaussian (NIG) Lévy processes.

1. Introduction. The problem of nonparametric statistical inference for jump
processes or more generally for semimartingale models has long history and goes
back to the works of Rubin and Tucker (1959) and Basawa and Brockwell (1982).
In the past decade, one has witnessed the revival of interest in this topic which
is mainly related to a wide availability of financial and economical time series
data and new types of statistical issues that have not been addressed before. There
are two major strands of recent literature dealing with statistical inference for
semimartingale models. The first type of literature considers the so-called high-
frequency setup, where the asymptotic properties of the corresponding estimates
are studied under the assumption that the frequency of observations tends to infin-
ity. In the second strand of literature, the frequency of observations is assumed to
be fixed (the so-called low-frequency setup) and the asymptotic analysis is done
under the premiss that the observational horizon tends to infinity. It is clear that
none of the above asymptotic hypothesis can be perfectly realized on real data and
they can only serve as a convenient approximation, as in practice the frequency of
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observations and the horizon are always finite. The present paper studies the prob-
lem of statistical inference for a class of semimartingale models in low-frequency
setup.

Let X = (Xt)t≥0 be a stochastic process valued in R
d and let T = (T (s))s≥0 be

a nonnegative, nondecreasing stochastic process not necessarily independent of X

with T (0) = 0. A time-changed process Y = (Ys)s≥0 is then defined as Ys = XT (s).
The process T is usually referred to as time change. Even in the case of the
one-dimensional Brownian motion X, the class of time-changed processes XT is
very large and basically coincides with the class of all semimartingales [see, e.g.,
Monroe (1978)]. In fact, the construction in Monroe (1978) is not direct, meaning
that the problem of specification of different models with the specific properties
remains an important issue. For example, the base process X can be assumed to
possess some independence property (e.g., X may have independent components),
whereas a nonlinear time change can induce deviations from the independence.
Along this line, the time change can be used to model dependence for stochastic
processes. In this work, we restrict our attention to the case of time-changed Lévy
processes, that is, the case where X = L is a multivariate Lévy process and T is an
independent of L time change. Time-changed Lévy processes are one step further
in increasing the complexity of models in order to incorporate the so-called styl-
ized features of the financial time series, like volatility clustering [for more details,
see Carr et al. (2003)]. This type of processes in the case of the one-dimensional
Brownian motion was first studied by Bochner (1949). Clark (1973) introduced
Bochner’s time-changed Brownian motion into financial economics: he used it to
relate future price returns of cotton to the variations in volume during different
trading periods. Recently, a number of parametric time-changed Lévy processes
have been introduced by Carr et al. (2003), who model the stock price St by a
geometric time-changed Lévy model

St = S0 exp
(
LT (t)

)
,

where L is a Lévy process and T (t) is a time change of the form

T (t) =
∫ t

0
ρ(u)du(1.1)

with {ρ(u)}u≥0 being a positive mean-reverting process. Carr et al. (2003) pro-
posed to model ρ(u) via the Cox–Ingersoll–Ross (CIR) process. Taking different
parametric Lévy models for L (such as the normal inverse Gaussian or the variance
Gamma processes) results in a wide range of processes with rather rich volatility
structure (depending on the rate process ρ) and various distributional properties
(depending on the specification of L). From statistical point of view, any paramet-
ric model (especially one using only few parameters) is prone to misspecification
problems. One approach to deal with the misspecification issue is to adopt the
general nonparametric models for the functional parameters of the underlying pro-
cess. This may reduce the estimation bias resulting from an inadequate parametric
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model. In the case of time-changed Lévy models, there are two natural nonpara-
metric parameters: Lévy density ν, which determines the jump dynamics of the
process L and the marginal distribution of the process T .

In this paper, we study the problem of statistical inference on the character-
istics of a multivariate Lévy process L with independent components based on
low-frequency observations of the time-changed process Yt = LT (t), where T (t)

is a time change process independent of L with strictly stationary increments. We
assume that the distribution of T (t) is unknown, except of its mean value. This
problem is rather challenging and has not been yet given attention in the literature,
except for the special case of T (t) ≡ t [see, e.g., Neumann and Reiß (2009) and
Comte and Genon-Catalot (2010)]. In particular, the main difficulty in construct-
ing nonparametric estimates for the Lévy density ν of L lies in the fact that the
jumps are unobservable variables, since in practice only discrete observations of
the process Y are available. The more frequent the observations, the more rele-
vant information about the jumps of the underlying process, and hence, about the
Lévy density ν are contained in the sample. Such high-frequency based statistical
approach has played a central role in the recent literature on nonparametric estima-
tion for Lévy type processes. For instance, under discrete observations of a pure
Lévy process Lt at times tj = j�, j = 0, . . . , n, Woerner (2003) and Figueroa-
López (2004) proposed the quantity

β̂(f ) = 1

n�

n∑
k=1

f (Ltk − Ltk−1)

as a consistent estimator for the functional

β(f ) =
∫

f (x)ν(x) dx,

where f is a given “test function.” Turning back to the time-changed Lévy pro-
cesses, it was shown in Figueroa-López (2009) [see also Rosenbaum and Tankov
(2010)] that in the case, where the rate process ρ in (1.1) is a positive ergodic dif-
fusion independent of the Lévy process L, β̂(f ) is still a consistent estimator for
β(f ) up to a constant, provided the time horizon n� and the sampling frequency
�−1 converge to infinite at suitable rates. In the case of low-frequency data (� is
fixed), we cannot be sure to what extent the increment Ltk − Ltk−1 is due to one or
several jumps or just to the diffusion part of the Lévy process so that at first sight
it may appear surprising that some kind of inference in this situation is possible at
all. The key observation here is that for any bounded “test function” f

1

n

n∑
j=1

f
(
LT (tj ) − LT (tj−1)

)→ Eπ

[
f
(
LT (�)

)]
, n → ∞,(1.2)

provided the sequence T (tj ) − T (tj−1), j = 1, . . . , n, is stationary and ergodic
with the invariant stationary distribution π . The limiting expectation in (1.2) is
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then given by

Eπ

[
f
(
LT (�)

)]= ∫ ∞
0

E[f (Ls)]π(ds).

Taking f (z) = fu(z) = exp(iu�z), u ∈ R
d , and using the independence of L

and T , we arrive at the following representation for the c.f. of LT (s):

E
[
exp

(
iu�LT (�)

)]= ∫ ∞
0

exp(tψ(u))π(dt) = L�(−ψ(u)),(1.3)

where ψ(u) = t−1 log[E exp(iuLt)] is the characteristic exponent of the Lévy pro-
cess L and L� is the Laplace transform of π . In fact, the most difficult part of
estimation procedure comes only now and consists in reconstructing the character-
istics of the underlying Lévy process L from an estimate for L�(−ψ(u)). As we
will see, the latter statistical problem is closely related to the problem of compos-
ite function estimation, which is known to be highly nonlinear and ill-posed. The
identity (1.3) also reveals the major difference between high-frequency and low-
frequency setups. While in the case of high-frequency data one can directly esti-
mate linear functionals of the Lévy measure ν, under low-frequency observations,
one has to deal with nonlinear functionals of ν rendering the underlying estimation
problem nonlinear and ill-posed. Last but not least, the increments of time-changed
Lévy processes are not any longer independent, hence advanced tools from time
series analysis have to be used for the estimation of L�(−ψ(u)).

The paper is organized as follows. In Section 2.1, we introduce the main ob-
ject of our study, the time-changed Lévy processes. In Section 2.2, our statistical
problem is formulated and its connection to the problem of composite function
estimation is established. In Section 2.3, we impose some restrictions on the struc-
ture of the time-changed Lévy processes in order to ensure the identifiability and
avoid the “curse of dimensionality.” Section 3 contains the main estimation pro-
cedure. In Section 4, asymptotic properties of the estimates defined in Section 3
are studied. In particular, we derive uniform and pointwise rates of convergence
(Sections 4.3 and 4.4, resp.) and prove their optimality over suitable classes of
time-changed Lévy models (Section 4.5). Section 4.7 contains some discussion.
Finally, in Section 5 we present a simulation study. The rest of the paper contains
proofs of the main results and some auxiliary lemmas. In particular, in Section 7.3
a useful inequality on the probability of large deviations for empirical processes in
uniform metric for the case of weakly dependent random variables can be found.

2. Main setup.

2.1. Time-changed Lévy processes. Let Lt be a d-dimensional Lévy process
on the probability space (�, F ,P) with the characteristic exponent ψ(u), that is,

ψ(u) = t−1 log E[exp(iu�Lt)].
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We know by the Lévy–Khintchine formula that

ψ(u) = iμ�u − 1

2
u�	u +

∫
Rd

(
eiu�y − 1 − iu�y · 1{|y|≤1}

)
ν(dy),(2.1)

where μ ∈ R
d,	 is a positive-semidefinite symmetric d × d matrix and ν is a

Lévy measure on R
d \ {0} satisfying∫

Rd\{0}
(|y|2 ∧ 1)ν(dy) < ∞.

A triplet (μ,	, ν) is usually called a characteristic triplet of the d-dimensional
Lévy process Lt .

Let t → T (t), t ≥ 0 be an increasing right-continuous process with left limits
such that T (0) = 0 and for each fixed t , the random variable T (t) is a stopping
time with respect to the filtration F . Suppose furthermore that T (t) is finite P-a.s.
for all t ≥ 0 and that T (t) → ∞ as t → ∞. Then the family of (T (t))t≥0 defines
a random time change. Now consider a d-dimensional process Yt := LT (t). The
process Yt is called the time-changed Lévy process. Let us look at some examples.
If T (t) is a Lévy process, then Yt would be another Lévy process. A more general
situation is when T (t) is modeled by a nondecreasing semimartingale

T (t) = bt +
∫ t

0

∫ ∞
0

yρ(dy, ds),

where b is a drift and ρ is the counting measure of jumps in the time change. As in
Carr and Wu (2004), one can take bt = 0 and consider locally deterministic time
changes

T (t) =
∫ t

0
ρ(s−) ds,(2.2)

where ρ is the instantaneous activity rate which is assumed to be nonnegative.
When Lt is the Brownian motion and ρ is proportional to the instantaneous vari-
ance rate of the Brownian motion, then Yt is a pure jump Lévy process with the
Lévy measure proportional to ρ. Let us now compute the characteristic function
of Yt . Since T (t) and Lt are independent, we get

φY (u|t) = E
(
eiu�LT (t)

)= Lt (−ψ(u)),(2.3)

where Lt is the Laplace transform of T (t):

Lt (λ) = E
(
e−λT (t)).

2.2. Statistical problem. In this paper, we are going to study the problem
of estimating the characteristics of the Lévy process L from low-frequency ob-
servations Y0, Y�, . . . , Yn� of the process Y for some fixed � > 0. Moving to
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the spectral domain and taking into account (2.1), we can reformulate our prob-
lem as the problem of semi-parametric estimation of the characteristic expo-
nent ψ under structural assumption (2.1) from an estimate of φY (u|�) based
on Y0, Y�, . . . , Yn�. The formula (2.3) shows that the function φY (u|�) can be
viewed as a composite function and our statistical problem is hence closely related
to the problem of statistical inference on the components of a composite func-
tion. The latter type of problems in regression setup has gotten much attention
recently [see, e.g., Horowitz and Mammen (2007) and Juditsky, Lepski and Tsy-
bakov (2009)]. Our problem has, however, some features not reflected in the pre-
vious literature. First, the unknown link function L�, being the Laplace transform
of the r.v. T (�), is completely monotone. Second, the complex-valued function ψ

is of the form (2.1) implying, for example, a certain asymptotic behavior of ψ(u)

as u → ∞. Finally, we are not in regression setup and φY (u|�) is to be estimated
by its empirical counterpart

φ̂(u) = 1

n

n∑
j=1

eiu�(Y�j−Y�(j−1)).

The contribution of this paper to the literature on composite function estimation is
twofold. On the one hand, we introduce and study a new type of statistical prob-
lems which can be called estimation of a composite function under structural con-
straints. On the other hand, we propose new and constructive estimation approach
which is rather general and can be used to solve other open statistical problems of
this type. For example, one can directly adapt our method to the problem of semi-
parametric inference in distributional Archimedian copula-based models [see, e.g.,
McNeil and Nešlehová (2009) for recent results], where one faces the problem of
estimating a multidimensional distribution function of the form

F(x1, . . . , xd) = G
(
f1(x1) + · · · + fd(xd)

)
, (x1, . . . , xd) ∈ R

d,

with a completely monotone function G and some functions f1, . . . , fd . Further
discussion on the problem of composite function estimation can be found in Re-
mark 4.14.

2.3. Specification analysis. It is clear that without further restrictions on the
class of time-changed Lévy processes our problem of estimating ν is not well de-
fined, as even in the case of the perfectly known distribution of the process Y

the parameters of the Lévy process L are generally not identifiable. Moreover,
the corresponding statistical procedure will suffer from the “curse of dimensional-
ity” as the dimension d increases. In order to avoid these undesirable features, we
have to impose some additional restrictions on the structure of the time-changed
process Y . In statistical literature, one can basically find two types of restricted
composite models: additive models and single-index models. While the latter class
of models is too restrictive in our situation, the former one naturally appears if one
assumes the independence of the components of Lt . In this paper, we study a class
of time-changed Lévy processes satisfying the following two assumptions:
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(ALI) The Lévy process Lt has independent components such that at least two
of them are nonzero, that is,

φY (u|t) = Lt

(−ψ1(u1) − · · · − ψd(ud)
)
,(2.4)

where ψk, k = 1, . . . , d , are the characteristic exponents of the components of Lt

of the form

ψk(u) = iμku − σ 2
k u2/2

(2.5)
+
∫

R

(
eiux − 1 − iux · 1{|x|≤1}

)
νk(dx), k = 1, . . . , d,

and

|μl| + σ 2
l +

∫
R

x2νl(dx) 
= 0(2.6)

for at least two different indexes l.
(ATI) The time change process T is independent of the Lévy process L and

satisfies E[T (t)] = t .

Discussion. The advantage of the modeling framework (2.4) is twofold. On the
one hand, models of this type are rather flexible: the distribution of Yt for a fixed t

is in general determined by d +1 nonparametric components and 2×d parametric
ones. On the other hand, these models remain parsimonious and, as we will see
later, admit statistical inference not suffering from the “curse of dimensionality”
as d becomes large. The latter feature of our model is in accordance with the
well documented behavior of the additive models in regression setting and may
become particularly important if one is going to use it, for instance, to model large
portfolios of assets. The nondegeneracy assumption (2.6) basically excludes one-
dimensional models and is not restrictive since it can be always checked prior to
estimation by testing that

−∂ulul
φ̂(u)|u=0 = 1

n

n∑
j=1

(
Y�j,l − Y�(j−1),l

)2
> 0

for at least two different indexes l. Let us make a few remarks on the one-
dimensional case, where

φY (u|t) = Lt (−ψ1(u)), t ≥ 0.(2.7)

If L� is known, that is, the distribution of the r.v. T (�) is known, we can con-
sistently estimate the Lévy measure ν1 by inverting L� (see Section 4.6 for more
details). In the case when the function L� is unknown, one needs some additional
assumptions (e.g., absolute continuity of the time change) to ensure identifiability.
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Indeed, consider a class of the one-dimensional Lévy processes of the so-called
compound exponential type with the characteristic exponent of the form

ψ(u) = log
[

1

1 − ψ̃(u)

]
,

where ψ̃(u) is the characteristic exponent of another one-dimensional Lévy pro-
cess L̃t . It is well known [see, e.g., Section 3 in Chapter 4 of Steutel and van Harn
(2004)] that exp(ψ(u)) is the characteristic function of some infinitely divisible
distribution if exp(ψ̃(u)) does. Introduce

L̃�(z) = L�

(
log(1 + z)

)
.

As can be easily seen, the function L̃� is completely monotone with L̃�(0) = 1
and L̃′

�(0) = L′
�(0). Moreover, it is fulfilled L̃�(−ψ̃(u)) = L�(−ψ(u)) for all

u ∈ R. The existence of the time change (increasing) process T with a given
marginal T (�) can be derived from the general theory of stochastic partial or-
dering [see Kamae and Krengel (1978)]. The above construction indicates that the
assumption E[T (t)] = t, t ≥ 0, is not sufficient to ensure the identifiability in the
case of one-dimensional time-changed Lévy models.

3. Estimation.

3.1. Main ideas. Assume that the Lévy measures of the component processes
L1

t , . . . ,L
d
t are absolutely continuous with integrable densities ν1(x), . . . , νd(x)

that satisfy ∫
R

x2νk(x) dx < ∞, k = 1, . . . , d.

Consider the functions

ν̄k(x) = x2νk(x), k = 1, . . . , d.

By differentiating ψk two times, we get

ψ ′′
k (u) = −σ 2

k −
∫

R

eiuxν̄k(x) dx.

For the sake of simplicity, in the sequel we will make the following assumption:

(ALS) The diffusion volatilities σk, k = 1, . . . , d , of the Lévy process L are
supposed to be known.

A way how to extend our results to the case of the unknown (σk) is outlined in
Section 4.6. Introduce the functions ψ̄k(u) = ψk(u) + σ 2

k u2/2 to get

F[ν̄k](u) = −ψ̄ ′′
k (u) = −σ 2

k − ψ ′′
k (u),(3.1)
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where F[ν̄k](u) stands for the Fourier transform of ν̄k . Denote Z = Y�, φk(u) =
∂uk

φZ(u),φkl(u) = ∂ukul
φZ(u) and φjkl(u) = ∂ujukul

φZ(u) for j, k, l ∈ {1, . . . , d}
with

φZ(u) = E[exp(iu�Z)] = L�

(−ψ1(u1) − · · · − ψd(ud)
)
.(3.2)

Fix some k ∈ {1, . . . , d} and for any real number u introduce a vector

u(k) = (0, . . . ,0, u,0, . . . ,0) ∈ R
d

with u being placed at the kth coordinate of the vector u(k). Choose some l 
= k,
such that the component Ll

t is not degenerated. Then we get from (3.2)

φk(u
(k))

φl(u(k))
= ψ ′

k(u)

ψ ′
l (0)

,(3.3)

if μl 
= 0 and

φk(u
(k))

φll(u(k))
= ψ ′

k(u)

ψ ′′
l (0)

(3.4)

in the case μl = 0. The identities φl(0) = −ψ ′
l (0)L′

�(0) and φll(0) = [ψ ′
l (0)]2 ×

L′′
�(0)−ψ ′′

l (0)L′
�(0) imply ψ ′

l (0) = −[L′
�(0)]−1φl(0) = �−1φl(0) and ψ ′′

l (0) =
−[L′

�(0)]−1φll(0) = �−1φll(0) if ψ ′
l (0) = 0, since L′

�(0) = −E[T (�)] = −�.
Combining this with (3.3) and (3.4), we derive

ψ ′′
k (u) = �−1φl(0)

φkk(u
(k))φl(u

(k)) − φk(u
(k))φlk(u

(k))

φ2
l (u

(k))
, μl 
= 0,(3.5)

ψ ′′
k (u) = �−1φll(0)

φkk(u
(k))φll(u

(k)) − φk(u
(k))φllk(u

(k))

φ2
ll(u

(k))
, μl = 0.(3.6)

Note that in the above derivations we have repeatedly used assumption (ATI), that
turns out to be crucial for the identifiability. The basic idea of the algorithm, we
shall develop in the Section 3.2, is to estimate ν̄k by an application of the regular-
ized Fourier inversion formula to an estimate of ψ̄ ′′

k (u). As indicated by formulas
(3.5) and (3.6), one could, for example, estimate ψ̄ ′′

k (u), if some estimates for the
functions φk(u),φlk(u) and φllk(u) are available.

REMARK 3.1. One important issue we would like to comment on is the ro-
bustness of the characterizations (3.5) and (3.6) with respect to the independence
assumption for the components of the Lévy process Lt . First, note that if the com-
ponents are dependent, then the key identity (3.1) is not any longer valid for ψ ′′

k

defined as in (3.5) or (3.6). Let us determine how strong can it be violated. For
concreteness, assume that μl > 0 and that the dependence in the components of Lt
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is due to a correlation between diffusion components. In particular, let 	(k, l) > 0.
Since in the general case

∂uk
ψ
(
u(k))= ∂ul

ψ
(
u(k))φk(u

(k))

φl(u(k))

and ∂ukuk
ψ(u(k)) = −σ 2

k − F[ν̄k](u), we get

F[ν̄k](u) + ψ ′′
k (u) + σ 2

k = 	(k, l)

2

[
u∂uk

{
φk(u

(k))

φl(u(k))

}
+ φk(u

(k))

φl(u(k))

]
.

Using the fact that both functions u∂uk
{φk(u

(k))/φl(u
(k))} and φk(u

(k))/φl(u
(k))

are uniformly bounded for u ∈ R, we get that the model “misspecification bias” is
bounded by C	(k, l) with some constant C > 0. Thus, the weaker is the depen-
dence between components Lk and Ll , the smaller is the resulting “misspecifica-
tion bias.”

3.2. Algorithm. Set Zj = Y�j − Y�(j−1), j = 1, . . . , n, and denote by Zk
j the

kth coordinate of Zj . Note that Zj , j = 1, . . . , n, are identically distributed. The
estimation procedure consists basically of three steps:

Step 1. First, we are interested in estimating partial derivatives of the function
φZ(u) up to the third order. To this end, define

φ̂k(u) = 1

n

n∑
j=1

Zk
j exp(iu�Zj),(3.7)

φ̂lk(u) = 1

n

n∑
j=1

Zk
jZ

l
j exp(iu�Zj),(3.8)

φ̂llk(u) = 1

n

n∑
j=1

Zk
jZ

l
jZ

l
j exp(iu�Zj).(3.9)

Step 2. In a second step, we estimate the second derivative of the characteristic
exponent ψk(u). Set

ψ̂k,2(u) = �−1φ̂l(0)
φ̂kk(u

(k))φ̂l(u
(k)) − φ̂k(u

(k))φ̂lk(u
(k))

[φ̂l(u(k))]2
,(3.10)

if |φ̂l(0)| > κ/
√

n and

ψ̂k,2(u) = �−1φ̂ll(0)
φ̂kk(u

(k))φ̂ll(u
(k)) − φ̂k(u

(k))φ̂llk(u
(k))

[φ̂ll(u(k))]2
(3.11)

otherwise, where κ is a positive number.
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Step 3. Finally, we construct an estimate for ν̄k(x) by applying the Fourier in-
version formula combined with a regularization to ψ̂k,2(u):

ν̂k(x) = − 1

2π

∫
R

e−iux[ψ̂k,2(u) + σ 2
k ]K(uhn) du,(3.12)

where K(u) is a regularizing kernel supported on [−1,1] and hn is a sequence of
bandwidths which tends to 0 as n → ∞. The choice of the sequence hn will be
discussed later on.

REMARK 3.2. The parameter κ determines the testing error for the hypothesis
H :μl > 0. Indeed, if μl = 0, then φl(0) = 0 and by the central limit theorem

P
(|φ̂l(0)| > κ/

√
n
) ≤ P

(√
n|φ̂l(0) − φl(0)| > κ

)
→ P

(|ξ | > κ/

√
Var[Zl]), n → ∞,

with ξ ∼ N (0,1).

4. Asymptotic analysis. In this section, we are going to study the asymptotic
properties of the estimates ν̂k(x), k = 1, . . . , d . In particular, we prove almost sure
uniform as well as pointwise convergence rates for ν̂k(x). Moreover, we will show
the optimality of the above rates over suitable classes of time-changed Lévy mod-
els.

4.1. Global vs. local smoothness of Lévy densities. Let Lt be a one-dimen-
sional Lévy process with a Lévy density ν. Denote ν̄(x) = x2ν(x). For any two
nonnegative numbers β and γ such that γ ∈ [0,2] consider two following classes
of Lévy densities ν:

Sβ =
{
ν :
∫

R

(1 + |u|β)F[ν̄](u) du < ∞
}

(4.1)

and

Bγ =
{
ν :
∫
|y|>ε

ν(y) dy � �(ε)

εγ
, ε → +0

}
,(4.2)

where � is some positive function on R+ satisfying 0 < �(+0) < ∞. The param-
eter γ is usually called the Blumenthal–Geetor index of Lt . This index γ is related
to the “degree of activity” of jumps of Lt . All Lévy measures put finite mass on
the set (−∞,−ε] ∪ [ε,∞) for any arbitrary ε > 0. If ν([−ε, ε]) < ∞ the process
has finite activity and γ = 0. If ν([−ε, ε]) = ∞, that is, the process has infinite
activity and in addition the Lévy measure ν((−∞,−ε] ∪ [ε,∞)) diverges near 0
at a rate |ε|−γ for some γ > 0, then the Blumenthal–Geetor index of Lt is equal
to γ . The higher γ gets, the more frequent the small jumps become.
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Let us now investigate the connection between classes Sβ and Bγ . First, con-
sider an example. Let Lt be a tempered stable Lévy process with a Lévy density

ν(x) = 2γ · γ
�(1 − γ )

x−(γ+1) exp
(
−x

2

)
1(0,∞)(x), x > 0,

where γ ∈ (0,1). It is clear that ν ∈ Bγ but what is about Sβ? Since

ν̄(x) = 2γ · γ
�(1 − γ )

x1−γ exp
(
−x

2

)
1(0,∞)(x),

we derive

F[ν̄](u) =
∫ ∞

0
eiuxν̄(x) dx � 2γ γ (1 − γ )eiπ(1−γ /2)u−2+γ , u → +∞,

by the Erdélyi lemma [see Erdélyi (1956)]. Hence, ν cannot belong to Sβ as long
as β > 1 − γ . The message of this example is that given the activity index γ , the
parameter β determining the smoothness of ν̄, cannot be taken arbitrary large. The
above example can be straightforwardly generalized to a class of Lévy densities
supported on R+. It turns out that if the Lévy density ν is supported on [0,∞), is
infinitely smooth in (0,∞) and ν ∈ Bγ for some γ ∈ (0,1), then ν ∈ Sβ for all β

satisfying 0 ≤ β < 1−γ and ν /∈ Sβ for β > 1−γ . As a matter of fact, in the case
γ = 0 (finite activity case) the situation is different and β can be arbitrary large.

The above discussion indicates that in the case ν ∈ Bγ with some γ > 0 it is
reasonable to look at the local smoothness of ν̄k instead of the global one. To this
end, fix a point x0 ∈ R and a positive integer number s ≥ 1. For any δ > 0 and
D > 0 introduce a class Hs(x0, δ,D) of Lévy densities ν defined as

Hs(x0, δ,D) =
{
ν : ν̄(x) ∈ Cs(]x0 − δ, x0 + δ[),

(4.3)
sup

x∈]x0−δ,x0+δ[
∣∣ν̄(l)(x)

∣∣≤ D for l = 1, . . . , s
}
.

4.2. Assumptions. In order to prove the convergence of ν̂k(x), we need the
assumptions listed below:

(AL1) The Lévy densities ν1, . . . , νd are in the class Bγ for some γ > 0.
(AL2) For some p > 2, the Lévy densities νk, k = 1, . . . , d , have finite absolute

moments of the order p:∫
R

|x|pνk(x) dx < ∞, k = 1, . . . , d.

(AT1) The time change T is independent of the Lévy process L and the se-
quence Tk = T (�k) − T (�(k − 1)), k ∈ N, is strictly stationary, α-mixing with
the mixing coefficients (αT (j))j∈N satisfying

αT (j) ≤ ᾱ0 exp(−ᾱ1j), j ∈ N,
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for some positive constants ᾱ0 and ᾱ1. Moreover, assume that

E[T −2/γ (�)] < ∞, E[T 2p(�)] < ∞
with γ and p being from assumptions (AL1) and (AL2), respectively.

(AT2) The Laplace transform Lt (z) of T (t) fulfills

L′
t (z) = o(1), L′′

t (z)/L′
t (z) = O(1), |z| → ∞, Re z > 0.

(AK) The regularizing kernel K is uniformly bounded, is supported on [−1,1]
and satisfies

K(u) = 1, u ∈ [−aK,aK ],
with some 0 < aK < 1.

(AH) The sequence of bandwidths hn is assumed to satisfy

h−1
n = O(n1−δ), Mn

√
logn

n

√
1

hn

log
1

hn

= o(1), n → ∞,

for some positive number δ fulfilling 2/p < δ ≤ 1, where

Mn = max
l 
=k

sup
{|u|≤1/hn}

∣∣φ−1
l

(
u(k))∣∣.

REMARK 4.1. By requiring νk ∈ Bγ , k = 1, . . . , d , with some γ > 0, we ex-
clude from our analysis pure compound Poisson processes and some infinite ac-
tivity Lévy processes with γ = 0. This is mainly done for the sake of brevity: we
would like to avoid additional technical calculations related to the fact that the
distribution of Yt is not in general absolutely continuous in this case.

REMARK 4.2. Assumption (AT1) is satisfied if, for example, the process T (t)

is of the form (1.1), where the rate process ρ(u) is strictly stationary, geometrically
α-mixing and fulfills

E[ρ2p(u)] < ∞, u ∈ [0,�], E
(∫ �

0
ρ(u)du

)−2/γ

< ∞.(4.4)

In the case of the Cox–Ingersoll–Ross process ρ (see Section 5.2), assumptions
(4.4) are satisfied for any p > 0 and any γ > 0.

REMARK 4.3. Let us comment on assumption (AH). Note that in order to
determine Mn, we do not need the characteristic function φ(u) itself, but only a low
bound for its tails. Such low bound can be constructed if, for example, a low bound
for the tail of L′

t (z) and an upper bound for the Blumenthal–Geetor index γ are
available [see Belomestny (2010b) for further discussion]. In practice, of course,
one should prefer adaptive methods for choosing hn. One such method, based on
the so called “quasi-optimality” approach, is proposed and used in Section 5.1.
The theoretical analysis of this method is left for future research.
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4.3. Uniform rates of convergence. Fix some k from the set {1,2, . . . , d}. De-
fine a weighting function w(x) = log−1/2(e + |x|) and denote

‖ν̄k − ν̂k‖L∞(R,w) = sup
x∈R

[w(|x|)|ν̄k(x) − ν̂k(x)|].

Let ξn be a sequence of positive r.v. and qn be a sequence of positive real
numbers. We shall write ξn = Oa.s.(qn) if there is a constant D > 0 such that
P(lim supn→∞ q−1

n ξn ≤ D) = 1. In the case P(lim supn→∞ q−1
n ξn = 0) = 1, we

shall write ξn = oa.s.(qn).

THEOREM 4.4. Suppose that assumptions (AL1), (AL2), (AT1), (AT2), (AK)
and (AH) are fulfilled. Let ν̂k(x) be the estimate for ν̄k(x) defined in Section 3.2.
If νk ∈ Sβ for some β > 0, then

‖ν̄k − ν̂k‖L∞(R,w) = Oa.s.

(√√√√ log3+ε n

n

∫ 1/hn

−1/hn

R2
k(u) du + hβ

n

)

for arbitrary small ε > 0, where

Rk(u) = (1 + |ψ ′
k(u)|)2

|L′
�(−ψk(u))| .

COROLLARY 4.5. Suppose that σk = 0, γ ∈ (0,1] in assumption (AL1) and

|L′
�(z)| � exp(−a|z|η), |z| → ∞, Re z ≥ 0,

for some a > 0 and η > 0. If μk > 0, then

‖ν̄k − ν̂k‖L∞(R,w) = Oa.s.

(√
log3+ε n

n
exp(ac · h−η

n ) + hβ
n

)
(4.5)

with some constant c > 0. In the case μk = 0 we have

‖ν̄k − ν̂k‖L∞(R,w) = Oa.s.

(√
log3+ε n

n
exp(ac · h−γ η

n ) + hβ
n

)
.(4.6)

Choosing hn in such a way that the r.h.s. of (4.5) and (4.6) are minimized, we
obtain the rates shown in the Table 1. If γ ∈ (0,1] in assumption (AL1) and

|L′
�(z)| � |z|−α, |z| → ∞, Re z ≥ 0,

for some α > 0, then

‖ν̄k − ν̂k‖L∞(R,w) = Oa.s.

(√
log3+ε n

n
h−1/2−α

n + hβ
n

)



STATISTICAL INFERENCE FOR TIME-CHANGED LÉVY PROCESSES 2219

TABLE 1
Uniform convergence rates for ν̂k in the case σk = 0

|L′
�(z)| ��� |z|−α |L′

�(z)| ��� exp(−a|z|η)

μk > 0 μk = 0 μk > 0 μk = 0

n−β/(2α+2β+1) n−β/(2αγ+2β+1) log−β/η n log−β/γ η n

× log(3+ε)β/(2α+2β+1)(n) × log(3+ε)β/(2αγ+2β+1)(n)

provided μk > 0. In the case μk = 0, one has

‖ν̄k − ν̂k‖L∞(R,w) = Oa.s.

(√
log3+ε n

n
h−1/2−αγ

n + hβ
n

)
.

The choices hn = n−1/(2(α+β)+1) log(3+ε)/(2(α+β)+1)(n) and

hn = n−1/(2(αγ+β)+1) log(3+ε)/(2(αγ+β)+1)(n)

for the cases μk > 0 and μk = 0, respectively, lead to the bounds shown in Table 1.
In the case σk > 0, the rates of convergence are given in Table 2.

REMARK 4.6. As one can see, assumption (AH) is always fulfilled for the
optimal choices of hn given in Corollary 4.5, provided αγ + β > 0 and p > 2 +
1/(αγ + β).

4.4. Pointwise rates of convergence. Since the transformed Lévy density ν̄k is
usually not smooth at 0 (see Section 4.1), pointwise rates of convergence might
be more informative than the uniform ones if νk ∈ Bγ for some γ > 0. It is re-
markable that the same estimate ν̂k as before will achieve the optimal pointwise
convergence rates in the class Hs(x0, δ,D), provided the kernel K satisfies (AK)
and is sufficiently smooth.

THEOREM 4.7. Suppose that assumptions (AL1), (AL2), (AT1), (AT2), (AK)
and (AH) are fulfilled. If νk ∈ Hs(x0, δ,D) with Hs(x0, δ,D) being defined in

TABLE 2
Uniform convergence rates for ν̂k in the case σk > 0

|L′
�(z)| ��� |z|−α |L′

�(z)| ��� exp(−a|z|η)

n−β/(4α+2β+1) log(3+ε)β/(4α+2β+1)(n) log−β/2η n
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(4.3), for some s ≥ 1, δ > 0,D > 0, and K ∈ Cm(R) for some m ≥ s, then

|̂νk(x0) − ν̄k(x0)| = Oa.s.

(√√√√ log3+ε n

n

∫ 1/hn

−1/hn

R2
k(u) du + hs

n

)
(4.7)

with Rk(u) as in Theorem 4.4. As a result, the pointwise rates of convergence
for different asymptotic behaviors of the Laplace transform Lt coincide with ones
given in Tables 1 and 2, if we replace β with s.

REMARK 4.8. If the kernel K is infinitely smooth, then it will automatically
“adapt” to the pointwise smoothness of ν̄k , that is, (4.7) will hold for arbitrary large
s ≥ 1, provided νk ∈ Hs(x0, δ,D) with some δ > 0 and D > 0. An example of
infinitely smooth kernels satisfying (AK) is given by the so called flat-top kernels
(see Section 5.1 for the definition).

4.5. Lower bounds. In this section, we derive a lower bound on the minimax
risk of an estimate ν̂(x) over a class of one-dimensional time-changed Lévy pro-
cesses Yt = LT (t) with the known distribution of T , such that the Lévy measure
ν of the Lévy process Lt belongs to the class Sβ ∩ Bγ with some β > 0 and
γ ∈ (0,1]. The following theorem holds.

THEOREM 4.9. Let Lt be a Lévy process with zero diffusion part, a drift μ

and a Lévy density ν. Consider a time-changed Lévy process Yt = LT (t), where
the Laplace transform of the time change T (t) fulfills

L(k+1)
� (z)/L(k)

� (z) = O(1), |z| → ∞, Re z ≥ 0,(4.8)

for k = 0,1,2, and uniformly in � ∈ [0,1]. Then

lim inf
n→∞ inf

ν̂
sup

ν∈Sβ∩Bγ

P(ν,T )

(‖ν̄ − ν̂‖L∞(R,w) > εhβ
n log−1(1/hn)

)
> 0(4.9)

for any ε > 0 and any sequence hn satisfying

n�−1[L′
�(c · h−γ

n )]2h2β+1
n = O(1), n → ∞,

in the case μ = 0 and

n�−1[L′
�(c · h−1

n )]2h2β+1
n = O(1), n → ∞,

in the case μ > 0, with some positive constant c > 0. Note that the infimum in (4.9)
is taken over all estimators of ν based on n observations of the r.v. Y� and P(ν,T )

stands for the distribution of n copies of Y�.
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COROLLARY 4.10. Suppose that the underlying Lévy process is driftless, that
is, μ = 0 and Lt (z) = exp(−azt) for some a > 0, corresponding to a deterministic
time change process T (t) = at . Then by taking

hn =
(

logn − ((2β + 1)/γ ) log logn

2ac�

)−1/γ

,

we arrive at

lim inf
n→∞ inf

ν̂
sup

ν∈Sβ∩Bγ

P(ν,T )

(‖ν̄ − ν̂‖L∞(R,w) > ε · �β/γ log−β/γ n
)
> 0.

COROLLARY 4.11. Again let μ = 0. Take Lt (z) = 1/(1 + z)α0t ,Re z > 0 for
some α0 > 0, resulting in a Gamma process T (t) (see Section 5.1 for the defini-
tion). Under the choice

hn = (n�)−1/(2αγ+2β+1)

we get

lim inf
n→∞ inf

ν̂
sup

ν∈Sβ∩Bγ

P(ν,T )

(‖ν̄ − ν̂‖L∞,w(R) > ε · (n�)−β/(2αγ+2β+1) log−1 n
)
> 0,

where α = α0� + 1.

REMARK 4.12. Theorem 4.9 continues to hold for � → 0 and therefore can
be used to derive minimax lower bounds for the risk of ν̂ in high-frequency setup.
As can be seen from Corollaries 4.10 and 4.11, the rates will strongly depend on
the specification of the time change process T .

The pointwise rates of convergence obtained in (4.7) turn out to be optimal over
the class Hs(x0, δ,D)∩Bγ with s ≥ 1, δ > 0, x0 ∈ R, D > 0 and γ ∈ (0,1] as the
next theorem shows.

THEOREM 4.13. Let Lt be a Lévy process with zero diffusion part, a drift μ

and a Lévy density ν. Consider a time-changed Lévy process Yt = LT (t), where
the Laplace transform of the time change T (t) fulfills (4.8). Then

lim inf
n→∞ inf

ν̂
sup

ν∈Hs (x0,δ,D)∩Bγ

P(ν,T )

(|ν̄(x0) − ν̂(x0)| > εhs
n log−1(1/hn)

)
> 0(4.10)

for s ≥ 1, δ > 0, D > 0, any ε > 0 and any sequence hn satisfying

n�−1[L′
�(c · h−γ

n )]2h2s+1
n = O(1), n → ∞,

in the case μ = 0 and

n�−1[L′
�(c · h−1

n )]2h2s+1
n = O(1), n → ∞,

in the case μ > 0, with some positive constant c > 0.
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4.6. Extensions.

One-dimensional time-changed Lévy models. Let us consider a class of one-
dimensional time-changed Lévy models (2.7) with the known time change pro-
cess, that is, the known function Lt for all t > 0. This class of models trivially
includes Lévy processes without time change [by setting Lt (z) = exp(−tz)] stud-
ied in Neumann and Reiß (2009) and Comte and Genon-Catalot (2010). We have
in this case

ψ ′′
1 (u) = −φ′′(u)L′

�(−ψ1(u)) − φ′(u)L′′
�(−ψ1(u))/L′

�(−ψ1(u))

[L′
�(−ψ1(u))]2(4.11)

with

ψ1(u) = −L−
�(φ(u)),

where L−
� is an inverse function for L�. Thus, ψ ′′

1 (u) is again a ratio-type estimate
involving the derivatives of the c.f. φ up to second order, that agrees with the one
proposed in Comte and Genon-Catalot (2010) for the case of pure Lévy processes.
Although we do not study the case of one-dimensional models in this work, our
analysis can be easily adapted to this situation as well. In particular, the derivation
of the pointwise convergence rates can be directly carried over to this situation.

The case of the unknown (σk). One way to proceed in the case of the unknown
(σk) and νk ∈ Bγ with γ < 2 is to define ν̃k(x) = x4νk(x). Assuming

∫
ν̃k(x) dx <

∞, we get

ψ
(4)
k (u) =

∫
R

eiuxν̃k(x) dx.

Hence, in the above situation one can apply the regularized Fourier inversion for-
mula to an estimate of ψ

(4)
k (u) instead of ψ ′′

k (u).

Estimation of L�. Let us first estimate ψk . Set

ψ̂k(u) = �−1φ̂l(0)

∫ u

0

φ̂k(v
(k))

φ̂l(v(k))
dv.

Under Assumptions (AL2), (AT1), (AT2), (AK) and (AH) we derive

‖ψk − ψ̂k‖L∞(R,w) = Oa.s.

(√
log3+ε n

n

)
(4.12)

with a weighting function

w(u) =
[∫ u

0

1 + |ψ ′
k(v)|

|L′
�(−ψk(v))| dv

]−1

.
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Now let us define an estimate for L� as a solution of the following optimization
problem

L̂� = arg inf
L∈M�

sup
u∈R

{
w(u)

∣∣L(−ψ̂k(u)) − φ̂
(
u(k))∣∣},(4.13)

where M� is the set of completely monotone functions L satisfying L(0) = 1 and
L′(0) = −�. Simple calculations and the bound (4.12) yield

sup
u∈R

{w(u)|L̂�(−ψk(u)) − L�(−ψk(u))|} = Oa.s.

(√
log3+ε n

n

)
.(4.14)

Since any function L from M� has a representation

L(u) =
∫ ∞

0
e−ux dF (x)

with some distribution function F satisfying
∫

x dF(x) = �, we can replace the
optimization over M in (4.13) by the optimization over the corresponding set of
distribution functions. The advantage of the latter approach is that herewith we can
directly get an estimate for the distribution function of the r.v. T (�). A practical
implementation of the estimate (4.13) is still to be worked out, as the optimization
over the set M� is not feasible and should be replaced by the optimization over
suitable approximation classes (sieves). Moreover, the “optimal” weights in (4.13)
depend on the unknown L. However, it turns out that it is possible to use any
weighting function which is dominated by w(u), that is, one needs only some
lower bounds for L′

�.

REMARK 4.14. It is interesting to compare (4.12) and (4.14) with Theo-
rem 3.2 in Horowitz and Mammen (2007). At first sight it may seem strange that,
while the rates of convergence for our “link” function L� and the “components”
ψk depend on the tail behavior of L′

�, the rates in Horowitz and Mammen (2007)
rely only on the smoothness of the link function and the components. The main
reason for this is that the derivative of the link function in the above paper is as-
sumed to be uniformly bounded from below [assumption (A8)], a restriction that
can be hardly justifiable in our setting. The convergence analysis in the unbounded
case is, in our opinion, an important contribution of this paper to the problem of
estimating composite functions that can be carried over to other setups and set-
tings.

4.7. Discussion. As can be seen, the estimate ν̂k can exhibit various asymp-
totic behavior depending on the underlying Lévy process Lt and the time-change
T (t). In particular, if the Laplace transform Lt (z) of T dies off at exponential rate
as Re z → +∞ and μk = 0, then the rates of convergence of ν̂k are logarithmic
and depend on the Blumenthal–Geetor index of the Lévy process Lt . The larger
is the Blumenthal–Geetor index, the slower are the rates and the more difficult
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the estimation problem becomes. For the polynomially decaying Lt (z) one gets
polynomial convergence rates that also depend on the Blumenthal–Geetor index
of Lt . Let us also note that the uniform rates of convergence are usually rather
slow, since β < 1 − γ in most situations. The pointwise convergence rates for
points x0 
= 0 can, on the contrary, be very fast. The rates obtained turn out to be
optimal up to a logarithmic factor in the minimax sense over the classes Sβ ∩ Bγ

and Hs(x0, δ,D) ∩ Bγ .

5. Simulation study. In our simulation study, we consider two models based
on time-changed normal inverse Gaussian (NIG) Lévy processes. The NIG Lévy
processes is a relatively new class of processes introduced in Barndorff-Nielsen
(1998) as a model for log returns of stock prices. The processes of this type
are characterized by the property that their increments have NIG distribution.
Barndorff-Nielsen (1998) considered classes of normal variance–mean mixtures
and defined the NIG distribution as the case when the mixing distribution is in-
verse Gaussian. Shortly after its introduction, it was shown that the NIG distribu-
tion fits very well the log returns on German stock market data, making the NIG
Lévy processes of great interest for practioneers. A NIG distribution has in general
four parameters: α ∈ R+, κ ∈ R, δ ∈ R+ and μ ∈ R with |κ| < α. Each parameter
in NIG(α,κ, δ,μ) distribution can be interpreted as having a different effect on
the shape of the distribution: α is responsible for the tail heaviness of steepness,
κ has to do with symmetry, δ scales the distribution and μ determines its mean
value. The NIG distribution is infinitely divisible with c.f.

φ(u) = exp
{
δ
(√

α2 − κ2 −
√

α2 − (κ + iu)2 + iμu
)}

.

Therefore, one can define the NIG Lévy process (Lt )t≥0 which starts at zero and
has independent and stationary increments such that each increment Lt+� − Lt

has NIG(α,κ,�δ,�μ) distribution. The NIG process has no diffusion component
making it a pure jump process with the Lévy density

ν(x) = 2αδ

π

exp(κx)K1(α|x|)
|x| ,(5.1)

where Kλ(z) is the modified Bessel function of the third kind. Taking into account
the asymptotic relations

K1(z) � 2/z, z → +0, and K1(z) �
√

π

2z
e−z, z → +∞,

we conclude that ν ∈ B1 and ν ∈ Hs(x0, δ,D) for arbitrary large s > 0 and some
δ > 0,D > 0, if x0 
= 0. Moreover, assumption (AL2) is fulfilled for any p > 0.
Furthermore, the identity

d2

du2 logφ(u) = −α2/
(
α2 − (κ + iu)2)3/2
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implies ν ∈ S2−δ for arbitrary small δ > 0. In the next sections are going to study
two time-changed NIG processes: one uses the Gamma process as a time change
and another employs the integrated CIR processes to model T .

5.1. Time change via a Gamma process. Gamma process is a Lévy process
such that its increments have Gamma distribution, so that T is a pure-jump in-
creasing Lévy process with the Lévy density

νT (x) = θx−1 exp(−λx), x ≥ 0,

where the parameter θ controls the rate of jump arrivals and the scaling parameter
λ inversely controls the jump size. The Laplace transform of T is of the form

Lt (z) = (1 + z/λ)−θt , Re z ≥ 0.

It follows from the properties of the Gamma and the corresponding inverse Gamma
distributions that assumptions (AT1) and (AT2) are fulfilled for the Gamma process
T , provided θ� > 2/γ . Consider now the time-changed Lévy process Yt = LT (t)

where Lt = (L1
t ,L

2
t ,L

3
t ) is a three-dimensional Lévy process with independent

NIG components and T is a Gamma process. Note that the process Yt is a mul-
tidimensional Lévy process since T was itself the Lévy process. Let us be more
specific and take the �-increments of the Lévy processes L1

t , L2
t and L3

t to have
NIG(1,−0.05,1,−0.5), NIG(3,−0.05,1,−1) and NIG(1,−0.03,1,2) distribu-
tions, respectively. Take also θ = 1 and λ = 1 for the parameters of the Gamma
process T . Next, fix an equidistant grid on [0,10] of the length n = 1,000 and sim-
ulate a discretized trajectory of the process Yt . Let us stress that the dependence
structure between the components of Yt is rather flexible (although they are uncor-
related) and can be efficiently controlled by the parameters of the corresponding
Gamma process T . Next, we construct an estimate ν̂1 as described in Section 3.2.
We first estimate the derivatives φ1, φ2, φ11 and φ12 by means of (3.7) and (3.8).
Then we estimate ψ ′′

1 (u) using the formula (3.10) with k = 1 and l = 2. Finally,
we get ν̂1 from (3.12) where the kernel K is chosen to be the so-called flat-top
kernel of the form

K(x) =

⎧⎪⎪⎨⎪⎪⎩
1, |x| ≤ 0.05,

exp
(
−e−1/(|x|−0.05)

1 − |x|
)
, 0.05 < |x| < 1,

0, |x| ≥ 1.

The flat-top kernels obviously satisfy assumption (AK). Thus, all assumptions of
Theorem 4.4 are fulfilled and Corollary 4.5 leads to the following convergence
rates for the estimate ν̂1 of the function ν̄1(x) = x2ν(x):

‖ν̄1 − ν̂1‖L∞(R,w) = Oa.s.
(
n−(1−δ′)/(θ�+5/2) log(3+ε′)/(θ�+5/2)(n)

)
, n → ∞,

with arbitrary small positive numbers δ′ and ε′, provided the sequence hn is chosen
as in Corollary 4.5. Let us turn to the finite sample performance of the estimate ν̂1.
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FIG. 1. Left-hand side: objective function f (l) for “quasi-optimality” approach versus the corre-
sponding bandwidths hl , l = 1, . . . ,40. Right-hand side: adaptive estimate ν̃1 (dashed line) together
with the true function ν̄1 (solid line).

It turns out that the choice of the sequence hn is crucial for a good performance
of ν1. For this choice, we adopt the so called “quasi-optimality” approach proposed
in Bauer and Reiß (2008). This approach is aimed to perform a model selection in
inverse problems without taking into account the noise level. Although one can
prove the optimality of this criterion on average only, it leads in many situations
to quite reasonable results. In order to implement the “quasi-optimality” algorithm
in our situation, we first fix a sequence of bandwidths h1, . . . , hL and construct
the estimates ν

(1)
1 , . . . , ν

(L)
1 using the formula (3.12) with bandwidths h1, . . . , hL,

respectively. Then one finds l� = arg minl f (l) with

f (l) = ∥∥ν̂(l+1)
1 − ν̂

(l)
1

∥∥
L1(R), l = 1, . . . ,L.

Denote by ν̃1 = ν̂l∗
1 a new adaptive estimate for ν̄1. In our implementation of the

“quasi-optimality” approach, we take hl = 0.5+0.1× l, l = 1, . . . ,40. In Figure 1,
the sequence f (l), l = 1, . . . ,40, is plotted. On the right-hand side of Figure 1,
we show the resulting estimate ν̃1 together with the true function ν̄1. Based on
the estimate ν̃1, one can estimate some functionals of ν̄1. For example, we have∫

ν̃1(x) dx = 1.049053 [
∫

ν̄1(x) dx = 1.015189].

5.2. Time change via an integrated CIR process. Another possibility to con-
struct a time-changed Lévy process from the NIG Lévy process Lt is to use a time
change of the form (2.2) with some rate process ρ(t). A possible candidate for the
rate of the time change is given by the Cox–Ingersoll–Ross process (CIR process).
The CIR process is defined as a solution of the following SDE:

dZt = κ(η − Zt) dt + ζ
√

Zt dWt, Z0 = 1,
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where Wt is a Wiener process. This process is mean reverting with κ > 0 being the
speed of mean reversion, η > 0 being the long-run mean rate and ζ > 0 controlling
the volatility of Zt . Additionally, if 2κη > ζ 2 and Z0 has Gamma distribution, then
Zt is stationary and exponentially α-mixing [see, e.g., Masuda (2007)]. The time
change T is then defined as

T (t) =
∫ t

0
Zt dt.

Simple calculations show that the Laplace transform of T (t) is given by

Lt (z) = exp(κ2ηt/ζ 2) exp(−2z/(κ + γ (z) coth(γ (z)t/2)))

(cosh(γ (z)t/2) + κ sinh(γ (z)t/2)/γ (z))2κη/ζ 2

with γ (z) =
√

κ2 + 2ζ 2z. It is easy to see that Lt (z) � exp(−
√

2z
ζ

[1 + tκη]) as
|z| → ∞ with Re z ≥ 0. Moreover, it can be shown that E|T (t)|p < ∞ for any
p ∈ R. Let Lt be again a three-dimensional NIG Lévy process with independent
components distributed as in Section 5.1. Construct the time-changed process Yt =
LT (t). Note that the process Yt is not any longer a Lévy process and has in general
dependent increments. Let us estimate ν̄1, the transformed Lévy density of the
first component of Lt . First, note that according to Theorem 4.4, the estimate ν̂1
constructed as described in Section 3.2, has the following logarithmic convergence
rates

‖ν̄1 − ν̂1‖L∞(R,w) = Oa.s.
(
log−2(2−δ)(n)

)
, n → ∞,

for arbitrary small δ > 0, provided the bandwidth sequence is chosen in the op-
timal way. Finite sample performance of ν̂1 with the choice of hn based on
the “quasi-optimality” approach is illustrated in Figure 2 where the sequence
of estimates ν̂

(1)
1 , . . . , ν̂

(L)
1 was constructed from the time series Y�, . . . , Yn�

with n = 5,000 and � = 0.1. The parameters of the used CIR process are
κ = 1, η = 1 and ζ = 0.1. Again we can compute some functionals of ν̃1. We
have, for example, following estimates for the integral and for the mean of ν̄1:∫

ν̃1(x) dx = 1.081376 [
∫

ν̄1(x) dx = 1.015189] and
∫

xν̃1(x) dx = −0.4772505
[
∫

xν̄1(x) dx = −0.3057733].
Let us now test the performance of estimation algorithm in the case of a time-

changed NIG process (parameters are the same as before), where the time change
is again given by the integrated CIR process with the parameters η = 1, ζ = 0.1
and κ ∈ {0.05,0.1,0.5,1}. Figure 3(left) shows the boxplots of the resulting error
‖ν̄1 − ν̃1‖L∞(R,w) computed using 100 trajectories each of the length n = 5,000,
where the time span between observation is � = 0.1. Note that if our time units are
days, then we get about two years of observations with about one mean reversion
per month in the case κ = 0.05. As one can see, the performance of the algorithm
remains reasonable for the whole range of κ . In Figure 3(right), we present the
boxplots of the error ‖ν̄1 − ν̃1‖L∞(R,w) in the case of η = 1, ζ = 0.1, κ = 1 and n ∈
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FIG. 2. Left-hand side: objective function f (l) for the “quasi-optimality” approach versus the
corresponding bandwidths hl . Right-hand side: adaptive estimate ν̃1 (dashed line) together with the
true function ν̄1 (solid line).

{500,1,000,3,000,5,000}. As one can expect, the performance of the algorithm
becomes worse as n decreases. However, the quality of the estimation remains
reasonable even for n = 500.

6. Proofs of the main results.

6.1. Proof of Theorem 4.4. For simplicity, let consider the case of μl > 0 and
σk = 0. By Proposition 7.4 [take Gn(u, z) = exp(iuz), Ln = μ̄n = σ̄n = 1, a =
0, b = 1]

P
(|φ̂l(0)| ≤ κ/

√
n
)≥ P

(|φ̂l(0) − φl(0)| > μl

)≤ Bn−1−δ

for some constants δ > 0,B > 0 and n large enough. Furthermore, simple calcula-
tions lead to the following representation:

ψ ′′
k (u) − ψ̂k,2(u) = ψ ′′

k (u)

ψ ′
l (0)

(
φl(0) − φ̂l(0)

)
(6.1)

+ R0(u) + R1(u) + R2(u),

where

R0(u) = [V1(u)ψ ′′
k (u) − V2(u)ψ ′

k(u)](φl

(
u(k))− φ̂l

(
u(k)))

+ V2(u)
(
φk

(
u(k))− φ̂k

(
u(k)))

− V1(u)
(
φkk

(
u(k))− φ̂kk

(
u(k)))

+ V1(u)ψ ′
k(u)

(
φlk

(
u(k))− φ̂lk

(
u(k))),
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FIG. 3. Boxplots of the error ‖ν̄1 − ν̃1‖L∞(R,w) for different values of the mean reversion speed
parameter κ and different numbers of observations n.
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R1(u) = [Ṽ1(u)ψ ′′
k (u) − Ṽ2(u)ψ ′

k(u)](φl

(
u(k))− φ̂l

(
u(k)))

+ Ṽ2(u)
(
φk

(
u(k))− φ̂k

(
u(k)))

− Ṽ1(u)
(
φkk

(
u(k))− φ̂kk

(
u(k)))

+ Ṽ1(u)ψ ′
k(u)

(
φlk

(
u(k))− φ̂lk

(
u(k))),

R2(u) = �2(u)
φl(0)(φlk(u

(k)) − φ̂lk(u
(k)))

[φl(u(k))]2

× [(
φl

(
u(k))− φ̂l

(
u(k)))ψ ′

k(u) − (φk

(
u(k))− φ̂k

(
u(k)))]

+ (φ̂l(0) − φl(0))

φl(u(k))

[R0 + R1

φl(0)

]
with

V1(u) = φl(0)

�φl(u(k))
= − 1

L′
�(−ψk(u))

,

V2(u) = φl(0)φlk(u
(k))

�[φl(u(k))]2 = −V1(u)ψ ′
k(u)

L′′
�(−ψk(u))

L′
�(−ψk(u))

,

Ṽ1(u) = (
�(u) − 1

)
V1(u), Ṽ2(u) = (

�2(u) − 1
)
V2(u)

and

�(u) =
[
1 − 1

φl(u(k))

(
φl

(
u(k))− φ̂l

(
u(k)))]−1

.

The representation (6.1) and the Fourier inversion formula imply the following
representation for the deviation ν̄k − ν̂k :

ν̄k(x) − ν̂k(x) = 1

2π

(φl(0) − φ̂l(0))

ψ ′
l (0)

∫
R

e−iuxψ ′′
k (u)K(uhn) du

+ 1

2π

∫
R

e−iux R0(u)K(uhn) du

+ 1

2π

∫
R

e−iux R1(u)K(uhn) du

+ 1

2π

∫
R

e−iux R2(u)K(uhn) du

+ 1

2π

∫
R

e−iux(1 − K(uhn)
)
ψ ′′

k (u) du.

First, let us show that

sup
x∈R

∣∣∣∣∫
R

e−iux R1(u)K(uhn) du

∣∣∣∣= oa.s

(√√√√ log3+ε n

n

∫ 1/hn

−1/hn

R2
k(u) du

)
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and

sup
x∈R

∣∣∣∣∫
R

e−iux R2(u)K(uhn) du

∣∣∣∣= oa.s

(√
log3+ε n

n

∫
R

R2
k(u) du

)
.

We have, for example, for the first term in R1(u)∣∣∣∣∫
R

e−iuz(�(u) − 1
)
V1(u)ψ ′′

k (u)
(
φl

(
u(k))− φ̂l

(
u(k)))K(uhn) du

∣∣∣∣
≤ sup

|u|≤1/hn

|�(u) − 1| sup
u∈R

[
w(|u|)∣∣φl

(
u(k))− φ̂l

(
u(k))∣∣]w−1(1/hn)

×
∫ 1/hn

−1/hn

|V1(u)||ψ ′′
k (u)|du

with w(u) = log−1/2(e + u),u ≥ 0. Fix some ξ > 0 and consider the event

A =
{

sup
{|u|≤1/hn}

[
w(|u|)∣∣φ̂l

(
u(k))− φl

(
u(k))∣∣]≤ ξ

√
logn

n

}
.

By assumption (AH), it holds on A that

sup
|u|<1/hn

∣∣∣∣φl(u
(k)) − φ̂l(u

(k))

φl(u(k))

∣∣∣∣ ≤ ξMnw
−1(1/hn)

√
logn/n

= o
(√

hn

)
, n → ∞,

and hence

sup
{|u|≤1/hn}

|1 − �(u)| = o
(√

hn

)
, n → ∞.(6.2)

Therefore, one has on A that

sup
x∈R

∣∣∣∣∫ 1/hn

−1/hn

e−iux(�(u) − 1
)
V1(u)ψ ′′

k (u)
(
φl

(
u(k))− φ̂l

(
u(k)))K(uhn) du

∣∣∣∣
= o

(√
hn log2 n

n

∫ 1/hn

−1/hn

Rk(u) du

)
= o

(√√√√ log3+ε n

n

∫ 1/hn

−1/hn

R2
k(u) du

)

since ψ ′′
k (u) and K(u) are uniformly bounded on R. On the other hand, Propo-

sition 7.4 implies [on can take Gn(u, z) = exp(iuz), Ln = μ̄n = σ̄n = 1, a = 0,
b = 1]

P(Ā) � n−1−δ′
, n → ∞,
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for some δ′ > 0. The Borel–Cantelli lemma yields

sup
x∈R

∣∣∣∣∫ 1/hn

−1/hn

e−iux(�(u) − 1
)
V1(u)ψ ′′

k (u)
(
φl

(
u(k))− φ̂l

(
u(k)))K(uhn) du

∣∣∣∣
= oa.s.

(√√√√ log3+ε n

n

∫ 1/hn

−1/hn

R2
k(u) du

)
.

Other terms in R1 and R2 can be analyzed in a similar way. Turn now to the rate
determining term R0. Consider, for instance, the integral∫ 1/hn

−1/hn

e−iuxV1(u)ψ ′′
k (u)

(
φl

(
u(k))− φ̂l

(
u(k)))K(uhn) du

(6.3)

= 1

nhn

n∑
j=1

[
Zl

jKn

(x − Zk
j

hn

)
− E

{
Zl 1

hn

Kn

(
x − Zk

hn

)}]
= S(x)

with

Kn(z) =
∫ 1

−1
e−iuzV1(u/hn)ψ

′′
k (u/hn)K(u) du.

Now we are going to make use of Proposition 7.4 to estimate the term S(x) on the
r.h.s. of (6.3). To this end, let

Gn(u, z) = 1

hn

Kn

(
u − z

hn

)
.

Since νk, νl ∈ Bγ for some γ > 0 [assumption (AL1)], the Lévy processes Lk
t and

Ll
t possess infinitely smooth densities pk,t and pl,t which are bounded for t > 0

[see Sato (1999), Section 28] and fulfill [see Picard (1997)]

sup
x∈R

{pk,t (x)} � t−1/γ , t → 0,(6.4)

sup
x∈R

{pl,t (x)} � t−1/γ , t → 0.(6.5)

Moreover, under assumption (AL2) [see Luschgy and Pagès (2008)]∫
|x|mpk,t (x) dx = O(t),

∫
|x|mpl,t (x) dx = O(t), t → 0,(6.6)

and ∫
|x|mpk,t (x) dx = O(tm),

(6.7) ∫
|x|mpl,t (x) dx = O(tm), t → +∞,
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for any 2 ≤ m ≤ p. As a result, the distribution of (Zk,Zl) is absolutely continuous
with uniformly bounded density qkl given by

qkl(y, z) =
∫ ∞

0
pk,t (y)pl,t (z) dπ(dt),

where π is the distribution function of the r.v. T (�). The asymptotic relations
(6.4)–(6.7) and assumption (AT1) imply

E[|Zl|2|Gn(u,Zk)|2] = 1

h2
n

∫
R

∣∣∣∣Kn

(
u − y

hn

)∣∣∣∣2{∫
R

|z|2qkl(y, z) dz

}
dy

≤ C0

hn

∫
R

|Kn(v)|2 dv

≤ C1

∫ 1/hn

−1/hn

|V1(u)|2 du

with some finite constants C0 > 0 and C1 > 0. Similarly,

E[|Zk|2|Gn(u,Zk)|2] ≤ C2

∫ 1/hn

−1/hn

|V1(u)|2 du,

E[|Zk|4|Gn(u,Zk)|2] ≤ C3

∫ 1/hn

−1/hn

|V1(u)|2 du,

E[|Zk|2|Zl|2|Gn(u,Zk)|2] ≤ C4

∫ 1/hn

−1/hn

|V1(u)|2 du

with some positive constants C2,C3 and C4. Define

σ̄ 2
n = C

∫ 1/hn

−1/hn

|V1(u)|2 du,

μ̄n = ‖K‖∞‖ψ ′′‖∞
∫ 1/hn

−1/hn

|V1(u)|du,

Ln = ‖K‖∞‖ψ ′′‖∞
∫ 1/hn

−1/hn

|u||V1(u)|du,

where C = maxk=1,2,3,4{Ck}. Since |V1(u)| → ∞ as |u| → ∞ and hn → ∞, we
get μ̄n/σ̄

2
n = O(1). Furthermore, due to assumption (AH)

μ̄n � h−1/2
n σ̄n � n1/2−δ/2σ̄n, Ln � h3/2

n σ̄n � n3/2σ̄n, n → ∞,(6.8)

and σ̄n = O(h
−1/2
n Mn) = O(n1/2). Thus, assumptions (AG1) and (AG2) of Propo-

sition 7.4 are fulfilled. Assumption (AZ1) follows from Lemma 7.1 and assump-
tion (AT1). Therefore, we get by Proposition 7.4

P

(
sup
z∈R

[w(|z|)|S(z)|] ≥ ξ

√
σ̄ 2

n log3+ε n

n

)
� n−1−δ′
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for some δ′ > 0 and ξ > ξ0. Noting that

σ̄ 2
n ≤ C

∫ 1/hn

−1/hn

R2
k(u) du,

we derive

sup
z∈R

[w(|z|)|S(z)|] = Oa.s.

(√√√√ log3+ε n

n

∫ 1/hn

−1/hn

R2
k(u) du

)
.

Other terms in R0 can be studied in a similar manner. Finally,

‖ν̂k − ν̄k‖L∞(R,w) = Oa.s.

(√√√√ log3+ε n

n

∫ 1/hn

−1/hn

R2
k(u) du

)
(6.9)

+ 1

2π

∫
R

|1 − K(uhn)||ψ ′′
k (u)|du.

The second, bias term on the r.h.s. of (6.9) can be easily bounded if we recall that
νk ∈ Sβ and K(u) = 1 on [−aK,aK ]

1

2π

∫
R

|1 − K(uhn)||ψ ′′
k (u)|du � hβ

n

∫
{|u|>aK/hn}

|u|β |F[ν̄k](u)|du

� hβ
n

∫
R

(1 + |u|β)|F[ν̄k](u)|du, n → ∞.

6.2. Proof of Theorem 4.7. We have

ν̂k(x0) − ν̄k(x0) =
[

1

2π

∫
R

e−iux0ψ ′′
k (u)K(uhn) du − ν̄k(x0)

]
+ 1

2π

∫
R

e−iux0
(
ψ̂k,2 − ψ ′′

k (u)
)

K(uhn) du

= J1 + J2

Introduce

K(z) = 1

2π

∫ 1

−1
eiuzK(u) du,

then by the Fourier inversion formula

K(u) =
∫

R

e−iuzK(z) dz.(6.10)

Assumption (AK) together with the smoothness of K implies that K(z) has finite
absolute moments up to order m ≥ s and it holds that∫

K(z)dz = 1,

∫
zkK(z) dz = 0, k = 1, . . . ,m.(6.11)
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Hence

J1 =
∫ ∞
−∞

ν̄k(x0 + hnv)K(v)dv − ν̄k(x0)

and

|J1| ≤
∣∣∣∣∫|v|>δ/hn

[ν̄k(x0) − ν̄k(x0 + hnv)]K(v)dv

∣∣∣∣
+
∣∣∣∣∫|v|≤δ/hn

[ν̄k(x0) − ν̄k(x0 + hnv)]K(v)dv

∣∣∣∣
= I1 + I2.

Since ‖ν̄‖∞ ≤ Cν̄ for some constant Cν̄ > 0, we get

I1 ≤ 2Cν̄

∫
|v|>δ/hn

|K(v)|dv ≤ Cν̄CK(hn/δ)
m

with CK = ∫
R

|K(v)||v|m dv. Further, by the Taylor expansion formula,

I2 ≤
∣∣∣∣∣
s−1∑
j=0

h
j
nν̄

(j)
k (x0)

j !
∫
|v|≤δ/hn

K(v)vj dv

∣∣∣∣∣
+
∣∣∣∣∫|v|≤δ/hn

K(v)

[∫ x0+hnv

x0

ν̄
(s)
k (ζ )(ζ − x0)

s−1

(s − 1)! dζ

]
dv

∣∣∣∣
= I21 + I22.

First, let us bound I21 from above. Note that, due to (6.11),

I21 =
∣∣∣∣∣
s−1∑
j=0

h
j
nν̄

(j)
k (x0)

j !
∫
|v|>δ/hn

K(v)vj dv

∣∣∣∣∣.
Hence,

I21 ≤
(

hn

δ

)m s−1∑
j=0

δj |ν̄(j)
k (x0)|
j !

∫
|v|>δ/hn

|K(v)||v|m dv

≤
(

hn

δ

)m

LCK exp(δ).

Furthermore, we have for I22

I22 ≤ Lhs
n

s!
∫
|v|≤δ/hn

|K(v)||v|s dv.

Combining all previous inequalities and taking into account the fact that m ≥ s,
we derive

|J1| � hs
n, n → ∞.

The stochastic term J2 can handled along the same lines as in the proof of Theo-
rem 4.4.
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6.3. Proof of Theorem 4.9. Define

K0(x) =
∞∏

k=1

(
sin(akx)

akx

)2

with ak = 2−k, k ∈ N. Since K0(x) is continuous at 0 and does not vanish there,
the function

K(x) = 1

2π

sin(2x)

πx

K0(x)

K0(0)

is well defined on R. Next, fix two positive numbers β and γ such that γ ∈ (0,1)

and 0 < β < 1 − γ . Consider a function

�(u) = eix0u

(1 + u2)(1+β)/2 log2(e + u2)

for some x0 > 0 and define

μh(x) =
∫ ∞
−∞

μ(x + zh)K(z) dz

for any h > 0, where

μ(x) = 1

2π

∫ ∞
−∞

e−ixu�(u)du.

In the next lemma, some properties of the functions μ and μh are collected.

LEMMA 6.1. Functions μ and μh have the following properties:

(i) μ and μh are uniformly bounded on R,
(ii) for any natural n > 0

max{μ(x),μh(x)} � |x|−n, |x| → ∞,(6.12)

that is, both functions μ(x) and μh(x) decay faster than any negative power of x,
(iii) it holds

x2
0μ(x0) − x2

0μh(x0) ≥ Dhβ log−1(1/h)(6.13)

for some constant D > 0 and h small enough.

Fix some ε > 0 and consider two functions

ν1(x) = νγ (x) + 1 − ε

(1 + x2)2 + εμ(x),

ν2(x) = νγ (x) + 1 − ε

(1 + x2)2 + εμh(x),
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where νγ (x) is given by

νγ (x) = 1

(1 + x2)

[
1

x1+γ
1{x ≥ 0} + 1

|x|1+γ
1{x < 0}

]
.

Due to statements (i) and (ii) of Lemma 6.1, one can always choose ε in such a
way that ν1 and ν2 stay positive on R+ and thus they can be viewed as the Lévy
densities of some Lévy processes L1,t and L2,t , respectively. It directly follows
from the definition of ν1 and ν2 that ν1, ν2 ∈ Bγ . The next lemma describes some
other properties of ν1(x) and ν2(x). Denote ν̄1(x) = x2ν1(x) and ν̄2(x) = x2ν2(x).

LEMMA 6.2. Functions ν̄1(x) and ν̄2(x) satisfy

sup
x∈R

|ν̄1(x) − ν̄2(x)| ≥ εDhβ log−1(1/h)(6.14)

and ∫ ∞
−∞

(1 + |u|β)|F[ν̄i](u)|du < ∞, i = 1,2,(6.15)

that is, both functions ν1(x) and ν2(x) belong to the class Sβ .

Let us now perform a time change in the processes L1,t and L2,t . To this end, in-
troduce a time change T (t), such that the Laplace transform of T (t) has following
representation:

Lt (z) = E
[
e−zT (t)]= ∫ ∞

0
e−zy dFt (y),

where (Ft , t ≥ 0) is a family of distribution functions on R+ satisfying

1 − Ft(y) ≤ 1 − Fs(y), y ∈ R+,

for any t ≤ s. Denote by p̃1,t and p̃2,t the marginal densities of the resulting time-
changed Lévy processes Y1,t = L1,T (t) and Y2,t = L2,T (t), respectively. The fol-
lowing lemma provides us with an upper bound for the χ2-divergence between
p̃1,t and p̃2,t , where for any two probability measures P and Q the χ2-divergence
between P and Q is defined as

χ2(P,Q) =
⎧⎨⎩
∫ (

dP

dQ
− 1

)2

dQ, if P � Q,

+∞, otherwise.

LEMMA 6.3. Suppose that the Laplace transform of the time change T (t)

fulfills ∣∣L(k+1)
� (z)/L(k)

� (z)
∣∣= O(1), |z| → ∞,(6.16)

for k = 0,1,2, and uniformly in � ∈ [0,1]. Then

χ2(p̃1,�, p̃2,�) � �−1[L′
�(ch−γ )]2h(2β+1), h → 0,

with some constant c > 0.
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The proofs of Lemmas 6.1, 6.2 and 6.3 can be found in the preprint version
of our paper Belomestny (2010a). Combining Lemma 6.3 with inequality (6.14)
and using the well-known Assouad lemma [see, e.g., Theorem 2.6 in Tsybakov
(2004)], one obtains

lim inf
n→∞ inf

ν̂
sup

ν∈Bγ ∩Sβ

P

(
sup
x∈R

|ν̄(x) − ν̂(x)| > hβ
n log−1(1/hn)

)
> 0

for any sequence hn satisfying

n�−1[L′
t (c · h−γ

n )]2h(2β+1)
n = O(1), n → ∞.

7. Auxiliary results.

7.1. Some results on time-changed Lévy processes.

LEMMA 7.1. Let Lt be a d-dimensional Lévy process with the Lévy measure
ν and let T (t) be a time change independent of Lt . Fix some � > 0 and consider
two sequences Tk = T (�k)− T (�(k−1)) and Zk = Y�k −Y�(k−1), k = 1, . . . , n,
where Yt = LT (t). If the sequence (Tk)k∈N is strictly stationary and α-mixing with
the mixing coefficients (αT (j))j∈N, then the sequence (Zk)k∈N is also strictly sta-
tionary and α-mixing with the mixing coefficients (αZ(j))j∈N, satisfying

αZ(j) ≤ αT (j), j ∈ N.(7.1)

PROOF. Fix some natural k, l with k + l < n. Using the independence of in-
crements of the Lévy process Lt and the fact that T is a nondecreasing process,
we get E[φ(Z1, . . . ,Zk)] = E[φ̃(T1, . . . , Tk)] and

E[φ(Z1, . . . ,Zk)ψ(Zk+l, . . . ,Zn)]
= E[φ̃(T1, . . . , Tk)ψ̃(Tk+l, . . . , Tn)], k, l ∈ N,

for any two functions φ : Rk → [0,1] and ψ : Rn−l−k → [0,1], where φ̃(t1, . . . ,

tk) = E[φ(Lt1, . . . ,Ltk )] and ψ̃(t1, . . . , tk) = E[ψ(Lt1, . . . ,Ltk )]. This implies that
the sequence Zk is strictly stationary and α-mixing with the mixing coefficients
satisfying (7.1). �

7.2. Exponential inequalities for dependent sequences. The following theo-
rem can be found in Merlevéde, Peligrad and Rio (2009).

THEOREM 7.2. Let (Zk, k ≥ 1) be a strongly mixing sequence of centered
real-valued random variables on the probability space (�, F ,P ) with the mixing
coefficients satisfying

α(n) ≤ ᾱ exp(−cn), n ≥ 1, ᾱ > 0, c > 0.(7.2)
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Assume that supk≥1 |Zk| ≤ M a.s., then there is a positive constant C depending
on c and ᾱ such that

P

{
n∑

i=1

Zi ≥ ζ

}
≤ exp

[
− Cζ 2

nv2 + M2 + Mζ log2(n)

]
for all ζ > 0 and n ≥ 4, where

v2 = sup
i

(
E[Zi]2 + 2

∑
j≥i

Cov(Zi,Zj )

)
.

COROLLARY 7.3. Denote

ρj = E
[
Z2

j log2(1+ε)(|Zj |2)], j = 1,2, . . . ,

with arbitrary small ε > 0 and suppose that all ρj are finite. Then∑
j≥i

Cov(Zi,Zj ) ≤ C max
j

ρj

for some constant C > 0, provided (7.2) holds. Consequently, the following in-
equality holds:

v2 ≤ sup
i

E[Zi]2 + C max
j

ρj .

The proof can be found in Belomestny (2010a).

7.3. Bounds on large deviations probabilities for weighted sup norms. Let
Zj = (Xj ,Yj ), j = 1, . . . , n, be a sequence of two-dimensional random vectors
and let Gn(u, z), n = 1,2, . . . , be a sequence of complex-valued functions defined
on R

2. Define

m̂1(u) = 1

n

n∑
j=1

XjGn(u,Xj ),

m̂2(u) = 1

n

n∑
j=1

YjGn(u,Xj ),

m̂3(u) = 1

n

n∑
j=1

X2
jGn(u,Xj ),

m̂4(u) = 1

n

n∑
j=1

XjYjGn(u,Xj ).

PROPOSITION 7.4. Suppose that the following assumptions hold:
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(AZ1) The sequence Zj , j = 1, . . . , n, is strictly stationary and is α-mixing
with mixing coefficients (αZ(k))k∈N satisfying

αZ(k) ≤ ᾱ0 exp(−ᾱ1k), k ∈ N,

for some ᾱ0 > 0 and ᾱ1 > 0.
(AZ2) The r.v. Xj and Yj possess finite absolute moments of order p > 2.
(AG1) Each function Gn(u, z), n ∈ N is Lipschitz in u with linearly growing

(in z) Lipschitz constant, that is, for any u1, u2 ∈ R

|Gn(u1, z) − Gn(u2, z)| ≤ Ln(a + b|z|)|u1 − u2|,
where a, b are two nonnegative real numbers not depending on n and the sequence
Ln does not depend on u.

(AG2) There are two sequences μ̄n and σ̄n, such that

|Gn(u, z)| ≤ μ̄n, (u, z) ∈ R
2,

and all the functions

E[(|X|2 + |Y |2)|Gn(u,X)|2], E[|X|4|Gn(u,X)|2],
E[|X|2|Y |2|Gn(u,X)|2]

are uniformly bounded on R by σ̄ 2
n . Moreover, assume that the sequences μ̄n, Ln

and σ̄n fulfill

μ̄n/σ̄
2
n = O(1), μ̄n/σ̄n = O(n1/2−δ/2), σ̄ 2

n = O(n),

Ln/σ̄n = O(n3/2), n → ∞,

for some δ satisfying 2/p < δ ≤ 1.

Let w be a symmetric, Lipschitz continuous, positive, monotone decreasing on R+
function such that

0 < w(z) ≤ log−1/2(e + |z|), z ∈ R.(7.3)

Then there is δ′ > 0 and ξ0 > 0, such that the inequality

P

{
log−(1+ε)(1 + μ̄n)

√
n

σ̄ 2
n logn

‖m̂k − E[m̂k]‖L∞(R,w) > ξ

}
≤ Bn−1−δ′

(7.4)

holds for any ξ > ξ0, any k ∈ {1, . . . ,4}, some positive constant B depending on ξ

and arbitrary small ε > 0.

The proof of the proposition can be found in Belomestny (2010a).
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