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SUBCRITICAL PERCOLATION WITH A LINE OF DEFECTS

BY S. FRIEDLI1, D. IOFFE2 AND Y. VELENIK1

UFMG-ICEx, Technion and Université de Genève

We consider the Bernoulli bond percolation process Pp,p′ on the nearest-

neighbor edges of Z
d , which are open independently with probability p < pc,

except for those lying on the first coordinate axis, for which this probability
is p′. Define

ξp,p′ := − lim
n→∞n−1 log Pp,p′(0 ↔ ne1)

and ξp := ξp,p . We show that there exists p′
c = p′

c(p, d) such that ξp,p′ = ξp
if p′ < p′

c and ξp,p′ < ξp if p′ > p′
c. Moreover, p′

c(p,2) = p′
c(p,3) = p,

and p′
c(p, d) > p for d ≥ 4. We also analyze the behavior of ξp − ξp,p′ as

p′ ↓ p′
c in dimensions d = 2,3. Finally, we prove that when p′ > p′

c, the
following purely exponential asymptotics holds:

Pp,p′(0 ↔ ne1) = ψde
−ξp,p′n(

1 + o(1)
)

for some constant ψd = ψd(p,p′), uniformly for large values of n. This work
gives the first results on the rigorous analysis of pinning-type problems, that
go beyond the effective models and don’t rely on exact computations.

1. Introduction and results. We consider bond percolation on Ed , the set
of nearest-neighbor edges of Z

d , d ≥ 2. Let L ⊂ Ed be the set of all edges that
lie on the first coordinate axis {se1, s ∈ R}, where e1 denotes the unit vector
(1,0, . . . ,0) ∈ R

d . Let Pp,p′ be the probability measure on sets of configurations

of edges ω ∈ {0,1}Ed
, under which each edge e ∈ Ed is open independently with

probability

Pp,p′
(
ω(e) = 1

) = {
p, if e ∈ Ed \ L ≡ Lc,
p′, if e ∈ L.

(1.1)

When p′ = p, we write Pp instead of Pp,p , and the model coincides with or-
dinary homogeneous Bernoulli edge percolation, whose critical threshold will be
denoted pc = pc(d).

As far as we know, the properties of the connectivities under Pp,p′ were first
studied by Zhang [18], who showed that in d = 2, there is no percolation under
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Ppc(2),p′ , for all p′ < 1. Newman and Wu [16] studied the same problem in large
dimensions as well as related properties, where the line L is replaced by higher-
dimensional subspaces of Z

d .
Let S

d−1 be the unit sphere in R
d . It is well known [2] that in the homogeneous

case, for p < pc,

ξp(n) := − lim
k→∞

1

k
log Pp(0 ↔ [kn])

defines a function ξp : Sd−1 → (0,∞) which can be extended by positive homo-
geneity to a norm on R

d . Let 〈·, ·〉 denote the inner product, and | · | the Euclidean
norm on R

d . There exists a convex, compact set Wp ⊂ R
d containing the origin,

such that for all x ∈ R
d ,

ξp(x) = sup
t∈∂Wp

〈t, x〉.(1.2)

The sharp triangle inequality is also satisfied [8]: there exists a constant c1 =
c1(p, d) > 0 such that for all x, y ∈ R

d ,

ξp(x) + ξp(y) − ξp(x + y) ≥ c1(|x| + |y| − |x + y|).(1.3)

We also have, for any x ∈ Z
d ,

Pp(0 ↔ x) ≤ e−ξp(x).(1.4)

It is also known [6] that the following Ornstein–Zernike asymptotics holds, uni-
formly as |x| →∞:

Pp(0 ↔ x) = �d(x/|x|)
|x|(d−1)/2 e−ξp(x)(1 + o(1)

)
,(1.5)

where �d is a positive, real analytic function on S
d−1.

Let ej , j = 1, . . . , d , denote the canonical basis of R
d . By the symmetries of

the lattice, ξp(e1) = · · · = ξp(ed), and we define

ξp := ξp(e1).(1.6)

In the inhomogeneous case, p′ �= p, the central quantity in our analysis will be
the modified inverse correlation length

ξp,p′ := − lim
n→∞

1

n
log Pp,p′(0 ↔ ne1).(1.7)

Our goal is to study, for fixed p < pc, the effect of the line L on the rate of expo-
nential decay ξp,p′ . In particular, for which values of p′ does ξp,p′ �= ξp? Our first
main result is the following; see also Figure 1.
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FIG. 1. A qualitative plot of p′ �→ ξp,p′ , for d = 2,3.

THEOREM 1.1. Assume that d ≥ 2, p < pc.

(1) The limit in (1.7) exists for all 0 ≤ p′ ≤ 1. Moreover, p′ �→ ξp,p′ is Lipschitz
continuous and nonincreasing on [0,1], and

ξp,p′ > 0 ∀p′ ∈ [0,1).

(2) There exists p′
c = p′

c(p, d) ∈ [p,1) such that ξp,p′ = ξp for p′ ≤ p′
c and

ξp,p′ < ξp for p′ > p′
c. On (p′

c,1), p′ �→ ξp,p′ is real analytic and strictly de-
creasing.

(3) When d = 2,3, p′
c = p. Moreover, there exist constants c±2 , c±3 > 0 such

that, as p′ ↓ p′
c = p,

c−2 (p′ − p)2 ≤ ξp − ξp,p′ ≤ c+2 (p′ − p)2 (d = 2),(1.8)

e−c−3 /(p′−p) ≤ ξp − ξp,p′ ≤ e−c+3 /(p′−p) (d = 3).(1.9)

(4) When d ≥ 4, p < p′
c < 1.

REMARK 1.2. Note that for d = 3, (1.9) rules out the possibility of continu-
ing p′ �→ ξp,p′ analytically across p, to the interval (0,p). It is an open question
whether such analytic continuation is possible in two dimensions.

REMARK 1.3. We make a comment regarding the convexity/concavity of
p′ �→ ξp,p′ for dimensions 2 and 3. First, observe that ξp diverges logarithmically
as p ↓ 0, and ξp,p′ ≤ ξ0,p′ = |logp′|. Therefore, since in dimensions 2 and 3 the
slope of ξp,p′ (as a function of p′) at p′

c is equal to zero, there must be an inflection
point somewhere on the interval (p′

c,1), at least when p is so small that ξp > 1.
Note also that the above implies that the Lipschitz constant must diverge at least
as fast as |logp|, as p ↓ 0 (and at most as fast as 1/p, as the proof shows).

In contrast to the polynomial correction in (1.5) for the homogeneous case, the
presence of defects on the line L leads to a purely exponential decay of the con-
nectivities, which is the content of our second result:
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THEOREM 1.4. For all d ≥ 2 and for all p′ > p′
c, there exists ψd =

ψd(p,p′) > 0 such that

Pp,p′(0 ↔ ne1) = ψde
−ξp,p′n(

1 + o(1)
)
.(1.10)

As will be seen in Section 6, the absence of a polynomial correction in (1.10)
is due to the fact that when p′ > p′

c, conditionally on {0 ↔ ne1}, the cluster con-
taining 0 and ne1, C0,ne1 , is pinned on the line L. Namely, as will be seen in
Theorem 6.1, C0,ne1 splits into a string of irreducible components centered on L
and whose sizes have exponential tails.

The analysis of the effects of a line or a (hyper)plane of defects on the qualita-
tive statistical properties of polymers or interfaces has been the subject of a large
number of works dating back, at least, to the late 1970s. However, almost all rig-
orous studies to date have treated the framework of effective models, in which the
polymer/interface is modeled by the trajectory of a random walk (or as a random
function from Z

d → R in the case of higher-dimensional interfaces), and the un-
derstanding of such models is by now very detailed [10, 17]. For example, in the
case of a random walk pinned at the origin, one studies the exponential divergence
of the partition function

Zε
N = ERW [eεLN |XN = 0],(1.11)

where LN is the local time of the random walk Xk at the origin up to time N , and
ε > 0 is the pinning parameter (see Appendix B).

There is actually one very particular instance in which it has been possible to in-
vestigate these phenomena in a noneffective setting: the 2d Ising model. Indeed, in
this case it is sometimes possible to compute explicitly the relevant quantities; see
[1] and references therein. Needless to say, such computations do not convey much
understanding of the underlying physics (the desire to get a better understanding
of these exact results actually triggered the analysis of effective models!).

On the other hand, new techniques developed during the last decade have lead
to a detailed description of structurally one-dimensional objects in various lattice
random fields, such as interfaces in 2d Ising and Potts models [7, 8, 12], large sub-
critical clusters in (FK-)percolation [8], stretched self-interacting polymers [14],
etc.

The effect of a defect line in various systems has recently been the focus of
interest in different areas. In particular, Beffara et al. [4] have started to investigate
the influence of defects in the framework of last passage percolation.

It is worthwhile to point out an issue that makes the problem studied in
the present paper substantially more subtle than its effective counterpart (1.11).
Namely, a natural way to compare ξp,p′ with ξp is to extract an effective weight
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for the cluster C0,ne1 connecting 0 and ne1. That is,

Pp,p′(0 ↔ ne1)

Pp(0 ↔ ne1)
= ∑

C�{0,ne1}

Pp,p′(C0,ne1 = C)

Pp(0 ↔ ne1)

= ∑
C�{0,ne1}

eI (C) Pp(C0,ne1 = C)

Pp(0 ↔ ne1)
(1.12)

= Ep

[
eI (C0,ne1 )|0 ↔ ne1

]
,

where

I (C) := |C ∩ L| log
p′

p
+ |∂C ∩ L| log

1 − p′

1 − p
,

and ∂C denotes the exterior boundary of the cluster C, that is, the set of all edges
of Ed \C sharing at least one endpoint with some edge of C. Now, observe that in
spite of the close resemblance of (1.12) with (1.11), there is one major difference:
since log p′

p
and log 1−p′

1−p
always have opposite signs, the effective interaction be-

tween the cluster and the line L has both attractive and repulsive components.
This is a manifestation of the presence of the “phases” that are neglected in effec-
tive models, in which only the polymer/interface is considered and not its environ-
ment.

Our analysis of Pp,p′(0 ↔ ne1) is based on the use of a geometrical represen-
tation of the cluster C0,ne1 as an effective directed random walk. To use this repre-
sentation effectively for the lower bounds of part (2) of Theorem 1.1, the repulsive
interaction of the cluster with L will be handled with a suitable use of the Russo
formula.

Random walk representations of subcritical clusters have been used in [5, 6]
and [8]. The one used here is taken from [8], and will be described in Section 3.
Standard renewal arguments are also recurrent in the paper; a reminder of the main
ideas can be found in Appendix A.

1.1. Open problems. Although the picture provided by the present work is
quite extensive, we list here some open problems that we think would be particu-
larly interesting to investigate.

(P1) Properties of ξp,p′ :
(a) Analyze the behavior of ξp,p′ as p′ ↓ p′

c, in dimensions d ≥ 4. In par-

ticular, determine whether lim infp′↓p′
c

dξp,p′
dp′ < 0 (which we expect to be

true in d ≥ 6, in analogy with the effective case [10]).
(b) Analyze the behavior of ξp,p′ as a function of both p and p′. In particular,

for (p,p′) close to the critical line p �→ p′
c(p).

(c) Determine, for all p′ ≤ p′
c, the sharp asymptotics of the connectivity

function Pp,p′(0 ↔ ne1), and the corresponding scaling limit of the clus-
ter C0,ne1 .
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(P2) Introduce disorder, in which the occupation probabilities of the edges e ∈ L
are i.i.d. random variables. Study the relevance of disorder. For analogous
considerations in the effective/directed case, we refer to [3, 10, 11] and ref-
erences therein.

(P3) More general defects:
(a) Allow a defect line not coinciding with a coordinate axis, which should

be amenable to a rather straightforward adaptation of our techniques. Or,
as in [16], consider higher-dimensional defects like hyperplanes of given
codimension.

(b) Consider half-space percolation, with the defect line (or hyperplane) at
the boundary of the system. Although less natural from the percolation
point of view, such a setting is relevant for the analysis of wetting phe-
nomena.

(P4) In each of the cases mentioned above, study the connectivity Pp,p′(x ↔ y)

for generic points x, y ∈ Z
d .

(P5) Extension to other models. In particular, a version for FK-percolation seems
feasible and would provide an extension of our results to Ising/Potts models,
which would be very interesting.

We assume throughout the paper that edges outside L are open with proba-
bility p, where p < pc is fixed. Furthermore, ci , i = 2,3, . . . , will denote con-
stants that can depend on the dimension d , on p or p′, but which remains uni-
formly bounded away from 0 and ∞ for (p,p′) belonging to compact subsets of
(0,pc)× (0,1).

The line L will often be identified with Z. We will therefore use the usual ter-
minology related to the total order on Z (such as “being to the left of” or “being
the largest among a set of points”). We will also consider L, without mention,
sometimes as a set of edges, and sometimes as a set of sites.

2. Basic properties of ξp,p′ . In this section, we prove items (1) and (2) of
Theorem 1.1, except for the strict monotonicity and analyticity of ξp,p′ , which
will be proved, respectively, in Sections 6.2 and 6.3.

� Existence of the limit. The existence of the limit in (1.7) follows from the
subadditivity of the sequence n �→ −log Pp,p′(0 ↔ ne1).

� Monotonicity in p′ of ξp,p′ . This follows from a standard coupling argument:
if p′

1 ≤ p′
2, then Pp,p′

1
� Pp,p′

2
.

� ξp,p′ = ξp for all p′ ≤ p. Since ξp,p′ ≥ ξp when p′ ≤ p, we only need to ver-
ify that the reverse inequality also holds. Let 0′ := [nα]e2 and x′ := ne1 + [nα]e2,
where 1/2 < α < 1. We can realize {0 ↔ ne1} by connecting 0 to 0′ and ne1

to x′ by straight segments of open edges, and by then connecting 0′ to x′ by an
open path: Pp,p′(0 ↔ ne1) ≥ (pnα

)2
Pp,p′(0′ ↔ x′). If we characterize the event
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{0′ ↔ x′} by the existence of a self-avoiding path π : 0′ → x′,

Pp,p′(0′ ↔ x′) ≥ Pp,p′(∃π : 0′ → x′, π ∩ L = ∅)

= Pp(∃π : 0′ → x′, π ∩ L = ∅).

But by the van den Berg–Kesten (BK) inequality, (1.5) and the sharp triangle in-
equality (1.3),

Pp(∃π : 0′ ↔ x′, π ∩ L �= ∅) ≤ ∑
u∈L

Pp(0 ↔ u)Pp(u ↔ x′)

≤ ∑
u∈L

e−ξp(u−0′)−ξp(x′−u)

≤ e−ξp(x′−0′) ∑
u∈L

e−c1(‖u−0′‖+‖x′−u‖−‖x′−0′‖)

= e−O(n2α−1)
Pp(0 ↔ ne1).

Therefore, Pp,p′(0 ↔ ne1) ≥ p2nα
(1 − e−O(n2α−1))Pp(0 ↔ ne1), which implies

ξp,p′ ≤ ξp .
� ξp,p′ < ξp for all p′ close enough to 1. Namely, if p′ > e−ξp , then by opening

all the edges of L between 0 and ne1,

Pp,p′(0 ↔ ne1) ≥ p′n = e(logp′+ξp)ne−ξpn ≥ e(logp′+ξp)n
Pp(0 ↔ ne1).

The critical value

p′
c = p′

c(p, d) := sup{p′ ∈ [0,1] : ξp,p′ = ξp}
thus separates the regime ξp,p′ = ξp from the one in which ξp,p′ < ξp .

� ξp,p′ > 0 for all 0 ≤ p′ < 1. Define the slab

Su,v := {z ∈ R
d : 〈u, e1〉 ≤ 〈z, e1〉 < 〈v, e1〉}.

We divide Ln := L ∩ S0,ne1 into blocks of equal lengths R ∈ N: Bj := Ln ∩
SjRe1,(j+1)Re1 , with j = 0, . . . , [n/R]. Let also H−

j = {x : 〈x, e1〉 < jR}, H+
j =

{x : 〈x, e1〉 ≥ (j + 1)R}. We say that Bj is clear if there exists no path of open
edges in Lc connecting L ∩ H−

j to L ∩ H+
j . We have

Pp,p′(0 ↔ ne1) ≤ Pp,p′(each clear block has at least one open edge).(2.1)

We show that when R is large, a positive fraction of blocks is clear with high
probability. For a cluster C contained in Lc, let us define l(C) and r(C) as, re-
spectively, the left-most and right-most points of intersections of the vertex set
of C with L. We say that such C is an (R,n)-bridge if r − l ≥ R and the in-
tersection [l, r] ∩ Ln �= ∅. Let C1,C2, . . . ,CM be an enumeration of the disjoint
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(R,n)-bridges. We set li = l(Ci) and ri = r(Ci). By construction, there are dis-
joint connections from li to ri in Lc; i = 1, . . . ,M . If 0 < ρ < 1, then, using the
BK inequality in the last step,

∞∑
m=1

Pp,p′

(
M = m;

m∑
i=1

(
r(Ci)− l(Ci)

) ≥ ρn

)

≤
∞∑

m=1

∑
l1,r1,...,lm,rm

ri−li>R,∑m
i=1(ri−li )≥ρn

Pp,p′
(◦m

1
{
li

Lc↔ ri
})

≤
∞∑

m=1

∑
l1,r1,...,lm,rm

ri−li>R,∑m
i=1(ri−li )≥ρn

m∏
i=1

Pp,p′
(
li

Lc↔ ri
)
,

where it is understood that the points li (resp., ri) contributing to the sum are

distinct, should in addition satisfy [li , ri] ∩ Ln �= ∅, and x
A↔ y means that x and

y are connected by an open path contained in A. Now, Pp,p′(li
Lc↔ ri) = Pp(li

Lc↔
ri) ≤ e−ξp|li−ri |. The contribution coming from segments so large that [li , ri] ⊃ Ln

is clearly negligible, and we can restrict our attention to the case when at least one
of the endpoints belongs to Ln. Since, for all t > 0, 1{X≥a} ≤ et(X−a), this last sum
is bounded by

e−tρn
n∑

m=1

∑
l1,r1,...,lm,rm
|li−ri |>R

m∏
i=1

e−(ξp−t)|li−ri | ≤ c2e
−tρn

n∑
m=1

∑
l1,...,lm

2me−(ξp−t)mR

≤ c2e
−tρn(

1 + 2e−(ξp−t)R)n
for all t < ξp . By taking t = ξp/2 and R = α/ξp with α large enough, we get

Pp,p′

(
M∑
i=1

|li − ri | ≥ ρn

)
≤ c2e

−ξpρn/4.

This implies that

Pp,p′
(
at least [(1 − ρ)n/2R] blocks are clear

) ≥ 1 − c2e
−ξpρn/4.

Then, conditioned on the event that at least [(1 − ρ)n/2R] blocks are clear, the
probability on the right-hand side of (2.1) is bounded above by

∑
k≥[(1−ρ)n/2R](1−

(1 − p′)R)k ≤ e−c3n. Altogether, this shows that ξp,p′ > 0.
� Lipschitz continuity of ξp,p′ . The proof will rely on the following identity,

which follows by Russo’s formula, and which will be used also later in Section 5
(see [13], page 44, for the proof of a similar claim):
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LEMMA 2.1. For any increasing event A with support in a finite subset of Ed ,
and all p′

1,p
′
2 > 0,

Pp,p′
2
(A)

Pp,p′
1
(A)

= exp
∫ p′

2

p′
1

1

s
Ep,s[#PivL(A)|A]ds,(2.2)

where PivL(A) is the set of pivotal edges e ∈ L for the event A.

Let P
(n)
p,p′ denote the restriction of Pp,p′ to the edges Ed

n which lie in the box

�n := [−an, an]d ∩Z
d . Since ξp,p′ > 0 for all p′ < 1, we can assume that an � n

is chosen sufficiently large so that for all n,

1

2

P
(n)

p,p′
2
(0 ↔ ne1)

P
(n)

p,p′
1
(0 ↔ ne1)

≤ Pp,p′
2
(0 ↔ ne1)

Pp,p′
1
(0 ↔ ne1)

≤ 2
P

(n)

p,p′
2
(0 ↔ ne1)

P
(n)

p,p′
1
(0 ↔ ne1)

,(2.3)

when n is large enough. By Lemma 2.1, for any p′
2 ≥ p′

1 ≥ p′
c/2,

P
(n)

p,p′
2
(0 ↔ ne1)

P
(n)

p,p′
1
(0 ↔ ne1)

= exp
∫ p′

2

p′
1

1

s
E

(n)
p,s[#PivL(0 ↔ ne1)|0 ↔ ne1]ds.(2.4)

Given a cluster C0,ne1 , let x (resp., y) be the leftmost (resp., rightmost) site of
L ∩C0,ne1 , and L := |x| + |y − ne1|. We have

E
(n)
p,s[#PivL(0 ↔ ne1)|0 ↔ ne1]

≤ 2n + eξp,s (1+o(1))n
∑
�≥n

(n + �)P(n)
p,s(0 ↔ ne1,L = �).

Since P
(n)
p,s(0 ↔ ne1,L = �) ≤ �P

(n)
p,s(0 ↔ (n+ �)e1) ≤ �e−ξp,s (n+�), we get, using

p′
c ≥ p,

P
(n)

p,p′
2
(0 ↔ ne1)

P
(n)

p,p′
1
(0 ↔ ne1)

≤ exp
(
6(p′

2 − p′
1)n/p

)
,(2.5)

and thus 0 ≤ ξp,p′
1
− ξp,p′

2
≤ 6(p′

2 − p′
1)/p.

3. Random walk representation of C0,ne1 . In this section we recall the de-
scription of C0,ne1 in terms of a directed random walk, following [8]. Since we
only consider the direction e1, the representation simplifies in some respects. For
instance, the inner products 〈y, t〉 in [8] are replaced by 〈y, ξpe1〉 = ξp〈y, e1〉. The
proofs of the main estimates under Pp can be found in [8]. The reader familiar
with [8] can check the representation formulas (3.3), (3.4) and (3.9), and proceed
to Section 4.



2022 S. FRIEDLI, D. IOFFE AND Y. VELENIK

FIG. 2. The decomposition of C0,ne1 into irreducible components.

Observe that similar arguments for Pp,p′ will be developed in Section 6.
Let 0 < α < 1 be small enough so that the cone

Y > := {y ∈ Z
d : 〈y, ξpe1〉 ≥ (1 − α)ξp(y)}(3.1)

has angular aperture at most π/2. A point z ∈ C0,ne1 �= ∅ is called cone-point
if 0 < 〈z, e1〉 < n and C0,ne1 ⊆ (z + Y >) ∪ (z − Y >). We order the cone-points
according to their first component: z1, . . . , zm+1. By construction, zi+1 ∈ zi + Y >.
The subgraphs

γj := C0,ne1 ∩ Szj ,zj+1

are called cone-confined irreducible components of C0,ne1 ; see Figure 2. Note that
γj ⊂ D(zj , zj+1), where

D(z, z′) := (z + Y >)∩ (z′ − Y >).(3.2)

The complement C0,ne1 \ (γ1 ∪ · · · ∪ γm) can contain, at most, two connected
components. If it exists, the component containing 0 (resp., ne1) is denoted γ b

(resp., γ f), and called backward (resp., forward) irreducible.
Let f(γj ) := zj [resp., b(γj ) := zj+1] denote the starting (resp., ending)

point of γj , and f(γ f) := zm, b(γ b) := z1. Once a set of connected compo-
nents γ b, γ1, . . . , γm, γ f is given, compatible in the sense that f(γ1) = b(γ b),
b(γm) = f(γ f), and f(γj ) = b(γj+1) if j = 1, . . . ,m − 1, then these can be con-
catenated (� denoting the corresponding concatenation operation):

γ b � γ1 � · · · � γm � γ f ≡ C0,ne1 .

It can be shown that under Pp , up to a term of order e−ξpn−ν1n, the number of
cone-confined irreducible components grows linearly with n.

Therefore, the probability Pp(0 ↔ ne1) can be decomposed as

Pp(0 ↔ ne1)
(3.3)

= ∑
m≥1

∑
γ b,γ1,...,γm,γ f

compat.

Pp(C0,ne1 = γ b � γ1 � · · · � γm � γ f),

where we neglected the configurations with less than two cone-points. One can
then define [8] independent events �b, �1, . . . ,�m, �f such that

Pp(C0,ne1 = γ b � γ1 � · · · � γm � γ f) = Pp(�b)

(
m∏

j=1

Pp(�j )

)
Pp(�f).(3.4)
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The final step of the construction is to reformulate the rhs of (3.3) as the proba-
bility of an event involving a directed random walk with independent increments.
This follows a standard scheme in renewal theory, sketched in Appendix A in a
simpler situation, which starts by multiplying (3.3) by eξpn.

First, we associate weights to the irreducible components γ b and γ f. By trans-
lation invariance, we can consider γ f as fixed at the origin, and then translate it
at ne1. If u ∈ Y > and v ∈−Y >, define

ρb(u) := e〈u,ξpe1〉 ∑
γ b�0:

b(γ b)=u

Pp(�b), ρf(v) := e−〈v,ξpe1〉 ∑
γ f�0:

f(γ f)=v

Pp(�f).(3.5)

These weights satisfy

ρb(u) ≤ e−ν2|u|, ρf(v) ≤ e−ν2|v|,(3.6)

where ν2 = ν2(p) > 0.

REMARK 3.1. Since the weights ρb and ρf have exponentially decaying tails,
the sums over u and v [e.g., in the representation formulas (3.9) and (3.4) below]
can always fix α > 0 small and restrict attention to the terms for which |u|, |v| ≤
n1/2−α .

Consider then the cone-confined components γj . Define the displacement

V (γj ) := b(γj )− f(γj ).

By translation invariance, all components γj with the same displacement V (γj ) =
y ∈ Y > have the same contribution to the sum in (3.3). We can thus consider only
γ1 and assume that its starting point is the origin: for all y ∈ Y >,

q(y) := e〈y,ξpe1〉 ∑
γ1:

f(γ1)=0,b(γ1)=y

Pp(�1).

By a standard argument (a variant of Appendix A), it can be shown that q defines
a probability distribution on Y >. Moreover, there exists ν3 = ν3(p) > 0 such that∑

y : |y|≥t

q(y) ≤ e−ν3t .(3.7)

Therefore, by summing over u ∈ Y > and v ∈−Y >, such that u1 < v1,

eξpn
Pp(0 ↔ ne1) =

∑
u,v

ρb(u)ρf(v)
∑
m≥1

∑
y1,...,ym∑

j yj=ne1+v−u

m∏
j=1

q(yj ).(3.8)

(As before, we neglected the term with less than two cone-points.)
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Let us denote by S = (Sk)k≥0 the directed random walk on Z
d whose increments

Yj = Sj − Sj−1 ∈ Y > are i.i.d. and have distribution q . When the walk is started
at u, S0 = u, we denote its distribution by Pu. We can thus write (3.8) as

eξpn
Pp(0 ↔ ne1) =

∑
u,v

ρb(u)ρf(u)Pu

(
R(ne1 + v)

)
,(3.9)

where

R(z) := {∃N ≥ 1 such that SN = z}.(3.10)

More generally, if A is an event measurable with respect to the position of the
endpoints of the irreducible components of C0,ne1 , that is, to the trajectory of the
walk S, the same procedure leads to

eξpn
Pp(A ∩ {0 ↔ ne1}) =

∑
u,v

ρb(u)ρf(v)Pu

(
A∩ R(ne1 + v)

)
.(3.11)

Let Yj = (Y
‖
j , Y⊥

j ) be the decomposition of Yj into a longitudinal component

Y
‖
j := 〈Yj , e1〉 parallel to e1, and a transverse component Y⊥

j ∈ Z
d−1 perpendicular

to e1. Then:

• Pu(Y
‖
1 ≥ 1) = 1;

• Pu(|Y1| > t) ≤ e−ν3t for large t ;
• for any z⊥ ∈ Z

d−1, Pu(Y
⊥
1 = z⊥) = Pu(Y

⊥
1 =−z⊥).

Since the increments have exponential tails, the following local CLT asymptotics
along the direction ne1 hold: fix α > 0. Then, as n →∞,

Pu

(
R(ne1 + v)

) = cp

n(d−1)/2

(
1 + o(1)

)
(3.12)

for some constant cp > 0, uniformly in |u|, |v| ≤ n1/2−α . Together with (3.6) and
(3.9), this in particular leads to the Ornstein–Zernike asymptotics given in (1.5)
(for x = ne1).

4. Upper bounds. We now move on to the proof of the upper bounds of item
(3), and of item (4) of Theorem 1.1. We use (1.12). Letting ε := log(p′/p) > 0,
which is small if p′ − p is small, we get

Pp,p′(0 ↔ ne1)

Pp(0 ↔ ne1)
≤ Ep

[
eε|C0,ne1∩L||0 ↔ ne1

]
.(4.1)

We use the random walk representation described in Section 3: C0,ne1 = γ b � γ1 �
· · · � γm � γ f. If S denotes the effective directed random walk associated to the
displacements of the components γi , we have

|C0,ne1 ∩ L| = |γ b ∩ L| + |γ f ∩ L| +
m∑

i=1

|γi ∩ L|

≤ |γ b ∩ L| + |γ f ∩ L| +
m∑

i=1

|D(Si−1, Si)∩ L|,
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where the diamond D(·, ·) was defined in (3.2). If γ b ends at u, define ρε
b(u) as

in (3.5), with Pp(�b)eε|γ b∩L| in place of Pp(�b). If γ f starts at v, ρε
f (v) is defined

in the same way. As can be verified, exponential decay as in (3.6) holds for the
weights ρε

f and ρε
b , when ε is sufficiently small. Still following Remark 3.1, we

will only consider those u, v with |u|, |v| ≤ n1/2−α (for some 0 < α < 1/2).
Let M := inf{j ≥ 1 :Sj = ne1 + v}. Using (3.11), (3.12) and (1.5),

Ep

[
eε|C0,ne1∩L||0 ↔ ne1

] ≤ c4
∑
u,v

ρε
b(u)ρε

f (v)Eu,v

[
eε

∑M
i=1|D(Si−1,Si )∩L|],

where Eu,v[·] = Eu[·|R(ne1 + v)]. As we said,∑
u,v

ρε
b(u)ρε

f (v) < ∞.(4.2)

We further decompose

Eu,v

[
eε

∑M
i=1|D(Si−1,Si )∩L|] = n∑

m=1

Eu,v

[
eε

∑m
i=1|D(Si−1,Si )∩L|,M = m

]
.

Therefore, for all fixed 1 ≤ m0 ≤ n,

Eu,v

[
eε

∑M
i=1|D(Si−1,Si )∩L|] ≤ eεnPu,v(M < m0)+ n sup

m0≤m≤n
Au,v(m),(4.3)

where

Au,v(m) := Eu,v

[
eε

∑m
i=1|D(Si−1,Si )∩L|]

=
m∑

k=1

∑
�1,...,�k∑

j �j=m

Eu,v

[
k∏

j=1

�L(Saj−1, Saj
)

]
(4.4)

with �L(Si−1, Si) := eε|D(Si−1,Si )∩L| − 1, and where �j ≥ 1, aj := �1 + · · · + �j ,
a0 := 0. Remembering that the cone Y > has an opening angle of at most π/2, we
have (see Figure 3)

|D(Si−1, Si)∩ L| ≤ Y
‖
i 1{|S⊥

i−1|≤Y
‖
i }.(4.5)

FIG. 3. The proof of the upper bound: the size of the intersection of a diamond with L is bounded
above by the size of its projection on L.
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Therefore,

ψL(Si−1, Si) ≤ e
εY

‖
i 1{|S⊥

i−1|≤Y
‖
i
} − 1

= (eεY
‖
i − 1)1{|S⊥

i−1|≤Y
‖
i }

≤ (eε − 1)Y
‖
i eεY

‖
i 1{|S⊥

i−1|≤Y
‖
i }

≡ (eε − 1)B(S⊥
i−1, Yi),

which yields

Au,v(m) ≤
m∑

k=1

(eε − 1)k
∑

�1,...,�k∑
j �j=m

Eu,v

[
k∏

j=1

B(S⊥
aj−1, Yaj

)

]

≤ O
(
n(d−1)/2) m∑

k=1

(eε − 1)k
∑

�1,...,�k∑
j �j=m

Eu

[
k∏

j=1

B(S⊥
aj−1, Yaj

)

]
,

where (3.12) was used again. For all j , by the Markov property and the local limit
theorem in dimension d − 1 (see Figure 3 and note that the upper bound below is
trivial whenever aj−1 = aj − 1),

Eu[B(S⊥
aj−1, Yaj

)|Saj−1, Yaj
] = Y ‖

aj
e
εY

‖
aj PSaj−1

(|S⊥
aj−1| ≤ Y ‖

aj
)

≤ Y ‖
aj

e
εY

‖
aj c5(Y

‖
aj

)d−1�
−(d−1)/2
j .

Therefore, since Pu(Y
‖
aj ≥ t) ≤ e−ν3t ,

Eu[B(S⊥
aj−1, Yaj

)|Saj−1] ≤ c5
∑
t≥1

tdeεt e−ν3t �
−(d−1)/2
j ≡ c6�

−(d−1)/2
j

with c6 < ∞ if ε < ν3. This gives Au,v(m) ≤ O(n(d−1)/2)A(m), where

A(m) :=
m∑

k=1

(
c6(e

ε − 1)
)k ∑

�1,...,�k∑
j �j=m

k∏
j=1

�
−(d−1)/2
j .(4.6)

In dimensions d ≥ 4, we ignore the constraint
∑

j �j = m and bound A(m) uni-
formly by

A(m) ≤
∞∑

k=1

{
c6(e

ε − 1)
∑
�≥1

�−(d−1)/2
}k

,



SUBCRITICAL PERCOLATION WITH A LINE OF DEFECTS 2027

which converges when ε > 0 is small enough. Therefore, using (4.3) with m0 = 1,
(4.1) is

Ep

[
eε|C0,ne1∩L||0 ↔ ne1

] = O
(
n(d+1)/2)

.

This shows that ξp,p′ ≥ ξp when p′ − p is small enough. Combined with ξp,p′ ≤
ξp , this implies that p′

c(p, d) > p in dimensions d ≥ 4.
In dimensions d = 2 and 3, we obtain an upper bound on A(m) which diverges

with m, in a standard way. As in Appendix A, consider the generating function

A(s) := ∑
m≥1

A(m)sm.

Using (4.6), A(s) = ∑
k≥1 B(s)k where B(s) := c6(e

ε − 1)
∑

�≥1 �−(d−1)/2s�. Let
φ(ε) > 0 be the unique number for which

B
(
e−φ(ε)) = 1.(4.7)

We have A(e−2φ(ε)) < ∞, and therefore A(m) ≤ e2φ(ε)m for all large enough m.
Using (4.3) with m0 = c7n with c7 > 0 small enough, and taking ε small enough,
(4.1) is bounded by

Ep

[
eε|C0,ne1∩L||0 ↔ ne1

] ≤ c8
(
1 +O

(
n(d−1)/2)

e2φ(ε)n)
.

This shows that ξp − ξp,p′ ≤ 2φ(ε). Using [10], Theorem A.2, in (4.7), the asymp-
totics of φ(ε) when ε ↓ 0 is seen to be

φ(ε) =
{

c9ε
2(

1 + o(1)
)

(d = 2),
e−c10/ε(1+o(1)) (d = 3).

5. Lower bounds. We prove the lower bounds of item (3) of Theorem 1.1, in
d = 2,3, for p′ > p, with p′ − p small enough. We will need the following rough
estimate on the connectivity under Pp,p′ :

LEMMA 5.1. Set

ξ∗
p := min

n∈Sd−1
ξp(n) > 0.(5.1)

For all p < pc, there exists η = η(p) > 0 such that, for all p′ < p + η,

Pp,p′(x ↔ y) ≤ e−c11ξ
∗
p |y−x|,

uniformly in x, y ∈ Z
d .

PROOF. Let �(x, y) := |Cx,y ∩ L|. Proceeding as in (1.12),

Pp,p′(x ↔ y) ≤ Ep

[
e�(x,y) log(p′/p);x ↔ y

]
.

Since Pp(x ↔ y;�(x, y) = l) ≤ e−c12ξ
∗
p |x−y|∧l , the claim follows. �
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Recall that P
(n)· denotes the restriction of P· to the edges Ed

n which lie inside a
large box �n, so that by (2.3)

Pp,p′(0 ↔ ne1)

Pp(0 ↔ ne1)
≥ 1

2

P
(n)
p,p′(0 ↔ ne1)

P
(n)
p (0 ↔ ne1)

.

Let Pn denote the collection of self-avoiding nearest-neighbor paths π : 0 →
ne1 contained in �n. Let π = (π0, π1, . . . , πm) ∈ Pn, that is, π0 = 0 and πm = ne1.
We say that πi is a cone-point of π if 0 < 〈πi, e1〉 < n and π ⊂ (πi − Y >)∪ (πi +
Y >).

Let δ > 0, and define

Mδ := {∃ an open path π ∈ Pn with at least δn cone-points on Ln}.
We emphasize the crucial fact that we do not require that cone-points of open paths
are cone-points of the whole cluster C0,ne1 . This ensures that Mδ is an increasing
event: once a configuration contains a suitable open path, opening additional edges
will never remove this path (observe also that suitability of an open path only
depends on its geometry, not on the state of other edges in the configuration).

Since {0 ↔ ne1} ⊃ Mδ , we can write

P
(n)
p,p′(0 ↔ ne1)

P
(n)
p (0 ↔ ne1)

≥ P
(n)
p,p′(Mδ)

P
(n)
p (0 ↔ ne1)

= P
(n)
p,p′(Mδ)

P
(n)
p (Mδ)

P
(n)
p (Mδ|0 ↔ ne1).

The terms in the last display are, respectively, the energy gain and the entropy cost
for restricting to the event Mδ . These will be studied separately. First:

PROPOSITION 5.2. Let d ≥ 2. There exists c13 = c13(p,p′) > 0 such that, for
all p′ > p, p′ − p small enough, and all n ∈ N,

P
(n)
p,p′(Mδ)

P
(n)
p (Mδ)

≥ ec13δ(p
′−p)n.

Then, we check that Mδ is not too unlikely under P
(n)
p (·|0 ↔ ne1):

PROPOSITION 5.3. There exist c14 = c14(p) > 0 and c15 = c15(p) > 0 such
that for small enough δ > 0,

P
(n)
p (Mδ|0 ↔ ne1) ≥

{
e−c14δ

2n (d = 2),
e−c15(δ/|log δ|)n (d = 3).

Putting these bounds together, an appropriate choice of δ as a function of p′ −p

leads to the lower bounds of item (3) of Theorem 1.1. Namely,

δ :=
{

c13(p
′ − p)/(2c14), in d = 2,

e−2c15/(c13(p
′−p)), in d = 3.
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5.1. Proof of Proposition 5.2. First, observe that

PivL∩�n(Mδ) ⊃ PivL∩�n(0 ↔ ne1) on the event Mδ.

Indeed, let e ∈ PivL∩�n(0 ↔ ne1). Then e must belong to all paths π satisfying
the conditions prescribed in the event Mδ (since removing this edge disconnects
0 from ne1). This shows that e is pivotal for Mδ .

We start by using Lemma 2.1: by the preceding observation and the fact that
Mδ is increasing, we obtain

P
(n)
p,p′(Mδ)

P
(n)
p (Mδ)

= exp
∫ p′

p

1

s
E

(n)
p,s[#PivL∩�n(Mδ)|Mδ]ds

≥ exp
∫ p′

p

1

s
E

(n)
p,s[#PivL∩�n(0 ↔ ne1)|Mδ]ds(5.2)

≥ exp
∫ p′

p

1

s
E

(n)
p,s[#PivLn(0 ↔ ne1)|Mδ]ds.

Our goal is thus to bound #PivLn(0 ↔ ne1) from below on Mδ .
Let us fix an arbitrary total ordering on Pn. For each π ∈ Pn, let Eπ ⊂ Mδ

denote the event on which π is the smallest open path having at least δn cone-
points on Ln. Then

E
(n)
p,s[#PivLn(0 ↔ ne1)|Mδ]

(5.3)
= ∑

π∈Pn

E
(n)
p,s[#PivLn(0 ↔ ne1)|Eπ ]P(n)

p,s(Eπ |Mδ).

Let Ed
n,π := Ed

n \ π . We say that a cone-point πs ∈ Ln is covered if

(πs − Y >)
Ed

n,π←→ (πs + Y >),

uncovered otherwise.

LEMMA 5.4. Given π ∈ Pn and ρ > 0 define the event

Aπ(ρ,n) = {A fraction ≥ ρ of π ’s cone-points on Ln are uncovered}.
Let s − p > 0 be sufficiently small. Then there exists ρ = ρ(p) > 0 such that for
all π ∈ Pn compatible with Mδ ,

P
(n)
p,s

(
Aπ(ρ,n)|Eπ

) ≥ 1
2 .(5.4)

Observe that each uncovered cone-point of π on Ln has two incident edges
e ∈ Ln which are pivotal for {0 ↔ ne1}. Therefore, by (5.4),

E
(n)
p,s[#PivLn(0 ↔ ne1)|Eπ ] ≥ 1

2 × ρδn,

which, together with (5.2) and (5.3), completes the proof of Proposition 5.2.
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PROOF OF LEMMA 5.4. Fix some path π realizing Mδ . We claim first that,
as probability measures on {0,1}Ed

n,π ,

P
(n)
p,s(·|Eπ) � P

(n)
p,s(·).(5.5)

Indeed, note that if ω ∈ Eπ ⊆ {0,1}Ed
n,π , then for every edge e ∈ Ed

n,π , the configu-
ration ω0

e defined by

ω0
e (b) =

{
ω(b), if b �= e,
0, if b = e,

belongs to Eπ as well. In particular, any two configurations ω,ω′ ∈ Eπ are con-
nected via a sequence of bond flips within Eπ . Furthermore, for every η ∈ Eπ and
for any edge e ∈ Ed

n,π ,

P
(n)
p,s

(
ω(e) = 1|ω|Ed

n,π\{e} = η; Eπ

)
=

{
0, if e is pivotal for Eπ in η,
P

(n)
p,s

(
ω(e) = 1

)
, otherwise.

Thus, (5.5) follows from a a standard dynamic coupling argument for two Markov
chains on {0,1}Ed

n,π , which are reversible with respect to P
(n)
p,s(·) and P

(n)
p,s(·|Eπ)

accordingly.
The event Aπ(ρ,n) is Ed

n,π -measurable and decreasing. Hence, in order to prove

(5.4) it would be enough to show that P
(n)
p,s(Aπ(ρ,n)) ≥ 1

2 for all Mδ-compatible
paths π ∈ Pn.

Let us fix such a π , and denote the cone-points of π on Ln, ordered from left
to right, by z1, . . . , zM , M ≥ δn. We denote by zi � zj (i < j ) the event (see
Figure 4)

(zi − Y >)
Ed

n,π←→ (zj + Y >).

By construction the events zi � zj are Ed
n,π -measurable and increasing.

Observe that if π has m of its points zj covered, then there must exist a set of
distinct pairs {zkj

, zk′j } ⊂ {z1, . . . , zM}, j = 1, . . . , q , such that:

(1)
∑q

j=1 |k′j − kj + 1| = m;
(2) {zk1 � zk′1} ◦ · · · ◦ {zkq � zk′q }.

FIG. 4. The event {zi � zj }.
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By the BK inequality,

P
(n)
p,s({zk1 � zk′1} ◦ · · · ◦ {zkq � zk′q }) ≤

q∏
j=1

P
(n)
p,s(zkj

� zk′j ).

Now, it follows from Lemma 5.1 that if s − p is small enough, and |zkj
− zk′j | ≥

c16/ξ
∗
p ,

P
(n)
p,s(zkj

� zk′j ) ≤
∑

x∈zkj
−Y >

y∈zk′
j
+Y >

e−(c11ξ
∗
p/2)(|x−y|+1) ≤ c17e

−(c11ξ
∗
p/2)|zkj

−zk′
j
|

≤ e
−c18(|k′j−kj |+1)

.

On the other hand, if |zkj
− zk′j | ≤ c16/ξ

∗
p , then

P
(n)
p,s(zkj

� zk′j ) ≤ P
(n)
p,s(zkj

is covered) ≤ e−c19 ≤ e
−c20(|k′j−kj |+1)

.

Indeed, if BR(z) is the Euclidean ball of radius R centered at z, and B :=
{all edges of BR(zkj

) are closed} with R = c21/ξ
∗
p with c21 > 0 large enough, then

P
(n)
p,s(zkj

is not covered) ≥ P
(n)
p,s(zkj

is covered |B)P(n)
p,s(B) ≥ 1

2 × e−c22R
d

.

Therefore, it follows from (5.5) and the above discussion that with c23 := c18 ∧c20,

P
(n)
p,s(a fraction ≥ α of π ’s cone-points on Ln are covered |Eπ)

≤
M∑

m=αM

(
M

m

)
e−c23m ≤ e−c24M ≤ e−c24δn

once α is close enough to 1. This proves the lemma. �

5.2. Proof of Proposition 5.3. We use the representation of C0,ne1 in terms of
the directed random walk S. Observe that if S hits Ln, a cone-point is created.
Therefore, let Cδ denote the event in which the trajectory of S hits Ln at least δn

times after time n = 0. Using (3.11) and keeping only configurations with empty
boundary clusters, γ b = γ f = ∅,

eξpn
Pp(Mδ) ≥ P0(Cδ ∩ Rn),

where Rn := R(ne1). Dividing by eξpn
P

(n)
p (0 ↔ ne1) ≤ eξpn

Pp(0 ↔ ne1) and us-
ing (1.5) and (3.12), we get

P
(n)
p (Mδ|0 ↔ ne1) ≥ c25P0(Cδ|Rn),(5.6)

where c25 > 0 does not depend on n. The next step is to express P0(Cδ|Rn) in
terms of S‖ and S⊥. Let τ0 := 0, and for k ≥ 1, τk := inf{m > τk−1 : Sm ∈ L}.
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Using (3.12) we infer that for all n and k ≤ n/2, P0(Rn−k)/P0(Rn) ≥ c26 for
some c26 > 0, and so by the strong Markov property,

P0(Cδ|Rn) = P0
(
S‖

τ�δn ≤ n|Rn

)
= ∑

k≤n/2

P0
(
S‖

τ�δn = k
)
P0(Rn−k)/P0(Rn)

≥ c26P0
(
S‖

τ�δn ≤ n/2
)
.

Let n̄ := nE[Y ‖
1 ]/4. If N ‖

n := max{k ≤ n :S‖
k ≤ n/2} denotes the number of steps

performed by S before leaving the strip S0,ne1/2,

P0
(
S‖

τ�δn ≤ n/2
) ≥ P0

(
S‖

τ�δn ≤ n/2; N ‖
n ≥ n̄

)
≥ P0

(
L⊥(n̄) ≥ δn, N ‖

n ≥ n̄
)

with L⊥(n̄) = #{0 ≤ i ≤ n̄ :S⊥
i = 0}. By an elementary large deviation estimate,

P0(N ‖
n < n̄) ≤ e−c27n for some c27 > 0. Therefore,

P0
(
L⊥(n̄) ≥ δn, N ‖

n ≥ n̄
) ≥ P0

(
L⊥(n̄) ≥ δn

) − e−c27n

= P0
(
L⊥(n̄) ≥ δ∗n̄

) − e−c27n,

where δ∗ = 4δ/E[Y ‖
1 ]. The event {L⊥(n̄) ≥ δ∗n̄} depends only on the transverse

component S⊥, which lies in Z
d−1. It follows from Corollary B.3 in Appendix B

that

P0
(
L⊥(n̄) ≥ δ∗n̄

) ≥
{

e−cδ2∗n (d = 2),
e−c(δ∗/|log δ∗|)n (d = 3).

This proves Proposition 5.3.

6. Proof of Theorem 1.4. In this section we prove Theorem 1.4: when p′ >
p′

c, Pp,p′(0 ↔ ne1) has a purely exponential decay. The underlying mechanism is
that when ξp > ξp,p′ , a typical cluster C0,ne1 connecting 0 to ne1 is pinned on Ln,
in the sense that it has a number of cone-points on Ln that grows linearly with n.
Cone-points of C0,ne1 lying on Ln will be called cone-renewals.

THEOREM 6.1. If p′ > p′
c, then there exist δ = δ(p,p′) > 0 and ν4 =

ν4(p,p′) > 0 such that for any large enough n,

Pp,p′(C0,ne1 has less than δn cone-renewals |0 ↔ ne1) ≤ e−ν4n.(6.1)

With this piece of information, irreducible components with both endpoints on
L can be defined, and a fairly standard renewal argument leads to the pure ex-
ponential decay. (Note, however, that at this point we do not even know whether
under Pp,p′ the cluster C0,ne1 contains cone-points at all.)
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The presence of cone-points on L will also allow to complete the proof of The-
orem 1.1: we show in Section 6.2 that p′ �→ ξp,p′ is strictly decreasing on (p′

c,1),
and in Section 6.2 that it is real analytic on the same interval.

Assume p′ > p′
c, and let

τ := ξp − ξp,p′ > 0.

To prove Theorem 6.1, we will first show that C0,ne1 typically stays in a vicinity of
size |log τ |/τ of Ln. This implies, by a finite-energy argument, that C0,ne1 is made
of many stretches on which cone-renewals occur with positive probability.

6.1. Excursions away from L. To any realization of {0 ↔ ne1}, we associate
the smallest self-avoiding path π : 0 → ne1 contained in C0,ne1 , as in Section 5.1:
π = (π0, π1, . . . , π|π |), with π0 = 0, π|π | = ne1.

Let K ≥ 1, which will be chosen later as a function of τ . Let also

τK(s) := inf{t > s :πt /∈ BK(πs)}.
We associate to π a set of disjoint pairs (u1, v1), . . . , (um, vm) of points lying on L,
as follows; see Figure 5. Let t0 := 0, and set, for j ≥ 1,

sj := inf{s ≥ tj−1 :π(s) ∈ L, π[s + 1, τK(s)] ∩ L = ∅},
tj := inf{t > sj :πt ∈ L}.

We call the subpath Xj := π [sj , tj ] an excursion, starting at uj := πsj and ending
at vj := πtj .

We further coarse-grain each excursion Xj on the scale K . Let u0
j := uj and,

for k ≥ 0,

uk+1
j := πτK(uk

j ).

If mj := max{k :uk
j ∈ Xj }, we call #K Xj := mj the length of the excursion Xj

(measured by the number of increments of size K). The set of points (u0
j ≡

uj ,u
1
j , . . . , u

mj

j , vj ) is called the skeleton of Xj . Sometimes, u
mj

j ≡ vj , but in all

cases, |umj

j − vj | ≤ K .

We denote by {u m
� v} the event in which there exists a path which is an excur-

sion of length m starting at u and ending at v.

FIG. 5. Coarse-graining the excursions of a path π : 0 → ne1.
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LEMMA 6.2. There exists K0 = K0(τ ) and c28 = c28(τ ) > 0 such that if K ≥
K0,

Pp,p′
(
u

m
� v

) ≤ e
−ξp,p′ |v−u|−c28τKm

.

PROOF. Denote by X any excursion occurring in {u m
� v}. That is, #K X = m.

Let (u0, . . . , um) be a skeleton, where for the sake of simplicity, we assume that
um = v. By construction, the event

{X has skeleton (u0, . . . , um)}
implies that there are disjoint connections u0 Lc↔ u1, . . . , um−1 Lc↔ um. By the BK
inequality,

Pp,p′
(

X has skeleton (u0, . . . , um)
) ≤ m∏

i=1

Pp,p′
(
ui−1 Lc↔ ui)

≤
m∏

i=1

Pp(ui−1 ↔ ui)

≤
m∏

i=1

e−ξp(ui−ui−1).

If z ∈ R
d , let k ∈ {1, . . . , d} be such that 〈ek, z〉 = maxk′ |〈ek′, z〉|. Then, using (1.2)

and since ξpek ∈ ∂Wp ,

ξp(z) = sup
t∈∂Wp

〈t, z〉 ≥ ξp〈ek, z〉 = ξp,p′ 〈ek, z〉 + τ 〈ek, z〉

≥ ξp,p′ |〈e1, z〉| + c29τ |z|
for some constant c29 = c29(d) > 0. Since

m∑
i=1

|〈e1, u
i − ui−1〉| ≥ |v − u|

and |ui − ui−1| ≥ K for all i = 1, . . . ,m, we get

Pp,p′
(

X has skeleton (ui)i=0,...,m

) ≤ e
−ξp,p′ |v−u|−c29τKm

.

When um �= v, a similar computation leads to the same bound. Since the number of
skeletons with m increments is O((Kd−1)mKd), the conclusion follows by taking
K ≥ K0, with K0 large enough in order that logK0

K0
be sufficiently small compared

to τ . �

Let #Kπ := ∑
j #K Xj denote the total number of increments in the excursions

of π .
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PROPOSITION 6.3. Let 0 < ε < 1. There exists K1 = K1(τ, ε) and c30 =
c30(ε) > 0 such that for all K ≥ K1,

Pp,p′(#Kπ ≥ εn/K|0 ↔ ne1) ≤ e−c30n.(6.2)

PROOF. For a collection of triples (uj , vj ,mj )
M
j=1, let P((uj , vj ,mj )

M
j=1) de-

note the event on which there exists a path π : 0 → ne1 with M excursions, the j th
excursion Xj , starting at uj and ending at vj , and being such that #K Xj = mj .
The event P((uj , vj ,mj )

M
j=1) implies the disjoint occurrence

{v0 ↔ u1} ◦ {
u1

m1
� v1

} ◦ · · · ◦ {vM−1 ↔ uM} ◦ {
uM

mM
� vM

}
.

Assuming K is larger than the K0 of Lemma 6.2, and by the BK inequality,

Pp,p′(P((uj , vj ,mj )
M
j=1)) ≤

M∏
j=1

Pp,p′(vj−1 ↔ uj )Pp,p′
(
uj

mj
� vj

)

≤
M∏

j=1

e
−ξp,p′ (|uj−vj−1|+|vj−uj |)e−c28τKmj .

We then sum over the triples (uj , vj ,mj )
M
j=1. Denote by I ⊃ Ln the small-

est interval of L containing all the points uj , vj , j = 1, . . . ,M . Observe that∑M
j=1(|uj − vj−1| + |vj − uj |) ≥ |I |. We first sum over the possible positions

of I , then over the positions of the M ≥ 1 distinct points uj in I , then over the
mj ’s satisfying

∑M
j=1 mj ≥ εn/K , and finally over the endpoints vj . Since to a

given point uj correspond at most 2K(mj + 1) points vj ,

Pp,p′(#Kπ ≥ εn/K,0 ↔ ne1)

≤ ∑
I⊃Ln

e
−ξp,p′ |I | ∑

M≥1

( |I |
M

) ∑
m1,...,mM≥1∑

j mj≥εn/K

M∏
j=1

(
2K(mj + 1)

)
e−c28τKmj .

We choose K1 ≥ K0 large enough so that, for all K ≥ K1 and all m ≥ 1, (2K(m+
1))e−c28τKm ≤ e−c31τKm. Proceeding as on page 2020,

∑
M≥1

( |I |
M

) ∑
m1,...,mM≥1∑

j mj≥εn/K

M∏
j=1

e−c31τKmj ≤ ec32e
−c31τK/2|I |.(6.3)

Then, notice that there are �−n intervals I ⊃ Ln of fixed length |I | = �. Therefore,
summing over |I | gives

Pp,p′(#Kπ ≥ εn/K,0 ↔ ne1) ≤ e−c33τεne
−ξp,p′n.

Since Pp,p′(0 ↔ ne1) = e
−ξp,p′ (1+o(1))n as n → ∞, we get (6.2) once K is suffi-

ciently large. �
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We then turn to the study of the deviations of C0,ne1 away from its smallest
connecting path π ⊂ C0,ne1 .

Let π be a given path, which we here consider together with its set of edges.

Let R0 := max{|z − 0| : 0
πc↔ z} and z0 ∈ C0,ne1 be any point at which the max is

attained. Let π̂0 be the smallest path realizing the connection between 0 and z0,
disjoint from π . Inductively, for s = 1, . . . , |π |, let �s := ⋃

0≤t<s π̂ t ,

Rs := max
{|z − πs | :πs

(π∪�s)
c←→ z

}
,

zs ∈ C0,ne1 be any point at which the max is attained, and π̂ s be any path realizing
the connection between πs and zs , disjoint from π ∪�s .

PROPOSITION 6.4. Let 0 < ε < 1. There exists K3 = K3(p,p′, ε) and c34 =
c34(p,p′, ε) > 0 such that if K ≥ K3, then

Pp,p′

( |π |∑
s=0

Rs1{Rs≥K} ≥ εn
∣∣∣0 ↔ ne1

)
≤ e−c34n.(6.4)

PROOF. We know from Proposition 6.3 that under Pp,p′(·|0 ↔ ne1), the num-
ber of increments of the skeleton of a typical path π : 0 → ne1 is at most εn/K .
We can therefore assume, in particular, that

|π | ≤ c35K
d−1n.(6.5)

For a fixed path π , let Fπ denote the event in which π is the smallest self-avoiding
path connecting 0 to ne1. Arguing as for (5.5), we get Pp,p′(·|Fπ) � Pp,p′(·)
on πc. The event {∑|π |

s=0 Rs1{Rs≥K} ≥ εn} is πc-measurable and increasing. There-
fore, by the BK inequality and Lemma 5.1,

Pp,p′

( |π |∑
s=0

Rs1{Rs≥K} ≥ εn
∣∣∣Fπ

)

≤ Pp,p′

( |π |∑
s=0

Rs1{Rs≥K} ≥ εn

)

≤ ∑
r1,...,r|π |:∑

s rs≥εn,

rs≥K

∑
z1,...,z|π |:
|zs−πs |=rs

Pp,p′
({π0 ↔ z0} ◦ · · · ◦ {

π|π | ↔ z|π |
})

≤ ∑
r1,...,r|π |:∑

s rs≥εn,

rs≥K

|π |∏
s=0

c36r
d−1
s e−c11ξ

∗
prs .
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The proof then follows the same lines as before: if K is large enough, then
c36r

d−1e−c11ξ
∗
pr ≤ e−c37r for all r ≥ K . The summation can thus be done as in

(6.3), and using (6.5) gives (6.4). �

Let T2K be the tube containing points whose Euclidean distance to L is ≤ 2K ,
and consider the cone

Y := {x : 〈x, e1〉 ≥ |x⊥|}.
For each x ∈ Lc, let z+ (resp., z−) denote the largest (resp., smallest) point of L
such that x ∈ z+ − Y (resp., x ∈ z− + Y ). The segment [z−, z+] is called the shade
of x. Let Sn ⊂ Ln be the set of points of Ln who lie in the shade of at least one
point of C0,ne1 ∩ (T2K)c. The points of Rn := Ln \ Sn are candidates for being
cone-renewals.

It is easy to see that

|Sn| ≤ c38K
∑
j

#K Xj + c39K

|π |∑
s=0

Rs1{Rs≥K},

where c38 and c39 depend only on the dimension d . As a corollary of Propositions
6.3 and 6.4, |Sn| = O(εn). More precisely, for a fixed 0 < η < 1, K can be taken
large enough so that

Pp,p′
(|Rn| ≥ (1 − η)n|0 ↔ ne1

) ≥ 1 − e−c40n(6.6)

with c40 > 0 depending on p, p′ and η.

PROOF OF THEOREM 6.1. We apply a local surgery under Pp,p′(·|0 ↔ ne1),
to show that Ln contains many cone-renewals (see Figure 6). Consider the parti-
tion of Tn into neighboring disjoint blocks Bj of lengths 5K , centered at points zj .

FIG. 6. The local surgery inside the block Bj , turning a pre-renewal zj into a cone-renewal: open

a minimal path (in bold) connecting w−
j to w+

j , and close all other edges of Bj (dotted). By the finite

energy property, this event has probability p∗ = e−O(Kd) > 0.
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If zj ∈ Rn, we call zj a pre-renewal. Assume zj is a pre-renewal. Let F−
j , F+

j

denote the two faces of Bj which are orthogonal to Ln, and let W−
j ⊂ F−

j (resp.,

W+
j ⊂ F+

j ) denote the points of C0,ne1 ∩ F−
j (resp., C0,ne1 ∩ F+

j ) which are con-

nected to 0 (resp., ne1) by a path not intersecting Bj . Let w±
j denote the smallest

point (in lexicographical order) of F±
j . Under Pp,p′(·|w−

j ,w+
j ,0 ↔ ne1), inde-

pendently of the edges living outside Bj , w−
j is connected to w+

j by a minimal
path going through zj , turning zj into a cone-renewal with positive probability,
bounded below by some p∗ > 0 depending on K .

The variables Xi := 1{zi is a cone-renewal} can thus be coupled to i.i.d. Bernoulli
variables Yi of parameter p, giving

Pp,p′

(n/5K∑
i=1

Xi ≤ p∗n/(10K)
∣∣∣0 ↔ ne1

)
≤ P

(n/5K∑
i=1

Yi ≤ p∗n
/

(10K)

)
≤ e−c41n.

Together with (6.6), this proves the claim. �

Let us complete the proof of Theorem 1.4. We first define the irreducible com-
ponents ζj of C0,ne1 , which are cone-confined and which, in contrast to the γj of
Section 3, have both their endpoints on Ln.

Let us denote by {w1, . . . ,wm+1} ⊂ C0,ne1 the cone-renewals that lie on Ln,
ordered according to their first component. By Theorem 6.1, m is typically of
order n. The subgraphs

ζj := C0,ne1 ∩ Swj ,wj+1

are called cone-confined irreducible components of C0,ne1 . The complement
C0,ne1 \ (ζ1 ∪· · ·∪ζm) can contain, at most, two connected components. If it exists,
the component containing 0 (resp., ne1) is denoted ζ b (resp., ζ f), and called back-
ward (forward) irreducible. Keeping in mind that we are here working with the
cone Y rather than Y > and that the edges on L are opened with probability p′, all
the definitions of Section 3 extend with almost no changes to the irreducible com-
ponents ζ . In particular, we can define independent events �b,�1, . . . ,�m,�f so
that

Pp,p′(C0,ne1 = ζ b � ζ1 � · · · � ζm � ζ f) = Pp,p′(�b)

(
m∏

j=1

Pp,p′(�j )

)
Pp,p′(�f).

One can thus define, for u ≥ 1, v ≤−1,

ρ ′
b(u) := e

ξp,p′u ∑
ζ b�0:

b(ζ b)=u

Pp,p′(�b), ρ ′
f (v) := e

ξp,p′ |v| ∑
ζ f�0:

f(ζ f)=v

Pp,p′(�f).

By (6.1), these weights satisfy the following bounds:

ρ′
b(u) ≤ e−ν4|u|, ρ′

f (v) ≤ e−ν4|v|.(6.7)
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Moreover, q ′(�) := e
ξp,p′�f� with

f� :=
∑
ζ1�0:

f(ζ1)=0,b(ζ1)=�

Pp,p′(�1)(6.8)

defines a probability distribution on N. Again, by (6.1),

f� ≤ e
−ξp,p′�−ν4�,(6.9)

which implies

q ′(�) ≤ e−ν4�.(6.10)

Up to a term of order e−ν4n [compare with (3.8)],

e
ξp,p′n

Pp,p′(0 ↔ ne1) =
∑
u,v

ρ′
b(u)ρ′

f(v)
∑
m≥1

∑
�1,...,�m:∑

j �j=n+v−u

m∏
j=1

q ′(�j ).(6.11)

As before, due to (6.7), the sum in (6.11) can be restricted to those u, v that satisfy
|u|, |v| ≤ n1/2−α , for some small α > 0. Let thus τk , k ≥ 1, be an i.i.d. sequence
with distribution Q′(τ1 = �) := q ′(�). Then, (6.11) writes

e
ξp,p′

Pp,p′(0 ↔ ne1)

= ∑
u,v

ρ′
b(u)ρ′

f(v)Q′
(
∃m ≥ 1 such that

m∑
j=1

τj = n+ v − u

)
.

By (6.10), EQ′ [τ1] < ∞. Moreover, q ′(�) > 0 for all � ≥ 1, and therefore, by the
renewal theorem,

Q′
(
∃m ≥ 1 such that

m∑
j=1

τj = n+ v − u

)
→ 1

EQ′ [τ1]
as n →∞, uniformly in |u|, |v| ≤ n1/2−α . This proves Theorem 1.4.

6.2. Strict monotonicity of p′ �→ ξp,p′ . Assume p′ > p′
c, that is, ξp,p′ < ξp .

Consider the measures P
(n)
p,p′ defined in Section 5. If an � n is taken large enough,

then we can write ξp,p′ = limn→∞ ξ
(n)
p,p′ , where

ξ
(n)
p,p′ := −1

n
log P

(n)
p,p′(0 ↔ ne1).

Therefore,

dξ
(n)
p,p′

dp′ = −1

n

dP
(n)
p,p′(0 ↔ ne1)/dp′

P
(n)
p,p′(0 ↔ ne1)

.
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By Theorem 6.1, the expected number of cone-renewals under Pp,p′(·|0 ↔ ne1)

grows linearly with n. Since each cone-renewal is adjacent to two edges which are
pivotal for {0 ↔ ne1}, we can use Russo’s Formula as before to find a constant
c42 > 0 such that

1

n

dP
(n)
p,p′(0 ↔ ne1)/dp′

P
(n)
p,p′(0 ↔ ne1)

≥ c42.

This implies that
dξ

(n)

p,p′
dp′ ≤ −c42, uniformly in n. p′ �→ ξp,p′ is therefore strictly

decreasing on (p′
c,1), since for all p′

c < p′
1 < p′

2 < 1,

ξp,p′
2
− ξp,p′

1
= lim

n→∞
(
ξ

(n)

p,p′
2
− ξ

(n)

p,p′
1

) = lim
n→∞

∫ p′
2

p′
1

dξ
(n)
p,p′

dp′ dp′ ≤ −c42(p
′
2 − p′

1).

6.3. Analyticity of p′ �→ ξp,p′ . Fix p < pc. Consider f� = f�(p
′) defined

in (6.8). Observe that f� can be put in the form of a polynomial in p′, f�(p
′) =∑�

k=0 a
(�)
k p′k , with a

(�)
k ≥ 0. It can therefore be continued as an analytic function

w �→ f�(w) in the complex plane. Let

�(w,z) := ∑
�≥1

f�(w)ez�.

Since

�(p′, ξp,p′) = ∑
�≥1

f�(p
′)eξp,p′� = ∑

�≥1

q ′(�) = 1,

the analyticity of p′ �→ ξp,p′ will follow by solving �(w,z) = 1 for z, in a
neighborhood of (p′, ξp,p′). To do so, we must verify that (w, z) �→ �(w,z) is
analytic in a domain of C

2 containing (p′, ξp,p′), and that ∂�
∂z

|(p′,ξp,p′ ) �= 0. If
w ∈ Dδ(p

′) := {w ∈ C : |w − p′| < δ},

|f�(w)| ≤
�∑

k=0

a
(�)
k |w|k ≤

�∑
k=0

a
(�)
k (p′ + δ)k ≤ (1 + δ/p′)�f�(p

′).

We can therefore choose δ = δ(p,p′) > 0 small enough to ensure that

sup
w∈Dδ(p′)

∣∣∣∣ f�(w)

f�(p′)

∣∣∣∣ ≤ eν4�/3.

We also take ε > 0 such that supz∈Dε(ξp,p′ ) |ez�| ≤ e
(ξp,p′+ν4/3)�. Remembering the

bound for f�(p
′) in (6.9), we thus get∑

�≥1

sup
w∈Dδ(p′)

sup
z∈Dε(ξp,p′ )

|f�(w)ez�| < ∞.
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Therefore, � defines an analytic function of (w, z) in the polydisc Dδ(p
′) ×

Dε(ξp,p′). Moreover,

∂�

∂z

∣∣∣∣
(p′,ξp,p′ )

= ∑
�≥1

�f�(p
′)eξp,p′� > 0.

The conclusion follows by the implicit function theorem.

APPENDIX A: RENEWALS

Let (an)n≥0 and (bn)n≥1 be nonnegative sequences satisfying a0 = 1, and the
renewal equation

an =
n−1∑
k=0

akbn−k for all n ≥ 1.(A.1)

Iterating (A.1) gives

an =
n∑

m=1

∑
k1,...,km∑

j kj=n

m∏
j=1

bkj
for all n ≥ 1.(A.2)

As a consequence, in terms of the generating functions

A(s) = ∑
n≥0

ans
n, B(s) = ∑

n≥1

bns
n,

equation (A.1) takes the form

A(s) = 1

1 − B(s)
.(A.3)

The following classical result (or variants of it) is used at various places in the
paper.

LEMMA A.1. Assume that the radii of convergence of A and B, denoted, re-
spectively, rA and rB, satisfy rB > rA > 0. Then B(rA) = 1. In particular, the num-
bers qk := bkr

k
A

(k ∈ N) define a probability distribution on N. Moreover, if bk > 0
for all k ≥ 1, then

rn
A
an →

(∑
k≥1

kqk

)−1

.(A.4)

PROOF. Since its coefficients are ≥ 0, A(s) is singular at s = rA, and therefore
(A.3) gives B(rA) = 1. Let τ1, τ2, . . . denote an i.i.d. sequence with distribution
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Q(τ1 = k) := qk . Then (A.2) becomes

rn
A
an = Q(∃M ≥ 1 : τ1 + · · · + τM = n).

By the renewal theorem,

Q(∃M ≥ 1 : τ1 + · · · + τM = n) → 1

EQ[τ1] =
1∑

k≥1 kqk

,

which proves (A.4). �

APPENDIX B: PINNING FOR A RANDOM WALK

In this section, we consider the pinning problem for a random walk on Z
d . This

is a classical problem (see, e.g., the book [10] and references therein); nevertheless,
for the convenience of the reader, we state and prove the relevant claims. The
dimension d of this section corresponds to dimension d − 1 in the paper, since
the walk X introduced below is associated to the transverse component S⊥ of the
random walk representation of C0,ne1 .

Consider a random walk X = (Xn)n≥0 on Z
d such that (i) X is nonlattice,

(ii) X0 = 0, (iii) the increments Xi+1 − Xi have zero expectation and exponen-
tial tails. We denote the law of X by P. We introduce the measure Pε

N defined
by

dPε
N

dP
= eεL(N)1{XN=0}

Zε
N

,

where L(N) = ∑N
n=1 1{Xn=0} is the local time at the origin, ε ≥ 0 is the pinning

parameter, and

Zε
N = E

[
eεL(N)1{XN=0}

]
is the normalizing partition function.

The first result shows that in dimensions 1 and 2, and only in those dimensions,
an arbitrary ε > 0 leads to an exponential divergence of Zε

N .

THEOREM B.1. For all d ≥ 1, there exists εc = εc(d) ≥ 0 such that

f (ε) = lim
N→∞

1

N
log Zε

N

{= 0, if ε < εc,
> 0, if ε > εc.

In dimensions 1 and 2, εc(1) = εc(2) = 0, while εc(d) > 0 for all d ≥ 3. Moreover,
in dimensions 1 and 2, there exist c43, c44 > 0 such that

f (ε) =
{

c43ε
2(

1 + o(1)
)

(d = 1),
e−c44/ε(1+o(1)) (d = 2).

(B.1)
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PROOF. We omit the proof of the existence of the free energy f (ε), which
is standard. The existence of εc(d) follows by monotonicity. Let τ0 := 0 and, for
k ≥ 1, τk := inf{n > 0 :Xτk−1+n = 0}. It is well known [9, 15] that, as k →∞,

P(τ1 = k) =
{

c45k
−3/2(

1 + o(1)
)

(d = 1),
c46k

−1(log k)−2(
1 + o(1)

)
(d = 2),

(B.2)

for some constant c45 and c46 = 2π
√

det�, with � the covariance matrix of X.
Notice now that Zε

N satisfies the following renewal equation:

Zε
N =

N∑
k=1

eεP(τ1 = k)Zε
N−k,

where we have set Zε
0 := 1. Consider the generating function A(s) := ∑

N≥0 Zε
NsN

whose radius of convergence is given by e−f (ε) ≤ 1. Proceeding as in Appendix A,

A(s) = 1/
(
1 − B(s)

)
,(B.3)

where B(s) := ∑
k≥1 skeεP(τ1 = k). Observe that B(s) converges for all s ∈ [0,1].

Since B is monotone, we have B(s) ≤ B(1) = eεP(τ1 < ∞) for all s < 1.
In dimension d ≥ 3, the walk is transient: P(τ1 < ∞) < 1. Therefore, if ε <

εc(d) := |log P(τ1 < ∞)|, we have B(1) < 1, so A(s) converges for all s ≤ 1 and
therefore f (ε) = 0. Now if ε > εc, then B(1) = eε−εc > 1. Therefore, B(s) > 1 for
s sufficiently close to 1. This implies by (B.3) that the radius of convergence of A

is strictly smaller than 1, and so f (ε) > 0.
In dimensions d = 1,2, the walk is recurrent: P(τ1 < ∞) = 1. Therefore,

B(1) = eε > 1 for all ε > 0, which implies that B(s) > 1 as soon as s < 1 is
sufficiently close to 1. As before, this implies that f (ε) > 0. Therefore, εc(1) =
εc(2) = 0. Since f (ε) is characterized by the unique number f > 0 for which
B(e−f ) = 1, that is, ∑

k≥1

eεP(τ1 = k)e−f k = 1.

Using (B.2), an integration by parts in this last sum shows that as ε ↓ 0, f (ε)

behaves as in (B.1). �

The second theorem provides some information about the local time at the ori-
gin under Pε

N .

THEOREM B.2. Assume that d = 1 or 2, and ε > 0. Let τ̂k be an i.i.d. se-
quence with distribution Q(τ̂1 = k) := eεP(τ1 = k)e−f (ε). Then for all η > 0,

Pε
N

(∣∣∣∣L(N)

N
− 1

EQ[τ̂1]
∣∣∣∣ ≥ η

)
→ 0.(B.4)



2044 S. FRIEDLI, D. IOFFE AND Y. VELENIK

Moreover,

Eε
N [L(N)] =

{
c47εN

(
1 + o(1)

)
(d = 1),

e−c48/ε(1+o(1))N (d = 2).
(B.5)

PROOF. Notice first that in terms of the variables τ̂i ,

Pε
N

(
K∑

i=1

τi = N

)
= Q(

∑K
i=1 τ̂i = N)

Q(∃K ≥ 1 :
∑K

i=1 τ̂i = N)
.

By a standard large deviation estimate,

Q

(
K∑

i=1

τ̂i = N

)
≤ e−c49(K∨N)

for all K such that |K −N/EQ[τ̂1]| > ηN . Since

Q

(
∃K ≥ 1 :

K∑
i=1

τ̂i = N

)
→ 1/EQ[τ̂1],

it thus follows that

Pε
N

(∣∣∣∣L(N)

N
− 1

EQ[τ̂1]
∣∣∣∣ ≥ η

)
≤ e−c50N. �

COROLLARY B.3. Assume that d = 1 or d = 2. Then there exist c51, c52 > 0
such that, for any small enough δ > 0, and N large enough,

P
(
L(N) ≥ δN

) ≥
{

e−c51δ
2N, if d = 1,

e−c52(δ/|log δ|)N , if d = 2.

PROOF. Using a well-known inequality ([10], (A.13))

P
(
L(N) ≥ δN

) ≥ Pε
N

(
L(N) ≥ δN

)
exp

{
− H(Pε

N |P)+ e−1

Pε
N(L(N) ≥ δN)

}
,

where H(Pε
N |P) denotes the relative entropy of Pε

N w.r.t. P. We choose

ε = ε(δ) =
{

cδ (d = 1),
c/|log δ| (d = 2),

with c chosen in such a way that [remember (B.5)]

Eε
N [L(N)] ∈ (2δN,3δN).

It then follows from (B.4) that

Pε
N

(
L(N) ≥ δN

) ≥ 1
2
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for all N large enough. But for large enough N ,

H(Pε
N |P) = εEε

N [L(N)] − log Zε
N + log P(XN = 0) ≤ 3εδN.

The conclusion follows. �
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