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PAINTING A GRAPH WITH COMPETING RANDOM WALKS1

BY JASON MILLER

Stanford University

Let X1,X2 be independent random walks on Zd
n , d ≥ 3, each start-

ing from the uniform distribution. Initially, each site of Zd
n is unmarked,

and, whenever Xi visits such a site, it is set irreversibly to i. The mean
of |Ai |, the cardinality of the set Ai of sites painted by i, once all of Zd

n

has been visited, is 1
2nd by symmetry. We prove the following conjecture

due to Pemantle and Peres: for each d ≥ 3 there exists a constant αd such
that limn→∞ Var(|Ai |)/hd(n) = 1

4αd where h3(n) = n4, h4(n) = n4(logn)

and hd(n) = nd for d ≥ 5. We will also identify αd explicitly and show that
αd → 1 as d → ∞. This is a special case of a more general theorem which
gives the asymptotics of Var(|Ai |) for a large class of transient, vertex transi-
tive graphs; other examples include the hypercube and the Caley graph of the
symmetric group generated by transpositions.

1. Introduction. Suppose that X1,X2 are independent random walks on a
graph G = (V ,E) starting from stationarity. Initially, each vertex of G is un-
marked, and, whenever Xi visits such a site, it is marked i irreversibly. If both
X1 and X2 visit a site for the first time simultaneously, then the mark is chosen by
the flip of an independent fair coin. Let Ai be the set of sites marked i once every
vertex of G has been visited. By symmetry, it is obvious that E|Ai | = 1

2 |V |. The
purpose of this manuscript is to derive precise asymptotics for Var(|Ai |) for many
families of graphs.

The process by which a single random walk covers a graph has been studied
extensively. Examples of interesting statistics include the expected amount of time
it takes for the random walk to visit every site [4, 14], the growth exponent of the
set of sites visited most frequently [3] and the clustering and correlation structure
of the last visited points [2, 5, 15]. The motivation for this work is to understand
better how multiple random walks cover a graph.

The investigation of the statistical properties of Ai was first proposed in the
work of Gomes Jr. et al. [9]. Their motivation was to study the technical challenges
associated with physical problems involving interacting random walks. They es-
timate the growth of E|B| where B is the interface separating A1 from A2 in the
special case of the one-cycle Z1

n. As with E|Ai |, computing E|B| for Zd
n becomes

Received March 2010; revised April 2011.
1Supported in part by NSF Grants DMS-04-06042 and DMS-08-06211.
MSC2010 subject classifications. 60G50, 60F99.
Key words and phrases. Random walk, competing random walks, variance.

636

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/11-AOP713
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


PAINTING A GRAPH WITH COMPETING RANDOM WALKS 637

trivial for d ≥ 3 since it is easy to see that, with probability strictly between 0
and 1, for any pair of adjacent vertices x, y, X2 will hit y before X1, conditional
on the event that X1 hits x first. On the other hand, estimating Var(|Ai |) in this
setting is challenging since its expansion in terms of correlation functions exhibits
significant cancellation which, when ignored, leads to bounds that are quite impre-
cise. We will develop this point further at the end of the Introduction.

The problem we consider here was formulated by Hilhorst, though in a slightly
different setting. Rather than considering the sets of sites A1, A2 first painted by
X1,X2, respectively, it is also natural to study the sets Ã1, Ã2 of sites most recently
painted by X1,X2, respectively. In other words, in the latter formulation the con-
straint that the marks are irreversible is removed. It turns out that these two classes
of problems are equivalent, which is to say (A1, A2)

d= (Ã1, Ã2). This helpful ob-
servation, which follows from the time-reversibility of random walk, was made
and communicated to us by Comets.

We restrict our attention to lazy walks X1,X2 to avoid issues of periodicity, and
in particular to ensure that the random walk has a unique stationary distribution.
That is, the one-step transition kernel is given by

p(x, y;G) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

2
, if x = y,

1

2 deg(x)
, if x ∼ y,

0, otherwise,

where x ∼ y means that x is adjacent to y in G. The particular choice of holding
probability 1

2 is not important for the proof; indeed, any λ ∈ (0,1) would suffice.
Our proofs also work in the setting of continuous time walks. Let pt(·, ·;G) be
the t-step transition kernel of a lazy random walk on G and π(·;G) its unique
stationary distribution.

Our main result is the precise asymptotics for Var(|Ai |) on tori of dimension at
least three, thus verifying a conjecture due to Pemantle and Peres [8], page 35.

THEOREM 1.1. Suppose that Gn = Zd
n , d ≥ 3. There exists a finite constant

αd > 0 such that

lim
n→∞

Var(|Ai |)
hd(n)

= 1

4
αd,

where

hd(n) =
⎧⎨⎩n4, if d = 3,

n4(logn), if d = 4, and
nd, if d ≥ 5.
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Our proof allows us to identify αd explicitly and is given as follows. Let

G(x;Zd) = E0

∞∑
t=0

1{X(t)=x}(1.1)

be the Green’s function for lazy random walk on Zd . This is the amount of time a
random walk initialized at 0 spends at x before escaping to ∞. For d ≥ 5,

αd = 1

G2(0;Zd)

∑
y∈Zd

G2(y;Zd).(1.2)

It is not difficult to see that αd → 1 as d → ∞, so that Var(|A1|) ≈ 1
4nd for d and

n large is close to the variance of an i.i.d. marking. For d = 4,

α4 = lim
n→∞

1

G2(0;Z4) logn

∑
y∈Z4 : |y|≤n

G2(y;Z4);(1.3)

we will explain why this limit exists and is positive and finite in Proposition 2.1.
The definition of α3 is slightly more involved. Let T3 denote the three-dimensional
continuum torus, pt(·, ·;T3) the transition kernel for Brownian motion on T3 and

gT (x, y;T3) =
∫ T

0
pt(x, y;T3) dt.

Now set

αT
3 = 1

G2(0;Z3)

∫
T3

∫
T3

(
gT/2(x, y;T3) − 1

2
T

)2

dx dy,

(1.4)
α3 = lim

T →∞αT
3 .

The reason that the limit exists and is positive and finite is that pt(x, y;T3) con-
verges to the uniform density exponentially fast in t ; see Proposition 3.1 for a
discrete version of this statement.

Throughout the rest of the article, for functions f,g, we say that f = O(g)

if there exists constants c1, c2 such that |f | ≤ c1 + c2|g|. We say that f = �(g)

if there exists constants c1, c2 so that |f | ≥ c1 + c2|g|. We say that f = �(g) if
f = O(g) and f = �(g). Finally, we say f = o(g) if limn→∞ f (n)/g(n) = 0.

We note that the problem for d = 1 is trivial: Var(|A1|) = �(n2). Indeed, ob-
serve that with positive probability, the distance between X1 and X2 at time 0 is
at least 1

4n. In cn2 steps (for c large enough), X1 has positive probability of cov-
ering the entire cycle while X2 has positive probability of not leaving an interval
of length 1

4n containing its starting point. On this event, |A1| ≥ 3
4n. This proves

our claim as the upper bound is trivial. For d = 2, the asymptotics of Var(|A1|)
remains open.
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One interesting remark is that the variance for d = 3,4 is significantly higher
than that of an i.i.d. marking. The results of Theorem 1.1 should also be con-
trasted with the behavior of the variance of the range R of random walk on Zd

run up to the cover time Tcov(Zd
n) of Zd

n , which is the expected amount of time
it takes for a single random walk to visit every site. When d ≥ 3, Tcov(Zd

n) ∼
cdnd(logn); see [13]. For d ≥ 5, it follows from work of Jain and Orey [10] that
Var(|R|) = �(nd(logn)). For d = 3,4, it follows from work of Jain and Pruitt
[11] that Var(|R|) is �(n3(logn)2) and �(n4(logn)), respectively.

This work opens the doors to many other problems involving two random walks.
Natural next steps include CLTs for the fluctuations of |Ai | and for the number of
sites painted by i at time t , as well as the development of an understanding of the
geometrical properties of the clusters of Ai . The latter seem to be connected to the
theory of random interlacements. This is a model developed by Sznitman in [17]
to describe the microscopic structure of the points visited by a random walk on Zd

n ,
d ≥ 3, at times und for u > 0—that is, when a constant order of vertices have been
visited. Roughly speaking, the model is a Poisson process on W ∗ × (0,∞), where
W ∗ is the space of doubly-infinite paths on Zd modulo time-shifts. For a point
(X,U) realized in this process, one should think of X as describing a random
walk trajectory (an “interlacement”) and U a time parameter. The model was first
developed to study the process of disconnection of a discrete cylinder by random
walk [6] and has been subsequently applied to understand the fine geometrical
structure of random walk in many different settings [18, 19]. Sznitman’s theory
generalizes to the setting of k random walks by labeling each interlacement with
an element of {1, . . . , k} i.i.d. at random. Studying the structure of the clusters in
the Ai using this general theory is an interesting research direction.

Theorem 1.1 is a special case of a much more general result, which gives the
asymptotics of Var(|Ai |) for many other graphs, such as the hypercube and the
Caley graph of the symmetric group generated by transpositions. We will now
review some additional terminology which is necessary to give a precise statement
of the result. Recall that the uniform mixing time of random walk on G is

Tmix(G) = min
{
t ≥ 0 : max

x,y

∣∣∣∣pt(x, y;G)

π(y;G)
− 1

∣∣∣∣ ≤ 1

4

}
,

and the Green’s function for G is

g(x, y;G) =
Tmix(G)∑

t=0

pt(x, y;G),

that is, the expected amount of time Xi spends at y up until Tmix(G) when started
from x. Let τi(x) = min{t ≥ 0 :Xi(t) = x} be the first time Xi hits x; we will omit
i if there is only one random walk under consideration. Throughout the rest of the
article, a ∧ b = min(a, b) for a, b ∈ R.
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ASSUMPTION 1.2. (Gn) is a sequence of vertex transitive graphs with |Vn| →
∞ such that:

(1) Tmix(Gn) = o(|Vn|/(log|Vn|)2) and limn→∞ Tmix(Gn) = ∞;
(2)

∑
y �=x0

g2(x0, y;Gn) = o(Tmix(Gn)/log|Vn|) for each x0 ∈ Vn fixed;
(3) there exists ρ0 < 1 so that Px[τ(y) ∧ τ(z) ≤ Tmix(Gn)] ≤ ρ0 uniformly in

n and x, y, z ∈ Vn distinct.

The purpose of (1) is that in many cases we will perform union bounds over
time-scales whose length is proportional to Tmix(Gn), and the hypothesis gives us
explicit control on how the number of terms in these bounds relates to the size
of Vn. Part (2) gives us control on the tail behavior of g and, finally, part (3) says
that with uniformly positive probability the walks we consider do not hit adjacent
points within the mixing time. Note that vertex transitivity implies g is constant
along the diagonal. Part (3) implies that the number of times random walk started
at x returns to x before the mixing time is stochastically dominated by a geometric
random variable whose parameter depends only on ρ0. Consequently, we see that
there exists g0 > 0 such that g(x, x;Gn) ≤ g0 uniformly in x and n.

Assume that (Gn) is a sequence of vertex transitive graphs, and let

fn,c(x, y) = Px[τ(y) ≤ cTmix(Gn)],(1.5)

f n,c = ∑
y

fn,c(x, y)π(y;Gn).(1.6)

Note that f n,c does not depend on the choice of x since if we replaced x with x′,
by vertex transitivity we may precompose fn,c with an automorphism of Gn which
sends x to x′.

The general theorem is:

THEOREM 1.3. Suppose that (Gn) satisfies Assumption 1.2. Let

Fn,c = ∑
x,y

(
fn,c(x, y) − f n,c

)2
.

There exists γ > 0 so that for every c ≥ 2, we have

Var(|Ai |) = (1
4 + O(
n)

)
Fn,c + O(e−γ c(Tmix(Gn))

2)(1.7)

as n → ∞ where


n = Tmix(Gn) log|Vn|
|Vn| .

Applying this to the special cases of the hypercube and the Caley graph of Sn

generated by transpositions leads to the following corollary.
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COROLLARY 1.4. Suppose that Gn = (Vn,En) is either the hypercube Zn
2 or

the Caley graph of Sn generated by transpositions. Then

Var(|Ai |) = 1
4

(
1 + o(1)

)|Vn|.

In particular, the first-order asymptotics of the variance are exactly the same as
for an i.i.d. marking.

Throughout the remainder of the article, all graphs under consideration shall
satisfy Assumption 1.2. In most examples, it will be that T 2

mix(Gn) = o(Fn,c) so
that the second term in (1.7) is negligible. In this case, taking c = 2 in (1.7) pro-
vides a means to compute not only the magnitude but also the constant in the first
order asymptotics of the variance. In some cases, such as Gn = Z3

n, the constant
can even be computed when Fn,c = �((Tmix(Gn))

2).
The challenge in obtaining Theorems 1.1 and 1.3 is that the cancellation in the

expansion of the variance is quite significant which, when ignored, yields only an
upper bound that can be off by as much as a multiple of Tmix(Gn). We will now
illustrate this point in the case of Zd

n for d ≥ 3. It will turn out that the contribution
to the variance from the sites visited by both X1,X2 simultaneously is negligible,
and hence we will ignore this possibility in the present discussion. Observe

Var
(∑

x

1{τ1(x)<τ2(x)}
)

= ∑
x,y

(
P[τ1(x) < τ2(x), τ1(y) < τ2(y)]

− P[τ1(x) < τ2(x)]P[τ1(y) < τ2(y)]).
Note that P[τ1(x) < τ2(x)] is approximately 1

2 . Let H(x,y) = {τ1(x) < τ1(y) ∧
τ2(x) ∧ τ2(y)}. Consequently, by symmetry, the above is approximately equal to∑

x,y

(
2P[τ1(x) < τ2(x), τ1(y) < τ2(y)|H(x,y)]P[H(x,y)] − 1

4

)
+ O(nd).

The reason for the O(nd) term is that P[H(x,x)] = 0, so all of the diagonal terms
are ignored in the summation. Let π̃(·;x, y) be the law of X2(τ1(x)) conditional
on H(x,y). As P[H(x,y)] is approximately 1

4 , using the Markov property of
(X1,X2) applied for the stopping time τ1(x), we can rewrite the summation as

2
∑
x,y,z

(
Px,z[τ1(y) < τ2(y)] − 1

2

)
π̃(z;x, y)P[H(x,y)].

Here, Px,z denotes the joint law of X1,X2 with X1(0) = x and X2(0) = z. Thus
we need to estimate

1

2

∑
x,y,z

(
Px,z[τ1(y) < τ2(y)] − 1

2

)
π̃(z;x, y).(1.8)
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At this point, one is tempted to insert absolute values and then work on each of the
summands separately. Since X1 and X2 are independent, note that X2(τ1(x)) ∼
π(·;Zd

n). Thus by Bayes’ rule, we have

π̃(z;x, y) = P[H(x,y)|X2(τ1(x)) = z]
P[H(x,y)] π(z;Zd

n) ≤ C0π(z;Zd
n);

see Theorem 4.1 for a much finer estimate. Hence the expression in (1.8) is
bounded from above by

C1
∑
x,y

∣∣∣∣Px,π [τ1(y) < τ2(y)] − 1

2

∣∣∣∣,(1.9)

where Px,π denotes the law of X1,X2 with X1(0) = x and X2(0) ∼ π(·;Zd
n).

It is a basic fact that Tmix(Zd
n) = �(n2); one way to see this is to invoke the

local central limit theorem ([12], Theorem 1.2.1). We can analyze Px,π [τ1(y) <

τ2(y)] as follows. We consider two different cases: either y is hit before time tc ≡
cTmix(Zd

n) = c′n2 or afterward. The probability that X2 hits y before tc is of order
n2−d by a union bound since X2(t) ∼ π(·;Zd

n) = n−d for all t . Second, by the local
transience of random walk on Zd

n for d ≥ 3, the probability that X1 hits y before
tc is, up to a multiplicative constant, well approximated by g(x, y;Zd

n). We now
consider the second case. By time tc for c > 0 large enough, X1 will have mixed.
This means that if neither X1 nor X2 has hit y by this time, the probability that
either one hits first is close to 1/2. The careful reader who wishes to see precise,
quantitative versions of these statements will find such in the lemmas we use to
prove Theorem 1.3. Thus it is not difficult to see that there exists C2 > 0 so that

|Px,π [τ1(y) < τ2(y)] − 1/2| ≤ C2g(x, y;Zd
n).

This leads to an upper bound of

C3
∑
x,y

g(x, y;Zd
n) ≤ C4n

d+2.

A slightly more refined analysis leads to a lower bound of (1.9) with the same
growth rate. As we will show in the next section, in every dimension this estimate
is typically quite far from being sharp. The reason for the inaccuracy is that by
moving the absolute value into the sum in (1.9) we are unable to take advantage of
the cancellation that arises as Px,π [τ1(y) < τ2(y)] > 1/2 when x is close to y and
Px,π [τ1(y) < τ2(y)] < 1/2 when x is far from y.

Outline. The remainder of this article is structured as follows. In the next sec-
tion, we will deduce Theorem 1.1 and Corollary 1.4 from Theorem 1.3. In Sec-
tion 3, we introduce some notation that will be used throughout in addition to
collecting several basic random walk estimates. Next, in Section 4, we give a pre-
cise estimate of the Radon–Nikodym derivative of π̃(·;x, y) with respect to π .
In Section 5, we prove Theorem 1.3 and end in Section 6 with a list of related
problems and discussion.
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2. Proof of Theorem 1.1 and Corollary 1.4. The following proposition will
be important for the proof of Theorem 1.1.

PROPOSITION 2.1. Assume that Gn = Zd
n for d ≥ 3. For each c > 1, the limit

lim
n→∞

1

hd(n)

∑
x,y

(
fn,c(x, y) − f n,c

)2(2.1)

exists. When d ≥ 4, it is αd as in (1.2), (1.3). When d = 3, it is given by αc
3 where

αT
3 is as in (1.4).

The first step in the proof of the proposition is to reduce the existence of the limit
to a computation involving Green’s functions. Recall from (1.1) that G(y;Zd) is
the Green’s function for lazy random walk on Zd . In order to keep the notation
from becoming too heavy, throughout the rest of this section we will write Tmix for
Tmix(Gn) where Gn will be clear from the context. Let

gc(x, y;Gn) = Ex

cTmix∑
t=0

1{X(t)=y}.

LEMMA 2.2. Assume that Gn = Zd
n for d ≥ 3. For each c > 1, we have that

lim
n→∞

1

hd(n)

∑
x,y

(
fn,c(x, y) − G−1(0;Zd)gc(x, y;Zd

n)
)2 = 0.

PROOF. Observe

gc(x, y;Zd
n) ≤ fn,c(x, y)gc(y, y;Zd

n).

We shall now prove a matching lower bound. Fix 0 < c̃ < c. Then we have that

gc(x, y;Zd
n) ≥ Ex

[(
cTmix∑

t=τ(y)

1{X(t)=y}
)

1{τ(y)≤(c−c̃)Tmix}
]

(2.2)
≥ fn,c−c̃(x, y)gc̃(y, y;Zd

n).

Assuming c − c̃ > 1, by mixing considerations as well as a union bound (see
Proposition 3.1) we have that

fn,c−c̃(x, y) = fn,c(x, y) − Px[(c − c̃)Tmix < τ(y) ≤ cTmix]
(2.3)

= fn,c(x, y) + O(c̃n2−d).

Since c̃ > 0, we have

gc̃(y, y;Zd
n) = gc(y, y;Zd

n) − ∑
z

pc̃Tmix(y, z;Zd
n)gc−c̃(z, y;Zd

n)

(2.4)
= gc(y, y;Zd

n) + O
(
(c − c̃)c̃−d/2n2−d)

,
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where we used in the last line that pt(z, y;Zd
n) ≤ c1t

−d/2 for some c1 > 0
(see [12], Theorem 1.2.1) as well as the observation

∑
z gc−c̃(z, y;Zd

n) = (c −
c̃)Tmix. Combining (2.2), (2.3) and (2.4), we have thus proved the lower bound

gc(x, y;Zd
n) ≥ fn,c(x, y)gc(y, y;Zd

n) + O
(
(c − c̃)c̃−d/2(

c̃ + gc(x, y;Zd
n)

)
n2−d)

.

Here, we used the bound fn,c(x, y) ≤ gc(x, y;Zd
n). Theorem 1.5.4 of [12] implies

gc(x, y;Zd
n) = �(c|x − y|2−d) (it is actually stated for walks on Zd which are not

lazy, but the generalization is straightforward). Consequently,

∑
y

g2
c (x, y;Zd

n) =
⎧⎨⎩

�(n), if d = 3,
�(logn), if d = 4, and
�(1), if d ≥ 5.

Hence, ∑
x,y

(
fn,c(x, y)gc(y, y;Zd

n) − gc(x, y;Zd
n)

)2

= ∑
x,y

[
O

(
(c − c̃)c̃−d/2(

c̃ + g(x, y;Zd
n)

)
n2−d)]2

= O
(
(c − c̃)2c̃−d(

c̃2 + o(1)
)
n4)

.

Dividing both sides by hd(n), taking a limsup as n → ∞, then as c̃ → 0 yields

lim
n→∞

1

hd(n)

∑
x,y

(
fn,c(x, y)gc(y, y;Zd

n) − gc(x, y;Zd
n)

)2 = 0.

By (2.4) we know that |gc(y, y;Zd
n) − g1(y, y;Zd

n)| = o(1), and, by local tran-
sience, it is not hard to see that limn→∞ g1(y, y;Zd

n) = G(0;Zd). �

PROOF OF PROPOSITION 2.1. Lemma 2.2 implies that we may replace
fn,c(x, y) by G−1(0;Zd)gc(x, y;Zd

n) in (2.1). Letting gn,c = cTmixn
−d , we can

likewise replace f n,c in (2.1) by G−1(0;Zd)gn,c. Consequently, to prove the
proposition, it suffices to prove the existence of the limit

lim
n→∞

1

hd(n)

∑
x,y

(
gc(x, y;Zd

n) − gn,c

)2
.(2.5)

We will divide the proof into the cases d ≥ 4 and d = 3.
Case 1: d ≥ 4. As gn,c = O(cn2−d), we have

1

hd(n)

∑
x,y

(
g2

n,c + 2gn,cgc(x, y;Zd
n)

) = o(1).

Thus it suffices to show in this case that

lim
n→∞

1

h̃d(n)

∑
y

g2
c (0, y;Zd

n)
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exists, where h̃4(n) = logn and h̃d(n) = 1 for d ≥ 5. This will be a consequence
of two observations. First, note that∑

|y|≥�

g2
c (0, y;Zd

n) = ∑
|y|≥�

O(c|y|4−2d) =
n∑

m=�

O(cm4−2d · md−1)

=
{

O(c�−1), if d ≥ 5,
O

(
c log(n/�)

)
, if d = 4.

Thus it suffices to show that, for � = �(n, ε) = n1−ε with ε > 0, the limit

lim
ε→0

lim
n→∞

1

h̃d(n)

∑
|y|≤�

g2
c (0, y;Zd

n)

exists (we can even restrict to finite � if d ≥ 5). Our second observation is that

gc(0, y;Zd
n) − G(y;Zd) = O(cn2−d) for |y| ≤ �.

This follows since we can couple the walks on Zd
n and Zd starting at 0 such that

they are the same until the first time τ0 they have reached distance n/2 from 0, then
move independently thereafter. The expected number of visits each walk makes to
y after time τ0, where the former is stopped at time cTmix, is easily seen to be
O(cn2−d). Thus, ∑

|y|≤�

(
gc(0, y;Zd

n) − G(y;Zd)
)2 = o(1).

Therefore if d ≥ 5, we have

lim
n→∞

1

hd(n)

∑
x,y

g2
c (x, y;Zd

n) = ∑
y∈Zd

G2(y;Zd).

For d = 4,

lim
n→∞

1

h4(n)

∑
x,y

g2
c (x, y;Z4

n) = lim
n→∞

1

logn

∑
y∈Z4,|y|≤n

G2(y;Z4).

Note that the limit on the right-hand side exists since by Theorem 1.5.4 of [12]
(generalized to lazy walks)

G(y;Zd) = ad |y|2−d + o(|y|−α),

if α ∈ (0, d) is fixed.
Case 2: d = 3. The thrust of the previous argument was that random walk on

Zd
n for d ≥ 4 is sufficiently transient so that pairs of points of distance �(n1−ε)

make a negligible contribution to the variance, which in turn allowed us to make
an accurate comparison between the Green’s function for random walk on Zd

n with
that on Zd . The situation for d = 3 is more delicate since the opposite is true: pairs
of distance O(n1−ε) do not measurably affect the variance.
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Theorem 1.2.1 of [12] (extended to the case of lazy random walk, see also
Corollary 22.3 of [1]) implies the existence of constants β3, γ3 > 0 such that with

pt(x, y;Z3) = β3
t3/2 exp(−γ3|x−y|2

t
), we have the estimate

|pt(x, y;Z3) − pt(x, y;Z3)| = |x − y|−2O(t−3/2).

Hence letting pt(x, y;Z3
n) = ∑

k∈Z3 pt(x, y + kn;Z3), one can easily show that
with


(x,y) ≡
cTmix∑
t=0

|pt(x, y;Z3
n) − pt(x, y;Z3

n)|

we have that
1

h3(n)

∑
x,y


2(x, y) = o(1).(2.6)

By differentiating p in t , we see that for 1 ≤ t ≤ s ≤ t + 1, we have

|ps(0, y;Z3
n) − pt(0, y;Z3

n)|

= O

(
pt(0, y;Z3

n)

t
+ ∑

k

|y + kn|2
t2 pt(0, y + kn;Z3

n)

)
.

We are now going to prove that∑
y∈Z3

n

(∫ cTmix

1
pt(0, y;Z3

n) − p�t�(0, y;Z3
n) dt

)2

= O(1).(2.7)

It suffices to bound

A ≡ ∑
y∈Z3

n

(∫ cTmix

1

1

t
pt (0, y;Z3

n) dt

)2

,

B ≡ ∑
y∈Z3

n

(∑
k

∫ cTmix

1

|y + kn|2
t2 pt(0, y + kn;Z3

n) dt

)2

.

For A, we apply Cauchy–Schwarz to the integral and invoke the integrability of
1/t2 over [1,∞) to arrive at

A ≤ C2
∑

y∈Z3
n

∫ cTmix

1
[pt(0, y;Z3

n)]2 dt = O(1).

For B , we insert the formula for p into the integral, make the substitution u =
|y + kn|2/t and then compute to see

B ≤ C3
∑

y∈Z3
n

1

|y|6 + 1
= O(1).
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This proves (2.7). Recall that T3 is the three-dimensional continuum torus. For
x, y ∈ T3, let

gc(x, y;T3) =
∫ cTmix

0
pt(nx,ny;Z3

n) dt = 1

n

∫ cT

0
pu(x, y;T3) du,(2.8)

where T = Tmix/n2. By (2.6), (2.7), we have that

1

h3(n)

∑
x,y∈Z3

n

(
gc(x, y;Z3

n) − gc(x/n, y/n;T3)
)2 = o(1).

Therefore we may replace gc(x, y;Z3
n) in (2.5) with gc(x/n, y/n;T3). Note that

gc(·, ·;T3) is the product of n−1, and the Green’s function for Bt/2, where Bt is a
Brownian motion on T3; roughly, the reason that the Brownian motion moves at
1/2-speed is that a lazy random walk moves at 1/2 the speed of a simple random
walk. It is left to bound

n2
∫

T3

∫
T3

(
gc(�nx�/n, �ny�/n;T3) − gc(x, y;T3)

)2
dx dy;

the reason for the pre-factor n2 is that we need to multiply by (n3)2 in order to
make the double integral comparable to the double summation, and we also di-
vide by the normalization h3(n). From (2.8), we see that gc(x, y;T3) is O(n−1)-
Lipschitz away from the diagonal Dε = {(x, y) ∈ T3 × T3 : |x − y| ≤ ε}. Thus
since |(x, y) − (�nx�/n, �ny�/n)| = O(n−1), the integrand is O(n−4) on Dc

ε ,
hence the integral over Dc

ε is O(n−2). Since both ngc(�nx�/n, �ny�/n;T3) and
ngc(x, y;T3) are uniformly L2-integrable over T3 × T3, it follows that the con-
tribution coming from Dε can be made uniformly small in n by first fixing ε > 0
small enough. �

We now deduce Theorem 1.1 from Theorem 1.3.

PROOF OF THEOREM 1.1. Suppose Gn = Zd
n for d ≥ 3. Recall that

Tmix(Zd
n) = �(n2)

(see [13]) and there exists cd > 0 so that g(x, y;Zd
n) ≤ cd |x − y|2−d ∧ 1 (see

[12]). Consequently, the hypotheses of Theorem 1.3 are obviously satisfied, ex-
cept for possibly (3). This is easy to see if x is sufficiently far from y, z so that
g(x, y;Zd

n) + g(x, z;Zd
n) ≤ 1/2. Now suppose that |x − y| ∧ |x − z| = r is small

enough so that g(x, y;Zd
n) + g(x, z;Zd

n) > 1/2. We have the trivial bound that X

starting at x will get to distance r +s without hitting y, z in s steps with probability
at least (4d)−s since in each step, X has probability at least (4d)−1 of increasing
its distance from y, z by 1. If s is large enough, then after such steps we will have
g(Xs, y;Zd

n) + g(Xs, z;Zd
n) ≤ 1/2, which gives the desired result.
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Proposition 2.1 implies that Fn,c ∼ 1
4αd,chd(n) as n → ∞. This is enough to

dominate T 2
mix(Z

d
n) = �(n4) except if d = 3. We shall now argue that, neverthe-

less, Fn,c is still the dominant term in this case. Note that

f n,c ≤ 1

n3

∑
y

gc(x, y;Z3
n) ≤ A0cn

−1

for some A0 > 0 and c ≥ 2 fixed. Also, the transience of random walk on Z3
n

implies that there exists A1 > 0 so that fn,c(x, y) ≥ A1|x − y|−1 ∧ 1. Thus for

|x − y| ≤
(

A1

2A0c

)
n ≡ A2n

we have that fn,c(x, y) − f n,c ≥ A1
2 |x − y|−1 ∧ 1. Consequently,

Fn,c ≥ A2
1

4

∑
|x−y|≤A2n

|x − y|−2 ∧ 1 = c−1�(n4).

A matching upper bound, up to a multiplicative factor, is also not difficult to see.
Our lower bound for Fn,c depends on c by a multiplicative factor of 1/c while

the second term in (1.7) decays exponentially in c. Thus by taking c ≥ 2 large
enough, we see that Fn,c is still dominant for d = 3. �

We now turn to the proof of Corollary 1.4.

PROOF OF COROLLARY 1.4 FOR THE HYPERCUBE. For Zn
2, it is easier to

work with the continuous time random walk (CTRW) since the types of estimates
we require easily translate over to the corresponding lazy walk. The transition
kernel of the CTRW is

pt(x, y;Zn
2) = 1

2n
(1 + e−2t/n)n−|x−y|(1 − e−2t/n)|x−y|,

where |x − y| is the number of coordinates in which x and y differ. The spectral
gap is 1/n (see Example 12.15 of [13]) which implies �(n) = Tmix(Zn

2) = O(n2)

(see Theorem 12.3 of [13]). Consequently, the first hypothesis of Theorem 1.3
holds. If |x − y| = r , then it is easy to see there exists Cε,ρε > 0 so that

pt(x, y;Zn
2) ≤

⎧⎨⎩
(
Cε

t

n

)r

exp
(
− t

Cεn
(n − r)

)
, if t ≤ εn,

e−ρεn, if t > εn,

provided ε > 0 is sufficiently small. Thus it is not difficult to see that g(x, y;Zn
2) ≤

C′
εn

−r . Trivially, ∣∣{y ∈ Zn
2 : |x − y| = r}∣∣ =

(
n

r

)
≤ nr .
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Thus for x0 fixed we have∑
y �=x0

g2(x0, y;Zn
2) ≤ O

(
n∑

r=1

n−2r · nr

)
= O

(
1

n

)
,

so the second hypothesis of Theorem 1.3 is satisfied. The final hypothesis is ob-
viously also satisfied. Now, a union bound implies that f n,c = O(2−nTmix(Zn

2)),
which implies (fn,c(x, x) − f n,c)

2 = 1 + o(1). On the other hand,

∑
|x−y|≥1

f 2
n,c(x, y) = O

(
2n

n∑
r=1

n−2r · nr

)
= o(2n).

Putting everything together, Theorem 1.3 implies

Var(|Ai |) = 1
4

(
1 + o(1)

)
2n. �

PROOF OF COROLLARY 1.4 FOR THE CALEY GRAPH OF Sn . Let Gn be the
Caley graph of Sn generated by transpositions. By work of Diaconis and Shasha-
hani [7], the total variation mixing time of Sn is �(n logn), which by Theo-
rem 12.3 of [13] implies Tmix(Gn) = O(n(logn)(logn!)) = O(n2(logn)2). We are
now going to give a crude estimate of pt(σ, τ ;Sn). By applying an automorphism,
we may assume without loss of generality that σ = id. Suppose that d(id, τ ) = r

and that τ1, . . . , τr are transpositions such that τr · · · τ1 = τ . Then τ1, . . . , τr move
at most 2r of the n elements of {1, . . . , n}, say, k1, . . . , k2r . Suppose k′

1, . . . , k
′
2r are

distinct from k1, . . . , k2r and α ∈ Sn is such that α(ki) = k′
i for 1 ≤ i ≤ r . Then the

automorphism of Gn induced by conjugation by α satisfies ατα−1 �= τ . Therefore
the size of the set of elements τ ′ in Sn such that there exists a graph automorphism
ϕ of Gn satisfying ϕ(τ) = τ ′ and ϕ(id) = id is at least

( n
2r

) ≥ 2−2rn2r ((2r)!)−1,
assuming n ≥ 4r . Therefore,

pt(e, τ ;Gn) ≤ 22r (2r)!
n2r

and g(e, τ ;Gn) ≤ C(22r (2r)!)(logn)2n2−2r .(2.9)

This bound is good enough for r ≥ 2, but does not quite suffice when r = 1. This
case is not difficult to handle, however, since it is easy to see that the random walk
has distance 3 from e with probability 1−O(1/n) after its first three moves, hence
with distance at least 2 from any permutation with distance 1 from e. Combining
this with (2.9) gives a bound on g(e, τ ;Gn) for all τ ∈ Sn. From this is it clear
that (Gn) satisfies the hypotheses of Theorem 1.3 and, arguing as in the case of the
hypercube, that

Var(|Ai |) = 1
4

(
1 + o(1)

)
n!. �

3. Preliminaries.

3.1. Notation. Suppose that G = (V ,E) is a graph, and let X1,X2 be indepen-
dent random walks on G. Recall that a ∧ b = min(a, b) for a, b ∈ R. For x, y ∈ V ,
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let

τi(x, y) = τi(x) ∧ τi(y) and τ(x, y) = τ1(x, y) ∧ τ2(x, y),

where τi(x) = min{t ≥ 0 :Xi(t) = x}. Let

H(x,y) = {τ1(x) < τ1(y) ∧ τ2(x, y)}.
This is the event that x is hit by X1 before X2 as well as before both X1,X2 hit y.
Let

π̃(z;x, y) = P[X2(τ1(x, y)) = z|H(x,y)],
and let π be the uniform measure on V . Throughout, Pz[·] denotes the law of
random walk initialized at z (and the initial distribution is stationary whenever z is
omitted). The proofs in this article will involve probabilities of complicated events.
To keep the formulas succinct, it will be helpful for us to introduce the following
notation: let

Gij (x) = {τi(x) < τj (x)},
Gij (x, y) = {τi(x, y) < τj (x, y)}

and

Gi(x, y) = {τi(x) < τi(y)}.
Throughout we will fix a sequence of graphs (Gn) satisfying Assumption 1.2. We
let

�n = c0Tmix(Gn) log|Vn|, ϒn = Tmix(Gn)

|Vn| ,


n = ϒn log|Vn|, Sn = ∑
y �=x0

g2(x0, y;Gn),

where c0 will be determined later, and x0 is fixed. Note that Sn does not depend
on x0 by vertex transitivity. We will typically write Tmix for Tmix(Gn), pt(·, ·) for
pt(·, ·;Gn) and g(·, ·) for g(·, ·;Gn) in order to keep the notation light and, in
general, suppress dependencies on n.

3.2. Elementary estimates. Recall that the total variation distance of probabil-
ity measures μ,ν on V is

‖μ − ν‖TV = max
A⊆V

|μ(A) − ν(A)| = 1

2

∑
x∈V

|μ({x}) − ν({x})|.

The following provides a bound on the rate of decay of the distance of pt(x, ·) to
stationarity.
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PROPOSITION 3.1. For every s, t ∈ N,

max
x

‖pt+s(x, ·) − π‖TV ≤ 4 max
x,y

‖pt(x, ·) − π‖TV‖ps(y, ·) − π‖TV,(3.1)

max
x,y

∣∣∣∣pt+s(x, y)

π(y)
− 1

∣∣∣∣ ≤ max
x,y

ps(x, y)

π(y)
max

x
‖pt(x, ·) − π‖TV.(3.2)

PROOF. The first part is a standard result; see, for example, Lemmas 4.11
and 4.12 of [13]. The second part is a consequence of the semigroup property:

1

π(z)
pt+s(x, z) = 1

π(z)

∑
y

pt (x, y)ps(y, z)

= 1

π(z)

∑
y

[pt(x, y) − π(y) + π(y)]ps(y, z)

≤
(

max
y,z

ps(y, z)

π(z)

)
‖pt(x, ·) − π‖TV + 1. �

Trivially,

max
x

‖pt(x, ·) − π‖TV ≤ max
x,y

∣∣∣∣pt(x, y)

π(y)
− 1

∣∣∣∣.
Consequently, (3.1) and (3.2) give

max
x,y

∣∣∣∣pt(x, y)

π(y)
− 1

∣∣∣∣ ≤ γ e−γ α for t ≥ αTmix and α > 0,(3.3)

where γ > 0 is a universal constant. We will often use (3.3) without reference.
Throughout the article, it will be important for us to have precise estimates of

the Radon–Nikodym derivative of the law of random walk conditioned on various
events with respect to the uniform measure. In the following, we are interested
in the case of a random walk conditioned not to have hit a particular point. Let
Tk = kTmix.

LEMMA 3.2. There exists γ,p0 > 0 so that for all k ≥ 1 satisfying kϒn ≤ p0

and c ≥ 2, we have

Px[X(cTk) = z|τ(y) > cTk] = [
1 + O

(
e−γ ck + ckϒn + g(y, z)

)]
π(z).

Note that by part (1) of Assumption 1.2, this lemma applies if

k = O((log|Vn|)2).
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PROOF OF LEMMA 3.2. Using that Px[X(cTk) = z] = (1 + O(e−γ ck))π(z),
an application of Bayes’ formula yields

Px[X(cTk) = z|τ(y) > cTk]
= Px[τ(y) > cTk|X(cTk) = z]

Px[τ(y) > cTk]
(
1 + O(e−γ ck)

)
π(z).

The idea of the rest of the proof is to show it is unlikely that X hits y close to time
cTk , in which case we can use a mixing argument to show that conditioning on
X(cTk) = z has little effect. For 1 ≤ c̃ ≤ c̃ + 1 ≤ c, we have

Px[τ(y) > cTk|X(cTk) = z]
= Px[τ(y) > c̃Tk|X(cTk) = z] − Px[cTk ≥ τ(y) > c̃Tk|X(cTk) = z].

By a time-reversal, we have that

Px[cTk ≥ τ(y) > c̃Tk|X(cTk) = z] ≤ Pz[τ(y) < (c − c̃)Tk|X(cTk) = x].
By mixing considerations and a union bound, we have

Pz[τ(y) ≤ (c − c̃)Tk|X(cTk) = x] = O
(
g(y, z) + (c − c̃)kϒn

)
.

Applying Bayes’ formula, observe

Px[τ(y) > c̃Tk|X(cTk) = z] = Px[X(cTk) = z|τ(y) > c̃Tk]
Px[X(cTk) = z] Px[τ(y) > c̃Tk]

= (
1 + O

(
e−kγ (c−c̃)))Px[τ(y) > c̃Tk].

Similarly,

Px[τ(y) > cTk] = Px[τ(y) > c̃Tk] − Px[cTk ≥ τ(y) > c̃Tk].
By a union bound and mixing considerations, the second term on the right-hand
side is of order O((c − c̃)kϒn). We now take c̃ = c/2 and γ = γ /2. By part (3) of
Assumption 1.2, we have that

Px[τ(y) > cTk] ≥ 1 − ρ0 − O(ckϒn)

uniformly in n. In particular, there exists p0 > 0 so that if ckϒn ≤ p0, then
Px[τ(y) > cTk] is uniformly positive in n. Putting everything together, for such k,
we thus have

Px[X(cTk) = z|τ(y) > cTk]

= (1 + O(e−γ ck))Px[τ(y) > c̃Tk] + O(g(y, z) + ckϒn)

Px[τ(y) > c̃Tk] + O(ckϒn)

× (
1 + O(e−γ ck)

)
π(z)

= (
1 + O

(
e−γ ck + g(y, z) + ckϒn

))
π(z)
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as desired. �

In the following lemma, we will show that the difference in the probabil-
ity that a random walk hits points y, z when started from x before time �n =
c0(log|Vn|)Tmix is essentially determined by the corresponding difference except
up to time cTmix. The reason for the cancellation is that the previous lemma implies
that conditional on not hitting a given point up to time cTmix, the walk is well mixed
and has long forgotten its starting point. Recall that fc(x, y) = Px[τ(y) ≤ cTmix]
(we have suppressed n).

LEMMA 3.3. There exists γ > 0 such that for all c ≥ 2,

Px[τ(y) ≤ �n] − Px[τ(z) ≤ �n]
= fc(x, y) − fc(x, z) + O

(
e−γ cϒn + 
n[g(x, y) + g(x, z)]).

PROOF. We observe

Px[τ(y) ≤ �n]
= fc(x, y) + ∑

k

Px[cTk < τ(y) ≤ cTk+1|τ(y) > cTk](1 − Px[τ(y) ≤ cTk]),
where, here and throughout the rest of this proof, the summation over k is from 1
to c0

c
log|Vn|. We note that

Px[cTk < τ(y) ≤ cTk+1|τ(y) > cTk]
= ∑

w

Px[cTk < τ(y) ≤ cTk+1|τ(y) > cTk,X(cTk) = w]

× Px[X(cTk) = w|τ(y) > cTk]
= ∑

w

Pw[τ(y) ≤ cT1]Px[X(cTk) = w|τ(y) > cTk].

As the previous lemma is applicable for such choices of k and using Pw[τ(y) ≤
cT1] ≤ O(g(y,w) + cϒn), we can rewrite the expression above as

Pπ [τ(y) ≤ cT1] + O

( ∑
w �=y

g(y,w)
(
e−γ ck + ckϒn + g(y,w)

)
π(w)

)
.

Performing the summation over w, we see that the latter term is of order

O(ϒne
−γ ck + ckϒ2

n + Sn|Vn|−1).(3.4)

Recall from part (2) of Assumption 1.2 that Sn = o(Tmix/log|Vn|), hence
(log|Vn|)Sn|Vn|−1 = o(ϒn). Consequently, summing (3.4) over k from 1 to c0

c
×

log|Vn| gives an error of

O(ϒne
−γ c + 
2

n).
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By part (1) of Assumption 1.2 it is clear that 
2
n = o(ϒn), hence the former is of

order O(ϒne
−γ c). This leaves∑
k

Px[cTk < τ(y) ≤ cTk+1|τ(y) > cTk]Px[τ(y) ≤ cTk]

= O

(∑
k

∑
z

Pz[τ(y) ≤ cT1]π(z)
(
g(x, y) + ckϒn

))
.

Here, we used the previous lemma to get the crude estimate Px[X(cTk) = z|τ(y) >

cTk] ≤ Cπ(z) for some C > 0. Summing everything up gives us an error of order
O(
ng(x, y) + 
2

n). We also have another contribution of O(
ng(x, z) + 
2
n)

coming from the corresponding estimate of Px[τ(z) ≤ �n]. Therefore our total
error is O(ϒne

−γ c + 
n[g(x, y) + g(x, z)]), which proves the lemma. �

4. The Radon–Nikodym derivative. Recall

π̃(z;x, y) = P[X2(τ1(x, y)) = z|H(x,y)].
The purpose of this section is to prove the following estimate of the Radon–
Nikodym derivative of π̃(z;x, y) with respect to π(z). Recall again fc(x, y) =
Px[τ(y) ≤ cTmix] and f c = ∑

y fc(x, y)π(y) (we are omitting the dependence
on n).

THEOREM 4.1. There exists a constant γ > 0 so that for all c ≥ 2 and x �= y,
we have

π̃(z;x, y)

π(z)
= 1 + (

1 + O(
n)
)(

2f c − fc(x, z) − fc(y, z)
)

+ O(e−γ cϒn) + O
([g(x, z) + g(y, z) + 
n][g(x, y) + 
n]).

In particular,

π̃(z;x, y)

π(z)
= 1 + O

(
g(x, y) + g(y, z) + g(x, z)

)
.(4.1)

The setup for Theorem 4.1 is illustrated in Figure 1. Let Y2 = X2(τ1(x, y)). The
idea of the proof is to observe that

π̃(z;x, y) = P[Y2 = z|H(x,y)] = P[H(x,y)|Y2 = z]π(z)

P[H(x,y)] ,

where we used P[Y2 = z] = π(z) as X1,X2 are independent and the initial distri-
bution of X2 is stationary, then estimate the effect of conditioning on {Y2 = z} on
the probability of H(x,y). We will divide the proof into three lemmas. The first
step in the proof is to express π̃ (·;x, y)/π in terms of the event

A(x, y) = {τ2(x, y) > τ1(x, y) − �n,G1(x, y)} \ H(x,y)

= {τ1(x, y) ≥ τ2(x, y) > τ1(x, y) − �n,G1(x, y)}.
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FIG. 1. In Theorem 4.1, we give a precise estimate of the Radon–Nikodym derivative of the law
of Y2 = X2(τ1(x, y)) with respect to the uniform measure on Vn conditional on the event that
H(x,y) = {τ1(x) < τ1(y) ∧ τ2(x, y)}, that is, that the first point in {x, y} hit by X1,X2 is x by X1.
The open circles indicate the starting points of X1,X2 and the shaded circle is Y2.

The event A(x, y) is illustrated in Figure 2. Note that it is a slight abuse of notation
to insert G1(x, y) into the braces defining A(x, y) since G1(x, y) is itself an event.
We will do this a number of times in the following lemma in order to lighten the
notation.

LEMMA 4.2. Uniformly in x, y, z, n,

π̃(z;x, y)

π(z)
= 1 + P[A(x, y)] − P[A(x, y)|Y2 = z]

P[H(x,y)] + O(|Vn|−100).(4.2)

PROOF. Letting R(x, y) = {τ2(x, y) > τ1(x, y) − �n,G1(x, y)}, observe

P[H(x,y)|Y2 = z] = P[R(x, y)|Y2 = z] − P[A(x, y)|Y2 = z].
We will now manipulate the first term on the right-hand side. Let R̃(x, y) =
G1(x, y) \ R(x, y). We have

P[R(x, y)|Y2 = z] = P[G1(x, y)|Y2 = z] − P[R̃(x, y)|Y2 = z](4.3)

FIG. 2. Illustration of the event A(x,y). The solid lines are used to indicates the parts of X1,X2
up to the time τ2(x, y), while the dashed line is used for the part of X1 after τ2(x, y). We have not
indicated the part of X2 after τ2(x, y). Note that we have X2 hitting y first, but A(x,y) allows for
X2 to hit x first as well. On the other hand, A(x,y) requires that X1 does in fact hit x before y.
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and, since Y2 ∼ π , Bayes’ rule implies

P[R̃(x, y)|Y2 = z] = 1

π(z)
P[Y2 = z|R̃(x, y)]P[R̃(x, y)].

Since the conditional probability on the right-hand side involves conditioning on
the behavior of X2 before τ1(x, y) − �n; mixing considerations imply that this is
equal to

[1 + O(|Vn|−γ c0)]P[R̃(x, y)] = P[R̃(x, y)] + O(|Vn|−γ c0).(4.4)

As P[G1(x, y)|Y2 = z] = P[G1(x, y)], combining (4.3) with (4.4) we thus have

P[H(x,y)|Y2 = z] = P[R(x, y)] − P[A(x, y)|Y2 = z] + O(|Vn|−γ c0)

= P[H(x,y)] + P[A(x, y)] − P[A(x, y)|Y2 = z]
+ O(|Vn|−γ c0).

Assume that γ c0 > 100. Putting everything together, we see that

π̃(z;x, y)

π(z)
= P[H(x,y)] + P[A(x, y)] − P[A(x, y)|Y2 = z]

P[H(x,y)] + O(|Vn|−100),

uniformly in x, y, z, n. �

Note that if Vn = Zd
n for d ≥ 3, then P[G1(x, y),G12(x, y)] = P[H(x,y)] does

not change when x is swapped with y nor when 1 is swapped with 2 and hence is
equal to 1

4 up to negligible error (it is not exactly 1
4 since it could be that X1 hits

x at the same time X2 hits either x or y, though this is a rare event). This holds
more generally if for every x, y ∈ Vn distinct there exists an automorphism ϕ of
Gn such that ϕ(x) = y and ϕ(y) = x. The weaker hypothesis of vertex transitivity
implies that we can always find an automorphism ϕ of Gn such that ϕ(x) = y but
not necessarily so that ϕ(y) = x as well. Nevertheless, it is still true in this case
that P[H(x,y)] ≈ 1

4 .

LEMMA 4.3. If x �= y, we have that

P[H(x,y)] = 1

4
+ o

(
ϒn

log|Vn|
)

+ O

(
1

|Vn|
)
.

PROOF. Let Ã(x, y) = {τ1(x, y) ≥ τ2(x, y) > τ1(x, y)−�n} and μ(z;x, y) =
P[Y2 = z|τ1(x, y) ≤ τ2(x, y)]. Using exactly the same proof as the previous
lemma, we have

μ(z;x, y)

π(z)
= 1 + O

(
P[Ã(x, y)] + P[Ã(x, y)|Y2 = z] + |Vn|−100)

.
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Using a time-reversal in the first step and a union bound in the second, we have
that

P[Ã(x, y)|Y2 = z] ≤ Pz[τ2(x, y) ≤ �n] = O
(

n + g(x, z) + g(y, z)

)
(and similarly for P[Ã(x, y)]). Consequently,∑

z

g(x, z)μ(z;x, y) = ϒn + 1

|Vn|
∑
z

g(x, z)O
(

n + g(x, z) + g(y, z)

)
= ϒn + 1

|Vn|
∑
z

O
(
g(x, z)
n + g2(x, z) + g2(y, z)

)
= ϒn + 1

|Vn|O(1 + Sn + 
nTmix).

By parts (1) and (2) of Assumption 1.2, we have that Sn + 
nTmix = o(Tmix/

(log|Vn|)). Consequently, the above is equal to

ϒn + o

(
ϒn

log|Vn|
)
.(4.5)

Let px = P[G1(x, y),G12(x, y)] and py = P[G1(y, x),G12(x, y)]. Note that

px + py = P[G12(x, y)] = 1

2
+ O

(
1

|Vn|
)

(4.6)

since P[τ1(z) = τ2(w)] ≤ P[X2(τ1(z)) = w] = |Vn|−1 for any z,w ∈ Vn. Define
stopping times as follows. Let

τ1 = min
{
t ≥ 0 :X1(t) ∈ {x, y} or X2(t) ∈ {x, y}} = τ(x, y).

For j ≥ 1, inductively set

τj+1 = min
{
t ≥ τj + Tmix + 1 :X1(t) ∈ {x, y} or X2(t) ∈ {x, y}}.

Let Tj,z = ∑τj+Tmix
t=τj

1{X1(t)=z}, and, for E ⊆ Vn, set Aij (E) = {Xi(τj ) ∈ E}. Note
that the average amount of time spent at x by X1 through time τk + Tmix is given
by the expression

1

τk + Tmix

k∑
j=1

(
1A1j (x)1Ac

2j (x,y)Tj,x + 1A1j (y)1Ac
2j (x,y)Tj,x + 1A2j (x,y)Tj,x

)
.

It is not difficult to see that the above quantity converges to π(x) as k → ∞. We
can also define a similar quantity but replacing Tj,x with Tj,y ; this will converge
to π(y) as k → ∞. Taking the ratio of these two quantities, we arrive at

1 = lim
k→∞

(1/k)
∑k

j=1(1A1j (x)1Ac
2j (x,y)Tj,x + 1A1j (y)1Ac

2j (x,y)Tj,x + 1A2j (x,y)Tj,x)

(1/k)
∑k

j=1(1A1j (x)1Ac
2j (x,y)Tj,y + 1A1j (y)1Ac

2j (x,y)Tj,y + 1A2j (x,y)Tj,y)
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since π(x) = π(y). It is not difficult to see that, almost surely,

lim
k→∞

1

k

k∑
j=1

1A1j (x)1Ac
2j (x,y)Tj,x = pxg(x, x),

lim
k→∞

1

k

k∑
j=1

1A1j (y)1Ac
2j (x,y)Tj,x = pyg(y, x),

lim
k→∞

1

k

k∑
j=1

1A2j (x,y)Tj,x = qxy

∑
z

g(z, x)μ(z;x, y),

where qxy = 1 − px − py . Analogous formulae hold for the terms in the denomi-
nator. Combining this with (4.5), we thus have

1 = pxg(x, x) + pyg(y, x) + qxy

∑
z g(z, x)μ(z;x, y)

pyg(y, y) + pxg(x, y) + qxy

∑
z g(z, y)μ(z;x, y)

= pxg(x, x) + pyg(y, x) + qxyϒn

pyg(y, y) + pxg(x, y) + qxyϒn

+ o

(
ϒn

log |Vn|
)
.

Rearranging and using that g(x, y) = g(y, x) and g(x, x) = g(y, y), this implies
that

px = py + o

(
ϒn

log|Vn|
)
.

Combining this with (4.6) proves the lemma. �

In order to complete the proof of Theorem 4.1 we need to estimate P[A(x, y)|
Y2 = z], which is the purpose of the following lemma. Though the proof will be
computationally intensive, the basic idea is fairly simple. The main goal is to elim-
inate the conditioning on Y2 = z. The first step is to perform a time reversal, which
converts the terminal condition to an initial condition at the cost of making the
event whose probability we are to compute a bit more complicated. The latter is
easily mitigated, however, since the event can be greatly simplified at the cost of
negligible error.

LEMMA 4.4. There exists γ > 0 so that for all c ≥ 2 we have

P[A(x, y)|Y2 = z] = (1
4 + O(
n)

)[fc(x, z) + fc(y, z)] + Ec(x, y)

+ O
(
e−γ cϒn + [g(x, z) + g(y, z) + 
n][g(x, y) + 
n]),

where Ec(x, y) is some constant which does not depend on z.

Note that the lemma implies

P[A(x, y)] − P[A(x, y)|Y2 = z] = O
(
g(x, y) + g(y, z) + g(x, z) + e−γ cϒn

)
.
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PROOF OF LEMMA 4.4. Let

B(x, y) = {
X2(t) /∈ {x, y} for all t ∈ (�n, τ1(x, y)],G1(x, y)

}
,

and let Pπ,z be the law of (X1,X2) where X1(0) ∼ π and X2(0) = z. We compute

P[A(x, y)|Y2 = z]
= 1

π(z)
P[A(x, y), Y2 = z]

= ∑
w

Pπ,w[τ1(x, y) ≥ τ2(x, y) > τ1(x, y) − �n,G1(x, y), Y2 = z].

By reversing the time of X2 (but not X1), we see that this is equal to∑
w

Pπ,z[τ2(x, y) ≤ �n ∧ τ1(x, y),B(x, y), Y2 = w]
(4.7)

= Pπ,z[τ2(x, y) ≤ �n ∧ τ1(x, y),B(x, y)].
We will now work toward approximating this event with a simpler event. We begin
by eliminating the “minimum” operation using the observation that it is unlikely
for both X1,X2 to hit {x, y} quickly. Indeed, as

Pπ,z[τ1(x, y) ≤ �n, τ2(x, y) ≤ �n] = O
([g(x, z) + g(y, z) + 
n]
n

)
,

we see by setting B̃(x, y) = B(x, y) ∩ {τ1(x, y) > �n} that (4.7) is equal to

Pπ,z[τ2(x, y) ≤ �n, B̃(x, y)] + O
([g(x, z) + g(y, z) + 
n]
n

)
.

We would now like to eliminate the dependence of the probability on z, the starting
point of X2. We accomplish this by considering two possible cases. Either X2 hits
x or y within some multiple of the mixing time or it does not. Conditional on the
latter, the walk will have mixed, so the relevant probability does not depend on z.
We implement this strategy as follows:

Pπ,z[τ2(x, y) ≤ �n, B̃(x, y)]
= Pπ,z[τ2(x, y) < cTmix, B̃(x, y)]

+ Pπ,z[τ2(x, y) ≤ �n, B̃(x, y)|τ2(x, y) ≥ cTmix]
× (

1 − Pz[τ2(x, y) < cTmix]).
Using the same proof as Lemma 3.2, except in the case that the random walk
is conditioned not to hit two points rather than just one, implies μ(w;x, y, z) =
Pz[X2(cTmix) = w|τ2(x, y) ≥ cTmix] ≤ Cπ(w) for some constant C > 0. Conse-
quently,

Pπ,z[τ2(x, y) ≤ �n, B̃(x, y)|τ2(x, y) ≥ cTmix]Pz[τ2(x, y) < cTmix]
≤ CPπ [τ2(x, y) ≤ �n]Pz[τ2(x, y) < cTmix]
= O

([g(x, z) + g(y, z) + cϒn]
n

)
.
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We are left with two terms to estimate

Pπ,z[τ2(x, y) < cTmix, B̃(x, y)],(4.8)

Pπ,z[τ2(x, y) ≤ �n, B̃(x, y)|τ2(x, y) ≥ cTmix].(4.9)

We will first deal with (4.8) which, using the independence of τ1(x, y) and
τ2(x, y), we can rewrite as

Pπ,z[B(x, y)|τ1(x, y) > �n, τ2(x, y) < cTmix]
× Pz[τ2(x, y) < cTmix]P[τ1(x, y) > �n].

Since B(x, y) depends on X2(t) only for t ≥ �n, from mixing considerations it is
easy to see that

Pπ,z[B(x, y)|τ1(x, y) > �n, τ2(x, y) < cTmix]
= P[B(x, y)|τ1(x, y) > �n] + O(|Vn|−100).

Consequently, (4.8) is equal to

Pz[τ2(x, y) < cTmix]P[B̃(x, y)] + O(|Vn|−100).

Note that

B̃(x, y) = (
H(x,y) ∩ {τ(x, y) > �n}) ∪ (

B̃(x, y) ∩ {τ(x, y) ≤ �n}).
Using P[τ(x, y) ≤ �n] = O(
n), the previous lemma thus implies

P[B̃(x, y)] = P[H(x,y)] + O(
n) = 1
4 + O(
n).

Observe

Pz[τ2(x) < cTmix, τ2(y) < cTmix]
= Pz[τ2(x) < τ2(y) < cTmix] + Pz[τ2(y) < τ2(x) < cTmix]
= O

([g(x, z) + g(y, z) + cϒn][g(x, y) + cϒn]).
Consequently,

Pz[τ2(x, y) < cTmix]
= fc(x, z) + fc(y, z) − Pz[τ2(x) < cTmix, τ2(y) < cTmix]
= fc(x, z) + fc(y, z) + O

([g(x, z) + g(y, z) + cϒn][g(x, y) + cϒn]).
Arguing as in the proof of Lemma 3.3, we can estimate (4.9) as follows:

Pπ,z[τ2(x, y) ≤ �n, B̃(x, y)|τ2(x, y) ≥ cTmix]
= P[τ2(x, y) ≤ �n, B̃(x, y)|τ2(x, y) ≥ cTmix]

+ O
(
e−γ cϒn + (

g(x, z) + g(y, z)
)

n

)
.
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Taking Ec(x, y) = P[τ2(x, y) ≤ �n, B̃(x, y)|τ2(x, y) ≥ cTmix] and noting that
cϒn = O(
n) finishes the proof of the lemma. �

By combining the three lemmas, we can now complete the proof of Theo-
rem 4.1.

PROOF OF THEOREM 4.1. Recalling that P[Y2 = z] = π(z), observe

P[A(x, y)] = ∑
z

P[A(x, y)|Y2 = z]P[Y2 = z] = ∑
z

P[A(x, y)|Y2 = z]π(z).

Hence by Lemma 4.4, we have

P[A(x, y)] = (1
4 + O(
n)

)
(2f c) + Ec(x, y) + O

(
e−γ cϒn + 
n[g(x, y) + 
n]).

Here, we used that∑
z

(
g(x, z) + g(y, z)

)
π(z) = O(ϒn) = O(
n).

In particular,

P[A(x, y)] − P[A(x, y)|Y2 = z]
= (1

4 + O(
n)
)[2f c − fc(x, z) − fc(y, z)]

+ O
(
e−γ cϒn + [g(x, z) + g(y, z) + 
n][g(x, y) + 
n]).

Inserting this expression along with the estimate of P[H(x,y)] from Lemma 4.3
into into the equation for π̃ (z;x, y)/π(z) from Lemma 4.2 gives the theorem. �

5. The variance. We will complete the proof of Theorem 1.3 in this section.
The general theme is to eliminate asymmetry wherever possible. We first apply
this idea by considering

B = ∑
x

1G12(x) − ∑
x

1G21(x)

in place of |A1|. In addition to being symmetric in X1,X2, note that B also differs
from |A1| in that we have eliminated those sites whose mark is determined by
the flip of a fair coin. These, however, do not make a significant contribution to
the variance since it is a rare event that both walks hit a particular point for the
first time simultaneously. In particular, we will show in Lemma 5.1 that Var(B) ≈
4 Var(|A1|), up to negligible error. Consequently, to prove Theorem 1.3 it suffices
to show

Var(B) = ∑
x,y

(
fc(x, y) − f c

)2 + O(e−γ c(Tmix)
2).
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It is convenient to work with B as the expansion of its variance takes on the fol-
lowing form:

Var(B) = 2
∑
x,y

(
P[G12(x),G12(y)] − P[G12(x),G21(y)])

= 4
∑

x �=y �=z

(
Px,z[G12(y)] − Px,z[G21(y)])π̃(z;x, y)P[H(x,y)](5.1)

+ 2
∑
x

P[G12(x)].(5.2)

The reason the summation in (5.1) is over x �= y �= z is P[H(x,x)] = 0 and
π̃(z;x, y) = 0 if z ∈ {x, y}; the summation in (5.2) contains the diagonal terms.
We will now focus on (5.1) and handle (5.2) at the end of the section. Applying
Lemma 4.3, we can rewrite (5.1) as∑

x �=y �=z

(
Px,z[G12(y)] − Px,z[G21(y)])π̃(z;x, y)(5.3)

+ ∑
x �=y �=z

|Px,z[G12(y)] − Px,z[G21(y)]|
(5.4)

×
[
o

(
Tmix

|Vn|2 log|Vn|
)

+ O

(
1

|Vn|2
)]

.

We will show at the end of this section that (5.4) is negligible. Note that

Px,z[Gij (y)] = Px,z[τi(y) < τj (y) ≤ �n]
+ Px,z[τi(y) ≤ �n, τj (y) > �n] + Px,z[�n < τi(y) < τj (y)](5.5)

≡ A + B + C.

In Section 5.2, we break the sum in (5.3) into three different cases based on the
time decomposition in (5.5) and bound each in a given lemma. It will turn out that
the contributions to the variance coming from the terms corresponding to A and C

are negligible (Lemmas 5.3 and 5.4). The reason for the former is that it is unlikely
for both X1 and X2 to hit y quickly and the latter follows as, conditional on having
not hit y by time �n, both walks have long forgotten their initial conditions and
are well mixed. This leaves B , which, along with the diagonal, dominates the vari-
ance. Its asymptotics will be computed (Lemma 5.2) by reducing the estimate to a
computation involving π̃(z;x, y), whose Radon–Nikodym derivative with respect
to the uniform measure has already been estimated precisely in Theorem 4.1.

5.1. Symmetrization.

LEMMA 5.1. We have

Var(B) = 4 Var(|A1|) + O
(√

Tmix Var(|A1|) + Tmix
)

as n → ∞.
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PROOF. Let (ξn(x) :x ∈ Vn) be i.i.d. random variables independent of X1,X2

with P[ξn(x) = 1] = P[ξn(x) = 2] = 1
2 , and let A(x, i) = {τ1(x) = τ2(x), ξn(x) =

i}. By definition,

Var(B) = Var
(
|A1| − (|Vn| − |A1|) − ∑

x

(
1A(x,1) − 1A(x,2)

))

= Var
(

2|A1| +
∑
x

(
1A(x,2) − 1A(x,1)

))
.

Observe

E
(∑

x

1A(x,1)

)2

≤ ∑
x,y

P[τ1(x) = τ2(x), τ1(y) = τ2(y)].

By the strong Markov property and independence of X1,X2, the above is bounded
by twice ∑

x,y

Px,x[τ1(y) = τ2(y)]P[τ1(x) = τ2(x)]

≤ ∑
x,y

∑
t

(
Px[τ(y) = t])2P[X2(τ1(x)) = x].

Using that Px[τ(y) = t] ≤ Px[X(t) = y] and X2(τ1(x)) ∼ π when X(0) ∼ π , we
have the further bound

1

|Vn|
∑
x,y

(4Tmix∑
t=0

Px[X(t) = y] + ∑
t>4Tmix

(
Px[τ(y) = t])2

)
.(5.6)

Summing the first term over x, y, t plainly yields 4Tmix. For the second term, note
there exists C > 0 so that for t > 4Tmix, we have

Px[τ(y) = t] ≤ Px[X(t) = y] ≤ C

|Vn|
hence ∑

t>4Tmix

(
Px[τ(y) = t])2 ≤ C

|Vn|
∑

t>4Tmix

Px[τ(y) = t] ≤ C

|Vn| .

Therefore the second term in the summation in (5.6) is O(1). The lemma now
follows from Cauchy–Schwarz. �

5.2. Time decomposition. We begin by estimating the part of (5.3) correspond-
ing to “B” from (5.5).
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LEMMA 5.2. We have∑
x �=y �=z

(
Px,z[τ1(y) ≤ �n, τ2(y) > �n] − Px,z[τ2(y) ≤ �n, τ1(y) > �n])π̃(z;x, y)

= (
1 + O(
n)

) ∑
x �=y

(
fc(x, y) − f c

)2 + O(e−γ c(Tmix)
2).

PROOF. Note that

Px,z[τ1(y) ≤ �n, τ2(y) > �n] − Px,z[τ2(y) ≤ �n, τ1(y) > �n]
= Px[τ1(y) ≤ �n] − Pz[τ2(y) ≤ �n].

Let δ1(x, y, z) = O(e−γ cϒn + (g(x, z) + g(y, z) + 
n)(g(x, y) + 
n)) be the er-
ror term from Theorem 4.1 and δ2(x, y, z) = O(e−γ cϒn + 
n(g(x, y) + g(x, z)))

be the error term from Lemma 3.3. Then we can rewrite the summation in the
statement of the lemma as∑

x �=y �=z

(
Px[τ1(y) ≤ �n] − Pz[τ2(y) ≤ �n])π̃(z;x, y)

= 1

|Vn|
∑

x �=y �=z

(
Px[τ1(y) ≤ �n] − Pz[τ2(y) ≤ �n])(1 + ε(x, y, z)

)
+ 1

|Vn|
∑

x �=y �=z

(|fc(x, y) − fc(y, z)| + δ2(x, y, z)
)
δ1(x, y, z)

≡ B1 + B2,

where, by Theorem 4.1,

ε(x, y, z) = (
1 + O(
n)

)(
2f c − fc(x, z) − fc(y, z)

)
.

Applying Assumption 1.2 repeatedly, it is tedious but not difficult to see that B2 =
O(e−γ cT 2

mix). By Lemma 3.3,

B1 = (
1 + O(
n)

) 1

|Vn|
∑

x �=y �=z

(
fc(x, y) − fc(y, z) + δ2(x, y, z)

)
× (

2f c − fc(x, z) − fc(y, z)
)
.

Multiplying through, using the symmetry of f in its arguments and canceling many
terms, this becomes(

1 + O(
n)
) ∑
x �=y

(
fc(x, y) − f c

)2 + O(e−γ c(Tmix)
2).

�

We will now show that the part of (5.3) coming from “A” of (5.5) is negligible.
Roughly, the reason for this is that it is unlikely for both walks to hit y quickly,



PAINTING A GRAPH WITH COMPETING RANDOM WALKS 665

though in order to get a sufficiently good bound we will need to take advantage
of some more cancellation. This will in turn require us to invoke (4.1), which is a
rough estimate of the Radon–Nikodym derivative of π̃ with respect to π .

LEMMA 5.3. Uniformly in n, we have∑
x �=y �=z

(
Px,z[τ1(y) < τ2(y) ≤ �n] − Px,z[τ2(y) < τ1(y) ≤ �n])π̃(z;x, y)

= o(T 2
mix).

PROOF. By (4.1), the summation in the statement of the lemma is equal to

1

|Vn|
∑

x �=y �=z

(
Px,z[τ1(y) < τ2(y) ≤ �n] − Px,z[τ2(y) < τ1(y) ≤ �n])

× (
1 + O

(
g(x, y) + g(y, z) + g(x, z)

))
.

By symmetry, we see that this is equal to

1

|Vn|
∑

x �=y �=z

(
Px,z[τ1(y) < τ2(y) ≤ �n] − Px,z[τ2(y) < τ1(y) ≤ �n])

× (
O

(
g(x, y) + g(y, z) + g(x, z)

))
.

Using

Px,z[τ1(y) < τ2(y) ≤ �n] ≤ Px,z[τ1(y) ≤ �n, τ2(y) ≤ �n]
and the independence of X1,X2, we have the further bound

1

|Vn|
∑

x �=y �=z

O
([

g(x, y) + 
n

)(
g(y, z) + 
n

))
O

(
g(x, y) + g(y, z) + g(x, z)

)
.

By the symmetry of g in its arguments, we can rewrite this as

1

|Vn|
∑

x �=y �=z

O
(
g(x, y)g2(y, z) + g2(x, y)
n + g(x, y)
2

n

+ g(x, y)g(x, z)
n + g(x, y)g(x, z)g(y, z)
)
.

The terms in the summation are of order

SnTmix, SnTmix log|Vn|, T 3
mix(log|Vn|)2

|Vn| ,
T 3

mix log|Vn|
|Vn| ,

T 3
mix

|Vn| ,

respectively. Assumption 1.2 implies that all of these are o(T 2
mix), which gives the

lemma. �
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We complete this subsection by proving that “C” from (5.5) is also negligible in
comparison to the bound we seek to prove. The intuition for this is that by time �n,
both walks are very well mixed hence given that both have not hit y, the difference
in the probability that one hits before the other is of smaller order than any negative
power of |Vn| (though we choose to write −100). The proof will be in a slightly
different spirit than the previous lemmas.

LEMMA 5.4. For any fixed x, z, we have

Px,z[�n < τ1(y) < τ2(y)] − Px,z[�n < τ2(y) < τ1(y)] = O(|Vn|−100).

PROOF. We may assume without loss of generality that x, z �= y. The idea
of the proof is to use a standard coupling argument to show that, conditional on
{τ1(y)∧ τ2(y) ≥ �n}, the laws of X1(�n) and X2(�n) have total variation distance
O(|Vn|−100) independent of x, z. To this end, we set μ(z;x, y) = Px[X(�n) =
z|τ(y) ≥ �n]. Let Y(t) be the process given by X(t) conditioned on the event
{τ(y) ≥ �n}. Then Y(t) is Markov (though time-inhomogeneous) as

P[Y(t) = z|Y(0) = z0, . . . , Y (t − 1) = zt−1]
= P[X(t) = z|X(0) = z0, . . . ,X(t − 1) = zt−1, τ (y) ≥ �n]
= P[X(t) = z, τ (y) ≥ �n|X(0) = z0, . . . ,X(t − 1) = zt−1]

P[τ(y) ≥ �n|X(0) = z0, . . . ,X(t − 1) = zt−1]
= Pzt−1[X(1) = z, τ (y) ≥ �n − (t − 1)]

Pzt−1[τ(y) ≥ �n − (t − 1)]
depends only on z, zt−1. Recall that Tk = kTmix. For t = cTk , note that

ν(z; t, x) ≡ Px[Y(t) = z] = Px[X(t) = z, τ (y) ≥ �n|τ(y) ≥ t]
Px[τ(y) ≥ �n|τ(y) ≥ t]

= Pz[τ(y) ≥ �n − t]Px[X(t) = z|τ(y) ≥ t]
Px[τ(y) ≥ �n|τ(y) ≥ t] .

Combining part (3) of Assumption 1.2 with Lemma 3.2, we have that

Pz[τ(y) ≥ �n − t]
Px[τ(y) ≥ �n|τ(y) ≥ t] = �(1) for z �= y.

Also, since
∑

z g(y, z) = Tmix and Tmix = o(|Vn|), it follows that for each ε > 0
fixed, with A = {z :g(y, z) ≤ ε} we have |A|/|Vn| = 1 − o(1). Lemma 3.2 also
implies that Px[X(t) = z|τ(y) ≥ t] = �(1)π(z) on A uniformly in n large pro-
vided that k is large enough and ε > 0 is sufficiently small. This implies that we
can couple together the laws of Yu(cTk), Yv(cTk) starting at u, v distinct so that
with probability ρ > 0, we have Yu(cTk) = Yv(cTk). If we iterate this procedure
c1 = c0

η
log|Vn| times, η = η(c, k, ρ), we get that with probability 1 − O(|Vn|−c1),
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we have Yu(�n) = Yv(�n). Consequently, we may assume that c0 is sufficiently
large so that

max
u,v

‖ν(·;�n,u) − ν(·, ;�n, v)‖TV = O(|Vn|−500).

Let ν be a measure so that maxu ‖ν(·;�n,u) − ν‖TV = O(|Vn|−500). Let D =
{τ1(y) ∧ τ2(y) ≥ �n}. Then we have that

Px,z[�n < τ1(y) < τ2(y)] − Px,z[�n < τ2(y) < τ1(y)]
= (

Px,z[G12(y)|D] − Px,z[G21(y)|D])Px,z[D]
= ∑

u,v

(
Pu,v[G12(y)] − Pu,vP[G21(y)])ν(u;�n, x)ν(v;�n, z)Px,z[D]

+ O(|Vn|−200)

= O(|Vn|−200). �

PROOF OF THEOREM 1.3. To finish the proof of Theorem 1.3, we need to
estimate the diagonal (5.2) and take care of the term in (5.4). Observe that (5.2) is
equal to

2
∑
x

P[G12(x)] = |Vn| + O

(∑
x

P[τ1(x) = τ2(x)]
)
.(5.7)

We can estimate the sum on the right-hand side using∑
x

P[τ1(x) = τ2(x)] = ∑
x

∑
t

P[τ1(x) = t]P[τ2(x) = t]

≤ ∑
x

∑
t

P[τ1(x) = t]P[X2(t) = x] = 1.

On the other hand, note∑
x

(
fc(x, x) − f c

)2 = ∑
x

(1 − 2f c + f 2
c).(5.8)

By a union bound, we have f c = O(cϒn). Thus the diagonal term in (5.7) and (5.8)
differ by O(cTmix) = o(e−γ cT 2

mix) (recall from Assumption 1.2 that Tmix → ∞ as
n → ∞). This takes care of (5.2).

We now turn to (5.4). The previous lemma implies∑
x �=y �=z

|Px,z[G12(y)] − Px,z[G21(y)]|

= ∑
x �=y �=z

|Px,z[G12(y), τ1(y) ≤ �n] − Px,z[G21(y), τ2(y) ≤ �n]|

+ O(|Vn|−50).
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Observe {Gij (y), τi(y) ≤ �n} ⊆ {τi(y) ∧ τj (y) ≤ �n} ∪ {τi(y) ≤ �n < τj (y)}.
Thus we can bound from above the previous expression by∑

x �=y �=z

(
2Px,z[τ1(y) ∧ τ2(y) ≤ �n] + |Px[τ1(y) ≤ �n] − Pz[τ2(y) ≤ �n]|)

≡ E1 + E2.

The term corresponding to E1 can be bounded in a similar manner as “A” in the
proof of Lemma 5.3. Indeed, by the independence of X1,X2, we have that

Px,z[τ1(y) ∧ τ2(y) ≤ �n] ≤ (
g(x, y) + 
n

)(
g(y, z) + 
n

)
,

which, when summed over x, y, z, is of order O((log|Vn|)2|Vn|T 2
mix). We can esti-

mate E2 using techniques similar to the proof of Lemma 5.2 since by Lemma 3.3,

|Px[τ1(y) ≤ �n] − Pz[τ2(y) ≤ �n]| = O
(
g(x, y) + g(y, z) + δ2(x, y, z)

)
,

where, as in the proof of Lemma 5.2, δ2(x, y, z) corresponds to the error from
Lemma 3.3. When summed over x, y, z, this is of order O(|Vn|2Tmix). Therefore

(E1 + E2)

(
o

(
Tmix

|Vn|2 log|Vn|
)

+ O

(
1

|Vn|2
))

= o(T 2
mix)

as desired. �

6. Further questions. (1) The first step in proving a sequence of random vari-
ables (Xn) has a Gaussian limit after appropriate normalization is the determina-
tion of the asymptotic mean and variance. We remarked in the beginning that, in
our case, the expected number of sites painted 1 is |Vn|/2, and Theorem 1.3 gives
the limiting variance. Figure 3 shows Q–Q plots of the empirical distribution of
the number of sites painted 1 in the final coloring against an appropriately fitted
normal for three different base graphs. Based on these plots, we conjecture that

|Ai | − E|Ai |√
Var(|Ai |)

has a normal limit for all graphs satisfying Assumption 1.2.

(a) (b) (c)

FIG. 3. Q–Q plots based on 20,000 simulations of the number of sites visited by X1 before X2
against an appropriately fitted normal distribution, supporting the conjecture of asymptotic normal-
ity, where (a) Z3

100; (b) Z4
32 and (c) Z20

2 .
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(2) Our derivation of the variance ignores the time aspect of the problem in the
sense that it gives no indication of at what point in the process of coverage the
variance is “created.” Does it come in bursts or continuously? Does it come sooner
than any multiple of the cover time or perhaps in [εTcov, Tcov]? More generally,
when normalized appropriately, does the the process t �→ ∑

x 1{τ1(x)<τ2(x)≤t} have
a scaling limit?

(3) We make repeated used of the symmetry afforded by the fact that we con-
sider two random walks moving at the same speed on vertex transitive graph. It
would be interesting to see if a similar result holds when the various degrees of
symmetry are broken. Starting points for exploring this problem include consid-
ering continuous time walks moving at various speeds, multiple walks and graphs
which are not vertex transitive.

(4) Theorem 1.1 only holds for tori of dimension d ≥ 3 as the case d = 2 falls
just outside of the scope of Theorem 1.3. It would be interesting to see a more
refined analysis carried out to handle this case.

(5) That the variance computed in Theorem 1.1 for d = 3,4 is significantly
larger than in the i.i.d. case suggests that the clusters which have an unusually
large number of sites painted a given color are either larger or more dense than in
an i.i.d. marking. How large and frequent are such clusters? What is their geometric
structure?

(6) Another interesting quantity is the size B of the boundary separating the sites
painted 1 and 2, as studied in [9]. It is not difficult to see that there exists a constant
βd > 0 such that E|B| ∼ βdnd when d ≥ 3 as n → ∞. Indeed, this follows since
the probability that {τ1(y) < τ2(y)} for y ∼ x given {τ1(x) < τ2(x)} converges to
a limit pd ∈ (0,1). Note that this is of the same order of magnitude as E|A1|. Is it
also true that Var(|B|) = �(Var(|A1|)) or do these quantities differ significantly?
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