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SCALING LIMITS OF MARKOV BRANCHING TREES WITH
APPLICATIONS TO GALTON–WATSON AND RANDOM

UNORDERED TREES1

BY BÉNÉDICTE HAAS AND GRÉGORY MIERMONT

Université Paris-Dauphine and Université Paris-Sud

We consider a family of random trees satisfying a Markov branching
property. Roughly, this property says that the subtrees above some given
height are independent with a law that depends only on their total size, the lat-
ter being either the number of leaves or vertices. Such families are parameter-
ized by sequences of distributions on partitions of the integers that determine
how the size of a tree is distributed in its different subtrees. Under some natu-
ral assumption on these distributions, stipulating that “macroscopic” splitting
events are rare, we show that Markov branching trees admit the so-called
self-similar fragmentation trees as scaling limits in the Gromov–Hausdorff–
Prokhorov topology.

The main application of these results is that the scaling limit of ran-
dom uniform unordered trees is the Brownian continuum random tree. This
extends a result by Marckert–Miermont and fully proves a conjecture by
Aldous. We also recover, and occasionally extend, results on scaling lim-
its of consistent Markov branching models and known convergence results
of Galton–Watson trees toward the Brownian and stable continuum random
trees.
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1. Introduction and main results. The goal of this paper is to discuss the
scaling limits of a model of random trees satisfying a simple Markovian branching
property that was considered in different forms in [5, 12, 15, 27]. Markov branch-
ing trees are natural models of random trees defined in terms of discrete fragmen-
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tation processes. The laws of these trees are indexed by an integer n giving the
“size” of the tree, which leads us to consider two distinct (but related) models, in
which the sizes are, respectively, the number of leaves and the number of vertices.
We first provide a slightly informal description of our results.

Let q = (qn, n≥ 1) be a family of probability distributions, respectively, on the
set Pn of partitions of the integer n, that is, of nonincreasing integer sequences
with sum n. We assume that qn does not assign mass 1 to the trivial partition (n)

qn((n)) < 1 for every n≥ 1.

In order that this makes sense for n = 1, we add an extra “empty partition” ∅

to P1.
One constructs a random rooted tree with n leaves according to the following

procedure. Start from a collection of n indistinguishable balls, and with probabil-
ity qn(λ1, . . . , λp), split the collection into p sub-collections with λ1, . . . , λp balls.
Note that there is a chance qn((n)) < 1 that the collection remains unchanged dur-
ing this step of the procedure. Then, re-iterate the splitting operation independently
for each sub-collection using this time the probability distributions qλ1, . . . , qλp .
If a sub-collection consists of a single ball, it can remain single with probability
q1((1)) or get wiped out with probability q1(∅). We continue the procedure until
all the balls are wiped out. There is a natural genealogy associated with this pro-
cess, which is a tree with n leaves consisting in the n isolated balls just before they
are wiped out, and rooted at the initial collection of n balls. See Figure 1 for an
illustration. We let P

q
n be the law of this tree.

This construction can be seen as the most general form of splitting trees of
Broutin et al. [12], and was referred to as trees having the so-called Markov
branching property in [27]. There is also a variant of this procedure that con-
structs a random tree with n vertices rather than n leaves. This one does not need
the hypothesis qn((n)) < 1 for n≥ 1, and in fact we only assume q1((1))= 1 for
consistency of the description to follow. Informally, starting from a collection of n

FIG. 1. A sample tree T11. The first splitting arises with probability q11(4,4,3).
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balls, we first remove a ball, split the n− 1 remaining balls in sub-collections with
λ1, . . . , λp balls with probability qn−1((λ1, . . . , λp)), and iterate independently on
sub-collections until no ball remains. We let Q

q
n be the law of the random tree

associated to this procedure.
While most papers so far have been focusing on families of trees having more

structure, such as a consistency property when n varies [5, 15, 27] (with the notable
exception of Broutin et al. [12]), the main goal of the present work is to study the
geometry of trees with laws P

q
n or Q

q
n as n→∞ in a very general situation. The

main assumption that we make is that, as n→∞,

“macroscopic” splitting events of the form n→ (ns1, ns2, . . .) ∈ Pn for a non-
increasing sequence s = (s1, s2, . . .) with sum 1 and such that s1 < 1 − ε, for
some ε ∈ (0,1), are rare events, occurring with probability of order n−γ νε(ds)
for some γ > 0, for some finite “intensity” measure νε .

Note that the measures νε should satisfy a consistency property as ε varies, and as
ε goes to 0, νε should increase to a possibly infinite measure ν on the set of nonin-
creasing sequences with sum 1. This means that splitting events that only remove
tiny parts from a large collection of balls are allowed to remain more frequent
than the order n−γ . Under this assumption, formalized in hypothesis (H) below,
we show in Theorem 5 that a tree Tn with law P

q
n , considered as a metric space by

viewing its edges as being real segments of lengths of order n−γ , converges in dis-
tribution toward a limiting structure Tγ,ν , the so-called self-similar fragmentation
tree of [25],

1

nγ
Tn −→ Tγ,ν.

When γ ∈ (0,1), a similar result (Theorem 6) holds when Tn has distribution Q
q
n.

The limiting tree Tγ,ν can be seen as the genealogical tree of a continuous model
for mass splitting, in some sense analogous to the Markov branching property de-
scribed above. The above convergence holds in distribution in a space of mea-
sured metric spaces, endowed with the so-called Gromov–Hausdorff–Prokhorov
topology. This result contrasts with the situation of [12], where it is assumed that
macroscopic splitting events occur at every step of the construction. In that case,
the height of Tn is of order logn, and no interesting scaling limit exists for the tree.
A key step in our study will be to use the results from [26], where scaling limits
of nonincreasing Markov chains were considered: such Markov chains are indeed
obtained by considering the successive sizes of collections containing a particular
marked ball when going up in the tree Tn.

This general statement allows us to recover, and sometimes improve, many re-
sults of [14, 27, 28, 34] dealing specifically with Markov branching trees. It also
applies to models of random trees that are not a priori directly connected to our
study. In particular, we recover the results of Aldous [4] and Duquesne [18] show-
ing that the so-called Brownian and stable trees [2, 19, 20, 29] are universal limits
for conditioned Galton–Watson trees.
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More notably, our results entail that uniform unordered trees with n vertices, in
which each vertex has at most m ∈ [2,∞] children, admit the Brownian continuum
random tree as a scaling limit. This was conjectured by Aldous [3] and proved in
[30] in the particular case m= 2 of a binary branching, using completely different
methods from the present paper. The difficulty of handling such families of random
trees comes from the fact that they have no “nice” probabilistic representations,
using, for instance, branching processes or growth models. As a matter of fact,
uniform random unordered trees do not even have the Markov branching property,
but it turns out to be “almost” the case, in a sense that will be explained below.

The rest of this section is devoted to a detailed formalization of our results.

Index of notation. Throughout the paper, we use the notation

N= {1,2,3, . . .}, Z+ = {0} ∪N, [n] = {1,2, . . . , n}, n ∈N.

The random variables appearing in this paper are either canonical or defined on
some probability space (�, F ,P).

t plane tree, page 2593

t unordered tree, page 2594

Tn set of trees with n vertices, page 2594

T∂
n set of trees with n leaves, page 2594

p(λ) number of parts of a partition λ, page 2594

Pn set of partitions of n, page 2594

mj(λ) multiplicity of parts of λ equal to j , page 2594

P
q
n distributions of Markov branching trees indexed by leaves, page 2595

Q
q
n distributions of Markov branching trees indexed by vertices, page 2596

Tn tree with distribution P
q
n or Q

q
n, page 2591

dGH pointed Gromov–Hausdorff distance, page 2596

dGHP pointed Gromov–Hausdorff–Prokhorov distance, page 2597

T set of isometry classes of compact rooted R-trees, page 2598

Tw set of isometry classes of compact rooted measured R-trees, page 2598

S↓ set of partitions of a unit mass, page 2599

Tγ,ν (γ, ν)-fragmentation tree, page 2600

T(m) set of trees with n vertices and at most m children per vertex, page 2604

PB set of partitions of B ⊆N, page 2611

P set of partitions with variable size, page 2612

θ tree with edge-lengths, page 2617
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� set of trees with edge-lengths, page 2617

T (θ) R-tree associated to θ , page 2618

T (t) R-tree associated to a tree t with edge-lengths 1, page 2618

Dπ
B death time of the block B in the process π , page 2619

θ(π(·),B) tree with edge-lengths associated with a partition-valued process,
page 2619

pB(π) exchangeable distribution on partitions of B associated with qn,
page 2622

1.1. Discrete trees. We briefly introduce some formalism for trees. Set N
0 =

{∅}, and let

U = ⋃
n≥0

N
n.

For u = (u1, . . . , un) ∈ U , we denote by |u| = n the length of u, also called the
height of u. If u = (u1, . . . , un) with n ≥ 1, we let pr(u) = (u1, . . . , un−1), and
for i ≥ 1, we let ui = (u1, . . . , un, i). More generally, for u = (u1, . . . , un) and
v = (v1, . . . , vm) in U , we let uv = (u1, . . . , un, v1, . . . , vm) be their concatenation.
For A ⊂ U and u ∈ U , we let uA = {uv :v ∈ A}, and simply let iA = (i)A for
i ∈ N. We say that u is a prefix of v if v ∈ uU , and write u
 v, defining a partial
order on U .

A plane tree is a nonempty, finite subset t ⊂ U (whose elements are called
vertices), such that:

• if u ∈ t with |u| ≥ 1, then pr(u) ∈ t;
• if u ∈ t, then there exists a number cu(t) ∈ Z+ (the number of children of u)

such that ui ∈ t if and only if 1≤ i ≤ cu(t).

Let ∂t = {u ∈ t : cu(t)= 0} be the set of leaves of t. If t(1), . . . , t(k) are plane trees,
we can define a new plane tree by

〈
t(1), . . . , t(k)〉= {∅} ∪

k⋃
i=1

it(i).

A plane tree has a natural graphical representation, in which every u ∈ t is a
vertex, joined to its cu(t) children by as many edges. But t carries more informa-
tion than the graph, as it has a natural order structure. In this work, we will not
be interested in this order, and we present one way to get rid of this unwanted
structure. Let t be a plane tree, and σ = (σu,u ∈ t) be a sequence of permutations,
respectively, σu ∈Scu(t). For u= (u1, . . . , un) ∈ t, let

σ (u)= (
σ∅(u1), σ(u1)(u2), σ(u1,u2)(u3), . . . , σ(u1,...,un−1)(un)

)
and σ (∅) = ∅. Then the set σ (t) = {σ (u) :u ∈ t} is a plane tree, obtained intu-
itively by shuffling the set of children of u in t according to the permutation σu.
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We say that t, t′ are equivalent if there exists some σ such that σ (t)= t′. Equiva-
lence classes of plane trees will be called (rooted) unordered trees, or simply trees
as opposed to plane trees, and denoted by lowercase letter t’s. They are sometimes
called (rooted) Pólya trees in the literature [16].

Given a tree t, we will freely adapt some notation from plane trees when dealing
with quantities that do not depend on particular plane representatives. For instance,
#t,#∂ t will denote the number of vertices and leaves of t, while ∅, c∅(t) will denote
the root of t and its degree.

We let T be the set of trees, and for n≥ 1,

T∂
n = {t ∈ T : #∂ t= n}, Tn = {t ∈ T : #t= n}

be the set of trees with n leaves, respectively, n vertices. The class of {∅} is the
vertex tree • ∈ T1 = T∂

1.
Heuristically, the information carried in a tree is its graph structure, with a dis-

tinguished “root” vertex corresponding to ∅, and considered up to root-preserving
graph isomorphisms—it is not embedded in any space, and its vertices are unla-
beled.

It is a simple exercise to see that if t(i),1≤ i ≤ k, are trees, and t(i) is a choice of
a plane representative of t(i) for each i, then the class of 〈t(i),1 ≤ i ≤ k〉 does not
depend on the particular choice for t(i). We denote this common class by 〈t(i),1≤
i ≤ k〉. Note that j (t) := 〈t〉 can be seen as the tree t whose root has been attached
to a new root by an edge, and similarly j l(t), for l ≥ 0, is the tree t whose root
has been attached to a new root by a string of l edges. For instance, j l(•) is the
line-tree consisting of a string with length l, rooted at one of its ends. Finally, for
trees t(1), . . . , t(k) and l ≥ 1 we let〈

t(1), . . . , t(k)〉
l = j l(〈t(1), . . . , t(k)〉),

so j l(•)= 〈•〉l with this notation.

1.2. Markov branching trees. A partition of an integer n ≥ 1 is a sequence
of integers λ = (λ1, . . . , λp) with λ1 ≥ · · · ≥ λp ≥ 1 and λ1 + · · · + λp = n. The
number p = p(λ) is called the number of parts of the partition λ, and the partition
is called nontrivial if p(λ)≥ 2. We let Pn be the set of partitions of the integer n.
We also add an extra element ∅ to P1, so that P1 = {(1),∅}.

If (c1, c2, . . .) is a finite or infinite sequence of nonnegative integers with finite
sum and j ≥ 1, we define

mj(c1, c2, . . .)= #{i : ci = j},
the multiplicity of terms of c1, c2, . . . that are equal to j . In particular, if λ ∈ Pn,
mj(λ) is the multiplicity of parts of λ equal to j .

By convention, it is sometimes convenient to set λi = 0 for i > p(λ), and to
identify the sequence λ with the infinite sequence (λi, i ≥ 1). Such identifications
will be implicit when needed.
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1.2.1. Markov branching trees with a prescribed number of leaves. In this
paragraph, the size of a tree t ∈ T is going to be the number #∂ t of its leaves.

Let q = (qn, n ≥ 1) be a sequence of probability distributions, respectively,
on Pn,

qn = (
qn(λ), λ ∈ Pn

)
,

∑
λ∈Pn

qn(λ)= 1,

such that

qn((n)) < 1, n≥ 1.(1)

Consider a family of probability distributions P
q
n, n≥ 1, on T∂

n, respectively, such
that:

(1) P
q
1 is the law of the line-tree 〈•〉G, where G has a geometric distribution

given by

P(G= k)= q1(∅)
(
1− q1(∅)

)k
, k ≥ 0;

(2) for n≥ 2, P
q
n is the law of〈

T (i),1≤ i ≤ p(�)
〉
,

where � has distribution qn, and conditionally on the latter, the trees T (i),1≤ i ≤
p(�), are independent with distributions P

q
�i

, respectively.

Alternatively, for n ≥ 2, P
q
n is the law of 〈T (i),1 ≤ i ≤ p(�)〉G where G is inde-

pendent of � and geometric with

P(G= k)= (
1− qn((n))

)
qn((n))k, k ≥ 0,

and conditionally on �, which has law qn(·|Pn \ {(n)}), the trees T (1), . . . , T (p(�))

are independent with distributions P�i
, respectively. A simple induction argument

shows that there exists a unique family P
q
n, n ≥ 1, satisfying properties 1 and 2

above.
A family of random trees Tn,n ≥ 1, with respective distributions P

q
n, n ≥ 1,

is called a Markov branching family. The law of the tree Tn introduced in the
beginning of the Introduction to describe the genealogy of splitting collections of
n balls is P

q
n.

1.2.2. Markov branching trees with a prescribed number of vertices. We now
consider the following variant of the above construction, in which the size of a
tree t is the number of its vertices. For every n ≥ 1, let again qn be a probability
distribution on Pn. We do not assume (1), rather, we make the sole assumption that
q1((1)) = 1. For every n ≥ 1, we construct inductively a family of random trees
Tn, respectively, in the set Tn of trees with n vertices, by assuming that for λ =
(λ1, . . . , λp) ∈ Pn−1, with probability qn−1(λ), the n− 1 vertices distinct from the
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root vertex are dispatched in p subtrees with λ1 ≥ · · · ≥ λp vertices, and that, given
these sizes, the p subtrees are independent with same distribution as Tλ1, . . . , Tλp ,
respectively.

Formally:

(1) let Q
q
1 be the law of •;

(2) for n≥ 1, let Q
q
n+1 be the law of〈

T (i),1≤ i ≤ p(�)
〉
,

where � has distribution qn, and conditionally on the latter, the trees T (i),1≤ i ≤
p(�), are independent with distributions Q

q
�i

, respectively.

By induction, these two properties determine the laws Q
q
n, n≥ 1, uniquely.

The construction is very similar to the previous one, and can in fact be seen as
a special case, after a simple transformation on the tree; see Section 4.5 below.

1.3. Topologies on metric spaces. The main goal of the present work is to
study scaling limits of trees with distributions P

q
n,Q

q
n, as n becomes large. For this

purpose, we need to consider a topological “space of trees” in which such limits
can be taken, and define the limiting objects.

A rooted2 metric space is a triple (X,d,ρ), where (X,d) is a metric space and
ρ ∈ X is a distinguished point, called the root. We say that two rooted spaces
(X,ρ, d), (X′, ρ′, d ′) are isometry-equivalent if there exists a bijective isometry
from X onto X that sends ρ to ρ′.

A measured, rooted metric space is a 4-tuple (X,d,ρ,μ), where (X,d,ρ) is a
rooted metric space and μ is a Borel probability measure on X. Two measured,
rooted spaces (X,d,ρ,μ) and (X,d ′, ρ′,μ′) are isometry-equivalent if there ex-
ists a root-preserving, bijective isometry φ from (X,d,ρ) to (X,d ′, ρ′) such that
the push-forward of μ by φ is μ′. In the sequel we will almost always identify two
isometry-equivalent (rooted, measured) spaces, and will often use the shorthand
notation X for the isometry class of a rooted space or a measured, rooted space, in
a way that should be clear from the context. Also, if X is such a space and a > 0,
then we denote by aX the space in which the distance function is multiplied by a.

We denote by M the set of equivalence classes of compact rooted spaces, and
by Mw the set of equivalence classes of compact measured rooted spaces.

It is well known (this is an easy extension of the results of [22]) that M is
a Polish space when endowed with the so-called rooted Gromov–Hausdorff dis-
tance dGH, where by definition the distance dGH((X,d,ρ), (X′, d ′, ρ′)) is equal to
the infimum of the quantities

dist(φ(ρ),φ′(ρ′))∨ distH(φ(X),φ′(X′)),

2Usually such spaces are rather called pointed, but we prefer the term rooted which is more com-
mon when dealing with trees.
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where φ,φ′ are isometries from X,X′ into a common metric space (M,dist), and
where distH is the Hausdorff distance between compact subsets of (M,dist). It is
elementary that this distance does not depend on particular choices in the equiva-
lence classes of (X,d,ρ) and (X′, d ′, ρ′). We endow M with the associated Borel
σ -algebra. Of course, dGH satisfies a homogeneity property, dGH(aX,aX′) =
adGH(X,X′) for a > 0.

We also need to define a distance on Mw, that is in some sense compatible with
the Gromov–Hausdorff distance. Several complete distances can be constructed,
and we use a variation of the Gromov–Hausdorff–Prokhorov distance used in [31].
The induced topology is the same as that introduced earlier in [23]. The reader
should bear in mind that the topology used in the present paper involves a little
extension of the two previous references, since we are interested in rooted spaces.
We let dGHP((X,d,ρ,μ), (X′, d ′, ρ′,μ′)) be the infimum of the quantities

dist(φ(ρ),φ′(ρ′))∨ distH(φ(X),φ′(X′))∨ distP(φ∗μ,φ′∗μ′),

where again φ,φ′ are isometries from X,X′ into a common space (M,dist),
φ∗μ,φ′∗μ′ are the push-forward of μ,μ′ by φ,φ′ and distP is the Prokhorov dis-
tance between Borel probability measures on M ([21], Chapter 3),

distP(m,m′)= inf{ε > 0 :m(C)≤m′(Cε)+ ε for every C ⊂M closed},
where Cε = {x ∈ M : infy∈C dist(x, y) < ε} is the ε-thickening of C. A simple
adaptation of the results of [23] and Section 6 in [31] (in order to take into account
the particular role of the distinguished point ρ) shows the following:

PROPOSITION 1. The function dGHP is a distance on Mw that makes it com-
plete and separable.

This distance is called the rooted Gromov–Hausdorff–Prokhorov distance.
One must be careful that contrary to dGH, this distance is not homogeneous:
dGHP(aX,aX′) is in general different from adGHP(X,X′), because only the dis-
tances, not the measures, are multiplied in aX,aX′.

1.3.1. Trees viewed as metric spaces. A plane tree t can be naturally seen as
a metric space by endowing t with the graph distance between vertices. Namely,

dgr(u, v)= |u| + |v| − 2|u∧ v|, u, v ∈ t,

where u∧ v is the longest prefix common to u, v. This coincides with the number
of edges on the only simple path going from u to v. The space (t, dgr) is natu-
rally rooted at ∅. We can put two natural probability measures on t, the uniform
measures on the leaves or on the vertices

μ∂t = 1

#∂t

∑
u∈∂t

δ{u}, μt = 1

#t

∑
u∈t

δ{u}.
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If t ∈ T is a tree, and t, t′ are two plane representatives of t, then it is elemen-
tary that the spaces (t, dgr,∅,μ∂t) and (t′, dgr,∅,μ∂t′) are isometry-equivalent
rooted measured metric spaces. The same holds with μt,μt′ instead of μ∂t,μ∂t′ .
We denote by (t, dgr, ρ,μ∂ t) and (t, dgr, ρ,μt) the corresponding elements of Mw.
Conversely, it is possible to recover uniquely the discrete tree (not a plane tree!)
from the element of Mw thus defined.

1.3.2. R-trees. An R-tree is a metric space (X,d) such that for every x,
y ∈X:

(1) there is an isometry ϕx,y : [0, d(x, y)] → X such that ϕx,y(0) = x and
ϕx,y(d(x, y))= y;

(2) for every continuous, injective function c : [0,1] → X with c(0) = x,
c(1)= y, one has c([0,1])= ϕx,y([0, d(x, y)]).
In other words, any two points in X are linked by a geodesic path, which is the only
simple path linking these points, up to reparameterisation. This is a continuous
analog of the graph-theoretic definition of a tree as a connected graph with no
cycle. We denote by [[x, y]] the range of ϕx,y .

We let T (resp., Tw) be the set of isometry classes of compact rooted R-trees
(resp., compact, rooted measured R-trees). An important property is the following
(these are easy variations on results by [22, 23]):

PROPOSITION 2. The spaces T and Tw are closed subspaces of (M , dGH)

and (Mw, dGHP).

If T ∈T and for x ∈ T , we call d(ρ, x) the height of x. If x, y ∈ T , we say that
x is an ancestor of y whenever x ∈ [[ρ,y]]. We let x∧y ∈ T be the unique element
of T such that [[ρ,x]] ∩ [[ρ,y]] = [[ρ,x ∧ y]], and call it the highest common
ancestor of x and y in T . For x ∈ T , we denote by Tx the set of y ∈ T such that
x is an ancestor of y. The set Tx , endowed with the restriction of the distance d ,
and rooted at x, is in turn a rooted R-tree, called the subtree of T rooted at x. If
(T , d, ρ,μ) is an element of Tw and μ(Tx) > 0, then Tx can be seen as an element
of Tw by endowing it with the measure μ(·|Tx)= μ(· ∩ Tx)/μ(Tx).

We say that x ∈ T , x �= ρ, in a rooted R-tree is a leaf if its removal does not
disconnect T . Note that this always excludes the root from the set of leaves, which
we denote by L(T ). A branch point is an element of T of the form x ∧ y where
x is not an ancestor of y nor vice-versa. It is also characterized by the fact that the
removal of a branch point disconnects the R-tree into three or more components
(two or more for the root, if it is a branch point). We let B(T ) be the set of branch
points of T .
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1.4. Self-similar fragmentations and associated R-trees. Self-similar frag-
mentation processes are continuous-time processes that describe the dislocation
of a massive object as time passes. Introduce the set of partitions of a unit mass

S↓ :=
{

s= (s1, s2, . . .) : s1 ≥ s2 ≥ · · · ≥ 0,
∑
i≥1

si ≤ 1
}
.

This space is endowed with the metric d(s, s′)= supi≥1|si − s′i |, which makes it a
compact space.

DEFINITION 3. A self-similar fragmentation is a S↓-valued Markov process
(X(t), t ≥ 0) which is continuous in probability and satisfies the following frag-
mentation property. For some a ∈ R, called the self-similarity index, it holds that
conditionally given X(t) = (s1, s2, . . .), the process (X(t + t ′), t ′ ≥ 0) has same
distribution as the process whose value at time t ′ is the decreasing rearrangement
of the sequences siX(i)(sa

i t ′), i ≥ 1, where (X(i), i ≥ 1) are i.i.d. copies of X.

Bertoin [8] and Berestycki [6] have shown that the laws of self-similar fragmen-
tation processes are characterized by three parameters: the index a, a nonnegative
erosion coefficient and a dislocation measure ν on S↓. The idea is that every sub-
object of the initial object, with mass x say, will suddenly split into sub-sub-objects
of masses xs1, xs2, . . . at rate xaν(ds), independently of the other sub-objects. Ero-
sion accounts for the formation of zero-mass particles that are continuously ripped
off the fragments.

For our concerns, we will consider only the special case where the erosion
phenomenon has no role and the dislocation measure does not charge the set
{s ∈ S↓ :

∑
i si < 1}. One says that ν is conservative. This motivates the follow-

ing definition.

DEFINITION 4. A dislocation measure is a σ -finite measure ν on S↓ such that
ν({(1,0,0, . . .)})= 0 and

ν

({∑
i≥1

si < 1
})

= 0,

∫
S↓

(1− s1)ν(ds) <∞.(2)

We say that the measure is binary when ν({s1 + s2 < 1})= 0. A binary measure is
characterized by its image ν(s1 ∈ dx) through the mapping s �→ s1.

A fragmentation pair is a pair (a, ν) where a ∈ R is called the self-similarity
index, and ν is a dislocation measure.

Fragmentation pairs (a, ν) therefore characterize the distributions of the self-
similar fragmentations we are focusing on. When a = −γ < 0, small fragments
tend to split faster, and it turns out that they all disappear in finite time, a prop-
erty known as formation of dust. Using this property, it is shown in [25] how to
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construct a fragmentation continuum random tree encoding the genealogy of the
fragmentation processes. More precisely, a fragmentation tree is a random element
(T , d, ρ,μ) of Tw (often denoted T for simplicity), such that almost surely:

(1) the measure μ is supported on the set L(T ) of leaves of T ;
(2) μ has no atom;
(3) for every x ∈ T \ L(T ), it holds that μ(Tx) > 0.

Moreover, T satisfies the following self-similarity property with index −γ . For
every t ≥ 0, let T ◦

i (t), i ≥ 1, be the connected components of the open set
{x ∈ T :d(ρ, x) > t}, and let Ti (t) be the closure of T ◦

i (t) in T . It is plain
that Ti (t) \ T ◦

i (t) = {ρi,t } for some ρi,t ∈ T , with d(ρi,t , ρ) = t . The space
(Ti (t), d, ρi,t ,μ(·|Ti (t))) is then a random element in Mw. The self-similarity
property then states that for every t ≥ 0, conditionally given (μ(Ti (s)), i ≥ 1),
s ≤ t , the family {Ti (t), i ≥ 1} has same distribution as {μ(Ti (t))

γ T (i), i ≥ 1},
where (T (i), i ≥ 1) are i.i.d. copies of T .

If T is a self-similar fragmentation tree with self-similarity index −γ , then
by [25], Proposition 1, the process ((μ(Ti (t)), i ≥ 1)↓, t ≥ 0) of the nonincreas-
ing rearrangement of the μ-masses of the trees Ti (t), is an S↓-valued self-similar
fragmentation process with index −γ . The law of this process is thus character-
ized by a unique fragmentation pair (−γ, ν). By [25], Proposition 1, the law of T
is entirely characterized by (−γ, ν). In the sequel, we will let Tγ,ν be a random
variable with this law. We postpone a more constructive description of this tree to
Section 3.2.

It was shown in [25] that one can recover the celebrated Brownian and stable
continuum random trees [2, 19, 29] as special instances of fragmentation trees. The
parameters γ and ν corresponding to these trees will be recalled when we discuss
applications in Sections 2.1 and 2.2.

1.5. Main results. Let (qn(λ), λ ∈ Pn), n≥ 1, satisfy (1). With it, we associate
a finite nonnegative measure qn on S↓, defined by its integral against measurable
functions f : S↓ →R+ as

qn(f )= ∑
λ∈Pn

qn(λ)f

(
λ

n

)
.

Note that in the left-hand side, we have identified λ/n with an element of S↓,
in accordance with our convention that λ is identified with the infinite sequence
(λi, i ≥ 1). We make the following basic assumption:

(H) There exists a fragmentation pair (−γ, ν), with γ > 0, and a function
� : (0,∞)→ (0,∞) slowly varying at ∞, such that we have the weak convergence
of finite nonnegative measures on S↓,

nγ �(n)(1− s1)qn(ds)
(w)−→

n→∞(1− s1)ν(ds).(3)
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THEOREM 5. Assume q = (qn(λ), λ ∈ Pn), n ≥ 1, satisfies assumption (H).
Let Tn have distribution P

q
n, and view Tn as a random element of Mw by endowing

it with the graph distance and the uniform probability measure μ∂Tn on ∂Tn. Then
we have the convergence in distribution

1

nγ �(n)
Tn

(d)−→
n→∞ Tγ,ν

for the rooted Gromov–Hausdorff–Prokhorov topology.

There is a similar statement for the trees with laws Q
q
n. Consider a family

(qn(λ), λ ∈ Pn), n≥ 1, with q1((1))= 1.

THEOREM 6. Assume q = (qn(λ), λ ∈ Pn), n ≥ 1, satisfies assumption (H),
with:

• either γ ∈ (0,1), or
• γ = 1 and �(n)→ 0 as n→∞.

Let Tn have distribution Q
q
n. We view Tn as a random element of Mw by endowing

it with the graph distance and the uniform probability measure μTn on Tn. Then
we have the convergence in distribution

1

nγ �(n)
Tn

(d)−→
n→∞ Tγ,ν

for the rooted Gromov–Hausdorff–Prokhorov topology.

Theorem 6 deals with a more restricted set of values of values of γ than Theo-
rem 5. This comes from the fact that, contrary to the set T∂

n which contains trees
with arbitrary height, the set Tn of trees with n vertices has elements with height at
most n−1. Therefore, we cannot hope to find nontrivial limits in Theorem 6 when
γ > 1, or when γ = 1 and �(n) has limit +∞ as n→∞. The intermediate case
where �(n) admits finite nonzero limiting points cannot give such a convergence
with a continuum fragmentation tree in the limit either. Indeed, the support of the
height of a continuum fragmentation tree is unbounded, whereas the heights of
Tn/n�(n) are all bounded from above by 1/ infn(�(n)), which is finite under our
assumption.

Note that Theorem 5 (resp., Theorem 6) implies that any fragmentation tree Tγ,ν

is the continuous limit of a rescaled family of discrete Markov branching trees
with a prescribed number of leaves (resp., with a prescribed number of vertices,
provided γ < 1), since we have the following approximation result:

PROPOSITION 7. For every fragmentation pair (−γ, ν) with γ > 0, there ex-
ists a family of distributions (qn, n≥ 1) satisfying (1) and such that (3) holds, with
�(x)= 1 for every x > 0.
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After some preliminaries gathered in Section 3, we prove Theorems 5 and 6 and
Proposition 7 in Section 4. Before embarking in the proofs, we present in Section 2
some important applications of these theorems to Galton–Watson trees, unordered
random trees and particular families of Markov branching trees studied in earlier
works. Of these applications, the first two actually involve a substantial amount of
work, so that the details are postponed to Section 5 and 6.

2. Applications.

2.1. Galton–Watson trees. A natural application is the study of Galton–
Watson trees conditioned on their total number of vertices. Let ξ be a probability
measure on Z+ such that ξ(0) > 0 and∑

k≥0

kξ(k)= 1.(4)

The law of the Galton–Watson tree with offspring distribution ξ is the probability
measure on the set of plane trees defined by

GWξ ({t})=
∏
u∈t

ξ(cu(t)),

for t a plane tree. That this does define a probability distribution on the set of plane
trees comes from the fact that a Galton–Watson process with offspring distribution
ξ becomes a.s. extinct in finite time, due to the criticality condition (4). In order
to fit in the framework of this paper, we view GWξ as a distribution on the set of
discrete, rooted trees, by taking its push-forward under the natural projection from
plane trees to trees.

In order to avoid technicalities, we also assume that the support of ξ gener-
ates the additive group Z. This implies that GWξ ({#t = n}) > 0 for every n large

enough. For such n, we let GW(n)
ξ =GWξ (·|{#t = n}), and view it as a law on Tn.

We distinguish two different regimes.
Case 1. The offspring distribution has finite variance

σ 2 =∑
k≥0

k(k − 1)ξ(k) <∞.

Case 2. For some α ∈ (1,2) and c ∈ (0,∞), it holds that ξ(k) ∼ ck−α−1 as
k →∞. In particular, ξ is in the domain of attraction of a stable law of index α.

The Brownian dislocation measure is the unique binary dislocation measure
such that

ν2(s1 ∈ dx)=
√

2

πx3(1− x)3 dx1{1/2≤x<1}.
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Otherwise said, for every measurable f : S↓ →R+,∫
S↓

ν2(ds)f (s)=
∫ 1

1/2

√
2

πx3(1− x)3 dxf (x,1− x,0,0, . . .).

We also define a one-parameter family of measures in the following way. For α ∈
(1,2), let

∑
i≥1 δ�i

be a Poisson random measure on (0,∞) with intensity measure

1

α�(1− 1/α)

dx

x1+1/α
1{x>0}

with the atoms �i, i ≥ 1, labeled in such a way that �1 ≥ �2 ≥ · · · . Let T =∑
i≥1 �i , which is finite a.s. by standard properties of Poisson measures. In fact,

T follows a stable distribution with index 1/α, with Laplace transform

E[exp(−λT )] = exp(−λ1/α), λ≥ 0.

This can be seen as a stable subordinator evaluated at time 1, its jumps up to this
time being the atoms �i, i ≥ 1. The measure να is defined by its action against a
measurable function f : S↓ →R+∫

S↓
να(ds)f (s)= α2�(2− 1/α)

�(2− α)
E

[
Tf

(
�i

T
, i ≥ 1

)]
.

Because E[T ] =∞, this formula defines an infinite σ -finite measure on S↓, which
turns out to satisfy (2).

THEOREM 8. Let ξ satisfy (4), with support that generates the additive
group Z. Let Tn be a random element of Tn with distribution GW(n)

ξ . Consider
Tn as an element of Mw by endowing it with the graph distance and the uniform
probability measure μTn on Tn. Then we have, in distribution for the Gromov–
Hausdorff–Prokhorov topology:

Case 1:
1√
n
Tn

(d)−→
n→∞

2

σ
T1/2,ν2;

Case 2:
1

n1−1/α
Tn

(d)−→
n→∞

(
α(α− 1)

c�(2− α)

)1/α

T1−1/α,να .

This result will be proved in Section 5 below, by first showing that GW(n)
ξ is of

the form Q
q
n for some appropriate choice of q .

The trees T1/2,ν2 and T1−1/α,να appearing in the limit are important models of
continuum random trees, called, respectively, the Brownian Continuum Random
Tree and the stable tree with index α. The Brownian tree is somehow the archetype
in the theory of scaling limits of trees. The above theorem is very similar to a result
due to Duquesne [18], but our method of proof is totally different. While [18] relies
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on quite refined aspects of Galton–Watson trees and their encodings by stochas-
tic processes, our approach requires only to have some kind of global structure,
namely the Markov branching property, and to know how mass is distributed in
one generation. We do not claim that our method is more powerful than the one
used in [18] (as a matter of fact, the limit theorem of [18] holds in the more general
case where μ is in the domain of attraction of a totally asymmetric stable law with
index α ∈ (1,2]). However, our method has some robustness, allowing us to shift
from Galton–Watson trees to other models of trees. Our next example will try to
illustrate this.

2.2. Uniform unordered trees. Our next application is on a different model of
random trees, which is by nature not a model of plane or labeled trees, contrary to
the previous examples. It is actually not either a Markov branching model, but is
very close from being one, as we will see.

For 2≤m≤∞, we consider the set T(m)
n ⊂ Tn of trees with n vertices, in which

every vertex has at most m children. In particular, we have T(∞)
n = Tn. The sets

T(m)
n are harder to enumerate than sets of ordered or labeled trees, like plane trees

or Cayley trees, and there is no closed expression for the numbers #T(m)
n . However,

Otter [32] (see also [24], Section VII.5) derived the asymptotic enumeration result

#T(m)
n ∼

n→∞κm

(ρm)n

n3/2(5)

for some m-dependent constants κm > 0, ρm > 1. This can be achieved by studying
the generating function

ψ(m)(x)=∑
n≥1

#T(m)
n xn,

which has a square-root singularity at the point 1/ρm. The behavior (5) indicates
that a uniformly chosen element of T(m)

n should converge as n→∞, once renor-
malized suitably, to the Brownian continuum random tree. We show that this is
indeed the case for any value of m. To state our result, let

T̃(m)
n = {

t ∈ T(m)
n : c∅(t)≤m− 2

}
.

For instance, T̃(2)
n =∅ for n≥ 2, while T̃(∞)

n = T(∞)
n for all n. Let

ψ̃(m)(x)=∑
n≥1

#T̃(m)
n xn,

and define a finite constant cm by

cm =
√

2√
πκmψ̃(m)(1/ρm)

.
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Note that ψ̃(2)(x) = x for every x, while ψ̃(∞)(1/ρ∞) = 1 ([24], Section VII.5).
Therefore, we get

c2 =
√

2ρ2√
πκ2

, c∞ =
√

2√
πκ∞

.

THEOREM 9. Fix m ∈ {2,3, . . .} ∪ {∞}. Let Tn be uniformly distributed
in T(m)

n . We view Tn as an element of Mw by endowing it with the measure μTn ,
then

1√
n
Tn

(d)−→
n→∞ cmT1/2,ν2

for the Gromov–Hausdorff–Prokhorov topology.

The proof of this result is given in Section 6. We note that this implies a similar,
maybe more natural, statement for m-ary trees. We say that t ∈ T is m-ary if every
vertex has either m children or no child, and we say that the vertex is internal in
the first case, that is, when it is not a leaf. Summing over the degrees of vertices
in an m-ary tree with n internal vertices, we obtain that #t = mn + 1 and #∂ t =
(m− 1)n+ 1.

Assume now that m <∞. Starting from a m-ary tree t with n internal vertices,
and removing the leaves—equivalently, keeping only the internal vertices—gives
an element φ(t) ∈ T(m)

n . The mapping φ is inverted by attaching m− k leaves to
each vertex with k children, for an element of T(m)

n . Moreover, we leave as an easy
exercise that dGHP(at, aφ(t))≤ a for every a > 0, when the trees are endowed with
the uniform measures μt,μφ(t) on vertices. Theorem 9 thus implies the following:

COROLLARY 10. Let m ∈ {2,3, . . .} and T [m]
n be a uniform m-ary tree with n

internal vertices, endowed with the measure μ
T
[m]
n

. Then

1√
n
T [m]

n

(d)−→
n→∞ cmT1/2,ν2 .

The problem of scaling limits of random rooted unordered trees has attracted
some attention in the recent literature; see [13, 16, 17, 30]. For m= 2, Corollary 10
readily yields the main theorem of [30], which was derived using a completely dif-
ferent method, based in a stronger way on combinatorial aspects of T(2)

n . Here,
we really make use of a fragmentation property satisfied by the uniform distribu-
tions on T(m)

n , n ≥ 1. As alluded to at the beginning of this section, these are not
actually laws of Markov branching trees. Nevertheless, they can be coupled with
laws of Markov branching trees in a way that the coupled trees are close in the
dGHP metric. In the general case m �= 2, Theorem 9 and Corollary 10 are new, and
were implicitly conjectured by Aldous [3]. In [17], the authors prove a result on
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the scaling limit of the so-called profile of the uniform tree for m=∞, which is
related to our results, although it is not a direct consequence. Finally, we note that
the problem of the scaling limit of unrooted unordered trees is still open, although
we expect the Brownian tree to arise again as the limiting object.

2.3. Consistent Markov branching models. Considering again in a more spe-
cific way the Markov branching models, we stress that Theorem 5 also encom-
passes the results of [27], which hold for particular families (qn, n≥ 1) satisfying
a further consistency property. In this setting, it is assumed that qn((n)) = 0 for
every n≥ 1, so that the trees Tn do not have any vertex having only one child. The
consistency property can be formulated as follows:

Consistency property. Starting from Tn with n≥ 2, select one of the leaves uni-
formly at random, and remove this leaf as well as the edge that is attached to it.
If this removal creates a vertex with only one child, then remove this vertex and
merge the two edges incident to this vertex into one. Then the random tree thus
constructed has same distribution as Tn−1.

A complete characterization of families (qn, n ≥ 1) giving rise to Markov
branching trees with this consistency property is given in [27]. Namely, such
families can be constructed in terms of a pair (c, ν), which is uniquely defined
up to multiplication by a common positive constant, such that c ≥ 0 is an “ero-
sion coefficient” and ν is a dislocation measure as described above [except that
ν(
∑

si < 1)= 0 is not required]. The cases where c = 0 and ν(
∑

si < 1)= 0 are
the most interesting ones, so we will assume henceforth that this is the case. The
associated distributions qn,n≥ 2, are given by the following explicit formula: for
λ ∈ Pn having p ≥ 2 parts,

qn(λ)= 1

Zn

Cλ

∫
S↓

ν(ds)
∑

i1,...,ip≥1
distinct

p∏
j=1

s
λj

ij
,(6)

where

Cλ = n!∏
i≥1 λi !∏j≥1 mj(λ)!

is a combinatorial factor, the same that appears in the statement of Lemma 23
below, and Zn is a normalizing constant defined by

Zn =
∫

S↓
ν(ds)

(
1−∑

i≥1

sn
i

)
.

Assume further that ν satisfies the following regularity condition:

ν(s1 ≤ 1− ε)= ε−γ �(1/ε),(7)

where γ ∈ (0,1) and � is a function that is slowly varying at ∞.
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THEOREM 11. If ν is a dislocation measure satisfying (2) and (7), and if
(qn, n ≥ 1) is the consistent family of probability measures defined by (6), then
the Markov branching trees Tn, viewed as random measured R-trees by endowing
the sets of their leaves with the uniform probability measures, satisfies

1

�(1− γ )nγ �(n)
Tn

(d)−→
n→∞ Tγ,ν,

for the Gromov–Hausdorff–Prokhorov topology.

This theorem is in some sense more powerful than [27], Theorem 2, because the
latter result needed one extra technical hypothesis that is discarded here. Moreover,
our result holds for the Gromov–Hausdorff–Prokhorov topology, which is stronger
than the Gromov–Hausdorff topology considered in [27]. However, the setting of
[27] also provided a natural coupling of the trees Tn,n≥ 1, and Tγ,ν on the same
probability space, for which the convergence in Theorem 11 can be strengthened
to a convergence in probability. This coupling is not provided in our case.

PROOF OF THEOREM 11. Let s ∈ S↓ be such that
∑

i≥1 si = 1. Let K1, . . . ,

Kn be i.i.d. random variables in N such that P(K1 = i)= si for every i ≥ 1. Call
�(i)(n) the number of variables Kj equal to i, and let �(s)(n)= (�(1)(n),�(2)(n),

. . .)↓, where x↓ denotes the decreasing rearrangement of the nonnegative sequence
x = (x1, x2, . . .) with finite sum. It is not hard to see that the probability distribu-
tions qn defined by (6) are also given, for λ �= (n), by

qn(λ)= 1

Zn

∫
S↓

P
(
�(s)(n)= λ

)
ν(ds).

See, for example, the forthcoming Lemma 23 in Section 3.2.4. The normalizing
constant Zn is regularly varying, according to the assumption of regular varia-
tion (7). Indeed, by Karamata’s Tauberian theorem (see [11], Theorem 1.7.1’), we
have that

Zn =
∫

S↓

(
1−∑

i≥1

sn
i

)
ν(ds) ∼

n→∞

∫
S↓

(1− sn
1 )ν(ds)

∼
n→∞ �(1− γ )ν(s1 ≤ 1− 1/n)

= �(1− γ )nγ �(n).

Now, to get a convergence of the form (3), note that for all continuous functions
f : S↓ →R+,

Zn

∑
λ∈Pn

qn(λ)

(
1− λ1

n

)
f

(
λ

n

)
=

∫
S↓

ν(ds)E
[(

1− �
(s)
1 (n)

n

)
f

(
�(s)(n)

n

)]

→
n→∞

∫
S↓

ν(ds)(1− s1)f (s),
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which follows by dominated convergence, since f is bounded (say by K) on the
compact space S↓ and

E

[(
1− �

(s)
1 (n)

n

)
f

(
�(s)(n)

n

)]
≤KE

[
1− �

(s)
1 (n)

n

]
≤KE

[
1− �(1)(n)

n

]
=K(1− s1).

We conclude by applying Theorem 5. �

2.4. Further nonconsistent cases: (α, θ)-trees. One final application concerns
a family of binary labeled trees introduced by Pitman and Winkel [34] and built
inductively according to a growth rule depending on two parameters α ∈ (0,1) and
θ ≥ 0. Roughly, at each step, given that the tree T α,θ,lab

n with n leaves branches at
the branch point adjacent to the root into two subtrees with k ≥ 1 leaves for the
subtree containing the smallest label in T α,θ,lab

n and n− k ≥ 1 leaves for the other
one, a weight α is assigned to the root edge and weights k − α and n− k − 1+ θ

are assigned, respectively, to the trees with sizes k, n− k. Then choose either the
root edge or one of the two subtrees according with probabilities proportional to
these weights. If a subtree with two or more leaves is selected, apply this weighting
procedure inductively to this subtree until the root edge or a subtree with a single
leaf is selected. If a subtree with single leaf is selected, insert a new edge and leaf
at the unique edge of this subtree. Similarly, if the root edge is selected, add a new
edge and leaf to this root edge. This gives the tree T

α,θ,lab
n+1 . We then denote by T α,θ

n

the tree T α,θ,lab
n without labels, n≥ 1.

Pitman and Winkel show that the family (T α,θ
n , n≥ 1) is not consistent in gen-

eral ([34], Proposition 1), except when θ = 1−α or θ = 2−α, and has the Markov
branching property ([34], Proposition 11) with the following probabilities qn:

• qn((k, n−k,0, . . .))= qα,θ (n−1, k)+qα,θ (n−1, n−k), for n−k < k ≤ n−1;
• qn(n/2, n/2)= qα,θ (n− 1, n/2),

where

qα,θ (n, k)=
(

n

k

)
α(n− k)+ θk

n

�(k− α)�(n− k + θ)

�(1− α)�(n+ θ)
, 1≤ k ≤ n.

Now consider the binary measure να,θ defined on S↓ by να,θ (s1 + s2 < 1)= 0 and
να,θ (s1 ∈ dx)= fα,θ (x)dx where fα,θ is defined on [1/2,1) by

fα,θ (x)= 1

�(1− α)

((
α(1− x)+ θx

)
x−α−1(1− x)θ−1

+ (
αx + θ(1− x)

)
(1− x)−α−1xθ−1).

THEOREM 12. Endow T α,θ
n with the uniform probability measure on ∂T α,θ

n .
Then,

1

nα
T α,θ

n

(d)−→
n→∞ Tα,να,θ
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for the rooted Gromov–Hausdorff–Prokhorov topology.

This result reinforces Proposition 2 of [34] which states the a.s. convergence
of T α,θ

n , in a certain finite-dimensional sense, to a continuum fragmentation tree
with parameters α, να,θ . In view of Theorem 5, it suffices to check that hypothe-
sis (H) holds, which in the present case states that for any f : S↓ →R continuous
with |f (s)| ≤ (1− s1),

nα
n−1∑

k=�n/2�
f

(
k

n
,
n− k

n
,0, . . .

)
qn

(
(k, n− k,0, . . .)

)

→
∫ 1

1/2
f (x,1− x,0, . . .)fα,θ (x)dx.

To prove this, we use that
∫ 1

0 xa−1(1−x)b−1 dx = �(a)�(b)/�(a+b) and rewrite
qα,θ (n− 1, k) as

qα,θ (n− 1, k)=
(

n− 1
k

)
α(n− 1− k)+ θk

n− 1

�(n− 1+ θ − α)

�(1− α)�(n− 1+ θ)

×
∫ 1

0
xk−α−1(1− x)n−k+θ−2 dx.

Then set for x ∈ [0,1],
F(x) := f (x,1− x,0, . . .)1{x>1/2} + f (1− x, x,0, . . .)1{x≤1/2},

and note that F(0)= 0 and |F(x)| ≤ (1− x)∧ x, for every x ∈ [0,1]. We have

n−1∑
k=�n/2�

f

(
k

n
,
n− k

n
,0, . . .

)
qn

(
(k, n− k,0, . . .)

)

=
n−1∑
k=0

F

(
k

n

)
qα,θ (n− 1, k)

= �(n− 1+ θ − α)

�(1− α)�(n− 1+ θ)

×
∫ 1

0

n−1∑
k=0

(
n− 1

k

)
α(n− 1− k)+ θk

n− 1
F

(
k

n

)
xk−α−1(1− x)n−k+θ−2 dx

= �(n− 1+ θ − α)

�(1− α)�(n− 1+ θ)

×
∫ 1

0
E

[(
α

(
1− B

(x)
n−1

n− 1

)
+ θ

B
(x)
n−1

n− 1

)
F

(
B

(x)
n−1

n

)]
x−α−1(1− x)θ−1 dx,
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where B
(x)
n−1 denotes a binomial random variable with parameters (n− 1, x). We

can assume that B
(x)
n−1/n→ x a.s. on the probability space (�, F ,P), and since F

is continuous and bounded on [0,1], we have

E

[(
α

(
1− B

(x)
n−1

n− 1

)
+ θ

B
(x)
n−1

n− 1

)
F

(
B

(x)
n−1

n

)]
→ (

α(1− x)+ θx
)
F(x) for every x ∈ [0,1].

Moreover,

E

[(
α

(
1− B

(x)
n−1

n− 1

)
+ θ

B
(x)
n−1

n− 1

)
F

(
B

(x)
n−1

n

)]

≤
(
(α + θ)E

[
B

(x)
n−1

n

])
∧
(
αE

[
1− B

(x)
n−1

n− 1

]
+ θE

[
B

(x)
n−1

n− 1

])
≤ (

(α + θ)x
)∧ (α(1− x)+ θx

)
.

This is enough to conclude by dominated convergence that∫ 1

0
E

[(
α

(
1− B

(x)
n−1

n− 1

)
+ θ

B
(x)
n−1

n− 1

)
F

(
B

(x)
n−1

n

)]
x−α−1(1− x)θ−1dx

−→
n→∞

∫ 1

0

(
α(1− x)+ θx

)
F(x)x−α−1(1− x)θ−1 dx

= �(1− α)

∫ 1

1/2
f (x,1− x, . . .)fα,θ (x)dx.

Last, Stirling’s formula implies that

�(n− 1+ θ − α)

�(n− 1+ θ)
∼

n→∞n−α

as wanted.

3. Preliminaries on self-similar fragmentations and trees.

3.1. Partition-valued self-similar fragmentations. In this section, we recall the
aspects of the theory of self-similar fragmentations that will be needed to prove
Theorems 5 and 6. We refer the reader to [9] for more details.

3.1.1. Partitions of sets of integers. Let B ⊂ N be a possibly infinite,
nonempty subset of the integers, and π = {π1, π2, . . .} be a partition of B . The
(nonempty) sets π1, π2, . . . are called the blocks of π , we denote their number
by b(π). In order to remove the ambiguity in the labeling of the blocks, we will
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use, unless otherwise specified, the convention that πi, i ≥ 1, is defined inductively
as follows: πi is the block of π that contains the least integer of the set

B
∖ i−1⋃

j=1

πj ,

if the latter is not empty. For i ∈ B , we also let π(i) be the block of π that contains i.
We let PB be the set of partitions of B . This forms a partially ordered set, where

we let π 
 π ′ if the blocks of π ′ are all included in blocks of π (we also say that
π ′ is finer than π ). The minimal element is OB = {B}, and the maximal element is
IB = {{i} : i ∈ B}.

If B ′ ⊆ B is nonempty, the restriction of π to B ′, denoted by π |B ′ or B ′ ∩π with
a slight abuse of notation, is the element of PB ′ whose blocks are the nonempty
elements of {B ′ ∩ π1,B

′ ∩ π2, . . .}.
If B ⊂N is finite, with say n elements, then any partition π ∈ PB with b blocks

induces an element λ(π) ∈ Pn with b parts, given by the nonincreasing rearrange-
ment of the sequence (#π1, . . . ,#πb).

A subset B ⊂N is said to admit an asymptotic frequency if the limit

lim
n→∞

#(B ∩ [n])
n

exists. It is then denoted by |B|. It is a well-known fact, due to Kingman, that if
π is a random partition of N with distribution invariant under the action of permu-
tations (simply called exchangeable partition), then a.s. every block of π admits
an asymptotic frequency. We then let |π |↓ ∈ S↓ be the nonincreasing rearrange-
ment of the sequence (|πi |, i ≥ 1). The exchangeable partition π is called proper if∑b(π)

i=1 |πi | = 1, which is equivalent to the fact that π has a.s. no singleton blocks.

3.1.2. Paintbox construction. Let ν be a dislocation measure, as defined in
Definition 4. We construct a σ -finite measure on PN by the so-called paintbox con-
struction. Namely, for every s ∈ S↓ with

∑
i≥1 si = 1, consider an i.i.d. sequence

(Ki, i ≥ 1) such that

P(K1 = k)= sk, k ≥ 1.

Then the partition π such that i, j are in the same block of π if and only if Ki =Kj

is exchangeable. We denote by ρs(dπ) its law. Note that ρs(dπ)-a.s., it holds that
|π |↓ = s, and π is a.s. proper under ρs. The measure

κν(dπ) :=
∫

S↓
ν(ds)ρs(dπ)

is a σ -finite measure on PN, invariant under the action of permutations. From the
integrability condition (2) on ν, it is easy to check that for k ≥ 2, if

Ak = {
π ∈ PN :π |[k] �= {[k]}}
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is the set of partitions whose trace on [k] has at least two blocks, then

κν(Ak)=
∫

S↓
ν(ds)

(
1−∑

i≥1

sk
i

)
<∞(8)

for every k ≥ 2, since 1−∑
i≥1 sk

i ≤ 1− sk
1 ≤ k(1− s1).

3.1.3. Exchangeable partitions of finite and infinite sets. In this section, we
establish some elementary results concerning exchangeable partitions of [n] or N.
The set of partitions with variable size, namely

P = PN ∪
⋃
n≥1

P[n]

is endowed with the distance

dP (π,π ′)= exp
(− sup

{
k ≥ 1 :π |[k] = π ′|[k]}).

In the sequel, convergence in distribution for partitions will be understood with re-
spect to the separable and complete space (P, dP ). We will use the falling factorial
notation

(x)n = x(x − 1) · · · (x − n+ 1)= �(x + 1)

�(x − n+ 1)

for x a real number and n ∈N, n < x + 1. When x ∈N, we extend the notation to
all n ∈N, by setting (x)n = 0 for n≥ x + 1.

LEMMA 13. Let π be an exchangeable partition of [n], and let k ≤ n. Then
for every B ⊂ [k] with l elements such that 1 ∈ B ,

P
([k] ∩ π(1) = B|#π(1)

)= (#π(1) − 1)l−1(n− #π(1))k−l

(n− 1)k−1
.

PROOF. By exchangeability, the probability under consideration depends on
B only through its cardinality, and this equal to P(i2, . . . , il ∈ π(1), j1, . . . , jk−l /∈
π(1)|#π(1)) for any pairwise disjoint i2, . . . , il, j1, . . . , jk−l ∈ {2,3, . . . , n} [note
that there are

(n−1
l−1

)(n−l
k−l

)
such choices]. Consequently,

P
([k] ∩ π(1) = B|#π(1)

)
= E[∑i2,...,il ,j1,...,jk−l

1{i2,...,il∈π(1)}1{j1,...,jk−l /∈π(1)}|#π(1)](n−1
l−1

)(n−l
k−l

)
=
(#π(1)−1

l−1

)(n−#π(1)

k−l

)
(n−1
l−1

)(n−l
k−l

) ,

where the sum in the expectation is over indices considered above. This yields the
result. �
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LEMMA 14. Let (π(n), n ≥ 1) be a sequence of random exchangeable par-
titions, respectively, in P[n]. We assume that π(n) converges in distribution to π .
Then π is exchangeable and

#π
(n)
(i)

n

(d)−→
n→∞

∣∣π(i)

∣∣,
the latter convergences holding jointly for i ≥ 1, and jointly with the convergence
π(n) → π .

PROOF. The fact that π is invariant under the action of permutations of N with
finite support is inherited from the exchangeability of π(n), and one concludes that
π is exchangeable [1].

The random variables (#π
(n)
(i) /n, i ≥ 1) take values in [0,1], so their joint dis-

tribution is tight, and up to extraction, we may assume that they converge in dis-
tribution to a random vector (x(i), i ≥ 1), jointly with the convergence π(n) → π .
We want to show that a.s. x(i) = |π(i)|, which will characterize the limiting distri-
bution.

For k ≥ l ≥ 1 fixed, by summing the formula of Lemma 13 over all B ⊂ [k]
containing i, with l elements, we get

P
(
#
([k] ∩ π

(n)
(i)

)= l|#π
(n)
(i)

)
=
(

k− 1
l − 1

) (#π
(n)
(i) − 1)l−1(n− #π

(n)
(i) )k−l

(n− 1)k−1

−→
n→∞

(
k− 1
l − 1

)
xl−1
(i)

(
1− x(i)

)k−l
,

which entails that, conditionally on x(i), #([k] ∩ π(i))− 1 follows a binomial dis-
tribution with parameters (k − 1, x(i)). Therefore,

∣∣π(i)

∣∣= lim
k→∞

#([k] ∩ π(i))

k
= x(i) a.s.

by the law of large numbers. �

LEMMA 15. Let (π(i),1 ≤ i ≤ r) be a sequence of random elements of PN,
which is exchangeable in the sense that (σπ(i),1 ≤ i ≤ r) has the same distribu-
tion as (π(i),1≤ i ≤ r), for every permutation σ of N. Then for every k ≥ 2,

P
(
2,3, . . . , k ∈ π

(1)
(1) |

∣∣π(i)
(j)

∣∣,1≤ i ≤ r, j ≥ 1
)= ∣∣π(1)

(1)

∣∣k−1
.

PROOF. Let n ≥ k, and set π(i,n) = π(i)|[n], so that (π(i,n),1 ≤ i ≤ r) is a
random sequence of P[n] that is exchangeable. Then, by using the same argument
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as in the proof of Lemma 13, it holds that

P
(
2,3, . . . , k ∈ π

(1,n)
(1) |#π

(i,n)
(j) ,1≤ i ≤ r,1≤ j ≤ n

)= (#π
(1,n)
(1) − 1)k−1

(n− 1)k−1
.

Using Lemma 14, and the fact that (π(i,n),1 ≤ i ≤ r) converges in distribution to
(π(i),1≤ i ≤ r) as n→∞, it is then elementary to get the result by taking limits.

�

3.1.4. Poisson construction of homogeneous fragmentations. We now recall a
useful construction of homogeneous fragmentations using Poisson point processes.
We again fix a dislocation measure ν.

Consider a Poisson random measure N (dt dπ di) on the set R+×PN×N, with
intensity measure dt ⊗ κν(dπ)⊗ #N(di), where #N is the counting measure on N.
We use a Poisson process notation (π0

t , i0
t )t≥0 for the atoms of N : for t ≥ 0, if

(t, π, i) is an atom of N , then we let (π0
t , i0

t )= (π, i), and if there is no atom of N
of the form (t, π, i), then we set π0

t = ON and i0
t = 0 by convention. One constructs

a process (�0(t), t ≥ 0) by letting �0(0)= ON, and given that �0(s),0 ≤ s < t ,
has been defined, we let �0(t) be the element of PN obtained from �0(t−) by
leaving its blocks unchanged, except the i0

t th block �0
i0
t

(t−), which is intersected

with π0
t . Of course, this construction is only informal, since the times t of oc-

currence of an atom of N are everywhere dense in R+. However, using (8), it is
possible to perform a similar construction for partitions restricted to [k], and check
that these constructions are consistent as k varies ([9], Section 3.1.1). The process
(�0(t), t ≥ 0) is called a partition-valued homogeneous fragmentation with dislo-
cation measure κν .

Note in particular that the block �0
(1)(t) that contains 1 at time t , is given by

�0
(1)(t)=

⋂
0<s≤t

i0
s=1

(π0
s )(1),(9)

and that the restriction of N to R+× PN×{1} is a Poisson measure with intensity
dt ⊗ κν(dπ).

For k ≥ 2, let D0
k = inf{t ≥ 0 :�0(t) ∈ Ak} be the first time when the re-

striction of �0(t) to [k] has at least two blocks. By the previous construction,
it is immediate to see that D0

k has an exponential distribution with parameter
κν(Ak): it is the first time t such that i0

t = 1 and π0
t ∈ Ak . Moreover, by stan-

dard properties of Poisson random measures, conditionally on D0
k = s, the ran-

dom variables π0
s and (π0

t , i0
t )0≤t<s are independent, and the law of π0

s equals
κν(·|Ak) = κν(· ∩ Ak)/κν(Ak), while (π0

t , i0
t )0≤t<s has the same distribution as

the initial process conditioned on {(π0
t , i0

t ) /∈ Ak × {1},0 ≤ t < s} = {D0
k ≥ s},

which has probability e−sκν(Ak). It is also equivalent to condition on {D0
k > s},
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since P(D0
k = s) = 0. The next statement sums up this discussion. By definition,

we let X(t ∧ s−)=X(t)1{t<s} +X(s−)1{t≥s} for X càdlàg.

LEMMA 16. Let F,f be nonnegative measurable functions. Then

E
[
F
(
�0(t ∧D0

k−), t ≥ 0
)
f (π0

D0
k

)
]

= κν(f |Ak)

∫ ∞
0

κν(Ak)dsE
[
F
(
�0(t ∧ s), t ≥ 0

)
1{D0

k>s}
]
.

Otherwise said, π0
D0

k

and (�0(t ∧D0
k−), t ≥ 0), are independent with respective

laws κν(·|Ak), and the law of (�0(t∧e), t ≥ 0) conditioned not to split [k], where e
is an exponential random variable, independent of �0, and with parameter κν(Ak).

3.1.5. Self-similar fragmentations. From a homogeneous fragmentation �0

constructed as above, one can associate a one-parameter family of PN-valued pro-
cesses by a time-changing method. Let a ∈R. For every i ≥ 1 we let (τ a

(i)(t), t ≥ 0)

be defined as the right-continuous inverse of the nondecreasing process∫ t

0

∣∣�0
(i)(u)

∣∣−a du, t ≥ 0.

For t ≥ 0, let �(t) be the random partition of N whose blocks are given by
�0

(i)(τ
a
(i)(t)), i ≥ 1. One can check that this definition is consistent, namely, that

for every j ∈�0
(i)(τ

a
(i)(t)), one has �0

(i)(τ
a
(i)(t))=�0

(j)(τ
a
(j)(t)).

The process (�(t), t ≥ 0) is called the self-similar fragmentation with index a

and dislocation measure ν ([9], Chapter 3.3). We now assume that a =−γ < 0 is
fixed once and for all. Let Dk = inf{t ≥ 0 :�(t) ∈Ak}.

PROPOSITION 17. Conditionally given σ {�(i)(t ∧Dk) : t ≥ 0,1≤ i ≤ k} and
letting π =�(Dk), the random variable (�i(t +Dk), t ≥ 0)1≤i≤b([k]∩π) has the
same distribution as (πi ∩�(i)(|πi |at), t ≥ 0)1≤i≤b([k]∩π), where (�(i), i ≥ 1) are
i.i.d. copies of �.

PROOF. For every i ≥ 1 we let Li = inf{t ≥ 0 :�(i)(t)∩ [k] �= [k]}. Then L=
(Li, i ≥ 1) is a so-called stopping line, that is, for every i ≥ 1, Li is a stopping time
with respect to the natural filtration of �(i), while Li = Lj for every j ∈�(i)(Li).
We let �(L) be the partition whose blocks are �(i)(Li), i ≥ 1—by definition of
a stopping line, two such blocks are either equal or disjoint. Note that t + L =
(t +Li, i ≥ 1) is also a stopping line, as well as t ∧L= (t ∧Li, i ≥ 1).

From the so-called extended branching property ([9], Lemma 3.14), we obtain
that conditionally given σ {�(t ∧ L), t ≥ 0}, the process (�(t + L), t ≥ 0) has
same distribution as ({

πi ∩�(i)(|πi |at), i ≥ 1
}
, t ≥ 0

)
,
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where π = �(L) and (�(i), i ≥ 1) are i.i.d. copies of �. The result is then a
specialization of this, when looking only at the blocks of � that contain 1,2, . . . , k.

�

It will be of key importance to characterize the joint distribution of Dk ,
(�(i)(Dk),1≤ i ≤ k). This can be obtained as a consequence of Lemma 16. Recall
the construction of � from �0, let τ(i) = τa

(i) and define πt = π0
τ(1)(t)

. The latter is

equal to π0
τ(i)(t)

for every i ∈ [k] and t ≤Dk .

PROPOSITION 18. Let F,f be nonnegative, measurable functions. Then

E
[
F
(∣∣�(1)(t ∧Dk−)

∣∣, t ≥ 0
)
f (πDk

)
]

= κν(f |Ak)

∫ ∞
0

duκν(Ak)E
[∣∣�(1)(u)

∣∣k−1+a1{|�(1)(u)|>0}

× F
(∣∣�(1)(t ∧ u)

∣∣, t ≥ 0
)]

.

PROOF. By definition, Dk (resp., D0
k ) is the first time when [k] ∩�(t) �= [k]

(resp., [k] ∩�0(t) �= [k]). It follows that D0
k = τ(1)(Dk), and that the process

�(1)(t ∧Dk−)=�0
(1)

(
τ(1)(t ∧Dk−)

)=�0
(1)

(
τ(1)(t)∧D0

k−
)
, t ≥ 0,

is measurable with respect to σ {�0
(1)(t ∧D0

k−), t ≥ 0}. Lemma 16 implies that

E
[
F
(∣∣�(1)(t ∧Dk−)

∣∣, t ≥ 0
)
f (πDk

)
]

= E
[
F
(∣∣�0

(1)

(
τ(1)(t)∧D0

k−
)∣∣, t ≥ 0

)
f (π0

D0
k

)
]

= κν(f |Ak)

∫ ∞
0

dsκν(Ak)E
[
F
(∣∣�0

(1)

(
τ(1)(t)∧ s

)∣∣, t ≥ 0
)
1{D0

k>s}
]

= κν(f |Ak)E

[∫ ∞
0

duκν(Ak)
∣∣�(1)(u)

∣∣a
× F

(∣∣�0
(1)

(
τ(1)(t)∧ τ(1)(u)

)∣∣, t ≥ 0
)
1{Dk>u}

]
= κν(f |Ak)E

[∫ ∞
0

duκν(Ak)
∣∣�(1)(u)

∣∣aF (∣∣�(1)(t ∧ u)
∣∣, t ≥ 0

)
1{Dk>u}

]
,

where in the third equality, we used successively Fubini’s theorem and the change
of variables s = τ(1)(u), so that ds = |�(1)(u)|a du. We conclude by using the fact
that

P
(
Dk > u|∣∣�(1)(t)

∣∣,0≤ t ≤ u
)= ∣∣�(1)(u)

∣∣k−1
,(10)

which can be argued as follows. Let 0≤ t1 < t2 < · · ·< tr = u be fixed times, then
by applying Lemma 15 to the sequence (�(ti),1≤ i ≤ r), we obtain that

P
(
Dk > u|∣∣�(1)(ti)

∣∣,1≤ i ≤ r
)= ∣∣�(1)(u)

∣∣k−1
.
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This yields (10) by a monotone class argument, using the fact that σ {|�(1)(t)|,0≤
t ≤ u} is generated by finite cylinder events. �

The last important property of self-similar fragmentations is that the process
(|�(1)(t)|, t ≥ 0) is a Markov process, which can be described as follows [9]. Let
(ξt , t ≥ 0) be a subordinator with Laplace transform

E[exp(−rξt )] = exp
(
−t

∫ ∞
0

(
1−∑

i≥1

sr+1
i

)
ν(ds)

)
.

Then (|�0
(1)(t)|, t ≥ 0) has the same distribution as (exp(−ξt ), t ≥ 0), and conse-

quently, the process (|�(1)(t)|, t ≥ 0) is a so-called self-similar Markov process:

PROPOSITION 19 (Corollary 3.1 of [9]). The process (|�(1)(t)|, t ≥ 0) has
same distribution as exp(−ξτ(t), t ≥ 0), where τ is the right-continuous inverse of
the process (

∫ u
0 exp(aξs)ds, u≥ 0).

3.2. Continuum fragmentation trees. This section is devoted to a more de-
tailed description of the limiting self-similar fragmentation tree Tγ,ν [25]. In par-
ticular, we will need a new decomposition result of reduced trees at the first branch-
point (Proposition 22).

3.2.1. Trees with edge-lengths and R-trees. We saw in Section 1.3.1 how to
turn a tree into a (finite) measured metric space. It is also easy to “turn discrete
trees into R-trees,” viewing the edges as real segments of length 1.

More generally, a plane tree with edge-lengths is a pair θ = (t, (�u, u ∈ t))
where �u ≥ 0 for every u ∈ t, and a tree with edge-lengths is obtained by “for-
getting the ordering” in a way that is adapted from the discussion of Section 1.1 in
a straightforward way. Namely, the plane trees with edge-lengths (t, (�u, u ∈ t))
and (t′, (�′u, u ∈ t′)) are equivalent if there exist permutations σ = (σu,u ∈ t) such
that σ t = t′ and �′σ (u) = �u, for every u ∈ t. We let � be the set of trees with edge-
lengths, that is, of equivalence classes of plane trees with edge-lengths. There is a
natural concatenation transformation, similar to 〈·〉, for elements of �. Namely, if
θ(i) = (t(i), (�

(i)
u , u ∈ t)),1≤ i ≤ k, is a sequence of plane trees with edge-lengths

and �≥ 0, let 〈
θ(i),1≤ i ≤ k

〉
� =

(
t, (�u, u ∈ t)

)
be defined by

t = 〈
t(i),1≤ i ≤ k

〉
and

�∅ = �, �iu = �(i)
u , 1≤ i ≤ k,u ∈ t(i).
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If we replace each θ(i) by another equivalent plane tree with edge-lengths, then the
resulting concatenation is equivalent to the first one, so that this operation is well
defined for elements of �.

Let θ ∈ �, and consider a plane representative (t, (�u, u ∈ t)). We construct
an R-tree T by imagining that the edge from pr(u) to u has length �u. Note that
this intuitively involves a new edge with length �∅ pointing from the root ρ of
the resulting R-tree to ∅ (this is sometimes called planting). Formally, T is the
isometry-equivalence class of a subset of R

t endowed with the l1-norm ‖(xu, u ∈
t)‖1 =∑

u∈t |xu|, defined as the union of segments⋃
u∈t

[∑
v≺u

�vev,
∑
v≺u

�vev + �ueu

]
,

where (eu, u ∈ t) is the canonical basis of R
t and v ≺ u means that v is a strict

ancestor of u in t. This R-tree is naturally rooted at 0 ∈R
t . Of course, its isometry

class does not depend on the choice of the plane representative of θ , and can be
written T (θ) unambiguously. Note that there is a natural “embedding” mapping
ι : t→ T (θ) inherited from

ι0 : t→ T , ι0(u)=∑
v
u

�vev,(11)

and the latter is an isometry if θ is endowed with the (pseudo-)metric dθ on its
vertices, defined by

dθ (u, v)= ∑
w
u xor w
v

�w,

where xor denotes “exclusive or.”
Conversely, it is an elementary exercise to see that any rooted R-tree T with

a finite number of leaves can be written in the form T = T (θ) for some θ ∈ �,
which is in fact unique. In the sequel, we will often identify the tree θ ∈ � with
the R-tree T (θ). For instance, this justifies the notation 〈T (1), . . . , T (r)〉� for R-
trees T (1), . . . , T (r) with finitely many leaves and for � ≥ 0, which stands for the
R-tree in which the roots of T (1), . . . , T (r) have been identified, and attached to a
segment of length � to a new root.

With a discrete tree t, we canonically associate the tree with edge-lengths θ in
which all lengths are equal to 1, and the rooted R-tree T (t)= T (θ). In this case,
dθ = dgr is the graph distance. Using the isometry ι : t �→ T (t), we get the following
statement, left as an exercise to the reader.

PROPOSITION 20. Viewing t ∈ T as the element (t, dgr, ρ,μ∂ t) of Mw as in
Section 1.3.1, and endowing T (t) with the uniform probability distribution on
L(T (t)), it holds that

dGHP(at, aT (t))≤ a, a > 0.
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Due to this statement, in order to prove that the Markov branching tree Tn with
law P

q
n converges after rescaling toward Tγ,ν , it suffices to show the same statement

for the R-tree T (Tn). We will often make the identification of Tn with T (Tn).

3.2.2. Partition-valued processes and R-trees. Let (π(t), t ≥ 0) be a process
with values in PC , C ⊂ N finite or infinite, which is nondecreasing and indexed
either by t ∈ Z+ or t ∈ R+, in which case we also assume that π(·) is right-
continuous. We assume that there exists some t0 > 0 such that π(t0) = IC . Let
B ⊆ C be finite. If B = {i}, we let

Dπ{i} = inf
{
t ≥ 0 : {i} ∈ π(t)

}
be the first time where i is isolated in a singleton block, and for #B ≥ 2, let

Dπ
B = inf{t ≥ 0 :B ∩ π(t) �= B}.

We can build a tree with edge-lengths (and labeled leaves) θ(π(·),B) by the fol-
lowing inductive procedure:

(1) if B = {i} we let θ(π(·),B) be the tree • with length Dπ{i};
(2) if #B ≥ 2, we let

θ(π(·),B)= 〈
θ
(
π(Dπ

B + ·),B ∩ πi(D
π
B)
)
,1≤ i ≤ b

〉
Dπ

B
,

where b is the number of blocks of π(Dπ
B) that intersect B , and which are denoted

by π1(D
π
B), . . . , πb(D

π
B).

Note that the previous labeling convention for blocks may not agree with our usual
convention of labeling with respect to order of least element.

If (π(t), t ∈ Z+) is indexed by nonnegative integers, and satisfies π(0) = OC ,
there is a similar construction with trees rather than trees with edge-lengths.
Namely, we let tπ(·) be defined by:

(1) tπ(·) = • if #C = 1;
(2) tπ(·) = 〈tπi(1)∩π(·+1),1≤ i ≤ b〉 otherwise, where b is the number of blocks

of π(1), denoted by π1(1), . . . , πb(1).

It is then easy to see that, with the notation of the previous section,

T
(
tπ(·)

)= T (θ(π(·),C)),(12)

and one can view θ(π(·),B) as the subtree of tπ(·) spanned by the root and the
leaves with labels in B .

3.2.3. Continuum fragmentation trees. Let (�(t), t ≥ 0) be the self-similar
fragmentation process with index −γ < 0 and dislocation measure ν. The for-
mation of dust property alluded to in Section 1.4 amounts to the fact that almost
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surely, there exists some time t0 > 0 such that �(t)= IN for every t ≥ t0. Conse-
quently, the construction of the previous paragraph applies with C =N, and allows
us to construct a family of R-trees

RB = θ(�(·),B)

indexed by finite subsets B ⊂N. Recall that a tree θ ∈� has been identified with
T (θ) ∈Tw. These R-trees have finitely many leaves that are naturally indexed by
elements of B . Moreover, they satisfy an obvious consistency property, meaning
that taking the subtree spanned by the root and the leaves indexed by B ′ ⊂ B

yields an R-tree with same law as RB ′ . This is the key to the definition of the
fragmentation tree Tγ,ν .

PROPOSITION 21 ([25]). Conditionally given Tγ,ν = (T , d, ρ,μ), let L1,
L2, . . . be an i.i.d. sequence of leaves of T distributed according to μ. Then for
every finite B ⊂N, the reduced subtree

R(Tγ,ν,B)= ⋃
i∈B

[[ρ,Li]]

has same distribution as RB .
Moreover, the law of Tγ,ν is the only one having this property, among distribu-

tions on Tw supported on the set of elements satisfying properties (1), (2) and (3)
in Section 1.4.

As an easy consequence, we have the following “converse construction” of frag-
mentations from Tγ,ν . With the notation of the proposition, for every t ≥ 0, let
�(t) be the partition of N such that i, j are in the same block of �(t) if and only if
d(ρ,Li ∧Lj) > t . Then (�(t), t ≥ 0) is a self-similar fragmentation process with
dislocation measure ν and index −γ .

Also, note that the reduced trees R(Tγ,ν,B) rooted at ρ and endowed with the
empirical measure

μB = 1

#B

∑
i∈B

δLi

converge in distribution as #B →∞ in Tw toward (T , d, ρ,μ). In fact, the con-
vergence holds a.s. if B = [k] with k →∞: this is a simple exercise using the fact
that {Li, i ≥ 1} is a.s. dense in L(T ) [by property (3) in the definition of Tγ,ν], and
the weak convergence of μ[k] to μ as k →∞.

The following statement gives a decomposition of the reduced tree R(T , [k])
at its first branchpoint above the root. Recall the notation Dk = inf{t ≥ 0 :�(t) ∈
Ak}.
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PROPOSITION 22. Let k ≥ 2 and π = �(Dk),π
′ = π |[k], b = b(π ′). Then

conditionally on {π,Dk}, the reduced tree R(Tγ,ν, [k]) has same distribution as

T
(〈|πi |γ R

(
T (i), π ′

i

)
,1≤ i ≤ b

〉
Dk

)
,

where the T (i) are i.i.d. with same distribution as Tγ,ν , independent of σ {π,Dk}.
Moreover, for every i ∈N, the tree R(Tγ,ν, {i}) has the same distribution as the

R-tree associated with the tree (∅,D1) ∈ �, that is, a real segment with length
D1 = inf{t ≥ 0 : {1} ∈�(t)}.

PROOF. The second statement is just a matter of definitions, so we only need
to prove the first one. By Proposition 17, the process �(Dk + ·), in restriction
to the blocks containing at least one element in [k], has same distribution as the
partitions-valued process whose blocks are those of πi ∩�(i)(|πi |−γ ·),1≤ i ≤ b,
for i.i.d. copies �(i), i ≥ 1, of �, independent on π,Dk . Therefore, one gets from
the definition of RB that

R[k]
(d)= T

〈
θ
(
�(i)(|πi |−γ ·),π ′

i

)
,1≤ i ≤ b

〉
Dk

,

from which the result follows immediately. �

Note that Proposition 18 gives the joint distribution of Dk, |πi |,1≤ i ≤ b,π ′, as
a special case, while Proposition 19 characterizes the law of D1, since it is the first
time where the process (|�(1)(t)|, t ≥ 0) attains 0. This, together with the previous
proposition, allows us to characterize entirely the laws of the reduced trees of Tγ,ν ,
hence the law of Tγ,ν itself.

3.2.4. Markov branching trees as discrete fragmentation trees. Recall the in-
formal description of Markov branching trees P

q
n in the Introduction, relying on

collections of balls in urns. Rather than collections of indistinguishable balls that
split randomly, it is convenient to consider instead a collection of balls that are
distinguished by a random, exchangeable labeling. This is achieved by replacing
partitions of integers by partitions of sets. We start with a preliminary lemma.

LEMMA 23. Let n ≥ 1 be fixed, as well as a partition λ ∈ Pn with p = p(λ)

parts.

(i) There are

Cλ = n!∏p
i=1 λi !∏n

j=1 mj(λ)!
partitions π ∈ P[n] such that λ(π)= λ.
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(ii) If 1 ≤ k ≤ n, and π ′ ∈ P[k] has b blocks, then for every i1, . . . , ib ∈
{1,2, . . . , p} pairwise distinct, there are

Cπ ′
λ (i1, . . . , ib)=Cλ

1

(n)k

b∏
j=1

(λij )#π ′
j

∏
l≥1

ml(λ)!
ml(λi, i /∈ {i1, . . . , ib})!

partitions π ∈ P[n] such that λ(π)= λ, π |[k] = π ′ and #πj = λij ,1≤ j ≤ b.

PROOF. Let p be the number of parts of λ. Then there are p!/∏n
j=1 mj(λ)!

sequences (c1, . . . , cp) whose nonincreasing rearrangement is λ. With any such
sequence, we can associate

n!∏p
i=1 ci ! =

n!∏p
i=1 λi !

sequences of the form (B1, . . . ,Bp) such that {B1, . . . ,Bp} is a partition of [n]
(beware that the labeling of the blocks Bi will differ, in general, from labeling
convention described above for the blocks of a partition), with #Bi = ci,1≤ i ≤ p.
Finally, exactly p! sequences of the form (B1, . . . ,Bp) induce the same partition
{B1, . . . ,Bp}. Putting things together easily yields the formula for Cλ.

For the second formula, if λ ∈ Pn,π
′ ∈ P[k] and i1, . . . , ib are given with

b = b(π ′), then any partition π ∈ P[n] with λ(π) = λ and π |[k] = π ′ must have
πi |[k] = (π |[k])i = π ′

i , for 1 ≤ i ≤ b, the first equality coming from our choice
of the labeling of blocks of partitions. The restriction of π to [k] is thus en-
tirely determined. The blocks π ′

1, . . . , π
′
b should be completed with, respectively,

λi1 − #π ′
1, . . . , λib − #π ′

b elements of [n] \ [k] to form the blocks π1, . . . , πb, while
the remaining subset of [n] \ [k] should be partitioned in such a way that the block
sizes are given by the sequence (λi, i /∈ {i1, . . . , ib}). There are

(n− k)!∏b
j=1(λij − #π ′

j )!
∏

i /∈{i1,...,ib} λi !∏l≥1 ml(λi, i /∈ {i1, . . . , ib})!
such partitions, and this can be rewritten as Cπ ′

λ (i1, . . . , ib). �

Going back to Markov branching trees, let B ⊂ N have n ≥ 2 elements. Let
q = (qn, n≥ 1) satisfy (1), and also assume that q1(∅)= 1. For every π ∈ PB , set

pB(π)= qn(λ(π))

Cλ(π)

,(13)

where Cλ is the constant appearing in Lemma 23. Given the partition of n that
it induces (which has distribution qn), a pB -distributed partition is thus uniform
among possible choices of partitions of B . In particular, a random partition with
distribution pB is exchangeable; that is, its law is invariant under the action of
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FIG. 2. A sample tree T[n] for n= 11, with the labeled leaves. The process �(11) can be easily de-

duced: for instance, �(11)(1)= {{1,2,6,7}, {3,5,10}, {4,8,9,11}}. As opposed to Figure 1, leaves
are all connected to vertices with at least 2 children, because of the requirement q1(∅)= 1.

permutations of B . By convention, the law pB , if B = {i} is a singleton, is the
Dirac mass at the partition {{i}}.

For every π ∈ PB with blocks π1, π2, . . . , πk say, consider random partitions
π̃ i ,1 ≤ i ≤ k, of π1, . . . , πk , respectively, chosen independently with respective
distributions pπ1, . . . , pπk

. We let Q(π, ·) be the law of the partition of B made
up of the collection of all blocks of π̃ i , 1 ≤ i ≤ k. Then Q is the transition kernel
of a Markov chain on PB (for any finite B ⊂ N), that ends at the state IB . It is
easily seen that this Markov chain is exchangeable as a process. Moreover, the
chain started from the state {B}, with #B = n has same distribution as the image
of the chain started from [n] under the action of any bijection [n]→ B .

For finite C ⊂ N, we let (�C(r), r ≥ 0) be the chain with transition matrix
Q and started from �C(0) = OC . Plainly, �C is nondecreasing and attains IC

in finite time a.s., so the construction of Section 3.2.2 applies and yields a fam-
ily θ(�C(·),B) ∈ �,B ⊆ C, as well as a tree TC := t�C(·) (see Figure 2 for
an example). By construction, given that �C(1) has blocks π1, . . . , πb, the trees
tπi∩�C(·+1),1 ≤ i ≤ b, are independent with same distribution as Tπi

,1 ≤ i ≤ b,
respectively. Since the law of the nonincreasing rearrangement of #πi,1 ≤ i ≤ b,
is q#C , we readily obtain the following statement.3

LEMMA 24. The tree TC has law P
q
#C .

In fact, the leaves of the tree TC are naturally labeled by elements of C. We will
use this in the sequel, without further formalizing the notion of trees with labeled
leaves.

3There is one subtlety in this statement, which is in the case C = {i} for some i ∈ N. Indeed, by
construction we have TC = • a.s., and this is the only place where we have to require that q1(∅)= 1.
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We will also use the shorthand notation T B
C for the reduced tree θ(�C(·),B).

Using the above description, and applying the Markov property for �C at time
D�C

B and the particular form of the Markov kernel Q, we immediately obtain the
following, in the particular case B = [k],C = [n].

PROPOSITION 25. Let 2 ≤ k ≤ n. Then, conditionally on D�[n]
[k] = � and

�[n](D�[n]
[k] )= π , with π |[k] = π ′, it holds that T

[k]
[n] has same distribution as〈

θ(i),1≤ i ≤ b(π ′)
〉
�,

where θ(i),1 ≤ i ≤ b, are independent with respective laws that of T
π ′

i
πi ,1 ≤ i ≤

b(π ′).

PROOF. The only subtle point is that [k] ∩ πi = π ′
i ,1≤ i ≤ b, since the label-

ing of the blocks of π,π ′ could differ. But since these partitions are, respectively,
of [n] and [k], this cannot be the case. �

4. Proofs of Theorems 5 and 6. Let q = (qn, n ≥ 1) be a sequence of laws
on Pn, respectively, that satisfies (1) and (H), for some fragmentation pair (−γ, ν)

and some slowly varying function �. In order to lighten notation, we let an =
nγ �(n).

Consider a sequence of trees (Tn, n ≥ 1), where Tn has distribution P
q
n , n ≥ 1.

As we noticed in the Introduction, it is easy to pass from the situation where
q1(∅) = 1 to the general situation, by adding independent linear strings with
geometric(q1(∅))-distributed lengths to the n leaves of Tn. Since geometric distri-
butions have exponential tails, the longest of these n strings will have a length at
most C logn with probability going to 1 as n→∞, for some C > 0. If we let T 1

n

be the tree for which q1(∅) > 0 and T 2
n the one for which q1(∅)= 1, coupled in

the way depicted above, we easily get, for any γ > 0,

P
(
dGHP(a−1

n T 1
n , a−1

n T 2
n )≤ Ca−1

n logn
) −→
n→∞1.

Thus, we can deduce the convergence in distribution of a−1
n T 1

n to Tγ,ν from that of
a−1
n T 2

n . Therefore, from now on and until the end of the present section, we make
the following hypothesis, which will allow us to apply Lemma 24:

(H′) The sequence (qn, n≥ 1) satisfies (H) and q1(∅)= 1.

4.1. Preliminary convergence lemmas. We now establish a couple of interme-
diate convergence results for the discrete model. Recall that the sequence of distri-
butions qn,n≥ 2, on Pn, respectively, induce distributions pB on PB for finite B

by formula (13). By convention we set pn = p[n].
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LEMMA 26. Let k ≥ 2, and let π ′ be an element in P[k] with b blocks, b ≥ 2.
Let g : (0,∞)b → R be a continuous function with compact support. Then, under
assumption (H′),

anpn

(
g

(
#π1

n
, . . . ,

#πb

n

)
1{π |[k]=π ′}

)
−→
n→∞

∫
PN

κν(dπ)g(|π1|, . . . , |πb|)1{π |[k]=π ′},

where κν is the paintbox construction associated with ν. Note that on the event
{π |[k] = π ′}, the quantities #πi/n and |πi | for 1 ≤ i ≤ b that appear above are
a.e. nonzero, respectively, under pn and κν .

PROOF. For simplicity, we let

Bn = pn

(
g

(
#π1

n
, . . . ,

#πb

n

)
1{π |[k]=π ′}

)
.

Let λ ∈ Pn, and let i1, . . . , ib ∈ N be pairwise distinct. This induces a sequence
(λi1, . . . , λib). Note that there are exactly∏

l≥1

ml(λ)!
ml(λi, i /∈ {i1, . . . , ib})!

choices of such pairwise distinct indices i ′1, . . . , i ′b such that (λi′1, . . . , λi′b ) =
(λi1, . . . , λib). Hence, by the definition of qn and Lemma 23,

Bn =
∑

λ∈Pn

qn(λ)
∑

i1,...,ib≥1
pairwise distinct

∏
l≥1

ml(λi, i /∈ {i1, . . . , ib})!
ml(λ)! g

(
λi1

n
, . . . ,

λib

n

)

× Cπ ′
λ (i1, . . . , ib)

Cλ

= ∑
λ∈Pn

qn(λ)
1

(n)k

∑
i1,...,ib≥1

pairwise distinct

g

(
λi1

n
, . . . ,

λib

n

) b∏
j=1

(λij )#π ′
j
.

Now, the function

h(s)= ∑
i1,...,ib≥1

pairwise distinct

g(si1, . . . , sib )

b∏
j=1

s
#π ′

j

ij
, s ∈ S↓,

is continuous and bounded, because g is compactly supported in (0,∞)b, so that
the sum is really a finite sum. Moreover,

h(s)≤K
∑

0≤k1,k2,...<k

k1+k2+···=k

k!∏
j≥1 kj !

∏
j≥1

s
kj

j =K

(
1−∑

j≥1

sk
j

)
≤ kK(1− s1),(14)
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where K is an upper-bound of |g|, and for every λ ∈ Pn, it is easily checked that
for large n, if ε > 0 is such that g(x1, . . . , xb)= 0 as soon as min1≤i≤b xi ≤ ε,(

1− k

εn

)k

h(λ/n)≤ 1

(n)k

∑
i1,...,ib≥1

pairwise distinct

g

(
λi1

n
, . . . ,

λib

n

) b∏
j=1

(λij )#π ′
j

≤
(

n

n− k

)k

h(λ/n).

Letting n→∞ and applying (H′), which is validated by (14),

lim
n→∞anBn =

∫
S↓

ν(ds)h(s)=
∫

PN

κν(dπ)g(|π1|, . . . , |πb|)1{π |[k]=π ′},

the latter equality being a simple consequence of the paintbox construction of Sec-
tion 3.1.2. �

Now, we associate with (qn, n ≥ 1) a family of process (�B(r), r ≥ 0) with
values in PB , as in Section 3.2.4. We let �n =�[n] for simplicity, and set

Dn
k =D�n

[k] = inf
{
r ≥ 0 : [k] ∩�n(r) �= {[k]}}

for 2≤ k ≤ n, and Dn
1 =D�n

{1} = inf{r ≥ 0 : {1} ∈�n(r)}. Also, for r ≥ 0 we let

Xn(r)= #�n
(1)(r).

LEMMA 27. Let n, k ∈ N be fixed, with n ≥ k ≥ 2, and let π ′ ∈ P[k] have
b ≥ 2 blocks. Let F,f be measurable nonnegative functions. Then

E
[
F
(
Xn

(· ∧ (Dn
k − 1)

))
f
(
#�n

i (D
n
k ),1≤ i ≤ b

)
1{[k]∩�n(Dn

k )=π ′}
]

= ∑
r ′>0

E

[
(Xn(r

′ − 1)− 1)k−1

(n− 1)k−1

× F
(
Xn

(· ∧ (r ′ − 1)
))

pXn(r ′−1)

(
f (#πi,1≤ i ≤ b)1{π |[k]=π ′}

)]
.

PROOF. We first consider an expression of a more general form. For nonneg-
ative functions G,g, we have, using the Markov property at time r ′ − 1 in the
second step,

E
[
G
(
�n(· ∧ (Dn

k − 1)
))

g
(
�n

(1)(D
n
k − 1)∩�n(Dn

k )
)]

= ∑
r ′>0

E
[
G
(
�n(· ∧ (r ′ − 1)

))
× 1{[k]⊂�n

(1)(r
′−1)}g

(
�n

(1)(r
′ − 1)∩�n(r ′)

)
1{[k]∩�n(r ′) �={[k]}}

]
= ∑

r ′>0

E
[
G
(
�n(· ∧ (r ′ − 1)

))
1{[k]⊂�n

(1)(r
′−1)}p�n

(1)(r
′−1)

(
g(π)1{[k]∩π �={[k]}}

)]
.
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Specializing this formula to G depending only on Xn and g(π) = f (#π1, . . . ,

#πb)1{π |[k]=π ′}, and using obvious exchangeability properties, we obtain

E
[
F
(
Xn

(· ∧ (Dn
k − 1)

))
f
(
#�n

i (D
n
k ),1≤ i ≤ b

)
1{[k]∩�n(Dn

k )=π ′}
]

= ∑
r ′>0

E
[
F
(
Xn

(· ∧ (r ′ − 1)
))

× pXn(r ′−1)

(
f (#πi,1≤ i ≤ b)1{π |[k]=π ′}

)
1{[k]⊂�n

(1)(r
′−1)}

]
.

All the terms in the expectation depend on (Xn(r),0≤ r ≤ r ′ − 1), except the last
one which is a function of �n

(1)(r
′ −1). But by Lemma 13 (in fact, the variant used

in the proof of Lemma 15),

P
([k] ⊂�n

(1)(r
′ − 1)|(Xn(r),0≤ r ≤ r ′ − 1

))= (Xn(r
′ − 1)− 1)k−1

(n− 1)k−1

giving the result. �

In the sequel, �(·) will denote a continuous-time self-similar fragmentation
with characteristic pair (−γ, ν), and Dk, k ≥ 1, will be defined as in Section 3.1.5.

LEMMA 28. Under assumption (H′), it holds that(
Xn(�ant�)

n
, t ≥ 0

)
(d)−→

n→∞
(∣∣�(1)(t)

∣∣, t ≥ 0
)
,

in distribution for the Skorokhod topology, jointly with the convergence

1

an

Dn
1

(d)−→
n→∞D1.

PROOF. For n > k ≥ 1, let pn,k = P(Xn(1)= k). Note that the process Xn is a
nonincreasing Markov chain started from n, with probability transitions pi,j ,1 ≤
j ≤ i. Then by a simple exchangeability argument,

pn,k =
∑

π∈P[n]
pn(π)mk(π)

k

n
= ∑

λ∈Pn

qn(λ)mk(λ)
k

n
, 1≤ k ≤ n,

where mk(π)=mk(λ(π)) is the number of blocks of π with size k. Consider the
associated generating function for x ≥ 0,

Fn(x)=
n∑

k=1

(
k

n

)x

pn,k =
∑

λ∈Pn

qn(λ)

n∑
k=1

mk(λ)

(
k

n

)x+1

= ∑
λ∈Pn

qn(λ)
∑
i≥1

(
λi

n

)x+1

.
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Hence, 1 − Fn(x) = qn(f ), where f (s) = 1 −∑
i≥1 sx+1

i . Note that f : S↓ → R

is continuous whenever x > 0. Indeed, the norm ‖s‖x+1 = (
∑

i≥1 sx+1
i )1/(x+1) of

any s ∈ S↓ is finite, and satisfies for every s, s′ ∈ S↓,∣∣‖s‖x+1 − ‖s′‖x+1
∣∣≤ ‖s− s′‖x+1

≤ sup
i≥1

|si − s′i |x/(1+x)

(∑
i≥1

si +
∑
i≥1

s′i
)1/(x+1)

≤ 21/(x+1)d(s, s′)x/(x+1).

Thus we may apply (H′), and obtain

an

(
1− Fn(x)

) −→
n→∞

∫
S↓

(
1−∑

i≥1

sx+1
i

)
ν(ds).

This is exactly what we need to use [26], Theorem 1, stating that (n−1Xn(�ant�),
t ≥ 0) converges in distribution to the self-similar Markov process exp(−ξτ(·)), as
defined around Proposition 19. Moreover, this convergence holds jointly with the
convergence of absorption times at 1, so a−1

n Dn
1 converges to the absorption time at

0 of exp(−ξτ(·)). By Proposition 19, the process exp(−ξτ(·)) has same distribution
as (|�(1)(t)|, t ≥ 0), which reaches 0 for the first time at time D1. Hence the result.

�

Finally, the combination of the last two lemmas gives the last of our preliminary
ingredients.

LEMMA 29. The following joint convergence in distribution holds:(
Dn

k

an

, [k] ∩�n(Dn
k ),

(#�n
(i)(D

n
k )

n
, i ∈ [k]

))
(d)−→

n→∞
(
Dk, [k] ∩�(Dk),

(∣∣�(i)(Dk)
∣∣, i ∈ [k])).

PROOF. Let π ′ ∈ Pk have b ≥ 2 blocks, and f,g : (0,∞)→R, h : (0,∞)b →
R be continuous functions with compact support. Then by Lemma 27,

E

[
f

(
Dn

k

an

)
g

(
Xn(D

n
k − 1)

n

)
h

(
#�n

i (D
n
k )

Xn(D
n
k − 1)

,1≤ i ≤ b

)
1{[k]∩�n(Dn

k )=π ′}
]

= ∑
r ′>0

f

(
r ′

an

)
E

[
(Xn(r

′ − 1)− 1)k−1

(n− 1)k−1
g

(
Xn(r

′ − 1)

n

)

× pXn(r ′−1)

(
h

(
#πi

Xn(r ′ − 1)
,1≤ i ≤ b

)
1{π |[k]=π ′}

)]
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= 1

an

∑
r ′>0

f

(
r ′

an

)
E

[
�
(
n,Xn(r

′ − 1)
)
g

(
Xn(r

′ − 1)

n

)
�
(
Xn(r

′ − 1)
)]

=
∫ ∞

1/an

f

(�anu�
an

)
duE

[
�
(
n,Xn(�anu� − 1)

)
× g

(
Xn(�anu� − 1)

n

)
�
(
Xn(�anu� − 1)

)]
,

where

�(n,x)= (x − 1)k−1

(n− 1)k−1

an

ax

−→
(n,x/n)→(∞,c)

ck−1−γ

and

�(m)= ampm

(
h

(
#πi

m
,1≤ i ≤ b

)
1{π |[k]=π ′}

)
.

Note that the Potter’s bounds for regularly varying functions ([11], Theorem 1.5.6)
imply that �(n,x)≤ C(x

n
)k−1−γ−1 for all n≥ x ≥A for some finite positive con-

stants C,A. In particular there exists some n0 such that supn≥n0,0<x≤n �(n, x)×
g(x/n) < ∞ (since g is null in a neighborhood of 0). The joint use of Lemmas
26 and 28 entails by dominated convergence that the expectation term in the inte-
gral converges to (note that the quantities |πi |,1 ≤ i ≤ b, are all a.e. positive on
{π |[k] = π ′} under κν)

E

[∣∣�(1)(u)
∣∣k−1−γ

g
(∣∣�(1)(u)

∣∣) ∫
PN

κν(dπ)h(|πi |,1≤ i ≤ b)1{π |[k]=π ′}
]
,

and since f,g,h are compactly supported, the whole integral converges to∫ ∞
0

f (u)duE

[∣∣�(1)(u)
∣∣k−1−γ

g
(∣∣�(1)(u)

∣∣)
×
∫

PN

κν(dπ)h(|πi |,1≤ i ≤ b)1{π |[k]=π ′}
]
,

which, by Proposition 18, equals

E

[
f (Dk)g

(∣∣�(1)(Dk−)
∣∣)h( |�i(Dk)|

|�(1)(Dk−)| ,1≤ i ≤ b

)
1{[k]∩�(Dk)=π ′}

]
.

It is now easy to conclude, since |�i(Dk)|> 0 almost-surely. �

4.2. Convergence of finite-dimensional marginals. The first step in the proof
of Theorem 5 is the following result on reduced trees T B

C of Section 3.2.4.

PROPOSITION 30. Let B ⊂ N be finite. Under assumption (H′), we have the
following convergence in distribution in Tw:

1

an

T B[n]
(d)−→

n→∞ R(Tγ,ν,B).
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PROOF. We use an induction argument on the cardinality of B . For B = {i},
one can assume by exchangeability (as soon as n ≥ i) that B = {1}, and in this
case, the reduced tree is T B[n] = (∅,Dn

1 ), while R(Tγ,ν, {1})= (∅,D1) by Propo-
sition 22. By the second part of Lemma 28, under (H′), it holds that

Dn
1

an

(d)−→
n→∞D1.

This initializes the induction. Now, assume that Proposition 30 has been proved
for every set B with cardinality at most k − 1, for some k ≥ 2. We want to show
that the same is true of any set of cardinality k, and by exchangeability, we may
assume that B = [k].

We now recall, using Proposition 25, that conditionally on Dn
k = �, [k] ∩

�n(Dn
k ) = π ′ having b ≥ 2 blocks and on �n

i (D
n
k ) = πi,1 ≤ i ≤ b, with respec-

tive cardinality #πi = ni , the tree T
[k]
[n] has same distribution as〈

θ(i),1≤ i ≤ b
〉
�,

where θ(i) has same distribution as T
π ′

i
πi , and these trees are independent.

The joint distribution of Dn
k , [k] ∩�n(Dn

k ), (#�n
(i)(D

n
k ),1≤ i ≤ k) is specified

by Lemma 27, and its scaling limit by Lemma 29. We obtain by the induction
hypothesis that jointly with the above convergence, conditionally on [k] ∩
�n(Dn

k )= π ′,
1

an

θ(i) = ani

an

1

ani

θ (i)

(d)−→
n→∞ |�i(Dk)|γ T (i), 1≤ i ≤ b,

where the T (i) are independent with same laws as R(Tγ,ν, π
′
i ), respectively. Fi-

nally, a−1
n T

[k]
[n] converges to〈|�i(Dk)|γ T (i),1≤ i ≤ b

〉
Dk

,

and the R-tree associated with this tree has same distribution as R(Tγ,ν, [k]) by
Proposition 22. �

4.3. Tightness in the Gromov–Hausdorff topology. We now want to improve
the convergence of Proposition 30 into a convergence of nonreduced trees for the
Gromov–Hausdorff topology. Namely

PROPOSITION 31. Under hypothesis (H′), we have the convergence in distri-
bution

1

an

Tn
(d)−→

n→∞ Tγ,ν

in T , for the Gromov–Hausdorff topology.
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This will be proved by first showing a couple of intermediate lemmas.

LEMMA 32. Under assumption (H′), we have the convergence in distribution(
�n(�ant�), t ≥ 0

) (d)−→
n→∞

(
�(t), t ≥ 0

)
jointly with (#�n

(i)(�ant�)
n

, t ≥ 0
)

(d)−→
n→∞

(∣∣�(i)(t)
∣∣, t ≥ 0

)
for every i ≥ 1, all these convergences holding jointly.

PROOF. The fact that ([k] ∩ �n(�ant�), t ≥ 0) converges in the Skorokhod
space to ([k] ∩ �(t), t ≥ 0) for every k ≥ 1 is obtained by using an inductive
argument similar to that used in the proof of Proposition 30. We only sketch the
argument. The statement is trivial for k = 1, so we can assume that k ≥ 2. The
process [k] ∩ �n(�an·�) remains constant equal to [k] up to time a−1

n Dn
k , and

jumps to the state π ′ = [k] ∩ π , π = �n(Dn
k ). By Lemma 29, a−1

n Dn
k → Dk as

n→∞, and the latter has a diffuse law by Proposition 18.
After time a−1

n Dn
k , given π , the restrictions π ′

i ∩ �n(�an·� + Dn
k ) have same

distribution as π ′
i ∩�πi (�an·�) and are independent. By the induction hypothesis

and exchangeability, still conditionally on π , this converges to π ′
i ∩�(i)(·), where

�(i), i ≥ 1, are i.i.d. copies of �. Moreover, since the jump times have diffuse
laws, two such copies never jump at the same time, from which one concludes
that given π , the process (π ′

i ∩�n(�ant� +Dn
k ),1 ≤ i ≤ b(π ′), t ≥ 0) converges

in the Skorokhod space to (π ′
i ∩�(i)(t),1≤ i ≤ b(π ′), t ≥ 0). This concludes the

inductive step by gluing on the initial constancy interval of the process, with length
a−1
n Dn

k .
The convergence of �n(�an·�) in the Skorokhod space follows, because

dP ([k] ∩ π,π)≤ e−k for every π ∈ PN. This shows that [k] ∩�n(�an·�) remains
uniformly close to �n(�an·�).

Next, by Lemma 14, it follows that, jointly with this convergence, for every
i ≥ 1, the one-dimensional marginals of (n−1#�n

(i)(�ant�), t ≥ 0) converge in dis-
tribution to those of (|�(i)(t)|, t ≥ 0), at least for times which are not fixed discon-
tinuity times of the limiting process—the set of such points is always countable,
and it turns out that there are none in the present case. The convergence of finite-
dimensional marginals (outside of possible fixed discontinuities) is obtained in a
similar way, using a straightforward generalization of Lemma 14 to the case of a
sequence ((π(n,1), . . . , π(n,k)), n ≥ 1) of jointly exchangeable random partitions,
respectively, of [n], that converges to a limiting k-tuple of random partitions of N.
This generalization is left to the reader.

Since we also know that the laws of the processes (n−1#�n
(i)(�ant�), t ≥ 0) are

tight when n varies, by Lemma 28 (these processes all have same distribution as
(n−1Xn(�ant�), t ≥ 0) by exchangeability), this allows us to conclude. �
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For k+ 1≤ i ≤ n, let

Sn
i = inf

{
r ≥ 0 : [k] ∩�n

(i)(r)=∅
}
,

the first time when the ball indexed i is separated from the k first balls. The ran-
dom variables Sn

i , k + 1 ≤ i ≤ n, have same distribution by exchangeability. The
strong Markov property at the stopping time Sn

i also shows that conditionally on
�n

(i)(S
n
i )= B , the process (B ∩�n(Sn

i + r), r ≥ 0) has same distribution as �B .
Conditionally on �n

(i)(S
n
i )= B , the tree tB∩�n(Sn

i +·) has thus the same distribution
as TB and can be seen as a subtree of T[n], characterized by the fact that this sub-
tree contains the leaf labeled i, does not contain any of the leaves labeled by an
element of [k] and is the maximal subtree of T[n] with this property. In particular,
the Gromov–Hausdorff distance between T

[k]
[n] and T[n] is at most

dGH
(
T
[k]
[n] , T[n]

)≤ max
k+1≤i≤n

ht
(
t�n

(i)(S
n
i )∩�n(Sn

i +·)
)
,

where ht(t), called the height of t, is the maximal height of a vertex in t.
Note that if j ∈�n

(i)(S
n
i ), then Sn

j = Sn
i . Therefore, the blocks �n

(i)(S
n
i ), k+1≤

i ≤ n, are either disjoint or equal. Moreover, the partition π of [n] \ [k] with these
blocks is clearly exchangeable. By putting the previous observations together, we
obtain by first conditioning on π , and for every η > 0,

P
(
dGH

(
T
[k]
[n] , T[n]

)≥ ηan

)≤ E

[∑
i≥1

P
q
#πi

(ht≥ ηan)

]
, η > 0.(15)

Here and later, we adopt the convention that quantities involving #πi are always
equal to 0 when #πi = 0. At this point, we need the following uniform estimate for
the height of a P

q
n-distributed tree, which is the key lemma of this section.

LEMMA 33. Assume (H′). Then for all p > 0, there exists a finite constant Cp

such that

Pq
n(ht≥ xan)≤ Cp

xp
∀x > 0,∀n≥ 1.

Before giving the proof of this statement, we end the proof of Proposition 31.
Using Lemma 33 for p = 2/γ and (15), we obtain

P
(
dGH

(
T
[k]
[n] , T[n]

)≥ ηan

)≤ C2/γ η−2/γ
E

[∑
i≥1

a
2/γ
#πi

a
2/γ
n

]
.

By the exchangeability of the partition π of [n]\[k], note that for every measurable
function f ,

E
[
f
(
#π(k+1)

)]= 1

n− k
E

[
n∑

i=k+1

f
(
#π(i)

)]= E

[∑
i≥1

#πi

n− k
f (#πi)

]
.
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This finally yields

P
(
dGH

(
T
[k]
[n] , T[n]

)≥ ηan

)≤ C2/γ η−2/γ
E

[a
2/γ
#π(k+1)

(#π(k+1))
−1

a
2/γ
n n−1

]
.

Since the sequence (a
2/γ
n n−1, n ≥ 1) is strictly positive and regularly varying at

∞ with index 1, we get from Potter’s bounds ([11], Theorem 1.5.6), the existence
of a finite constant C such that (a

2/γ
k k−1)/(a

2/γ
n n−1)≤ C

√
k/n for all 1≤ k ≤ n.

Hence,

P
(
dGH

(
T
[k]
[n] , T[n]

)≥ ηan

)≤ CC2/γ η−2/γ
E

[√
#π(k+1)

n

]
.

Note that the quantity in the expectation is bounded by 1. By Lemma 32, it holds
that Sn

k+1/an → Sk+1 in distribution as n →∞, where Sk+1 = inf{t ≥ 0 : [k] ∩
�(k+1)(t)=∅}. This convergence holds jointly with that of (n−1#�n

(k+1)(�ant�),
t ≥ 0) to (|�(k+1)(t)|, t ≥ 0) in the Skorokhod space, whence we deduce that

lim sup
n→∞

P
(
dGH

(
T
[k]
[n] , T[n]

)≥ ηan

)≤ CC2/γ η−2/γ
E
[√∣∣�(k+1)(Sk+1−)

∣∣].
Let S′k+1 = inf{t ≥ 0 : {2,3, . . . , k+ 1} ∩�(1)(t)=∅}, then by exchangeability,

lim sup
n→∞

P
(
dGH

(
T
[k]
[n] , T[n]

)≥ ηan

)≤ CC2/γ η−2/γ
E
[√∣∣�(1)(S

′
k+1−)

∣∣].
Since the quantity in the expectation goes to 0 a.s. as k →∞ and is bounded [in-
deed S′k ↑D{1} a.s. and |�(1)(D{1}−)| = 0 by (2) and Proposition 19], we conclude
that for every η > 0,

lim
k→∞ lim sup

n→∞
P
(
dGH

(
T
[k]
[n] , T[n]

)≥ ηan

)= 0.(16)

It is now easy to get from this the convergence in distribution of a−1
n T[n] toward

Tγ,ν in (T , dGH), using the following lemma, together with (16), Proposition 30
and the fact that R(Tγ,ν, [k]) converges in distribution in (T , dGH) to Tγ,ν as
k →∞ [25].

LEMMA 34 ([10], Theorem 3.2). Let Xn,X,Xk
n,X

k be random variables in a
metric space (M,d). We assume that for every k, we have Xk

n →Xk in distribution
as n →∞, and Xk → X in distribution as k →∞. Finally, we assume that for
every η > 0,

lim
k→∞ lim sup

n→∞
P
(
d(Xk

n,Xn) > η
)= 0.

Then Xn →X in distribution as n→∞.
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PROOF OF LEMMA 33. Note that if the statement holds for some p > 0, it
then holds for all p′ ∈ (0,p). We can therefore assume in the following that p >

1/γ , and we let ε > 0 be so that p(γ − ε) > 1. The main idea of the proof is to
proceed by induction on n, using the Markov branching property. We start with
some technical preliminaries.
• First note that E

q
n[htr ] < ∞ for all r > 0 and all n ≥ 1. This can easily be

proved by induction on n (r being fixed) using the Markov branching property and
the facts that qn((n)) < 1 and that ht= 0 almost-surely under P

q
1 .

• Second, we replace the sequence (an, n≥ 1) by a “nicer” sequence (ãn, n≥ 1)

such that ãn ∼ an, that is, an/ãn → 1 as n→∞. This step is trivial when an = nγ ;
we then take ãn = an. Since an = nγ �(n) with � slowly varying at ∞, it is well
known (see [11], Theorem 1.3.1) that it can be written in the form

an = nγ c(n) exp
(∫ n

1
η(u)du/u

)
, n≥ 1,

where c(n)→ c > 0 as n→∞, and η is a measurable function that converges to
0 as u→∞. Define

ãn = nγ c exp
(∫ n

1
η(u)du/u

)
, n≥ 1.

We claim that there exists an integer nε ≥ 1 such that for n≥ nε ,

ãk

ãn

≤
(

k

n

)γ−ε

∀1≤ k ≤ n.(17)

Indeed, let uε be such that |η(u)| ≤ ε for all u≥ uε . For n≥ k ≥ uε , we have∣∣∣∣∫ n

k
−η(u)du/u

∣∣∣∣≤ ε

∫ n

k
du/u≤ ε ln(n/k);

hence

ãk

ãn

=
(

k

n

)γ

exp
(
−
∫ n

k
η(u)du/u

)
≤
(

k

n

)γ−ε

.

Besides supk∈{1,...,�uε�} ãkk
ε−γ /(ãnn

ε−γ )≤ 1 for all n large enough (say n≥ n′ε).
Hence ãk/ãn ≤ (k/n)γ−ε for all n≥ nε =max(n′ε, uε) and all 1≤ k ≤ n.
• Since an > 0 for all n ≥ 1 and ãn ∼ an, there exists some C > 0 such that

an ≥ Cãn for all n ≥ 1. It is therefore sufficient to prove the existence of a finite
Cp (a priori different from the one in the statement of the lemma) such that

Pq
n(ht≥ xãn)≤ Cp

xp
∀x > 0 and n≥ 1,(18)

to finish the proof of the lemma. In order to prove (18), we will use the integer nε

introduced around (17), and we will further assume, taking nε larger if necessary,
that ãn ≥ 1 for every n≥ nε . Introduce now 0 < C1

p < 1 such that

(1− u)−p ≤ 1+ 2pu ∀0≤ u≤C1
p.
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Using (H′) and the fact that qn((n)) < 1 for all n≥ 1, there exists also C2
p > 0 such

that

ãn

∑
λ∈Pn

qn(λ)

(
1−

p(λ)∑
i=1

(
λi

n

)(γ−ε)p
)
≥ C2

p ∀n≥ 1(19)

[recall that (γ − ε)p > 1 and ãn > 0 for all n≥ 1]. Last we let

Cp(nε) := max
1≤n≤nε

(Eq
n[htp]/ãp

n ) <∞,

and we set

Cp :=max
(
Cp(nε), (1/C1

p)p, (2p/C2
p)p

)
<∞.

Our goal is to prove by induction on n≥ 1 that

Pq
n(ht < xãn)≥ 1− Cp

xp
for every x > 0.(An)

Clearly, (An) holds for all n ≤ nε since Cp ≥ Cp(nε) and P
q
n(ht ≥ xãn) ≤

E
q
n[htp]/(xãn)

p . Now assume that (Ak) is satisfied for all k ≤ n − 1 for some
n ≥ nε . For all 0 < x ≤ C

1/p
p , the expected inequalities in (An) are obvious, so it

remains to prove them for x > C
1/p
p . To get (An), we will prove by induction on

i ∈N that

Pq
n(ht < xãn)≥ 1− Cp

xp
for every x ∈

(
0,

i

ãn

)
,(An,i)

which will obviously lead to (An). Note first that (An,1) holds since 1/ãn ≤ 1 ≤
C

1/p
p . Assume next that (An,i) is true, and fix x ∈ (0, (i + 1)/ãn). We can assume

that x > C
1/p
p since (An) holds otherwise. Using the Markov branching property

and the fact that (Ak) holds for every k ≤ n− 1, as well as (An,i), we then get

Pq
n(ht < xãn)=

∑
λ∈Pn

qn(λ)

p(λ)∏
i=1

P
q
λi

(ht < xãn − 1)

≥ ∑
λ∈Pn

qn(λ)

p(λ)∏
i=1

(
1− Cpã

p
λi

(xãn − 1)p

)+

≥ ∑
λ∈Pn

qn(λ)

(
1−

p(λ)∑
i=1

Cpã
p
λi

(xãn − 1)p

)

using the notation r+ =max(r,0) and that for all sequences of nonnegative terms
bi, i ≥ 1,

∏m
i=1(1− bi)

+ ≥ 1−∑m
i=1 bi , for every m ≥ 1. Next, since xãn ≥ x >

1/C1
p > 1,

1

(xãn − 1)p
= 1

(xãn)p(1− 1/(xãn))p
≤ 1+ 2p/(xãn)

(xãn)p
,
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and then

Pq
n(ht < xãn)

≥ ∑
λ∈Pn

qn(λ)− Cp

xp

∑
λ∈Pn

qn(λ)

p(λ)∑
i=1

(
ãλi

ãn

)p

− 2pCp

xp+1ãn

∑
λ∈Pn

qn(λ)

p(λ)∑
i=1

(
ãλi

ãn

)p

≥
by (17)

1− Cp

xp

∑
λ∈Pn

qn(λ)

p(λ)∑
i=1

(
λi

n

)(γ−ε)p

− 2pCp

xp+1ãn

∑
λ∈Pn

qn(λ)

p(λ)∑
i=1

(
λi

n

)(γ−ε)p

≥ 1− Cp

xp
+ Cp

xp

∑
λ∈Pn

qn(λ)

(
1−

p(λ)∑
i=1

(
λi

n

)(γ−ε)p
)

− 2pCp

xp+1ãn

∑
λ∈Pn

qn(λ)

p(λ)∑
i=1

(
λi

n

)(γ−ε)p

.

We then use (19) and the fact that
∑p(λ)

i=1 (λi/n)(γ−ε)p ≤ 1 [since (γ − ε)p > 1] to
get

Pq
n(ht < xãn)≥ 1− Cp

xp
+ Cp

xpãn

(
C2

p −
2p

x

)
.

By assumption, x > C
1/p
p ≥ 2p/C2

p; hence

Pq
n(ht < xãn)≥ 1− Cp

xp
for every x ∈

(
0,

i + 1

ãn

)
as wanted. �

4.4. Incorporating the measure. We now finish the proof of Theorem 5, by
improving the Gromov–Hausdorff convergence of Proposition 31 to a Gromov–
Hausdorff–Prokhorov convergence, when the uniform measure μn = μ∂Tn on
leaves is added to Tn in order to view it as an element of Tw rather than T .

We will use the fact ([23], Lemma 2.3), that the convergence in distribution of
a−1
n Tn as n→∞ in T entails that the laws of the random variables a−1

n Tn form a
tight sequence of probability measures on Tw. Therefore, it suffices to identify the
limit as Tγ,ν .
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So let us assume that a−1
n Tn converges to (T ′, d ′, ρ′,μ′) ∈ Tw in distribution,

when n →∞ along some subsequence. Let Ln
1,L

n
2, . . . ,L

n
k be k i.i.d. uniform

leaves of Tn. Conditionally given the event that these leaves are pairwise distinct,
which occurs with probability going to 1 as n→∞ with k fixed, these leaves are
just a uniform sample of k distinct leaves of Tn, so by Lemma 24 and exchange-
ability, the subtree of Tn spanned by the root and the leaves Ln

1, . . . ,L
n
k has same

distribution as T
[k]
[n] . By Proposition 30, we know that a−1

n T
[k]
[n] converges in distri-

bution to R(Tγ,ν, [k]) in T .
A k-rooted compact metric space is an object of the form ((X,d), x1, . . . , xk)

where (X,d) is a compact metric space and x1, . . . , xk ∈ X. The set of k-rooted
metric spaces can be endowed with the k-rooted Gromov–Hausdorff distance

d
(k)
GH(((X,d), x1, . . . , xk), ((X

′, d ′), x′1, . . . , x′k))
= inf

φ,φ′
max

1≤i≤k
dist(φ(xi), φ

′(x′i ))∨ distH(φ(X),φ′(X′)),

where, as in the definition of the Gromov–Hausdorff distance, the infimum is over
isometric embeddings φ,φ′ of X,X′ into some common space (M,dist). Note in
particular that d

(1)
GH = dGH. Now, the fact that a−1

n Tn converges to (T ′, d ′, ρ′,μ′)
in Tw implies that the k + 1-rooted space (a−1

n Tn, ρ,Ln
1, . . . ,L

n
k) converges in

distribution to (T ′, ρ′,L1, . . . ,Lk), where L1, . . . ,Lk are i.i.d. with law μ′ condi-
tionally on the latter. See [31], Proposition 10, for a proof and further properties of
the k-rooted Gromov–Hausdorff distance, which is separable and complete.

If (T , d, ρ) is a rooted R-tree and x1, . . . , xk ∈ T , the union of geodesics from
ρ to the xi ’s,

R(T , x1, . . . , xk)=
k⋃

i=1

[[ρ,xi]]

is in turn an R-tree rooted at ρ with at most k leaves, called the subtree of T

spanned by x1, . . . , xk (the role of the root being implicit).

LEMMA 35. Let (An, dn, ρn), n ≥ 1, be a sequence of rooted R-trees and
xn

1 , . . . , xn
k be k points in An, such that ((An, dn), ρn, x

n
1 , . . . , xk

n) converges for the
k + 1-rooted Gromov–Hausdorff distance to a limit ((A, d), ρ, x1, . . . , xk). Then
the subtree R(An, x

n
1 , . . . , xn

k ) converges in T to the subtree R(A, x1, . . . , xk).

We will prove this lemma at the end of the section. By using the Skorokhod rep-
resentation theorem, we may assume that the convergence of (a−1

n Tn, ρ,Ln
1, . . . ,

Ln
k) to (T ′, ρ′,L1, . . . ,Lk) holds almost surely. This, together with Lemma 35

and the discussion at the beginning of this section, implies the joint convergence
in distribution in T of a−1

n T[n], a−1
n T

[k]
[n] to T ′, T ′

k , still along the appropriate sub-
sequence, where T ′

k is the subtree of T ′ spanned by L1, . . . ,Lk . In particular,



2638 B. HAAS AND G. MIERMONT

this identifies the law of T ′
k as that of R(Tγ,ν, [k]). When k →∞, we already

stressed that the latter trees converge (in distribution in Tw, with the uniform mea-
sure μk on the set of its k leaves) to Tγ,ν . On the other hand, T ′

k converges a.s. to
(T ′′, d ′, ρ′,μ′) in Tw as k →∞, where T ′′ is the closure in T ′ of

∞⋃
i=1

[[ρ′,Li]].

But the joint convergence of T[n], T [k]
[n] in T along some subsequence and (16)

imply that for every η > 0, limk→∞P(dGH(T ′
k , T ′) > η)= 0. So T ′′ = T ′ a.s., en-

tailing that (T ′, d ′, ρ′,μ′) has same law as Tγ,ν . This identifies the limit of a−1
n Tn

in Tw as Tγ,ν , ending the proof of Theorem 5.
It remains to prove Lemma 35. We only sketch the argument, leaving the details

to the reader. We use induction on k. For k = 1, the subtree R(An, x
n
1 ) is iso-

metric to a real segment [0, dn(ρn, x
n
1 )] rooted at 0. The 2-rooted convergence of

((An, dn), ρn, x
n
1 ) to ((A, d), ρ, x1) entails that dn(ρn, x

n
1 ) converges to d(ρ, x1),

hence that R(An, x
n
1 ) converges to [0, d(ρ, x1)] rooted at 0, which is isometric to

R(A, x1).
For the induction step, we use the general fact that if A is a rooted R-tree and

x1, . . . , xk, xk+1 ∈ A, then the distance between xk+1 and the subtree of A spanned
by x1, . . . , xk is equal to

δk+1 = min
1≤i≤k

(
d(xk+1, xi)+ d(xk+1, ρ)− d(xi, ρ)

2

)
.

Moreover, if i ∈ {1,2, . . . , k} is an index that realizes this minimum, then the
branchpoint xk+1 ∧ xi is at distance δk+1 from xk+1 and is the ancestor of xi at
height (i.e., distance from ρ)

hk+1 = d(ρ, xk+1)− δk+1.

In words, we get that R(A, x1, . . . , xk+1) is obtained from R(A, x1, . . . , xk) by
grafting a segment with length δk+1 at the ancestor of xi with height hk+1.

In our particular situation, and with some obvious notation, we get that
R(An, x

n
1 , . . . , xn

k+1) is obtained by grafting a segment with length δn
k+1 to the

ancestor of xn
in

with height hn
k+1, where in is some index in {1, . . . , k} that

can depend on n. Taking a subsequence if necessary, we may assume that
in = i is constant. The k + 2-rooted convergence of ((An, dn), ρn, x

n
1 , . . . , xn

k+1)

to ((A, d), ρ, x1, . . . , xk+1) entails that the dn-distances between elements of
{ρn, x

n
1 , . . . , xn

k+1} converge to the corresponding d-distances of elements in
{ρ,x1, . . . , xk+1}. Consequently, it holds that δn

k+1, h
n
k+1 converge to δk+1, hk+1,

defined as above. Together with the induction hypothesis stating that R(An, x
n
1 ,

. . . , xn
k ) converges in T to R(A, x1, . . . , xk), this entails easily that R(An, x

n
1 , . . . ,

xn
k+1) converges in T to the R-tree obtained by grafting a segment with length

δk+1 to the ancestor of xi with height hk+1 in R(A, x1, . . . , xk), and this tree is
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R(A, x1, . . . , xk+1). The result being independent of the particular value of i (se-
lected by the choice of a subsequence), the convergence holds without taking sub-
sequences, which concludes the proof.

4.5. Proof of Theorem 6. To pass from trees with n vertices (with law Q
q
n)

to trees with laws of the form P
q ′
n , with n leaves, we introduce a transformation

on trees, in which every vertex which is not a leaf is attached to an extra “ghost”
neighbor, which is a leaf.

Precisely, if t is a plane tree, then the modification t◦ is defined as

t◦ = t ∪ ⋃
u=(u1,...,uk)∈t\∂t

{(
u1, . . . , uk, cu(t)+ 1

)}
.

If we are given a tree rather than a plane tree, then this construction performed on
any plane representative of the tree t will yield plane trees in the same equivalence
class, which we call t◦. Note that

#∂ t◦ = #t.

We see t◦ as an element of Mw (endowed with graph distance and uniform
distribution on ∂ t◦), and view t as an element of Mw, by endowing it also with the
graph distance, but this time, with the uniform distribution μt on t. It is easy to see,
using the natural isometric embedding of t into t◦, that for every a > 0,

dGHP(at, at◦)≤ a.(20)

Let (qn, n ≥ 1) be, as in Section 1.2.2, a family of probability distributions, re-
spectively, on Pn, such that q1((1)) = 1. We introduce the family q◦n, n ≥ 1, of
probability measures, respectively, on Pn by q◦1 (∅)= 1, and

q◦n+1((λ,1))= qn(λ), n≥ 1, λ ∈ Pn,

where (λ,1)= (λ1, . . . , λp(λ),1) ∈ Pn+1.
It is then immediate to show by induction that if Tn has law Q

q
n, then T ◦

n has

law P
q◦
n , with the notation of Section 1.2.1. We leave this verification to the reader.

In view of this and (20), we see that Theorem 6 is a straightforward consequence
of the following statement.

LEMMA 36. If (qn, n ≥ 1) satisfies (H) with either γ ∈ (0,1), or γ = 1 and
�(n)→ 0 as n→∞, then (q◦n, n≥ 1) satisfies (H), with same fragmentation pair
(−γ, ν) and function �.

PROOF. Let f : S↓ → R be a Lipschitz function with uniform norm and Lip-
schitz constant bounded by K . Let also g(s)= (1− s1)f (s). Then∣∣∣∣f((λ,1)

n+ 1

)
− f

(
λ

n

)∣∣∣∣≤K max
(

sup
1≤i≤p(λ)

λi

n(n+ 1)
,

1

n+ 1

)
≤ K

n+ 1
,
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so that

|q◦n+1(g)− qn(g)| ≤ ∑
λ∈Pn

qn(λ)

∣∣∣∣(1− λ1

n+ 1

)
f

(
(λ,1)

n+ 1

)
−
(

1− λ1

n

)
f

(
λ

n

)∣∣∣∣
≤ ∑

λ∈Pn

qn(λ)

(
Kλ1

n(n+ 1)
+ K

n+ 1

)

≤ 2K

n+ 1
.

Multiplying both sides by nγ �(n), we see that the upper bound converges to 0 as
n →∞ under our hypotheses. Since nγ �(n)qn(g) converges to ν(g) by (H), we
obtain the same convergence with q◦n instead of qn. This yields the result. �

4.6. Proof of Proposition 7. Recall the notation �(s)(n) for the decreasing se-
quence of sizes of blocks restricted to {1, . . . , n} of a random variable with paint-
box distribution ρs(dπ), with s ∈ S↓,

∑
i≥1 si = 1. Recall also that �(s)(n)/n→ s

in S↓ almost-surely. Now set for λ ∈ Pn,

q̃n(λ)= n−γ
∫

S↓
P
(
�(s)(n)= λ

)
1{n−γ /2≤1−s1}ν(ds), λ �= (n),

q̃n((n))= 1− ∑
λ∈Pn,λ�=(n)

q̃n(λ).

For n large enough, say n≥ n0,

0 <
∑

λ∈Pn,λ�=(n)

q̃n(λ)≤ n−γ /2
∫

S↓
(1− s1)ν(ds)≤ 1,

hence q̃n defines a probability distribution on Pn such that q̃n((n)) < 1. Then set
qn = q̃n for n ≥ n0, and for n < n0, let qn be any distribution on Pn such that
qn((n)) < 1.

Next, consider a continuous function f : S↓ →R+. For n≥ n0, we have

nγ
∑

λ∈Pn

qn(λ)

(
1− λ1

n

)
f

(
λ

n

)

=
∫

S↓
E

[(
1− �

(s)
1 (n)

n

)
f

(
�(s)(n)

n

)]
1{n−γ /2≤1−s1}ν(ds),

which converges to
∫

S↓ f (s)(1− s1)ν(ds) as n→∞ by dominated convergence.
This completes the proof.

5. Scaling limits of conditioned Galton–Watson trees. Recall the notation
of Section 2.1. Since the probability distribution GWξ enjoys the so-called branch-

ing property, it holds that the conditioned versions GW(n)
ξ are Markov branching

trees.
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PROPOSITION 37. (i) One has GW(n)
ξ = Q

q
n for every n≥ 1, where the split-

ting probabilities q = (qn, n≥ 1) are defined by q1((1))= 1, and for every n≥ 2
and λ= (λ1, . . . , λp) ∈ Pn,

qn(λ)= p!∏
j≥1 mj(λ)!ξ(p)

∏p
i=1 GWξ (#t = λi)

GWξ (#t = n+ 1)
.(21)

(ii) On some probability space (�, F ,P), let X1,X2, . . . be i.i.d. with distribu-
tion P(X1 = k)=GWξ (#t = k), and set τp =X1 +X2 + · · · +Xp . Then

qn

(
p(λ)= p

)= ξ(p)
P(τp = n)

P(τ1 = n+ 1)
,(22)

and qn(·|{p(λ) = p}) is the law of the nonincreasing rearrangement of (X1, . . . ,

Xp) conditionally on X1 + · · · +Xp = n.

PROOF. (i) Under GWξ (viewed as a law on plane trees), conditionally on
c∅ = p, the p (plane) subtrees born from ∅ are independent with law GWξ . For
integers a1, . . . , ap with sum n, the probability that these trees have sizes equal to
a1, . . . , ap is thus

∏p
i=1 GWξ (#t = ai). Hence,

GW(n+1)
ξ (c∅ = p,#ti = ai,1≤ i ≤ p)= ξ(p)

∏p
i=1 GWξ (#t = ai)

GWξ (#t = n+ 1)
,(23)

and conditionally on the event on the left-hand side, the subtrees born from the root
are independent with respective laws GW(ai )

ξ ,1 ≤ i ≤ p. Letting λ be the nonin-
creasing rearrangement of (a1, . . . , ap) and re-ordering the subtrees by nonincreas-
ing order of size (with some convention for ties, e.g., taking them in order of ap-
pearance according to the plane structure), we see that these subtrees are indepen-
dent with laws GW(λi)

ξ ,1 ≤ i ≤ p. Using the fact that there are p!/∏j≥1 mj(λ)!
compositions (a1, . . . , ap) of the integer n corresponding to a partition λ ∈ Pn, and
viewing GWξ as a law on T instead of plane trees, the conclusion easily follows.

(ii) We have qn(p(λ) = p) = GW(n+1)
ξ (c∅ = p), and the wanted result is just

an interpretation of (23). �

On the same probability space (�, F ,P) as in the previous statement, we will
also assume that (Sr , r ≥ 0) is a random walk with i.i.d. steps, each having dis-
tribution ξ(i + 1), i ≥ −1. Then the well-known Otter–Dwass formula (or cyclic
lemma) ([33], Chapter 6), stating that P(τr = m) = (r/m)P(Sm = −r) for every
r,m≥ 1, allows us to rewrite

qn

(
p(λ)= p

)= ξ(p)
pP(Sn =−p)/n

P(Sn+1 =−1)/(n+ 1)
= n+ 1

n
ξ̂(p)

P(Sn =−p)

P(Sn+1 =−1)
,(24)

where ξ̂ (p) = pξ(p) is the size-biased distribution associated with ξ [this is a
probability distribution by (4)].
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It is often convenient to work with size-biased orderings of the sequence
(X1, . . . ,Xp) rather than with its nonincreasing rearrangement. Recall that if
(y1, y2, . . .) is a nonnegative sequence with

∑
i yi <∞, we define its size-biased

ordering in the following way. If all terms are zero, then we let y∗1 = 0, otherwise
we let i∗ be a random variable with

P(i∗ = i)= yi∑
j≥1 yj

and set y∗1 = yi∗ . We then remove the i∗th term from the sequence (yi, i ≥ 1)

and resume the procedure, defining a random re-ordering (y∗1 , y∗2 , . . .) of the
sequence (y1, y2, . . .). The size-biased ordering (Y ∗

1 , Y ∗
2 , . . .) of a random se-

quence (Y1, Y2, . . .) with finite sum is defined similarly, by first conditioning on
(Y1, Y2, . . .). If μ is the law of (Y1, Y2, . . .), we let μ∗ be the law of (Y ∗

1 , Y ∗
2 , . . .).

If μ is a probability distribution on S↓, then μ∗ is a probability distribution on
the set S1 = {x = (x1, x2, . . .) ∈ [0,1]N :

∑
i≥1 xi ≤ 1} which is endowed with any

metric inducing the product topology—in particular, S1 is compact. Similarly, if
μ is a nonnegative measure on S↓, we let μ∗(f )= ∫

S↓ μ(ds)E[f (s∗)], for every
nonnegative measurable f : S1 →R+, where s∗ is the size-biased reordering of s.
The following statement is a simple variation of [9], Proposition 2.3, replacing
probability distributions with finite measures.

LEMMA 38. Let μn,n≥ 1, and μ be finite measures on S↓, and assume that
μ is supported on {s ∈ S↓ :

∑
i si = 1}. Then μn converges weakly to μ if and only

if μ∗
n converges weakly to μ∗.

5.1. Finite variance case. Here we assume that ξ has finite variance∑
p≥1 p(p − 1)ξ(p) = σ 2 <∞. In the proofs to come, C will denote a positive,

finite constant with values that can differ from line to line.
Our goal is to check hypothesis (H) for the sequence q of (21), and for the

measure ν = (σ/2)ν2. Due to Lemma 38, it suffices to show that

n1/2((1− s1)qn(ds)
)∗ (w)−→

n→∞(σ/2)
(
(1− s1)ν2(ds)

)∗
.(25)

Now, for any nonnegative measure μ on S↓ and any nonnegative continuous func-
tion f on S1, one can check that(

(1− s1)μ(ds)
)∗

(f )=
∫

S1

μ∗(dx)(1−max x)f (x),(26)

where max x=maxi≥1 xi . Applying (26) to μ= qn and ν2, we conclude that (25)
is a consequence of the following statement.

PROPOSITION 39. Let f : S1 → R be a continuous function, and let g(x) =
(1−max x)f (x). Then

√
nq∗n(g) −→

n→∞
σ√
2π

∫ 1

0

dx

x1/2(1− x)3/2 g(x,1− x,0, . . .).(27)
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In summary, Theorem 8 in Case 1 is a consequence of this statement, and The-
orem 6.

Proposition 39 will be proved in a couple of steps. A difficulty that we will have
to be careful about is that x �→ max x is not continuous on S1. Fix f , as in the
statement. Note that 0 ≤ 1 − max x ≤ 1 − x1 for every x ∈ S1, so that |g(x)| ≤
c(1 − x1) for every x ∈ S1 for some finite c > 0, a fact that will be useful. In the
sequel, to simplify things, we will assume c= 1 without loss of generality.

First, note that combining (ii) in Proposition 37 with a size-biased ordering, it
holds that

q ∗n (g)=∑
p≥1

qn

(
p(λ)= p

)
E

[
g

(
(X∗

1, . . . ,X∗
p,0, . . .)

n

)∣∣∣∣τp = n

]
.(28)

LEMMA 40. For every ε > 0,
√

nqn

(
p(λ) > ε

√
n
) −→
n→∞0.

PROOF. From (24), the local limit theorem in the finite-variance case

sup
p∈Z

∣∣∣∣√nP(Sn =−p)− 1√
2πσ 2

exp
(
− p2

2nσ 2

)∣∣∣∣ −→n→∞0(29)

shows that qn(p(λ)= p)≤ Cξ̂(p) for every n,p. Now∑
k≥0

ξ̂ ((k,∞)) <∞,

because ξ̂ has finite mean. Since ξ̂ ((k,∞)) is nonincreasing, this entails that
ξ̂ ((k,∞))= o(k−1). Hence the result. �

LEMMA 41. One has

lim
η↓0

lim sup
n→∞

√
nq∗n

(|g|1{x1>1−η}
)= 0 and lim

n→∞
√

nq∗n
(
1{x1<n−7/8}

)= 0.

PROOF. Let η > 0. Since |g(x)| ≤ (1−x1), we get using (28), that
√

nq∗n(|g|×
1{x1>1−η}) is bounded from above by

n1/2
∑
p≥1

qn

(
p(λ)= p

)

× ∑
(1−η)n≤m1≤n

(
1− m1

n

)
pm1

n

P(X1 =m1)P(τp−1 = n−m1)

P(τp = n)
,

where we used the fact (left as an exercise to the reader) that

P(X∗
1 =m|X1 + · · · +Xp = n)= pm

n

P(X1 =m)P(X2 + · · · +Xp = n−m)

P(X1 + · · · +Xp = n)
.
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By replacing qn(p(λ)= p) by its value (22), and using the cyclic lemma, we obtain
the upper bound
√

nq∗n
(|g|1{x1>1−η}

)
≤ n+ 1

n

∑
p≥1

p(p− 1)ξ(p)
∑

(1−η)n≤m1≤n

P(Sm1 =−1)P(Sn−m1 =−p+ 1)√
nP(Sn+1 =−1)

.

Now, (29) implies that
√

m1P(Sm1 = −1) and
√

n−m1P(Sn−m1 = −p + 1) are
bounded from above by positive constants that are independent of n,m1,p, while√

nP(Sn+1 =−1) converges to a positive limit. Consequently, the bound is

C
∑
p≥1

p(p− 1)ξ(p)
1

n

∑
(1−η)n<m1≤n

1√
(m1/n)(1−m1/n)

,

and this converges to Cσ 2 ∫ 1
1−η(x(1−x))−1/2 dx as n→∞. In turn, this goes to 0

as η→ 0. The second limit is obtained in a similar way, writing
√

nq∗n(1{x1<n−7/8})
as

n1/2
∑
p≥1

qn

(
p(λ)= p

) ∑
1≤m1≤n1/8

pm1

n

P(X1 =m1)P(τp−1 = n−m1)

P(τp = n)

≤ Cn−1/2
∑
p≥1

p(p− 1)ξ(p)
∑

1≤m1≤n1/8

P(Sm1 =−1)
P(Sn−m1 =−p+ 1)

P(Sn+1 =−1)

≤ Cn−3/8
∑
p≥1

p(p− 1)ξ(p)

for some finite constant C, where we used the local limit theorem in the last step,
and bounded P(Sm1 =−1) by 1 (we could also bound it by Cm

−1/2
1 and obtain a

better bound, but we do not need it). �

LEMMA 42. For every η > 0, it holds that

lim
n→∞

√
nq∗n

(
1{x1+x2<1−η}

)= 0.

PROOF. Fix ε > 0. Then by (28),
√

nq∗n
(
1{x1+x2<1−η}

)
≤√

n
∑

2≤p≤εn1/2

qn

(
p(λ)= p

)
P
(
X∗

1 +X∗
2 < (1− η)n|τp = n

)
+√

nqn

(
p(λ) > ε

√
n
)

as one can note that the p = 1 term in the sum is zero. The last quantity being o(1)

by Lemma 40, we only have to concentrate on the first term of the right-hand side.
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Using (22), we rewrite it as
√

n
∑

2≤p≤εn1/2

ξ(p)
∑

m1+m2<(1−η)n

P(X∗
1 =m1,X

∗
2 =m2, τp = n)

P(τ1 = n+ 1)
.(30)

Next, using the fact (also left to the reader) that

P(X∗
1 =m1,X

∗
2 =m2, τp = n)

= pm1

n
P(X1 =m1)

(p− 1)m2

n−m1
P(X2 =m2)

× P(X3 + · · · +Xp = n−m1 −m2),

and using the cyclic lemma, we can bound (30) by

(n+ 1)
√

n

n

∑
2≤p≤εn1/2

p3ξ(p)

× ∑
m1+m2<(1−η)n

P(Sm1 =−1)P(Sm2 =−1)P(Sn−m1−m2 =−p+ 2)

(n−m1)(n−m1 −m2)P(Sn+1 =−1)
.

If m1 +m2 < n(1− η), then n−m1 ≥ n−m1 −m2 ≥ ηn. In this case, the local
limit theorem (29) implies

P(Sm1 =−1)P(Sm2 =−1)P(Sn−m1−m2 =−p+ 2)

(n−m1)(n−m1 −m2)P(Sn+1 =−1)
≤ C

η5/2n2√m1m2
.

Note that the constant C here does not depend on p, ε. Consequently, we obtain
the bound√

nq∗n
(
1{x1+x2<(1−η)n}

)
≤ C

η5/2
√

n

∑
2≤p≤εn1/2

p3ξ(p)
1

n2

∑
m1+m2<(1−η)n

√
n

m1

n

m2
+ o(1)

≤ Cε

η5/2

∑
p≥1

p2ξ(p)

∫
x1+x2≤1

dx1 dx2√
x1x2

+ o(1),

where C is still independent of p, ε. The first term on the right-hand side is finite
and does not depend on n anymore, and it goes to 0 as ε → 0, entailing the result.

�

LEMMA 43. There exists a function βη = o(η) as η ↓ 0, so that

lim
η↓0

lim inf
n→∞

√
nq∗n

(
g1{x1<1−η,x1+x2>1−βη}

)
= lim

η↓0
lim sup
n→∞

√
nq∗n

(
g1{x1<1−η,x1+x2>1−βη}

)
= σ√

2π

∫ 1

0

g((x,1− x,0, . . .))

x1/2(1− x)3/2 dx.
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PROOF. The proof is similar to the previous ones, but technically more te-
dious, so we will only sketch the details. Fix η > 0, and consider η′ ∈ (0, η)

and ε > 0. Then, by decomposing with respect to the events {p(λ) > ε
√

n} and
{x :x1 ≤ n−7/8}, we obtain, using Lemma 40 and the second limit of Lemma 41,
√

nq∗n
(
g1{x1<1−η,x1+x2>1−η′}

)
= o(1)

+√
n

∑
2≤p≤εn1/2

qn

(
p(λ)= p

)
× ∑

n1/8≤m1≤(1−η)n

(1−η′)n≤m1+m2≤n

E
[
g
(
(m1,m2,X

∗
3, . . . ,X∗

p,0, . . .)/n
)|

τp = n,X∗
1 =m1,X

∗
2 =m2

]
× pm1

n

(p− 1)m2/n

1−m1/n
P(X1 =m1)

× P(X2 =m2)
P(τp−2 = n−m1 −m2)

P(τp = n)
.

We now give a lower bound of the lim inf of this as n→∞. Obtaining an appro-
priate upper bound for the lim sup is similar and easier.

Note that if x1 + x2 ≥ 1− η′ and x1 ≤ 1− η, we have that (1− x1 − x2)/(1−
x1)≤ η′/η, and then x2/(1− x1)≥ 1− η′/η. Next, by (29), we can always choose
η′ small enough so that P(X1 = m2)/P(X1 = n−m1) ≥ 1 − η for every n large
enough, where m1,m2 are as in the above sum.

Also, still by (29), and using (22), we can choose ε small enough so that for
every 1≤ p ≤ εn1/2 and every n large, we have

qn

(
p(λ)= p

)
/ξ̂ (p)≥ (1− η) and

(
p−1n3/2

P(τp = n)
)−1 ≥ (1− η)σ

√
2π.

A third use of (29) entails that

m
3/2
1 P(X1 =m1)∧m

3/2
2 P(X2 =m2)≥ (1− η)/σ

√
2π

for every n large and m1 ≥ n1/8, m2 ≥ (η− η′)n.
Finally, we use the fact that f is uniformly continuous on S1, while max x =

x1∨x2 on the set {x ∈ S1 :x1+x2 > 3/4}. Consequently, the function g(x)= (1−
max x)f (x) is uniformly continuous on the latter set. Therefore, we can choose
η′ < 1/4 small enough so that∣∣g((m1,m2,m3, . . .)/n

)− g
(
(m1, n−m1,0, . . .)/n

)∣∣≤ η

for every (m1,m2, . . .) with sum n, such that m1 +m2 ≥ (1− η′)n. Putting things
together, for every η > 0, we can choose η′ =: βη, ε small so that for every n large
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enough,
√

nq∗n(g1{x1<1−η,x1+x2>1−η′}) is greater than or equal to

(1− η)5(1− η′/η)

× ∑
2≤p≤εn1/2

(p− 1)ξ̂ (p)
1

n

× ∑
n1/8≤m1≤(1−η)n

(
g
(
(m1, n−m1,0, . . .)/n

)− η
)m1

n

× 1

σ
√

2π((m1/n)(1−m1/n))3/2

× ∑
(1−η′)n−m1≤m2≤n−m1

P(τp−2 = n−m1 −m2).

Finally, the last sum is P(τp−2 ∈ [0, η′n]) ≥ P(τ�ε√n� ∈ [0, η′n]), and this can be
made larger than 1− η when n is large enough, by choosing ε even smaller than
before if necessary. Indeed, as is well known, and again a consequence of (29),
τ�√a�/a converges in distribution as a →∞ to a stable random variable with index
1/2. Taking the lim inf in n and using a convergence of Riemann sums, yields

lim inf
n→∞

√
nq∗n

(
g1{x1<1−η,x1+x2>1−η′}

)
≥ (1− η)6(1− η′/η)

×∑
p≥2

(p− 1)ξ̂ (p)

∫ 1−η

0

dx

σ
√

2πx1/2(1− x)3/2

(
g(x,1− x,0, . . .)− η

)
.

One concludes using the fact that
∑

p≥2(p− 1)ξ̂ (p)= σ 2. �

We can now finish the proof of Proposition 39. Simply write∣∣q∗n(g)− q∗n
(
g1{x1<1−η,x1+x2>1−η′}

)∣∣≤ q∗n
(|g|1{x1≥1−η}

)+ q∗n
(|g|1{x1+x2≤1−η′}

)
.

Now fix ε > 0, and using Lemmas 41 and 43, choose η,η′ in such a way that√
nq∗n(|g|1{x1≥1−η})≤ ε/2 and∣∣∣∣√nq∗n

(
g1{x1<1−η,x1+x2>1−η′}

)− σ√
2π

∫ 1

0

g((x,1− x,0, . . .))

x1/2(1− x)3/2 dx

∣∣∣∣≤ ε/2

for every n large. For this choice of η,η′, we then have for every n large enough,∣∣∣∣√nq∗n(g)− σ√
2π

∫ 1

0

g((x,1− x,0, . . .))

x1/2(1− x)3/2 dx

∣∣∣∣≤ ε+√
nq∗n

(|g|1{x1+x2≤1−η′}
)
,

and the upper-bound converges to ε as n →∞ by Lemma 42. Since ε was arbi-
trary, this proves Proposition 39, hence implying Theorem 8 in Case 1.
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5.2. Stable case. Assume that ξ(p)∼ cp−α−1 for some α ∈ (1,2) and c > 0.
Theorem 8 in Case 2 will follow if we can show that hypothesis (H) holds for γ =
1−1/α, �≡ (α(α−1)/(c�(2−α)))1/α and the dislocation measure να . A similar
reasoning as in the beginning of the previous section shows that it suffices to prove
the following statement.

PROPOSITION 44. If f : S1 → R is a continuous function bounded by 1, and
g(x)= (1−max x)f (x), then

n1−1/αq∗n(g) −→
n→∞

(
c
�(2− α)

α(α− 1)

)1/α

ν∗α(g).

One will note that the function g of the statement is continuous ν∗α-a.e., since
x �→max x is continuous at every point x with sum 1. Now,

q∗n(g)=∑
p≥1

qn

(
p(λ)= p

)
E

[
g

(
(X∗

1, . . . ,X∗
p,0, . . .)

n

)∣∣∣∣τp = n

]

= n1/α
∫ ∞

0
dxqn

(
p(λ)= �n1/αx�)(31)

×E

[
g

((X∗
1, . . . ,X∗

�n1/αx�,0, . . .)

n

)∣∣∣∣τ�n1/αx� = n

]
.

Recall the notation around (24). The random walk Sn is now such that (S�nt�/n1/α ,
t ≥ 0) converges in distribution in the Skorokhod space to a spectrally positive sta-
ble Lévy process (Yt , t ≥ 0) with index α and Lévy measure c dx/x1+α1{x>0}. Its
Laplace transform is given by E[exp(−λYt )] = exp(tc′λα), where c′ = c�(2−α)

α(α−1)
.

The Gnedenko–Kolmogorov local limit theorem also yields

n1/α
P(Sn = k)= p1(k/n1/α)+ ε(n, k),

where supk |ε(n, k)| → 0 as n →∞, and pt is the density of Yt . This, together
with (24) and our hypothesis on the asymptotic behavior of ξ , entails that

qn

(
p(λ)= �n1/αx�)∼ cn−1x−α p1(−x)

p1(0)
.

Let us now focus on the random variables X1,X2, . . . and τp = X1 + · · · + Xp .
We have P(X1 = n)= n−1

P(Sn =−1)∼ n−1−1/αp1(0), which gives that X1 is in
the domain of attraction of a stable random variable with index 1/α. More specifi-
cally, one has that (τ�nx�/nα, x ≥ 0) converges in the Skorokhod space to a stable
subordinator (Ty, y ≥ 0) with index 1/α and Lévy measure

p1(0)
dx

x1+1/α
1{x>0}.(32)
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Its Laplace transform is given by

E[exp(−λTx)] = exp
(−xp1(0)α�(1− 1/α)λ1/α).

On the other hand, Tx has same distribution as the first hitting time of −x by
(Yt , t ≥ 0) (because a similar statement is true of τp and Sn), which identifies the
Laplace exponent of T1 as (λ/c′)1/α , see [7], Chapter VII. This yields

p1(0)= 1

α�(1− 1/α)(c′)1/α
= 1

α�(1− 1/α)

(
α(α − 1)

c�(2− α)

)1/α

.(33)

Let Qy be the probability density function of Ty . By [7], Corollary VII.3 (which
is also called the cyclic lemma) we have tQx(t)= xpt (−x), while the Gnedenko–
Kolmogorov local limit theorem states that

pα
P(τp = n)=Q1(n/pα)+ ε′(p,n),

where supn |ε′(p,n)| → 0 as p → ∞. Finally, the scaling relation Qx(t) =
x−αQ1(tx

−α) holds and will be useful in the sequel.

LEMMA 45. The sequence (X∗
1, . . . ,X∗

�n1/αx�)/n conditioned on τ�n1/αx� = n

converges in distribution to a random sequence (�∗
1,�

∗
2, . . .), defined inductively

by

P

(
�∗

i+1 ∈ dz
∣∣∣�∗

1, . . . ,�
∗
i ,

i∑
j=1

�∗
j = y

)

= p1(0)x

z1/α

Qx(1− y − z)

Qx(1− y)
dz, 0≤ z≤ 1− y.

PROOF. The case i = 0 is obtained by using the local limit theorem in

nP
(
X∗

1 = �nz�|τ�n1/αx� = n
)

= �n1/αx��nz�P(X1 = �nz�)P(τ�n1/αx�−1 = n− �nz�)
P(τ�n1/αx� = n)

.

One then argues by induction, in an elementary way. Details are left to the reader.
�

The limiting sequence (�∗
i , i ≥ 1) has same distribution as the sequence of

jumps of the subordinator (Ty,0 ≤ y ≤ x), conditionally given Tx = 1, and ar-
ranged in size-biased order; see [33], Chapter 4, or [9]. We will denote by �T ∗[0,x]
this randomly ordered sequence of jumps. Hence, provided we have the right to
apply dominated convergence in (31), we obtain, using xp1(−x)=Qx(1),

n1−1/αq∗n(g) −→
n→∞

c

p1(0)

∫ ∞
0

dx

xα+1 Qx(1)E
[
g
(
�T ∗[0,x]

)|Tx = 1
]
.(34)
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Using scaling for the subordinator (Ty, y ≥ 0), the previous integral can be rewrit-
ten as

c

p1(0)

∫ ∞
0

dx

x2α+1 Q1(x
−α)E

[
g
(
xα�T ∗[0,1]

)|T1 = x−α],
and changing variables u= x−α shows that this is equal to

c

αp1(0)

∫ ∞
0

Q1(u)duE
[
ug
(
�T ∗[0,1]/u

)|T1 = u
]= c

αp1(0)
E
[
T1g

(
�T ∗[0,1]/T1

)]
.

Finally, the sequence �T[0,1] of jumps of T before time 1 is the sequence of atoms
of a Poisson measure with intensity given by (32). Using (33), it thus has same
distribution as α(α − 1)c−1�(2 − α)−1(�1,�2, . . .), as defined in Section 2.1.
Using the notation therein and (33), we get after rearrangements

c

αp1(0)
E
[
T1g

(
�T ∗[0,1]/T1

)]
=
(
c
�(2− α)

α(α− 1)

)1/α α2�(2− 1/α)

�(2− α)
E

[
T g

(
�∗

i

T
, i ≥ 1

)]

=
(
c
�(2− α)

α(α− 1)

)1/α

ν∗α(g)

as wanted. It remains to justify that the convergence (34) is indeed dominated.
To this end, using (31) and the fact that qn(p(λ) = �n1/αx�) ≤ C�n1/αx�−α ,
it suffices to show that the expectation term in this equation is bounded by
C�n1/αx�/n1/α for some C independent of n, and for x ∈ [0,1]. In turn, since
|g(x)| ≤ (1 − x1), it suffices to substitute this upper-bound to g. Now, we have
P(X1 =m)≤Cm−1−1/α for every m, so that

E

[(
1− X∗

1

n

)∣∣∣∣τ�n1/αx� = n

]

=
n∑

m=1

(
1− m

n

)
�n1/αx�m

n
P(X1 =m)

P(τ�n1/αx�−1 = n−m)

P(τ�n1/αx� = n)

≤
n∑

m=1

(
1− m

n

)
�n1/αx�m

n
P(X1 =m)

× ((�n1/αx� − 1)/(n−m))P(Sn−m =−�n1/αx� + 1)

(�n1/αx�/n)P(Sn =−�n1/αx�)

≤ C
�n1/αx�

n1/α

1

n

n∑
m=1

1

(m/n)1/α(1−m/n)1/α

≤ C
�n1/αx�

n1/α
,
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where we have used that (n − m)1/α
P(Sn−m = −�n1/αx� + 1) is uniformly

bounded (in n,m,x) and that n1/α
P(Sn =−�n1/αx�) is uniformly bounded away

from 0 for x ∈ [0,1]. This is the wanted bound, concluding the proof of Proposi-
tion 44, hence of Theorem 8.

6. Scaling limits of uniform unordered trees. In this section, we fix once
and for all an integer m ∈ {2, . . . ,∞} and consider trees in which every vertex has
at most m children. We use the notation of Section 2.2 and let Tn be uniformly
distributed in T(m)

n , for n≥ 1.
The first difficulty we have to overcome is that the sequence (Tn, n≥ 1) is not

Markov branching as defined in Section 1.2.2. We will therefore start in Section 6.1
by coupling this sequence with a family of Markov branching trees that are asymp-
totically close to Tn,n ≥ 1, and then check in Section 6.2 that the coupled trees
satisfy (H).

Let us fix some notation. For t ∈ T(m)
n , we can write t = 〈t(1), . . . , t(k)〉 with∑k

i=1 #t(i) = n− 1, and we let λ(t) ∈ Pn−1 be the partition obtained by arranging
in decreasing order the sequence (#t(1), . . . ,#t(k)) (of course, this does not depend
on the labeling of the trees t(1), . . . , t(k)). Let Fj (k) be the set of multisets4 with

k elements in T(m)
j . By convention, we set Fj (0)= {∅}. Then, for λ ∈ Pn−1 with

p(λ)≤m, we have a bijection

{
t ∈ T(m)

n :λ(t)= λ
}≡ n−1∏

j=1

Fj (mj (λ)),(35)

obtained by grouping the subtrees of t born from the root with size j into a
multiset, denoted by fj (t), of mj(λ) trees. From this, we deduce that fj (Tn),1 ≤
j ≤ n− 1, are independent uniform random elements in Fj (mj (λ)) conditionally
given λ(Tn). However, the uniform random element in Fj (k) has a different distri-
bution from the multiset induced by k i.i.d. uniform elements in T(m)

j , as soon as
k ≥ 2. This is what prevents Tn from enjoying the Markov branching property, that
is, from having law Q

q
n, where for n≥ 1, qn is the law of λ(Tn+1).

Letting Fj (k)= #Fj (k), the previous bijection yields

S(λ)
n := #

{
t ∈ T(m)

n :λ(t)= λ
}= n−1∏

j=1

Fj (mj (λ)).

When p(λ) > m, we set S(λ)
n = 0. Of course, letting T(m)

n = #T(m)
n , we also have

T(m)
n = ∑

λ∈Pn−1

S(λ)
n .

4Recall that a multiset with k elements in some set A is an element of the quotient set Ak/Sk ,
where Sk acts in the natural way by permutation of components.
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Using the obvious fact that Fj (k)≤ T(m)
j Fj (k− 1), we obtain the rough but useful

bound

S(λ)
n ≤ T(m)

λ1
S

(λ2,λ3,...,λp(λ))

n−λ1
.(36)

We recall the key result (5) of Otter [32], which is used throughout the proofs
below:

T(m)
n ∼

n→∞κm

ρn
m

n3/2 .

Setting T(m)
0 = 1 by convention, we obtain that for ρ = ρm > 1, and two constants

K ≥ 1≥ k > 0,

T(m)
n ≤K

ρn

n3/2 , n≥ 0, T(m)
n ≥ k

ρn

n3/2 , n≥ 1.(37)

Note that we also have T(m)
n ≤Kρn for all n≥ 0. Last, we let κ = κm.

6.1. Coupling. Let �n be the uniform probability distribution over T(m)
n , and

let qn = λ∗�n+1 be the law of the partition of n induced by the subtrees born from
the root of a �n+1-distributed tree. For every n≥ 1, we want to construct a pair of
random variables (Tn, T

′
n) on some probability space (�, F ,P), such that:

• Tn has law �n;
• T ′

n has law Q
q
n;

• for every ε > 0, limn→∞E[dGHP(n−εTn, n
−εT ′

n)] = 0.

Recall that if Tn has distribution �n, and conditionally on λ(Tn) = λ, then
fj (Tn),1 ≤ j ≤ n − 1, are independent, respectively, uniform in Fj (mj (λ)). We
are going to need the following fact.

LEMMA 46. For every j, k ≥ 1, let Fj be uniform in Fj (k) and Fj be the
multiset induced by an i.i.d. sequence of k random variables with law �j . Let Aj

be the set of elements in Fj (k) with components that are pairwise distinct. Then:

(i) one has P(Fj ∈Aj)≤ P(F j ∈Aj);
(ii) the conditional distributions of Fj and Fj given Aj are equal.

PROOF. For a finite set A, the number of multisets with k elements is
#(Ak/Sk)≥ #Ak/k!. Then

P(Fj ∈Aj)=
#T(m)

j (#T(m)
j − 1) · · · (#T(m)

j − k+ 1)

k!#Fj (k)

≤ #T(m)
j (#T(m)

j − 1) · · · (#T(m)
j − k+ 1)

(#T(m)
j )k

= P(F j ∈Aj).
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This gives (i). Property (ii) is also obtained by counting: on the event Aj , the prob-
ability that Fj equals some given (multi)set S ∈ Fj (k) with all distinct elements

is #Fj (k)−1, while the probability that Fj equals the same set S is k!(#T(m)
j )−k .

Dividing by P(Fj ∈Aj) and P(F j ∈Aj), respectively, gives the same result. �

The previous statement allows us to construct a coupling between Fj and Fj ,
in the following way. Let f ∈ Fj (k). Consider three independent random variables
f′′, f′′′,B , such that the law of f′′ is the law of Fj conditionally given Aj , the law
of f′′′ is the law of Fj conditionally given Ac

j and B is an independent Bernoulli

random variable with P(B = 1) = P(F j ∈ Ac
j )/P(Fj ∈ Ac

j ), which is indeed in
[0,1] by (i) in Lemma 46. Set

f′ =
⎧⎨⎩

f, if f ∈Aj ,
f′′, if f /∈Aj and B = 0,
f′′′, if f /∈Aj and B = 1.

We let Kj(f, ·) be the law of the multiset f′ thus obtained, hence defining a Markov
kernel on Fj (k). We say that the random variables F,F ′ are naturally coupled if
(F,F ′) has law �(df)Kj (f,df′), where � is the law of F on Fj (k). Using (ii) in
Lemma 46, it is then easy to obtain the next result.

LEMMA 47. If Fj is uniform in Fj (k), and (Fj ,F
′
j ) are naturally coupled,

then the law of F ′
j is that of the multiset induced by k i.i.d. uniform elements in Tj .

Next, we define a Markov kernel K(t, ·) on T(m), in an inductive way. Let
K(•, {•}) = 1. Assume that the measure K(t, ·) on T(m)

#t has been defined for ev-

ery t ∈ T(m) with #t ≤ n− 1. Take t ∈ T(m)
n , and let λ= λ(t),p = p(λ). Let fj (t) ∈

Fj (mj (λ)),1≤ j ≤ n− 1, be the multisets of trees born from the root of t, respec-
tively, with size j . Let f′j (t) be independent random multisets, respectively, with
law Kj(fj (t), ·). We relabel the p elements of the multisets f′j (t),1≤ j ≤ n− 1, as
t(1), . . . , t(p), in nonincreasing order of size, so that #t(i) = λi—if there is some j

with mj(λ)≥ 2, we arrange the trees with same size in exchangeable random or-
der. All these trees are in T(m) and have at most n−1 vertices. By the induction hy-
pothesis, conditionally on this family, we can consider another family t′(1), . . . , t′(p)

of independent trees with respective laws K(t(i), ·). Let K(t, ·) be the law of the
tree 〈t′(i),1≤ i ≤ p〉. This procedure allows us to define the Markov kernel K(t, ·)
for every tree in T(m).

We say that the random trees (T , T ′), defined on a common probability space,
are naturally coupled if the law of (T , T ′) is �(dt)K(t,dt′), where � is the law of T .
Is is easy to see that for every random variable T on T(m) with law �, then, possibly
at the cost of enlarging the probability space supporting T , one can construct a
random variable T ′ so that (T , T ′) is naturally coupled.
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PROPOSITION 48. Let Tn have law �n and (Tn, T
′
n) be naturally coupled. En-

dow these trees, respectively, with the measures μTn and μT ′
n
. Then:

(i) the tree T ′
n has distribution Q

q
n , for every n≥ 1;

(ii) for all a > 0, the Gromov–Hausdorff–Prokhorov distance between aTn and
aT ′

n is at most 2aj∗ where j∗ is the supremum integer j ≥ 1 so that there exist two
subtrees of Tn with size j , born from the same vertex and which are equal (with
the convention sup ∅= 0);

(iii) for all ε > 0, E[dGHP(n−εTn, n
−εT ′

n)]→ 0 as n→∞.

PROOF. We prove (i) by induction. For n = 1 the property is obvious. As-
sume the property holds for every index up to n− 1, and condition on λ(Tn)= λ,
which by definition has probability qn−1(λ). As noticed before Lemma 46, the
multisets Fj = fj (Tn),1 ≤ j ≤ n − 1, are independent, respectively, uniform in
Fj (mj (λ)). Conditionally on Fj ,1 ≤ j ≤ n − 1, let F ′

j ,1 ≤ j ≤ n − 1, be inde-
pendent with respective laws Kj(Fj , ·). By Lemma 47, we obtain that F ′

j is the
multiset induced by a sequence of mj(λ) i.i.d. random variables, with law �j .
Consequently, if we relabel the elements of F ′

j ,1≤ j ≤ n− 1, as T(1), . . . , T(p) in
nonincreasing order of size (and exchangeable random order for trees with same
size), then we obtain that these trees are independent, respectively, with distribu-
tion �λj

. Since, by definition of K , the natural coupling (Tn, T
′
n) is obtained by

letting T ′
n = 〈T ′

(i),1 ≤ i ≤ p〉 where (T(i), T
′
(i)) are naturally coupled, we readily

obtain the Markov branching property, with branching laws (qn, n≥ 1).
For (ii), we again apply an induction argument. The statement is trivial for

n= 1. Now, in the first step of the natural coupling, the action of the Markov
kernel Kj on fj (Tn) leaves it unchanged if fj (Tn) ∈ Aj , that is, if there are no
ties in the multiset fj (Tn). Consequently, with the same notation as in the previous
paragraph, a subtree of Tn born from the root that appears with multiplicity 1 will
also appear among T(1), . . . , T(p).

Moreover, subtrees that are replaced are always replaced by trees with the same
number of vertices and a tree with j vertices and edge-lengths a has height at
most aj . So the Gromov–Hausdorff–Prokhorov distance between two trees with
edge-lengths a that both decompose above the root in subtrees of same size j is
at most 2aj (it is implicit in this proof that all trees are endowed with the uniform
measure on their vertices). We now appeal to the following elementary:

Fact. Let t, t′ be such that k = p(λ(t))= p(λ(t′)), and let t = 〈t(1), . . . , t(k)〉 and
t′ = 〈t′(1), . . . , t′(k)〉 with #t(i) = #t′(i) for 1≤ i ≤ k. Then for every a > 0,

dGHP(at, at′)≤ max
1≤i≤k

dGHP
(
at(i), at′(i)

)
.

From this we deduce that the Gromov–Hausdorff–Prokhorov distance between
aTn and aT ′

n is at most

(2a sup{1≤ j ≤ n− 1 :Fj ∈Ac
j })∨ sup

1≤j≤n−1
Fj∈Aj

sup
i : #T(i)=j

dGHP
(
aT(i), aT ′

(i)

)
,
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where (T(i), T
′
(i)) is the natural coupling. The induction hypothesis allows us to

conclude.
Last, for (iii), fix ε ∈ (0,1). The Gromov–Hausdorff–Prokhorov distance be-

tween n−εTn and n−εT ′
n is bounded from above by 2n1−ε for all n≥ 1. Next, for

γ ∈ (0,1), let A
γ
n be the subset of trees of T(m)

n that have at least two subtrees born
from the same vertex that are identical, and with size larger than nγ . By (ii), when
Tn /∈A

γ
n , dGHP(n−εTn, n

−εT ′
n)≤ 2nγ−ε . Hence,

E[dGHP(n−εTn, n
−εT ′

n)] = E
[
dGHP(n−εTn, n

−εT ′
n)1{Tn∈A

γ
n }
]

+E
[
dGHP(n−εTn, n

−εT ′
n)1{Tn /∈A

γ
n }
]

≤ 2n1−ε
P(Tn ∈Aγ

n )+ 2nγ−ε.

Taking γ < ε and using Lemma 49 following right below, we get the result. �

LEMMA 49. For γ ∈ (0,1), let A
γ
n be the subset of T(m)

n of trees t that have at
least one vertex v such that at least two subtrees born from v are equal and have
at least nγ vertices. Then,

P(Tn ∈Aγ
n )=O(ρ−nγ

n5/2) as n→∞.

This lemma will be an easy consequence of the following result. For every tree
t and any vertex v of t, we let t(v) denote the subtree of t rooted at v. When v∗ is
taken uniformly at random among the vertices of t, we set t(∗) := t(v

∗).

LEMMA 50. The distribution of T
(∗)
n conditionally on #T

(∗)
n = k is uniform

on T(m)
k , for every 1≤ k ≤ n.

Note that the event {#T
(∗)
n = k} has a strictly positive probability for all

1≤ k ≤ n.

PROOF OF LEMMA 50. Let k ∈ {1, . . . , n}. For all t0 ∈ T(m)
k , using that P(Tn =

t)= 1/T(m)
n for all t ∈ T(m)

n ,

P
(
T (∗)

n = t0
)= ∑

t∈T(m)
n

P
(
T (∗)

n = t0|Tn = t
)
P(Tn = t)

= 1

T(m)
n

∑
t∈T(m)

n

P
(
t(∗) = t0

)

= 1

nT(m)
n

∑
t∈T(m)

n ,v∈t

1{t(v)=t0}.
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This quantity is independent of t0 ∈ T(m)
k because there is an obvious bijection

between the sets {(t, v) : t ∈ T(m)
n , v ∈ t, t(v) = t0} and {(t, v) : t ∈ T(m)

n , v ∈ t, t(v) =
t1} for t1 ∈ T(m)

k . Hence the result. �

PROOF OF LEMMA 49. Let A
γ
n (k) be the subset of trees of T(m)

k whose decom-
position above the root gives birth to at least two identical subtrees with size greater
than nγ , k ≤ n. We first give an upper bound for the probability P(Tk ∈A

γ
n (k)). To

do so, we bound from above the number of trees of T(m)
k that decompose in at least

two identical subtrees of size i [i ≤ (k − 1)/2]: there are T(m)
i choices for the tree

with size i appearing twice. Then, there are T(m)
k−2i forests with k− 1− 2i vertices.

Gluing the twin trees and a forest with k− 1− 2i vertices to a common root gives
a tree with k vertices (and a root branching in possibly more than m subtrees) and
all trees in T(m)

k with at least two subtrees with size i can be obtained in this way.

From this we deduce that the cardinality of A
γ
n (k) is at most

∑(k−1)/2
i=nγ T(m)

i T(m)
k−2i .

In particular, using (37) and the fact that ρ > 1,

P
(
Tk ∈Aγ

n (k)
)≤ 1

T(m)
k

(k−1)/2∑
i=nγ

T(m)
i T(m)

k−2i

≤ C
k3/2

ρk

(k−1)/2∑
i=nγ

ρiρk−2i

i3/2

≤ Cn3/2ρ−nγ

,

where C is a generic constant independent of n and k ≤ n. Now, in the follow-
ing lines, given Tn, we let v1, v2, . . . , vn denote its vertices labeled uniformly at
random,

P(Tn ∈Aγ
n ) ≤ E

[∑
v∈Tn

1{T (v)
n ∈A

γ
n (#T

(v)
n )}

]

= E

[
n∑

i=1

1{T (vi )
n ∈A

γ
n (#T

(vi )
n )}

]

= nP
(
T (∗)

n ∈Aγ
n

(
#T (∗)

n

))
=

by Lemma 50
n

n∑
k=1

P
(
Tk ∈Aγ

n (k)
)
P
(
#T (∗)

n = k
)

≤ Cn5/2ρ−nγ
n∑

k=1

P
(
#T (∗)

n = k
)

= Cn5/2ρ−nγ

. �
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6.2. Hypothesis (H) and conclusion. It remains to check that the family of
probability distributions on Pn, n≥ 1, defined by

qn(λ)= P
(
λ(Tn+1)= λ

)= P
(
λ(T ′

n+1)= λ
)= S(λ)

n+1

T(m)
n+1

∀λ ∈ Pn

satisfies the assumption (H) with γ = 1/2, �≡ 1 and ν proportional to the Brown-
ian dislocation measure ν2. For this we recall and fix some more notation:

∗ T̃(m)
n is the subset of T(m)

n of trees with root degree less or equal to m− 2;
∗ T̃(m)

n is the cardinality of T̃(m)
n , and ψ(m)(x) = ∑

n≥1 T(m)
n xn, ψ̃(m)(x) =∑

n≥1 T̃(m)
n xn;

∗ for λ= (λ1, λ2, . . .) ∈ Pn, λr :=∑∞
i=3 λi = n− λ1 − λ2.

The main result of this section follows.

PROPOSITION 51. For all 2≤m≤∞, and all continuous functions f : S↓ →
R such that |f (s)| ≤ 1− s1 for s ∈ S↓,

√
n
∑

λ∈Pn

f

(
λ

n

)S(λ)
n+1

T(m)
n+1

−→
n→∞κψ̃(m)(1/ρ)

∫ 1

1/2

f (x,1− x,0, . . .)

x3/2(1− x)3/2 dx.

Note that ψ̃(m)(1/ρ) is finite, since T̃(m)
n ≤ T(m)

n ≤Kρn/n3/2. This sum is ex-
plicit in terms of κ and ρ when m= 2 or m=∞. See Section 2.2 for details.

With this proposition, it is easy to conclude the proof of Theorem 9. Indeed,
together with Theorem 6 and Proposition 48(i), it leads to the convergence

1√
n
T ′

n

(d)−→
n→∞ cmT1/2,ν2

for the Gromov–Hausdorff–Prokhorov topology, where cm = √
2/(

√
πκψ̃(m)(1/

ρ)). Then, by Proposition 48(iii) and since (Mw, dGHP) is a complete separable
space, we can apply a Slutsky-type theorem to get

1√
n
Tn

(d)−→
n→∞ cmT1/2,ν2 .

The rest of this section is devoted to the proof of Proposition 51.

6.2.1. Negligible terms. We show in this section that the set of partitions λ ∈
Pn where either λ1 ≥ n(1 − ε) or λr ≥ nε plays a negligible role in the limit of
Proposition 51 when we first let n→∞ and then ε → 0.

LEMMA 52. There exists C ∈ (0,∞) such that, for all 0 < ε < 1,

lim sup
n→∞

√
n

T(m)
n+1

∑
λ∈Pn

1{λ1≥n(1−ε)}
(

1− λ1

n

)
S(λ)

n+1 ≤
C
√

ε

(1− ε)3/2 .
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PROOF. Using (36) and then (37), we get∑
λ∈Pn,λ1≥n(1−ε)

(
1− λ1

n

)
S(λ)

n+1

≤
n∑

λ1=�n(1−ε)�

(
1− λ1

n

)
T(m)

λ1

∑
μ∈Pn−λ1

S(μ)
n+1−λ1

≤
n∑

λ1=�n(1−ε)�

(
1− λ1

n

)
T(m)

λ1
T(m)

n+1−λ1

≤K2ρn+1
n−1∑

λ1=�n(1−ε)�

1− λ1/n

λ
3/2
1 (n+ 1− λ1)3/2

≤ K2ρn+1

(n(1− ε))3/2 ×
1

n3/2 ×
n−1∑

λ1=�n(1−ε)�

1

(1− λ1/n)1/2 .

We conclude with the fact that the sum
∑n−1

λ1=�n(1−ε)�(1 − λ1/n)−1/2 is smaller

than the integral
∫ n
n(1−ε)(1 − x/n)−1/2 dx = 2n

√
ε and then use the lower bound

of (37) for T(m)
n+1. �

To deal with the partitions where λr ≥ nε, we need the following lemma when
m=∞. We denote by T(∞,a−)

n the number of trees of T(∞)
n whose subtrees born

from the root have sizes at most a, a ≥ 1.

LEMMA 53. Let m=∞. There exists A,B > 0 such that

T(∞,a−)
k+1 ≤Aρk exp(−Bk/a) ∀k ∈N and a ≥ 1.

PROOF. Recall that T denotes the set of all (rooted, unordered, unlabeled) trees
and rewrite the power series ψ = ψ(∞) as ψ(x) =∑

t∈T x#t. According to [24],
Section VII.5, its radius of convergence is 1/ρ < 1 and ψ(1/ρ) = 1. Note also
that ψ(0)= 0. Now, we consider a random tree T in T with distribution defined by

P(T = t)= ρ−#t.

If c∅(t) denotes the degree of the root of t, we just have to show that

P
(
c∅(T )= r

)≤A′ exp(−B ′r) for some A′,B ′ > 0 and all r ≥ 1.(38)

Indeed, each tree with k+ 1 vertices and a decomposition in subtrees with sizes at
most a has a root degree larger or equal to k/a. So, if the above inequality holds,



SCALING LIMITS OF MARKOV BRANCHING TREES 2659

we will have

T(∞,a−)
k+1 ≤ ρk+1

P
(
c∅(T )≥ k/a,T ∈ T(∞)

k+1

)
≤ ρk+1A′B ′−1 exp

(−B ′(k/a − 1)
)

as required. To get (38), note that

P
(
c∅(T )= r

)= ∑
t∈T,c∅(t)=r

ρ−#t

=
r∑

k=1

1

k!
∑

t1,...,tk∈T
pairwise distinct

∑
m1+···+mk=r

mi≥1

ρ−1−∑1≤i≤k mi#ti ,

which is obtained by considering the multiset of r subtrees of a tree t, made of k

distinct trees with multiplicities m1, . . . ,mk . Hence,

P
(
c∅(T )= r

) ≤ ρ−1
r∑

k=1

1

k!
∑

m1+···+mk=r

mi≥1

k∏
i=1

ψ(ρ−mi )

= ρ−1
�cr�∑
k=1

1

k!
∑

m1+···+mk=r

mi≥1

k∏
i=1

ψ(ρ−mi )

+ ρ−1
r∑

k=�cr�+1

1

k!
∑

m1+···+mk=r

mi≥1

k∏
i=1

ψ(ρ−mi ),

where the c ∈ ]0,1[ chosen for this split will be specified below.
We first bound from above the second term. Using that ψ(ρ−mi )≤ψ(ρ−1)= 1

for mi ≥ 1 and that
∑

m1+···+mk=r,mi≥1 1= (r−1
k−1

)
, we obtain

r∑
k=�cr�+1

1

k!
∑

m1+···+mk=r

mi≥1

k∏
i=1

ψ(ρ−mi )≤ 1

�cr�!
r∑

k=1

(
r − 1
k− 1

)

≤ 2r−1

�cr�! ,

which decays exponentially fast as r →∞, for every c ∈ ]0,1[.
Now we will check that the sum

∑�cr�
k=1

1
k!
∑

m1+···+mk=r,mi≥1
∏k

i=1 ψ(ρ−mi )

also decays exponentially in r , provided that c ∈ ]0,1[ is chosen sufficiently small.
Since ψ(0) = 0, we have that ψ(x) ≤ Cx for some C <∞ and all x ∈ [0, ρ−1].
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Hence
�cr�∑
k=1

1

k!
∑

m1+···+mk=r

mi≥1

k∏
i=1

ψ(ρ−mi )

≤
�cr�∑
k=1

Ck

k!
∑

m1+···+mk=r

mi≥1

k∏
i=1

ρ−mi

≤ exp(C)

�cr�∑
k=1

ρ−r

(
r − 1
k− 1

)

≤
for all λ>0

exp(C)ρ−r
r−1∑

k=r−�cr�

(
r − 1

k

)
exp

(
λk− λ(r − �cr�))

≤ exp(C)
(
ρ−1 exp

(−λ(1− c)
)(

exp(λ)+ 1
))r

.

When c → 0, ρ−1 exp(−λ(1 − c))(exp(λ) + 1) → ρ−1(1 + exp(−λ)), which is
strictly smaller than 1 for λ large enough. Hence, fix such a large λ and then take
c > 0 sufficiently small so that ρ−1 exp(−λ(1 − c))(exp(λ) + 1) < 1. This ends
the proof. �

LEMMA 54. For all ε > 0,√
n

T(m)
n+1

∑
λ∈Pn

1{λr≥nε}S(λ)
n+1 −→n→∞0.

PROOF. • If m= 2, λr = 0 for all λ ∈ Pn and the assertion is obvious.
• Assume now that 3 ≤ m < ∞, and note that when λ ∈ Pn with p(λ) ≤ m,

one has that λr ≥ nε implies (m− 2)λ3 ≥ nε, in particular λ1 ≥ λ2 ≥ nε/(m− 2).
Hence,

∑
λ∈Pn

1{λr≥nε}S(λ)
n+1 ≤

n−2∑
λr=�nε�

�n−λr−nε/(m−2)�+∑
λ1=�nε/(m−2�)

T(m)
λ1

T(m)
n−λr−λ1

T(m)
λr+1.

Then for C a generic constant, using (37), the latter term multiplied by
√

n/T(m)
n+1

is bounded from above by

Cn1/2(n+ 1)3/2
n−2∑

λr=�nε�

�n−λr−nε/(m−2)�+∑
λ1=�nε/(m−2)�

1

λ
3/2
1 (n− λr − λ1)3/2(λr + 1)3/2

≤ C
n2(n− 2)(�n− nε/(m− 2)�+)

n3∗3/2 =O

(
1√
n

)
.
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• Next we turn to the case where m =∞. Let γ ∈ (5/6,1). On the one hand,
by the same token as for the m <∞ cases,

√
n

T(∞)
n+1

∑
λ∈Pn

1{λr≥nε}1{λ2≥nγ }S(λ)
n+1

≤ Cn2
n−2∑

λr=�nε�

�n−λr−nγ �+∑
λ1=�nγ �

1

λ
3/2
1 (n− λr − λ1)3/2(λr + 1)3/2

≤ C
n4

n3γ+3/2 =O(n5/2−3γ )= o(1),

since 5/2− 3γ < 0 when γ > 5/6. On the other hand, since λ2 < nγ implies that
λi < nγ for all i ≥ 3, we get by using Lemma 53 that

√
n

T(∞)
n+1

∑
λ∈Pn

1{λr≥nε}1{λ2<nγ }S(λ)
n+1 ≤

√
n

T(∞)
n+1

n−2∑
λr=�nε�

n−λr−1∑
λ1=1

T(∞)
λ1

T(∞)
n−λr−λ1

T(∞,nγ−)
λr+1

≤ Cn4 exp(−Bn1−γ ε)= o(1). �

6.2.2. Proof of Proposition 51. We rely on the following lemma. Let P bin
n be

the subset of Pn of partitions of n with exactly two parts.

LEMMA 55. Let f : S↓ →R be continuous.

(i) For all a ∈ Z+ and all ε ∈ (0,1), as n→∞,
√

n

T(m)
n+1

∑
λ∈P bin

n−a

λ1≤n(1−ε)

f

(
λ1

n
,
λ2 + a

n
,0, . . .

)
S(λ)

n+1−a

−→ κ

ρ1+a

∫ 1−ε

1/2

f (x,1− x,0, . . .)

x3/2(1− x)3/2 dx.

(ii) Moreover, there exists Cε ∈ (0,∞) such that, for all n ≥ 1, all 0 ≤ a ≤
nε/2 and all nonincreasing nonnegative sequences (ai, i ≥ 1) with

∑
i≥1 ai ≤ a/n,∣∣∣∣

√
n

T(m)
n+1

∑
λ∈P bin

n−a

λ1≤n(1−ε)

f

(
λ1

n
,
λ2

n
+ a1, a2, a3, . . .

)
S(λ)

n+1−aT(m)
a+1

∣∣∣∣

≤ Cε

(a + 1)3/2 .
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PROOF. (i) For large enough n,∑
λ∈P bin

n−a

λ1≤n(1−ε)

f

(
λ1

n
,
λ2 + a

n
,0, . . .

)
S(λ)

n+1−a

= f

(
1

2
− a

2n
,

1

2
+ a

2n
,0, . . .

)
F(n−a)/2(2)1{n−a is even}

+
�n(1−ε)�∑

λ1=�(n−a)/2�+1

f

(
λ1

n
,1− λ1

n
,0, . . .

)
T(m)

λ1
T(m)

n−a−λ1
.

On the one hand, by Otter’s approximation result for T(m)
(n−a)/2

F(n−a)/2(2)= T(m)
(n−a)/2

(
T(m)

(n−a)/2 + 1
)
/2∼ κ2ρn−a((n− a)/2

)−3
/2

= o
(
T(m)

n+1/
√

n
)
.

On the other hand, still using Otter’s result, we get that for all η > 0, provided that
n is large enough,

√
n

T(m)
n+1

�n(1−ε)�∑
λ1=�(n−a)/2�+1

f

(
λ1

n
,1− λ1

n
,0, . . .

)
T(m)

λ1
T(m)

n−a−λ1

≤ (κ + η)2

(κ − η)ρ1+a

1

n

�n(1−ε)�∑
λ1=�(n−a)/2�+1

f

(
λ1

n
,1− λ1

n
,0, . . .

)
(n+ 1)3/2

λ
3/2
1

× n3/2

(n− a − λ1)3/2

−→
n→∞

(κ + η)2

(κ − η)ρ1+a

∫ 1−ε

1/2

f (x,1− x,0, . . .)

x3/2(1− x)3/2 dx.

Letting η→ 0, this gives

lim sup
n→∞

√
n

T(m)
n+1

�n(1−ε)�∑
λ1=�(n−a)/2�+1

f

(
λ1

n
,1− λ1

n
,0, . . .

)
T(m)

λ1
T(m)

n−a−λ1

≤ κ

ρ1+a

∫ 1−ε

1/2

f (x,1− x,0, . . .)

x3/2(1− x)3/2 dx.

We obtain the liminf similarly, hence (i).
(ii) We will use that S(λ)

n+1−a ≤ T(m)
λ1

T(m)
n−a−λ1

for all λ ∈ P bin
n−a . Recall that f

is continuous, hence bounded, on the compact set S↓. There exits then a generic
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constant C independent of n and a ≤ nε/2 such that∣∣∣∣
√

n

T(m)
n+1

∑
λ∈P bin

n−a,λ1≤n(1−ε)

f

(
λ1

n
,
λ2

n
+ a1, a2, a3, . . .

)
S(λ)

n+1−aT(m)
a+1

∣∣∣∣
≤ C

√
n

T(m)
n+1

�n(1−ε)�∑
λ1=�(n−a)/2�

T(m)
λ1

T(m)
n−a−λ1

T(m)
a+1

≤ C

(a + 1)3/2

1

n

�n(1−ε)�∑
λ1=�(n−a)/2�

(n+ 1)3/2

λ
3/2
1

× n3/2

(n− a − λ1)3/2

≤ C

(a + 1)3/2

1

n

�n(1−ε)�∑
λ1=�n(1−ε/2)/2�

n3/2

λ
3/2
1

× n3/2

(n− λ1)3/2 ,

where we have used for the last inequality that n− a ≥ n(1− ε/2) since a ≤ nε/2
and that n− a − λ1 ≥ (n− λ1)/2 since a ≤ nε/2 and λ1 ≤ n(1 − ε). This upper
bound is of the form Cun/(a+ 1)3/2 where (un, n≥ 1) is a sequence independent
of a converging to a finite limit as n→∞. Hence the result. �

PROOF OF PROPOSITION 51. By Lemmas 52 and 54, the set of partitions
where either λ1 ≥ n(1 − ε) or λr ≥ nε/3 will play a negligible role in the limit
when we first let n→∞ and then ε → 0. Hence we concentrate on the following
sums [for ε ∈ (0,1)], where we use that for all λ ∈ Pn, λ1 ≤ n(1−ε) and λr ≤ nε/3
implies λ2 > λ3:

∑
λ∈Pn

λ1≤n(1−ε),λr≤nε/3

f

(
λ

n

)
S(λ)

n+1

=
�nε/3�∑
k=0

∑
μ∈Pk

p(μ)≤m−2

∑
λ∈P bin

n−k

λ1≤n(1−ε)

f

(
λ1

n
,
λ2 + k

n
,0, . . .

)
S(λ)

n−k+1S(μ)
k+1

+
�nε/3�∑
k=0

∑
μ∈Pk

p(μ)≤m−2

∑
λ∈P bin

n−k

λ1≤n(1−ε)

(
f

(
λ1

n
,
λ2

n
,
μ1

n
, . . .

)
(39)

− f

(
λ1

n
,
λ2 + k

n
,0, . . .

))
× S(λ)

n−k+1S(μ)
k+1.
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The first sum in the right-hand side of (39) is equal to

�nε/3�∑
k=0

∑
λ∈P bin

n−k,λ1≤n(1−ε)

f

(
λ1

n
,
λ2 + k

n
,0, . . .

)
S(λ)

n−k+1T̃(m)
k+1,(40)

which, multiplied by
√

n/T(m)
n+1, according to Lemma 55(i) and (ii) [(ii) implies

dominated convergence], converges to

∞∑
k=0

T̃(m)
k+1

κ

ρ1+k

∫ 1−ε

1/2

f (x,1− x,0, . . .)

x3/2(1− x)3/2 dx.(41)

Next, let δ > 0. Since f is continuous (hence uniformly continuous) on the com-
pact set S↓, we can choose ε small enough so that the absolute value of the second
sum in the right-hand side of (39) is bounded from above by

2
�nε/3�∑
k=0

∑
λ∈P bin

n−k,λ1≤n(1−ε)

(
δ ∧

(
1− λ1

n

))
S(λ)

n−k+1T̃(m)
k+1.(42)

Similarly as above, when multiplied by
√

n/T(m)
n+1, this quantity converges to

2
∞∑

k=0

T̃(m)
k+1

κ

ρ1+k

∫ 1−ε

1/2

δ ∧ (1− x)

x3/2(1− x)3/2 dx

(43)

≤ 2
∞∑

k=0

T̃(m)
k+1

κ

ρ1+k

∫ 1

1/2

δ ∧ (1− x)

x3/2(1− x)3/2 dx

by Lemma 55(i) and (ii).
Now let η > 0 be fixed. For δ and ε sufficiently small, the terms (43) and the

limsup of Lemma 52 are smaller than η, and the term (41) is in a neighborhood of
radius η of the intended limit

κ

∞∑
k=0

T̃(m)
k+1

ρk+1

∫ 1

1/2

f (x,1− x,0, . . .)

x3/2(1− x)3/2 dx.(44)

Next, such small δ and ε being fixed, letting n→∞, and using Lemma 54 and the
convergences of (40) to (41) and of (42) to (43), we get that

√
n
∑

λ∈Pn
f (λ

n
)S(λ)

n+1/

T(m)
n+1 is indeed in a neighborhood of radius 7η of (44) for all n large enough. �
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