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A SPATIAL VERSION OF THE ITÔ–STRATONOVICH
CORRECTION

BY MARTIN HAIRER1 AND JAN MAAS2

University of Warwick and University of Bonn

We consider a class of stochastic PDEs of Burgers type in spatial di-
mension 1, driven by space–time white noise. Even though it is well known
that these equations are well posed, it turns out that if one performs a spa-
tial discretization of the nonlinearity in the “wrong” way, then the sequence
of approximate equations does converge to a limit, but this limit exhibits an
additional correction term.

This correction term is proportional to the local quadratic cross-variation
(in space) of the gradient of the conserved quantity with the solution itself.
This can be understood as a consequence of the fact that for any fixed time,
the law of the solution is locally equivalent to Wiener measure, where space
plays the role of time. In this sense, the correction term is similar to the
usual Itô–Stratonovich correction term that arises when one considers dif-
ferent temporal discretizations of stochastic ODEs.

1. Introduction. In this work, we give a rigorous analysis of the behavior of
stochastic Burgers equations in one spatial dimension under various approximation
schemes. It was recently argued in [12] that if the approximation scheme fails
to satisfy a certain symmetry condition, then one expects the approximations to
converge to a modified equation, with the appearance of an additional correction
term in the limit. This correction term is somewhat similar to the Itô–Stratonovich
correction that appears in the study of SDEs when one compares centred and one-
sided approximations. The present article provides a rigorous justification of the
results observed in [12], at least in the case where the nonlinearity of the equation
is of gradient type, and therefore the limiting equation is well posed in a classical
sense.

More precisely, we will consider in this work stochastic PDEs of the form

∂tu(x, t) = ν ∂2
xu(x, t) + F(u(x, t)) + (∇G)(u(x, t)) ∂xu(x, t) + ξ(x, t),(1.1)
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where u = u(x, t) is an Rn-valued function, with x ∈ [0,2π ], t ≥ 0. In this equa-
tion, ν > 0 is a positive constant, the functions F,G : Rn → Rn are assumed to
be C 3, and the stochastic forcing term ξ consists of independent space–time white
noises in each component of Rn. For the sake of simplicity, we endow this equa-
tion with periodic boundary conditions, but we do not expect this to alter our results
significantly.

Endowed with an initial condition u0 ∈ C([0,2π ];Rn), (1.1) is locally well
posed [9], provided that we rewrite the nonlinearity as ∂xG(u) and consider so-
lutions either in the weak or the mild form [7]. (Note that our noise term is not the
gradient of space–time white noise, as in [3]. Therefore, our solutions are actually
α-Hölder continuous functions for all α < 1

2 .) The aim of this article is to show
that this well-posedness is much less stable than one may imagine at first. Indeed,
if we set

D+
ε u(x) = u(x + ε) − u(x)

ε
,

and consider the family uε of solutions to the approximate equation

∂tuε = ν ∂2
xuε + F(uε) + ∇G(uε)D

+
ε uε + ξ,

then our main result, Theorem 1.6 below, implies that uε ⇒ ū, where ū is the
solution to (1.1), but with F replaced by

F̄ (u) = F(u) − 1

4ν
�G(u),(1.2)

where � is the usual Laplacian on Rn.

REMARK 1.1. The correction term in (1.2) is reminiscent of the Wong–Zakai
correction [17], which arises if the driving Brownian motion in a stochastic ODE or
PDE is approximated by stochastic processes of bounded variation. This correction
term is due to the temporal roughness of the driving Brownian motion and does
not appear if the noise is additive.

Our correction term is a consequence of the spatial roughness of the solutions
and appears even though we consider SPDEs with additive noise. In fact, an ex-
plicit calculation allows to check that the local quadratic variation (in space) of
the solution u to (1.1) is precisely given by 1/(2ν). Therefore, one can interpret
the correction term appearing in (1.2) as precisely being equal to −1

2 times the
quadratic covariation between u and ∇G(u). Recall that this is exactly the correc-
tion term that appears when one switches between Itô and Stratonovich integral in
the usual setting of stochastic calculus. See also [12] for a heuristic argument for
computing the correction term.

REMARK 1.2. This correction term is a purely stochastic effect and is com-
pletely unrelated to the fact that our discretization scheme is not an upwind scheme
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(see [5, 15]). In the absence of noise, we would still have the regularizing property
from the nonvanishing viscosity, so that pretty much any “reasonable” numerical
scheme would converge to the correct solution.

If D+
ε is replaced by D−

ε , defined by D−
ε u(x) = (u(x) − u(x − ε))/ε, then a

similar result is true, but the sign in front of the correction term in (1.2) changes.
We will actually consider a much more general class of approximations to (1.1),
where we also allow both the linear operator ∂2

x and the noise term ξ to be re-
placed by approximate versions that are still translation-invariant, but modified at
the lengthscale ε.

1.1. Statement of the main result. For ε > 0, we consider approximating
stochastic PDEs of the type

∂tuε = ν�εuε + F(uε) + ∇G(uε)Dεuε + ξε.

Since our system is invariant under spatial translations, it seems natural to restrict
ourselves to a class of approximations that enjoys the same property. Throughout
this article, we will therefore use approximate differential operators �ε and Dε ,
as well as an approximate space–time white noise ξε given by their Fourier trans-
forms:

�̂εu(k) = −k2f (ε|k|)û(k), D̂εu(k) = ikg(εk)û(k),

ξ̂ε(k) = h(ε|k|)̂ξ (k).

Several natural discretizations arising in numerical analysis are of this form (see
the examples below Theorem 1.6). We will make the following standing assump-
tions on these objects.

ASSUMPTION 1.3. The function f : [0,∞) → [0,+∞] is twice differentiable
at 0 with f (0) = 1 and f ′(0) = 0. Furthermore, there exists q ∈ (0,1] such that
f (k) ≥ q for all k > 0.

If f (k) = +∞ for some values of k, we use the convention exp(−t∞) = 0 for
every t > 0. In this case, the semigroup generated by �ε is not strongly continuous,
but this is of no consequence for our analysis.

ASSUMPTION 1.4. There exists a signed Borel measure μ such that∫
R

eikxμ(dx) = ikg(k),

and such that

μ(R) = 0, |μ|(R) < ∞,

∫
R

xμ(dx) = 1,

∫
R

|x|4|μ|(dx) < ∞.(1.3)

In particular, we have (Dεu)(x) := 1
ε

∫
R u(x + εy)μ(dy).
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ASSUMPTION 1.5. The function h is bounded and such that h2/f is of
bounded variation. Furthermore, h is twice differentiable at the origin with
h(0) = 1 and h′(0) = 0.

Let ū be the solution to the equation

∂t ū = ν ∂2
x ū + F̄ (ū) + ∇G(ū) ∂xū + ξ.(1.4)

In this equation,

F̄ := (F − 	�G)

and 	 ∈ R is a correction constant given by

	
def= 1

2πν

∫
R+

∫
R

(1 − cos(yt))h2(t)

t2f (t)
μ(dy)dt.(1.5)

Note that a straightforward calculation shows that 	 is indeed well defined, as a
consequence of the fact that h2/f is bounded by assumption and that |μ| has a
finite second moment.

Before we state our main result, note that the equation (1.4) is locally well posed
in L∞, see [2, 4, 6, 9, 10]. As a consequence, it has a well-defined blow-up time τ∗
(possibly infinite) such that, almost surely, limt→τ∗‖ū(t)‖L∞ = +∞ on the event
{τ∗ < ∞}. With this notation, we are now ready to state the main result of this
paper.

THEOREM 1.6. Let κ > 0 and let uε and ū have initial conditions as in Theo-
rem 2.2. There exists a sequence of stopping times τε satisfying limε→0 τε = τ∗ in
probability, and such that

lim
ε→0

P

(
sup
t≤τε

‖uε(t) − ū(t)‖L∞ > ε1/8−κ
)

= 0.

REMARK 1.7. In order to avoid further technical complications, we consider
sequences of initial conditions that have the property that the initial condition for
uε “behaves like” the solution uε(t) for positive times. In fact, the initial condition
for uε is a smooth perturbation of the stationary solution to the linearized equation
for uε . We refer to Section 2 for more details.

Before we proceed, we list some of the most common examples of discretiza-
tions that do fit our framework. For a, b ≥ 0 with a + b > 0, it is natural to dis-
cretize the derivative operator by choosing

μ := δa − δ−b

a + b
.

This is also the discretization that was considered in [12]. As far as the discretiza-
tions of the noise and the Laplacian are concerned, there are at least three natural
choices.
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No discretization. This is the case f = h = 1 where only the nonlinearity is
discretized. With this choice, one can check that the correction factor is given by
	 = 1

4ν
a−b
a+b

.

Finite difference discretization. In this case, we divide the interval [0,2π ] into
N equally sized intervals. For convenience, we assume that N is odd and we set

(�εu)(x) = 1

ε2

(
u(x + ε) + u(x − ε) − 2u(x)

)
, ε = 2π

N
.

We furthermore identify a function u with the trigonometric polynomial of degree
(N − 1)/2 agreeing with u at the gridpoints. This corresponds to the choice

f (k) =
⎧⎨
⎩

4

k2 sin2(k/2), k ∈ [0, π),

+∞, k ∈ [π,∞),
h = 1[0,π).

The natural choice for the discretization of the derivative operator in this case is
to choose a and b to be integers, so that discretization takes place on the grid-
points. With this choice, it can be shown that the correction factor is identical to
that obtained in the previous case. Note however that this is not the case if the
discretization of the derivative operator is not adapted to the gridsize.

Galerkin discretization. In this case, we approximate � and ξ by only keeping
those Fourier modes that appear in the approximation by trigonometric polynomi-
als. This corresponds to the choice

f (k) =
{

1, k ∈ [0, π),
+∞, k ∈ [π,∞),

h = 1[0,π).

The correction factor 	 is then given by

	 = cos(πa) + πa Si(πa) − cos(πb) − πb Si(πb)

2π2ν(a + b)
,

where Si t = ∫ t
0

sinx
x

dx.
The rest of this paper is structured as follows. In Section 2, we introduce no-

tation, we give a refined formulation of the main result and present an outline of
the proof of the main result (Theorem 2.2). In Section 3, we prove several useful
bounds on the approximating semigroups and the approximations of the gradi-
ent. Section 4 is devoted to several estimates for stochastic convolutions, the most
crucial one being Proposition 4.6, which is responsible for the correction term ap-
pearing in the limiting equation. Most of the work is performed in Section 5, where
convergence of various approximating equations is proved.
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2. Proof of the main result. In order to shorten notation, we introduce the
semigroups S and Sε , defined as rescaled versions of the heat semigroup and its
approximation:

S(t)
def= e−t (1−ν∂2

x ), Sε(t)
def= e−t (1−ν�ε),

where we define Sε by Fourier analysis, that is,

Ŝεu(k) = e−t (1+νk2f (ε|k|))û(k),

making use of the convention e−∞ = 0.
Since we will always work with the mild formulation, it will be convenient to

have a notation for the convolution (in time) of a function with one of the semi-
groups. We will henceforth write

(S ∗ w)(t)
def=

∫ t

0
S(t − s)w(s) ds.

Let (W(t))t∈R be a two-sided cylindrical Wiener process on H def= L2([0,2π ],Rn)

(see [7, 10] for precise definitions) and let Qε be the bounded operator on H de-
fined as a Fourier multiplier by

Q̂εu(k) = h(ε|k|)û(k).

(We assume that it acts independently on each component.) Finally, we define the
H-valued processes ψ and ψ̃ by

ψ(t) =
∫ t

−∞
S(t − s) dW(s), ψ̃(t) =

∫ t

−∞
Sε(t − s)Qε dW(s),

so that, in the notation of the previous section, they are the stationary solutions to
the linear equations

∂tψ = (ν∂2
x − 1)ψ + ξ, ∂t ψ̃ = (ν�ε − 1)ψ̃ + ξε.

With this notation at hand, we can rewrite the equations for ū and uε in the mild
form as

ū(t) = S(t)v0 + ψ(t) + S ∗ (
F̄ (ū) + ∇G(ū) ∂xū

)
(t),(2.1)

uε(t) = Sε(t)v0 + ψ̃(t) + Sε ∗ (
F(uε) + ∇G(uε)Dεuε

)
(t).(2.2)

REMARK 2.1. Note that we have used here a common initial condition v0 for
the difference ū − ψ and uε − ψ̃ . As a consequence, the two equations do not
start with the same initial condition! However, as ε → 0, the initial condition of uε

converges to that of ū. The reason for not starting with the same initial condition
is mostly of technical nature.
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It will be convenient to define for any 0 < γ < χ ,

ψγ
def= (I − �ε−γ )ψ, ψγ def= �ε−γ ψ, ψχ

γ
def= (�ε−χ − �ε−γ )ψ.

The expressions ψ̃γ , ψ̃γ and ψ̃
χ
γ are defined analogously. Here �N denotes the

projection onto the low-frequency components of the Fourier expansion, defined

by �Nen
def= 1|n|≤Nen, where en(x) = (2π)−1/2einx .

We set

v̄
def= ū − ψ, ṽ

def= uε − ψ̃.

In the proof, it will be convenient to work with the functions v̄γ and ṽγ defined by

v̄γ def= v̄ + ψγ = ū − ψγ , ṽγ def= ṽ + ψ̃γ = uε − ψ̃γ .

It follows from (2.1) and (2.2) that these functions satisfy the following equations:

v̄γ (t) = S(t)v0 + ψγ (t) + S ∗ (
F̄ (v̄γ + ψγ ) + ∂x

(
G(v̄γ + ψγ )

))
(t),(2.3)

ṽγ (t) = Sε(t)v0 + ψ̃γ (t)
(2.4)

+ Sε ∗ (
F(ṽγ + ψ̃γ ) + ∇G(ṽγ + ψ̃γ )Dε(ṽ

γ + ψ̃γ )
)
(t).

For large parts of this article, it will be convenient to work in the fractional
Sobolev space Hα for some α > 1

2 , so that Hα ⊂ L∞. Recall that Hα denotes the
space of (equivalence classes of) functions u = ∑

j∈Z ukek on [0,2π ] with uk ∈ C,
for which

‖u‖2
α := ∑

k∈Z

|uk|2(1 + k2)α < ∞.

Furthermore, we will need to use a high-frequency cut-off, which will smoothen
out the solutions at a scale εχ for some χ > 1. It turns out that a reasonable choice
for these parameters is given by

α = 3
4 , γ = 1

3 , χ = 3
2 ,(2.5)

and we will fix these values from now on. With this notation at hand, the following
theorem, which is essentially a more precise reformulation of Theorem 1.6, is a
more precise statement of our main result. Here and in the rest of the paper we
write ‖u‖β to denote the norm of an element u in the fractional Sobolev space Hβ

for β ∈ R.

THEOREM 2.2. Let κ > 0 be an arbitrary (small) exponent and let v0 ∈ Hβ

for all β < 3
2 . There exists a sequence of stopping times τε satisfying τε → τ∗ in

probability as ε → 0, such that

lim
ε→0

P

(
sup
t≤τε

‖uε(t) − ū(t)‖L∞ > ε1/8−κ
)

= 0.(2.6)
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In fact, we have the bounds

lim
ε→0

P

(
sup
t≤τε

‖ṽγ (t) − v̄γ (t)‖α > ε1/8−κ
)

= 0,(2.7)

lim
ε→0

P

(
sup
t≤τε

‖ψ̃γ (t) − ψγ (t)‖L∞ > ε1/2−κ
)

= 0.(2.8)

REMARK 2.3. We emphasize again that the initial conditions ū(0) and uε(0)

are slightly different. In fact, one has uε(0) = ū(0) + ψ̃(0) − ψ(0).

REMARK 2.4. The rate 1
8 is not optimal. By adjusting the parameters α, γ

and χ in an optimal way, and by sharpening some of the arguments in our proof,
one could achieve a slightly better rate. However, we do not believe that any rate
obtained in this way would reflect the true speed of convergence, so we keep with
the values (2.5) that yield simple fractions.

REMARK 2.5. From a technical point of view, the general methodology fol-
lowed in this section and the subsequent sections is inspired from [11], where
a somewhat similar phenomenon was investigated. Besides the structural differ-
ences in the equations considered here and in [11], the main technical difficulties
that need to be overcome for the present work are the following:

(1) In [11], it is possible to simply subtract the stochastic convolution ψ (or ψ̃)
and work with the equation for the remainder. Here, we instead subtract only the
highest Fourier modes of ψ . The reason for this choice is that it entails that v̄γ → ū

as ε → 0. This allows us to linearize the nonlinearity around v̄γ in order to exhibit
the desired correction term. As a consequence, our a priori regularity estimates
are much worse than those in [11] and our convergence rates are worse. The main
reason why we need this complication is that our approximate derivative Dε does
not satisfy the chain rule.

(2) All of our fixpoint arguments need to be performed in the fractional Sobolev
space Hα , for some α > 1

2 . This is in contrast to [11] where some of the arguments
could be performed first in L∞, and then lifted to Hα by a standard bootstrapping
argument. These bootstrapping arguments fail here, since the nonlinearity of our
approximating equation contains an approximate derivative, which gives rise to
correction terms which are not easy to control.

(3) In one crucial step where a Gaussian concentration inequality is employed
in [11], it was necessary that the stochastic convolutions belong to Hα for some
α > 1

2 . This is the case in [11] as a consequence of the extra regularizing effect
caused by a small fourth-order term present in the linear part. This additional reg-
ularizing effect is not always present in the current work. We therefore perform
another truncation in Fourier space, at very high frequencies. This is the purpose
of the exponent χ .
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Note also that Proposition 4.6 is the analogue of Proposition 4.1 in [11]. One dif-
ference is that we have a much cleaner separation of the probabilistic and the ana-
lytical aspects of this result.

By a standard Picard fixed point argument (see, e.g., [10]) it can be shown that
(2.1) admits a unique mild solution ū defined on a random time interval [0, τ∗].
Moreover, the spatial regularity of ψ and ū equals that of a Brownian path, in the
sense that ψ(t) and ū(t) are continuous and belong to Hβ for any β < 1

2 and any
t > 0, but not to H 1/2. We shall take advantage of the fact that the process v̄ is
much more regular. In fact, v̄(t) ∈ Hβ almost surely for any β < 3

2 and any t > 0,
but one does not expect it to belong to H 3/2 in general. This follows immediately
from the mild formulation (2.1) combined with a standard bootstrapping argument.
It follows from these considerations that, for every fixed time horizon T , the stop-
ping time

τK∗ := T ∧ inf{t :‖v̄(t)‖α ∨ ‖ū(t)‖L∞ ≥ K}
converges in probability to τ∗ ∧ T as K → ∞.

It will be shown in Section 4 that a number of functionals of ψ and ψ̃ scale in
the following way:

‖ψ̃χ
γ (t)‖L∞ � εγ/2−κ , ‖ψ̃γ (t)‖L∞ � εγ/2−κ ,

‖ψγ (t)‖L∞ � εγ/2−κ , ‖ψ̃χ (t)‖L∞ � εχ/2−κ ,

‖ψγ (t)‖α � ε−γ (α−1/2)−κ, ‖ψ̃χ
γ (t)‖α � ε−χ(α−1/2)−κ ,

‖ψ̃γ (t) − ψγ (t)‖α � ε2−γ (α+3/2)−κ , �ε(ψ̃γ (t)) � ε−1−κ ,

�ε(ψ̃χ (t)) � εχ−2−κ , ‖	 − �ε(ψ̃
χ
γ (t))‖−α � ε1/2−κ,

where the quantities �ε and �ε are defined by

�ε(u)
def=

∫
R

y2‖D̂εyu‖2
L2 |μ|(dy), �ε(u)

def=
∫

R

εy2

2
D̂εyu ⊗ D̂εyuμ(dy).

Note that all of these relations are of the form �ε
i (t) � εαi−κ for some expression

�ε
i depending on ε and some exponent αi . In the proof, it will be convenient to

impose this behavior by means of a hard constraint. For this purpose, we introduce
the stopping time τK , which is defined for K > 0 by

τK def= τK∗ ∧ inf{t :∃i :�ε
i (t) ≥ εαi−κ}.(2.9)

From now on, we will write CK to denote a constant which may depend on K

(and T ) and is allowed to change from line to line. Similarly, κ will be a positive
universal constant which is sufficiently small and whose value is allowed to change
from line to line. However, the final value of κ is independent of ε, K and T .
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The remainder of this section is devoted to the proof of Theorem 2.2.

PROOF OF THEOREM 2.2. Most of the work in the proof consists of bounding
the difference between ṽγ and v̄γ in Hα . This bound will be obtained in several
steps, using the intermediate processes v

(i)
ε , i = 1, . . . ,4, defined by

v(1)
ε (t) = S(t)v0 + ψγ (t) + S ∗ (

F̄
(
v(1)
ε

) + ∂xG
(
v(1)
ε

))
(t),(2.10a)

v(2)
ε (t) = S(t)v0 + ψγ (t) + S ∗ (

F̄
(
v(2)
ε

) + DεG
(
v(2)
ε

))
(t),(2.10b)

v(3)
ε (t) = Sε(t)v0 + ψ̃γ (t) + Sε ∗ (

F̄
(
v(3)
ε

) + DεG
(
v(3)
ε

))
(t),(2.10c)

v(4)
ε (t) = Sε(t)v0 + ψ̃γ (t)

(2.10d)
+ Sε ∗ (

F
(
v(4)
ε + ψ̃χ

γ

) + ∇G
(
v(4)
ε + ψ̃χ

γ

)
Dε

(
v(4)
ε + ψ̃χ

γ

))
(t).

At this stage, we stress that the main difficulty of the proof consists of showing
that v

(3)
ε and v

(4)
ε are close (see Proposition 5.5 below). Showing the smallness of

the remaining differences v
(j)
ε − v

(j+1)
ε is relatively straightforward and follows

by applying standard SPDE techniques. The main ingredient in this part of the
proof is an estimate which compares the square of the approximate derivative of
ψ̃

χ
γ to the correction term, in a suitable Sobolev space of negative order. The esti-

mate is purely probabilistic and ultimately relies on the fact that the quantity that
we wish to control belongs to the second order Wiener chaos. It can be found in
Proposition 4.6, which we consider to be the core of the paper.

Recall the definition of the stopping time τK given in (2.9). With this definition

at hand, we set τK
0

def= τK as well as v
(0)
ε

def= v̄γ and v
(5)
ε

def= ṽγ , and we define
recursively a sequence of stopping times τK

j with j = 1, . . . ,5 by

τK
j = τK

j−1 ∧ inf
{
t :

∥∥v(j)
ε (t) − v(j−1)

ε (t)
∥∥
α ≥ K

}
.(2.11)

With this notation at hand, Propositions 5.1–5.7 state that, for all fixed values
K,κ > 0 and every j = 1, . . . ,5, one has

lim
ε→0

P

(
sup
t≤τK

j

∥∥v(j)
ε (t) − v(j−1)

ε (t)
∥∥
α > ε1/8−κ

)
= 0.(2.12)

Combining all of these bounds, we conclude immediately that, for every fixed time
horizon T > 0 and every choice of values K and κ , we have

lim
ε→0

P

(
sup
t≤τK

5

‖ṽγ (t) − v̄γ (t)‖α > ε1/8−κ
)

= 0.

This is formally very close to (2.7), except that we still have the values T ,K >

0 appearing in our statement and consider the solutions only up to the stopping
time τK

5 .
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Since τ∗ ∧ T → τ∗ as T → ∞ and since we already argued that τK∗ → τ∗ ∧ T

as K → ∞, the bound (2.7) follows if we are able to show that, for every fixed
choice of K and T ,

lim
ε→0

P(τK
5 �= τK∗ ) = 0.(2.13)

Since the statement of our theorem is stronger, the smaller the value of κ , we can
assume without loss of generality that κ < 1

8 . In this case, limε→0 ε1/8−κ = 0, so
that (2.12) and (2.11) together imply that

lim
ε→0

P(τK
j �= τK

j−1) = 0

for j = 1, . . . ,5, from which we conclude that limε→0 P(τK
5 �= τK) = 0.

In order to finish the proof of (2.7), it now suffices to show that limε→0 P(τK �=
τK∗ ) = 0. Fix an arbitrary T > 0 and κ > 0. It then follows from Propositions 4.3,
4.4 and 4.5 that for each of the terms �ε

j appearing in (2.9), there exists a constant
Cj > 0 such that

E sup
t∈[0,T ]

�ε
j (t) ≤ Cjε

αj−κ/2,

uniformly for all ε ≤ 1. It then follows from Chebychev’s inequality that

P(τK �= τK∗ ) ≤ ∑
j

P

(
sup

t∈[0,T ]
�ε

j (t) ≥ εαj−κ
)

≤ ∑
j

Cjε
κ/2,

from which the claim follows.
Since (2.6) follows from (2.7) and (2.8), the proof of the theorem is complete if

we show that (2.8) holds. Since it follows from Proposition 4.3 and Chebychev’s
inequality that

lim
ε→0

P

(
sup
t≤T

‖ψ̃γ (t) − ψγ (t)‖L∞ > ε1/2−κ
)

= 0

for every T > 0, this claim follows at once. �

3. Analytic tools.

3.1. Products and compositions of functions in Sobolev spaces. In this sub-
section, we collect some well-known bounds for products and compositions of
functions in Sobolev spaces. As is usual in the analysis literature, we use the no-
tation � � � as a shorthand for “there exists a constant C such that � ≤ C� .”
These estimates will be useful in order control the various terms that arise in the
Taylor expansion of the nonlinearity that will be performed in Section 5 below.

LEMMA 3.1. Let r, s, t ≥ 0 be such that r ∧ s > t and r + s > 1
2 + t .
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(1) For f ∈ Hr and g ∈ Hs , we have fg ∈ Ht and

‖fg‖t � ‖f ‖r‖g‖s .(3.1)

(2) For f ∈ Hr and g ∈ H−t , we have fg ∈ H−s and

‖fg‖−s � ‖f ‖r‖g‖−t .(3.2)

PROOF. This result is very well known. A proof of (3.1) can be found, for
example, in [10], Theorem 6.18, and (3.2) follows by duality. �

LEMMA 3.2. Let s ∈ (1
2 ,1). There exists C > 0 such that for any u ∈ Hs and

any G ∈ C1(Rn;Rn) satisfying

‖Gu‖C1 := sup{|G(x)| + |∇G(x)| : |x| ≤ ‖u‖L∞} < ∞,

we have

‖G ◦ u‖s ≤ C‖Gu‖C1(1 + ‖u‖s).

PROOF. Let τh be the shift operator defined by τhu(x) := u(x − h). It is well
known (see, e.g., [8] or, for functions defined on Rn, [1], Theorem 7.47) that the
expression

‖u‖L2 +
(∫ 1

0

[
t−s sup

|h|<t

‖u − τhu‖L2

]2 dt

t

)1/2

(3.3)

defines an equivalent norm on Hs . The result then follows by inserting the esti-
mates

‖G ◦ u‖L2 ≤ ‖G ◦ u‖L∞ ≤ C‖Gu‖C1,

‖G ◦ u − τh(G ◦ u)‖L2 ≤ C‖Gu‖C1‖u − τhu‖L2

into (3.3). �

3.2. Semigroup bounds. We will frequently use the fact that for α ≥ β and
T > 0, there exists a constant C > 0 such that

‖S(t)u‖α ≤ Ct−(α−β)/2‖u‖β(3.4)

for any ε ∈ (0,1], t ∈ [0, T ] and u ∈ Hβ . This is a straightforward consequence of
standard analytic semigroup theory [10, 14]. Since the generator of S is selfadjoint
in all of the Hs , it is also straightforward to prove (3.4) by hand. As a consequence,
we have:

LEMMA 3.3. Let α,β ∈ R be such that 0 ≤ α − β < 2 and let T > 0. There
exists C > 0 such that for all t ∈ [0, T ] and u ∈ C([0, t];Hβ) we have∥∥∥∥

∫ t

0
S(t − s)u(s) ds

∥∥∥∥
α

≤ Ct1−(α−β)/2 sup
s∈[0,t]

‖u(s)‖β.(3.5)
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PROOF. It suffices to integrate the bound (3.4). �

The following bounds measure how well Sε approximates S in these interpola-
tion spaces. The general philosophy is that every power of ε has to be paid with
one spatial derivative worth of regularity. This type of power-counting is a direct
consequence of the fact that the function f that measures how much �ε differs
from ∂2

x , is evaluated at ε|k| in the definition of �ε . The precise bounds are the
following:

LEMMA 3.4. Let κ ∈ [0,2]. For T > 0 there exists C > 0 such that for any
t ∈ [0, T ], ε ∈ (0,1], and u ∈ Hβ , we have

‖Sε(t)u − S(t)u‖α ≤ Cεκt−(α−β+κ)/2‖u‖β (β ≤ α + 2κ),(3.6)

‖Sε(t)u‖α ≤ Ct−(α−β)/2‖u‖β (β ≤ α).(3.7)

PROOF. We set f̄
def= f − 1 and assume ν = 1 for notational simplicity, since

the case ν �= 1 is virtually identical. The assumptions on f imply that |f̄ (εn)| ≤
cε2n2 whenever n < δ/ε and δ is some sufficiently small constant. Using the mean
value theorem and the fact that we can assume δ < 1 without loss of generality, we
obtain for n < δ/ε and κ ∈ [0,2],

|exp(−tn2f̄ (εn)) − 1| ≤ (2 ∧ ctε2n4)ectε2n4 ≤ Ctκ/2εκn2κectδ2n2

≤ Cεκtκ/2n2κecδ2t (1+n2).

Inserting this bound into the identity(
Sε(t)u − S(t)

)
en = (

e−tn2f̄ (εn) − 1
)
e−t (1+n2)en,

it then follows from (3.4) that∥∥�δ/ε

(
Sε(t) − S(t)

)
u
∥∥
α ≤ Cεκtκ/2∥∥S(

(1 − δ2c)t
)
u
∥∥
α+2κ

(3.8)
≤ Cεκt−(α−β+κ)/2‖u‖β,

provided that we choose δ sufficiently small so that δ2c ≤ 1
2 , say.

On the other hand, note that

(I − �δ/ε)
(
Sε(t)u − S(t)

)
en = 1{|n|>δ/ε}

(
e−tn2f̄ (εn) − 1

)
e−t (1+n2)en.

Recall that f̄ (εn) ≥ q −1 for all n, and that q ∈ (0,1]. Then we can find a constant
C such that

|exp(−tn2f̄ (εn)) − 1|e−t (1+n2) ≤ Ce−q(1+n2)t .

Moreover, for any κ > 0 we have 1{|n|>δ/ε} ≤ |εn/δ|κ . It thus follows, using (3.4)
again, that∥∥(I − �δ/ε)

(
Sε(t) − S(t)

)
u
∥∥
α ≤ Cεκ‖S(qt)u‖α+κ ≤ Cεκt−(α−β+κ)/2‖u‖β.

The bound (3.6) now follows by combining this inequality with (3.8). Inequality
(3.7) follows by combining the special case κ = 0 with (3.4). �
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3.3. Estimates for the gradient term. In this section, we similarly show how
well the operator Dε approximates ∂x . Again, the guiding principle is that every
power of ε “costs” the loss of one derivative. However, we are also going to use
the fact that Dε is a bounded operator. In this case, we can gain up to one spatial
derivative with respect to the operator ∂x , but we have to “pay” with the same
number of inverse powers of ε. The rigorous statement for the latter fact is the
following lemma.

LEMMA 3.5. Let β ∈ R and α ∈ [0,1]. There exists C > 0 such that for all
ε ∈ (0,1] and u ∈ Hβ the estimate

‖Dεu‖β−α ≤ Cεα−1‖u‖β

holds.

PROOF. Using the assumption that M := |μ|(R) < ∞, together with Jensen’s
inequality and Fubini’s theorem, we obtain

‖Dεu‖2
L2 ≤ 1

ε2

∫ (∫
R

|u(x + εy)||μ|(dy)

)2

dx

≤ M

ε2

∫ ∫
R

|u(x + εy)|2|μ|(dy) dx = M2

ε2 ‖u‖2
L2 .

On the other hand, assuming for the moment that u is smooth, we use the as-
sumption that μ(R) = 0, and apply Jensen’s inequality and Minkowski’s integral
inequality to obtain

‖Dεu‖2
L2 = 1

ε2

∫ (∫
R

u(x + εy)μ(dy)

)2

dx

= 1

ε2

∫ (∫
R

∫ εy

0
u′(x + z) dzμ(dy)

)2

dx

≤ M

ε2

∫ ∫
R

(∫ εy

0
|u′(x + z)|dz

)2

|μ|(dy) dx

≤ M

ε2

∫
R

(∫ εy

0

(∫
|u′(x + z)|2 dx

)1/2

dz

)2

|μ|(dy)

= M‖u′‖2
L2

∫
R

y2|μ|(dy) ≤ C‖u‖2
1.

Using complex interpolation, it follows that ‖Dεu‖L2 ≤ Cεα−1‖u‖α for every α ∈
[0,1]. The desired result then follows from the fact that Dε commutes with every
Fourier multiplier. �

The announced approximation result on the other hand is the following lemma.
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LEMMA 3.6. Let β ∈ R and α ∈ [0,1]. There exists C > 0 such that for all
ε ∈ (0,1] and u ∈ Hβ the estimate

‖Dεu − ∂xu‖β−1−α ≤ Cεα‖u‖β

holds.

PROOF. In view of (1.3) we have, assuming for the moment that u is smooth,

(Dε − ∂x)u(x) = 1

ε

∫
R

∫ εy

0

∫ w

0
u′′(x + z) dz dw μ(dy).

Integrating against a test function ϕ and applying Fubini’s theorem, we arrive at∣∣∣∣
∫

ϕ(x)(Dε − ∂x)u(x) dx

∣∣∣∣ ≤ C

ε

∫
R

∫ εy

0

∫ w

0
‖ϕ‖2−β‖u‖β dz dw |μ|(dy)

≤ Cε‖ϕ‖2−β‖u‖β

∫
R

|y|2|μ|(dy),

which implies that

‖(Dε − ∂x)u‖β−2 ≤ Cε‖u‖β.

On the other hand, Lemma 3.5 implies that

‖(Dε − ∂x)u‖β−1 ≤ C‖u‖β,

and the result then follows as before by interpolating between these estimates. �

As an immediate corollary of these bounds, we obtain the following useful fact.

COROLLARY 3.7. Let β ∈ [0,1). There exists C > 0 such that for ε ∈ (0,1],
u ∈ Hβ , and G ∈ C1(Rn) we have

‖DεG(u) − ∂xG(u)‖−1 ≤ Cεβ‖Gu‖C1(1 + ‖u‖β),

where ‖Gu‖C1 is defined as in Lemma 3.2.

PROOF. Using Lemmas 3.6 and 3.2, we obtain

‖DεG(u) − ∂xG(u)‖−1 ≤ Cεβ‖G(u)‖β ≤ Cεβ‖Gu‖C1(1 + ‖u‖β),

which is the stated claim. �
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4. Probabilistic tools. In this section, we prove some sharp estimates for cer-
tain expressions involving stochastic convolutions. Our main tool is the following
version of Kolmogorov’s continuity criterion, which follows immediately from the
one given, for example, in [16]. The reason why we state condition (4.1) in this
form, is that it is automatically satisfied (by hypercontractivity) for random fields
taking values in a Wiener chaos of fixed (finite) order.

LEMMA 4.1. Let (ϕ(t))t∈[0,1]n be a Banach space-valued random field having
the property that for any q ∈ (2,∞) there exists a constant Kq > 0 such that

(E‖ϕ(t)‖q)1/q ≤ Kq(E‖ϕ(t)‖2)1/2,
(4.1) (

E‖ϕ(s) − ϕ(t)‖q)1/q ≤ Kq

(
E‖ϕ(s) − ϕ(t)‖2)1/2

for all s, t ∈ [0,1]n. Furthermore, suppose that the estimate

E‖ϕ(s) − ϕ(t)‖2 ≤ K0|s − t |δ
holds for some K0, δ > 0 and all s, t ∈ [0,1]n. Then, for every p > 0 there exists
C > 0 such that

E sup
t∈[0,1]n

‖ϕ(t)‖p ≤ C
(
K0 + E‖ϕ(0)‖2)p/2

.

Throughout this subsection, we shall use θk and θ̃k for the Fourier coefficients
of ψ and ψ̃ , so that

ψ(t) = ∑
k∈Z

θk(t)ek, ψ̃(t) = ∑
k∈Z

θ̃k(t)ek.

With this notation at hand, we first state the following approximation bound, which
shows that we can again trade powers of k for powers of ε, provided that we look
at the difference squared:

LEMMA 4.2. For t ≥ 0, k ∈ Z and ε ∈ (0,1], we have

E|θ̃k(t) − θk(t)|2 ≤ C(k−2 ∧ ε4k2).(4.2)

PROOF. We write again f̄ = f − 1 and assume ν = 1 for simplicity. The Itô
isometry then implies that

E|θ̃k(t) − θk(t)|2 = C

∫ ∞
0

e−2t (1+k2)(1 − h(ε|k|)e−tk2f̄ (ε|k|))2
dt

≤ C

∫ ∞
0

e−2t (1+k2)(1 − e−tk2f̄ (ε|k|))2
dt

(4.3)
+ C

∫ ∞
0

e−2t (1+k2)e−2tk2f̄ (ε|k|)(1 − h(ε|k|))2
dt

def= I1 + I2.
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Let δ > 0 be a (small) constant to be determined later and consider first the term I1

with |εk| ≤ δ. Since f is twice differentiable near the origin, we can find δ small
enough so that |f̄ (|εk|)| ≤ cε2k2 for some c > 0. Therefore, for t ≥ 0,

∣∣1 − e−tk2f̄ (ε|k|)∣∣ ≤ ctε2k4ectε2k4 ≤ ctε2k4ecδ2tk2
,(4.4)

so that

|I1| ≤ Cε4k8
∫ ∞

0
t2e−2t (1+k2)+2cδ2k2t dt.

If we ensure that δ is small enough so that 2cδ2 ≤ 1, we obtain

|I1| ≤ Cε4k8
∫ ∞

0
t2e−k2t dt ≤ Cε4k2 ≤ C(k−2 ∧ ε4k2),

where the last inequality follows from the fact that |εk| ≤ δ by assumption.
To treat the case |εk| > δ, we use the fact that by assumption there exists q ∈

(0,1] such that f ≥ q , so that

|I1| ≤
∫ ∞

0
e−2tk2(

1 − e−tk2(q−1))2
dt ≤ C

∫ ∞
0

e−2tqk2
dt

(4.5)
≤ Ck−2 ≤ C(k−2 ∧ ε4k2).

The bound on I2 works in pretty much the same way, using the fact that the
assumptions on h imply that∣∣1 − h(ε|k|)∣∣ ≤ C(1 ∧ ε2k2).

Using again the fact that f ≥ q , we then obtain

I2 ≤ C

∫ ∞
0

e−2tqk2
(1 ∧ ε4k4) dt ≤ C(k−2 ∧ ε4k2)

as required. �

We continue with a sequence of propositions, in which the estimates obtained
in the previous lemma are used to establish various bounds for stochastic convolu-
tions.

PROPOSITION 4.3. Let 0 < γ < χ . For κ > 0 and ε ∈ (0,1] we have

E sup
t∈[0,T ]

‖ψγ (t)‖L∞ ≤ Cεγ/2−κ , E sup
t∈[0,T ]

‖ψ̃γ (t)‖L∞ ≤ Cεγ/2−κ ,

E sup
t∈[0,T ]

‖ψ̃χ
γ (t)‖L∞ ≤ Cεγ/2−κ , E sup

t∈[0,T ]
‖ψ̃γ (t) − ψγ (t)‖L∞ ≤ Cε1/2−κ .
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PROOF. We start with the proof of the second estimate. Observe that θ̃k is
a complex one-dimensional stationary Ornstein–Uhlenbeck process with variance
h2/(2(1 + νk2f )) and characteristic time 1 + νk2f . This implies that

E|θ̃k(t)|2 = h2(ε|k|)
2(1 + νk2f (ε|k|)) ≤ C(1 ∧ k−2)(4.6)

and

E|θ̃k(t) − θ̃k(s)|2 ≤ Ch2(ε|k|)|t − s| ≤ C|t − s|.(4.7)

These bounds imply that, on the one hand,

E|θ̃k(t)ek(x) − θ̃k(s)ek(y)|2 ≤ CE|θ̃k(t)|2 + CE|θ̃k(s)|2 ≤ C(1 ∧ k−2),

while on the other hand, one has

E|θ̃k(t)ek(x) − θ̃k(s)ek(y)|2
≤ CE|θ̃k(t) − θ̃k(s)|2 + Ck2|x − y|2E|θ̃k(s)|2
≤ C|t − s| + C|x − y|2.

Combining these inequalities we find that, for every κ ∈ [0,2],
E|θ̃k(t)ek(x) − θ̃k(s)ek(y)|2 ≤ C(1 ∧ k−2)1−κ/2(|t − s| + |x − y|2)κ/2.

Since the θ̃k’s are independent except for the reality condition θ̃−k = θ̃ k , we infer
that

E|ψ̃γ (t, x) − ψ̃γ (s, y)|2 ≤ C
∑

|k|>ε−γ

E|θ̃k(t)ek(x) − θ̃k(s)ek(y)|2

≤ C(|t − s| + |x − y|2)κ/2
∑

|k|>ε−γ

(1 ∧ k−2)1−κ/2

≤ Cε(1−κ)γ (|t − s| + |x − y|2)κ/2.

Arguing similarly, we obtain

E|ψ̃γ (0,0)|2 ≤ C
∑

|k|>ε−γ

E|θ̃k(0)|2 ≤ C
∑

|k|>ε−γ

(1 ∧ k−2) ≤ Cεγ .

The result now follows by combining these two bounds with Lemma 4.1.
The proof of the first and third estimates being very similar, we do not reproduce

them here. In order to prove the last estimate, we use Lemma 4.2 to obtain

E|θ̃k(t) − θk(t)|2 ≤ C(k−2)3/4+κ/4(ε4k2)1/4−κ/4 ≤ Cε1−κk−1−κ .

This bound then replaces (4.6), and the rest of the proof is again analogous to the
proof of the second estimate. �
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PROPOSITION 4.4. Let ζ > 0. For κ > 0 and ε ∈ (0,1], we have

E sup
t∈[0,T ]

‖ψζ (t)‖α ≤ Cε−ζ(α−1/2)−κ

(
α >

1

2

)
,(4.8)

E sup
t∈[0,T ]

‖ψ̃ζ (t) − ψζ (t)‖α ≤ Cε2−ζ(α+3/2)−κ

(
α > −3

2

)
.(4.9)

PROOF. In view of the estimates

E|θk(t)|2 ≤ Ck−2, E|θk(t) − θk(s)|2 ≤ C|t − s|,(4.10)

we obtain

E‖ψζ (t) − ψζ (s)‖2
α ≤ C|t − s|κ ∑

|k|≤ε−ζ

(1 + k2)α−1+κ

≤ C|t − s|κε−2ζ(α−1/2+κ)

and

E‖ψζ (0)‖2
α ≤ Cε−2ζ(α−1/2).

Inequality (4.8) thus follows from Lemma 4.1.
In order to prove (4.9), we argue similarly, but the estimates are slightly more

involved. Write δk := θ̃k − θk so that ψ̃ζ − ψζ = ∑
|k|≤ε−ζ δkek . Using (4.7) and

(4.10), we have for s, t ≥ 0,

E|δk(t) − δk(s)|2 ≤ C|t − s|.
Combining this bound with Lemma 4.2, we infer that for κ ∈ [0, 1

2),

E|δk(t) − δk(s)|2 ≤ C(k−2)κ(ε4k2)1−2κ |t − s|κ = Cε4−8κk2−6κ |t − s|κ .

For κ ∈ (0, 1
3α + 1

2), we thus obtain

E‖(ψ̃ζ − ψζ )(t) − (ψ̃ζ − ψζ )(s)‖2
α ≤ C|t − s|κε4−8κ

∑
|k|≤ε−ζ

(1 + k2)α+1−3κ

≤ C|t − s|κε4−ζ(2α+3)−8κ

and similarly

E sup
t∈[0,T ]

‖ψ̃ζ (t) − ψζ (t)‖2
α ≤ Cε4−ζ(2α+3)−8κ .

The desired estimate (4.9) now follows from Lemma 4.1. �

PROPOSITION 4.5. Let ζ > 0. For every κ > 0 there exists C > 0 such that

E sup
t∈[0,T ]

�(ψ̃ζ (t)) ≤ Cε−1+(ζ−1)+−κ

for all ε ∈ (0,1], where we wrote (ζ − 1)+ def= 0 ∨ (ζ − 1).
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PROOF. As in the proof of Propositions 4.3 and 4.4, we shall apply Kol-
mogorov’s continuity criterion from Lemma 4.1, this time for L2-valued random
fields. It follows from (4.6) that

E
∥∥D̂εy

(
ψ̃ζ (t) − ψ̃ζ (s)

)∥∥2
L2 = ∑

|k|>ε−ζ

∣∣∣∣eikεy − 1

εy

∣∣∣∣2E|θ̃k(t) − θ̃k(s)|2

≤ C
∑

k>ε−ζ

1 − cos(kεy)

|εky|2 .

Note that, up to a factor ε|y|, this sum can be interpreted as a Riemann sum for the

function H(t)
def= t−2(1 − cos(t)). In fact, since H(t) ≤ 2(1 ∧ t−2),

ε|y| ∑
k>ε−ζ

1 − cos(kεy)

|kεy|2 = ∑
k>ε−ζ

ε|y|H(kεy) ≤ 2
∫ ∞
ε1−ζ

(1 ∧ t−2) dt

(4.11)
≤ Cε(ζ−1)+ .

It thus follows that

E
∥∥D̂εy

(
ψ̃ζ (t) − ψ̃ζ (s)

)∥∥2
L2 ≤ C|εy|−1ε(ζ−1)+ .(4.12)

On the other hand, (4.6) and (4.7) imply that

E|θ̃k(t) − θ̃k(s)|2 ≤ C(1 ∧ k−2)3/4|t − s|1/4,

and therefore

E
∥∥D̂εy

(
ψ̃ζ (t) − ψ̃ζ (s)

)∥∥2
L2 = ∑

|k|>ε−ζ

∣∣∣∣eikεy − 1

εy

∣∣∣∣2E|θ̃k(t) − θ̃k(s)|2

≤ C|εy|−2|t − s|1/4
∑

|k|>ε−ζ

(1 ∧ k−2)3/4(4.13)

≤ C|εy|−2|t − s|1/4.

Combining (4.12) and (4.13), we find that

E
∥∥D̂εy

(
ψ̃ζ (t) − ψ̃ζ (s)

)∥∥2
L2 ≤ |εy|−1−κ |t − s|κ/4ε(1−κ)(ζ−1)+ .

Similarly, we obtain

E‖D̂εyψ̃ζ (0)‖2
L2 = ∑

|k|>ε−ζ

∣∣∣∣eikεy − 1

εy

∣∣∣∣2E|θ̃k(0)|2

≤ C
∑

|k|>ε−ζ

1 − cos(kεy)

|εky|2 ≤ C|εy|−1ε(ζ−1)+ .
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In view of Lemma 4.1, the latter two estimates imply that

E sup
t∈[0,T ]

‖D̂εyψ̃ζ (t)‖2
L2 ≤ C|εy|−1−κε(1−κ)(ζ−1)+ .

Using this bound, the desired result for �(ψ̃ζ (t)) can be obtained easily, since

E sup
t∈[0,T ]

�(ψ̃ζ (t)) = E sup
t∈[0,T ]

∫
R

|y|2‖D̂εyψ̃ζ (t)‖2
L2 |μ|(dy)

≤
∫

R
|y|2E sup

t∈[0,T ]
‖D̂εyψ̃ζ (t)‖2

L2 |μ|(dy)

≤ Cε−1−κ+(1−κ)(ζ−1)+
∫

R
|y|1−κ |μ|(dy)

≤ Cε−1−κ+(1−κ)(ζ−1)+ .

The result now follows by rescaling κ . �

The next and final result of this section involves the term which gives rise to the
correction term in the limiting equation. Before stating the result, we introduce the
notation

�y
ε (u)

def= εy2

2
D̂εyu ⊗ D̂εyu,

	y def= 1

2πν

∫
R+

h2(t)

t2f (t)

(
1 − cos(yt)

)
dt

and

	y
ε

def= ∑
ε−γ <k<ε−χ

	
y
ε,k

def= ∑
ε−γ <k<ε−χ

(1 − cos(εky))h2(εk)

2πε(1 + νk2f (εk))
.

Note that one has the identities

�ε(u) =
∫

R
�y

ε (u)μ(dy), 	 =
∫

R
	yμ(dy), E�y

ε (ψ̃
χ
γ ) = 	y

εI,

where the constant 	 is given by (1.5).

PROPOSITION 4.6. Let α > 1
2 , γ ≤ 1

2 and χ ≥ 3
2 . For ε ∈ (0,1], we then have

E sup
t∈[0,T ]

‖	 − �ε(ψ̃
χ
γ (t))‖−α ≤ Cε1/2.

PROOF. The proof is an application of Lemma 4.1 with ξ = 	−�ε(ψ̃
χ
γ ). For

brevity, we shall write A := �ε(ψ̃
χ
γ ) and Ay := �

y
ε (ψ̃

χ
γ ). We divide the proof into

several steps.
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Step 1. First, we claim that ξ(t) = 	 − A(t) satisfies the condition (4.1) con-
cerning the equivalence of all q-moments.

To see this, note that ψ̃
χ
γ admits the representation ψ̃(t) = ∑

k αk(t)ek where
each αk(t) is a Gaussian random vector in Rn. As a consequence, for every y ∈ R,
each component of 	

y
ε − Ay is a polynomial of Gaussian random variables of

degree at most two. It thus belongs to the direct sum of Wiener chaoses of order
≤ 2 and the same is true for 	ε −A, since each Wiener chaos is a closed subspace
of the space of square integrable random variables. The claim thus follows from
the well-known equivalence of moments for Hilbert space-valued Wiener chaos
(see, e.g., [13]).

Step 2. In this step, we estimate how well 	
y
ε approximates 	y . Since |1 −

cosx| ≤ C(1 ∧ x2), we have the bound |	y
ε,k| ≤ C(εy2 ∧ (εk2)−1) for some con-

stant C. As an immediate consequence, we have the bound∣∣∣∣	y
ε − ∑

k≥1

	
y
ε,k

∣∣∣∣ ≤ C(ε1−γ y2 + εχ−1).(4.14)

Define now the function

�y(t) = (1 − cos(yt))h2(t)

2πνt2f (t)
,

so that, since h2/f is bounded by assumption, we obtain the bound

|	y
ε,k − ε�y(εk)| ≤ C

εy2

k2 .

Combining this bound with (4.14), we have∣∣∣∣	y
ε − ∑

k≥1

ε�y(εk)

∣∣∣∣ ≤ C(ε1−γ y2 + εχ−1).

At this stage, we recall that for any function � of bounded variation, one has the
approximation ∣∣∣∣∑

k≥1

ε�(εk) −
∫ ∞

0
�(t) dt

∣∣∣∣ ≤ ε‖�‖BV,

where ‖�‖BV denotes the variation of � over R+. Furthermore, for any pair �,
� , we have the bound

‖��‖BV ≤ ‖�‖L∞‖�‖BV + ‖�‖L∞‖�‖BV.(4.15)

If we set �y(t) = (1 − cos(yt))/t2, we have

‖�y‖BV =
∫ ∞

0
|� ′

y(t)|dt =
∫ ∞

0

|yt sinyt + 2 cosyt − 2|
t3 dt

≤ C|y|3
∫ ∞

0

(
1 ∧ 1

y2t2

)
dt ≤ Cy2.
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Since �(0) = y2/2, a similar bound holds for its L∞ norm, and we conclude from
(4.15) that

‖�y‖BV ≤ Cy2.

It follows immediately that we have the bound

|	y
ε − 	y | ≤ C(ε1−γ y2 + εy2 + εχ−1).(4.16)

Step 3. We now use these bounds in order to obtain control over ‖	−A‖2−α for
a fixed time t ≥ 0 (which is often suppressed in the notation).

In order to shorten the notation, note that, we can write

ψ̃(x, t) = ∑
k∈Z

h(ε|k|)
√

2
√

1 + νk2f (ε|k|)
ηk(t)ek(x),

where the ηk are a sequence of i.i.d. Cn-valued Ornstein–Uhlenbeck processes
with

E
(
ηk(t) ⊗ η�(s)

) = E t−s
k δk,−�I, E t

k = exp
(−(

1 + νk2f (ε|k|))|t |),
and satisfying the reality condition η−k = η̄k . Here, I denotes the identity matrix.
We will also use the notational shortcut

At
k,�

def= ηk(t) ⊗ η�(t).

Set now

qk
ε = eikεy − 1√

2

h(ε|k|)√
1 + νk2f (ε|k|)

,

as a shorthand. With all of this notation in place, it follows from the definition of
	

y
ε that

Ay(t) − 	y
εI = ∑

ε−γ <|k|,|�|≤ε−χ

qk
ε q�

ε (A
t
k,� − δk,−�I )ek+�.

As a consequence, we have the identity

E‖	y
εI − Ay(t)‖2−α

= ∑
k∈Z

(1 + |k|2)−α
∑
�,m

q�
εq

k−�
ε q̄m

ε q̄k−m
ε

× E tr
(
(At

�,k−� − δk,0I )(Āt
m,k−m − δk,0I )

)
,

where the second sum ranges over all �,m ∈ Z for which �, k −�,m, k −m belong
to (ε−γ , ε−χ ]. A straightforward case analysis allows to check that

E tr
(
(At

�,k−� − δk,0I )(Āt
m,k−m − δk,0I )

) = nδ�,m + n2δ�,k−m,(4.17)
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so that

E‖	y
εI − Ay(t)‖2−α ≤ C

∑
k∈Z

(1 + |k|2)−α
∑
�∈Z

|q�
ε |2|qk−�

ε |2.

Note now that there exists a constant C such that the bound

|qk
ε | ≤ C

√
ε

(
|y| ∧ 1

ε|k|
)

≤ Cε(1−β)/2|k|−β/2|y|1−β/2

is valid for all ε < 1, k ∈ Z, y ∈ R, and β ∈ [0,1]. It follows that there exists a
constant C > 0 such that we have the bound

E‖	y
εI − Ay(t)‖2−α ≤ C

∑
�,m≥1

|q�
ε |2|qm

ε |2
|� + m|2α

≤ C
∑

�,m≥1

|q�
ε |2|qm

ε |2
|�|α|m|α

≤ Cε2−2β
∑

�,m≥1

|y|4−2β

|�|α+β |m|α+β
≤ Cε|y|3,

where we made the choice β = 1
2 to obtain the last bound, using the fact that

α > 1
2 by assumption. Combining this bound with (4.16), the constraints γ ≤ 1

2
and χ ≥ 3

2 , and using the fact that μ has finite fourth moment, we have

E‖	I − A(t)‖2−α ≤ C

∫
E‖	y − Ay(t)‖2−α|μ|(dy)

≤ C

∫
E‖	y

ε − Ay(t)‖2−α|μ|(dy) + Cε

≤ Cε.

Step 4. Finally, we shall estimate E‖A(t) − A(s)‖2−α . Similarly to (4.17), this
involves the identity

E tr(At
�,k−�Ās

m,k−m) = nδk,0 + (nδl,m + n2δl,k−m)E t−s
� E t−s

k−m.

As a consequence, we infer that

Dk�m(t, s)
def= E tr

(
(At

�,k−� − As
�,k−�)(Ā

t
m,k−m − Ās

m,k−m)
)

= 2(nδ�,m + n2δ�,k−m)(1 − E t−s
� E t−s

k−m).

It thus follows that for any δ ∈ [0,1],
Dk�m(t, s)

≤ C(δ�,m + δ�,k−m)
(
1 ∧ (

2 + ν�2f (ε|�|) + ν(k − m)2f (ε|k − m|))|t − s|)
≤ C(δ�,m + δ�,k−m)|t − s|δ(1 + �2δf (ε|�|)δ + (k − m)2δf (ε|k − m|)δ).
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Using this bound, we obtain

E‖Ay(t) − Ay(s)‖2−α

= ∑
k∈Z

(1 + |k|2)−α
∑
�,m

q�
εq

k−�
ε q̄m

ε q̄k−m
ε Dk�m(t, s)

≤ ∑
k∈Z

(1 + |k|2)−α
∑
�

|q�
ε |2|qk−�

ε |2(
Dk��(t, s) + Dk,�,k−�(t, s)

)

≤ C|t − s|δ ∑
k∈Z

(1 + |k|2)−α
∑
�

|q�
ε |2|qk−�

ε |2

× (
1 + �2δf (ε|�|)δ + |k − �|2δf (ε|k − �|)δ).

Note that this expression is almost the same as in Step 3. Using the calculations
done there and taking into account that h and h/f 2 are bounded functions, we infer
that

E‖Ay(t) − Ay(s)‖2−α = C|t − s|δ ∑
�,m≥1

|q�
ε |2|qm

ε |2
|�|α−2δ|m|α−2δ

≤ C|t − s|δε|y|3,

and therefore, using Jensen’s inequality (which can be applied since |μ| has finite
mass), and Fubini’s theorem,

E‖A(t) − A(s)‖2−α = E

∥∥∥∥
∫

R

(
Ay(t) − Ay(s)

)
μ(dy)

∥∥∥∥2

−α

≤ C

∫
R

E‖Ay(t) − Ay(s)‖2−α|μ|(dy)

≤ Cε|t − s|δ
∫

R
|y3||μ|(dy) ≤ Cε|t − s|δ,

which is the desired bound.
The result follows by combining these steps with Lemma 4.1. �

5. Convergence of the approximations. This last section is devoted to the
convergence result itself. Recall that we are considering a number of intermediate
processes v

(j)
ε with j = 1, . . . ,4 defined in (2.10). This section is correspondingly

broken into five subsections, with the j th subsection yielding a bound on ‖v(j)
ε −

v
(j−1)
ε ‖α . To prove these bounds, we shall introduce in each step a stopping time

that forces the difference between the processes considered in that step to remain
bounded. We then show that this difference actually vanishes as ε → 0 with an
explicit rate. As a consequence, the process actually does not “see” the stopping
time with high probability.
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5.1. From v̄γ to v
(1)
ε . Define

τK
1 := τK ∧ inf

{
t ≤ T :

∥∥v(1)
ε (t) − v̄γ (t)

∥∥
α ≥ K

}
.

We shall show that for t ≤ τK , the Hα-norm of v
(1)
ε (t)− v̄γ (t) is controlled by the

L∞-norm of ψγ , which is of order εγ/2−κ for any κ > 0, as shown in Section 4.

The proof uses the mild formulations of the equations for v
(1)
ε and v̄γ (t) as well

as the regularizing properties of the semigroup S. Note that the next proposition
would still be true if we had replaced the Hα-norm in the definition of τK

1 by the
L∞-norm. However, in the proof of Proposition 5.2 below it will be important to
have a bound on v

(1)
ε in Hα .

PROPOSITION 5.1. For κ > 0, we have

lim
ε→0

P

(
sup
t≤τK

1

∥∥v(1)
ε (t) − v̄γ (t)

∥∥
α > εγ/2−κ

)
= 0.

PROOF. Let 0 ≤ s ≤ t ≤ τ ∗. It follows from (2.3) and (2.10a) that �ε := v
(1)
ε −

v̄γ satisfies the equation

�ε(t) = S(t − s)�ε(s) +
∫ t

s
S(t − r)(σ 1 + ∂xσ

2
ε )(r) dr,

where

σ 1
ε := F̄ (v̄γ + �ε) − F̄ (v̄γ + ψγ ),

σ 2
ε := G(v̄γ + �ε) − G(v̄γ + ψγ ).

Lemma 3.3 yields the estimate

‖�ε(t)‖α ≤ ‖�ε(s)‖α + C(t − s)(1−α)/2 sup
r∈(s,t)

‖(σ 1
ε + ∂xσ

2
ε )(r)‖−1

≤ ‖�ε(s)‖α + C(t − s)(1−α)/2 sup
r∈(s,t)

‖σ 1
ε (r)‖L∞ + ‖σ 2

ε (r)‖L∞ .

Since v̄γ , �ε , and ψγ are bounded in L∞-norm for r ≤ τK
1 , and F,G are C 3, it

follows that

‖σ 1
ε (r)‖L∞ + ‖σ 2

ε (r)‖L∞ ≤ CK‖�ε(r)‖L∞ + CK‖ψγ (r)‖L∞,

from which we infer that

‖�ε(t)‖α ≤ ‖�ε(s)‖α + C′
K(t − s)(1−α)/2 sup

r∈(s,t)

(‖�ε(r)‖L∞ + ‖ψγ (r)‖L∞
)
.

Choose δK > 0 so small that C′
Kδ

(1−α)/2
K ≤ 1

2 , and set for k ≥ 0,

rk := sup{‖�ε(t)‖α : t ∈ [kδK ∧ τK
1 , (k + 1)δK ∧ τK

1 ]}.
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Taking into account that Hα ⊆ L∞, we obtain the inequality

rk+1 ≤ rk + 1

2
rk+1 + 1

2
sup

t∈[0,T ]
‖ψγ (t)‖L∞,

which reduces to

rk+1 ≤ 2rk + sup
t∈[0,T ]

‖ψγ (t)‖L∞ .

Combined with the estimate

r0 ≤ 2 sup
r≤δK∧τK

1

‖ψγ (r)‖L∞,

which can be derived similarly, it then follows that

sup
t∈[0,τK

1 ]
‖�ε(t)‖α ≤ sup

0≤k≤T/δK

rk ≤ CK sup
t∈[0,T ]

‖ψγ (t)‖L∞,

which together with Proposition 4.3 implies the desired result. �

5.2. From v
(1)
ε to v

(2)
ε . For the purpose of this section, we define the stopping

time

τK
2 := τK

1 ∧ inf
{
t ≤ T :

∥∥v(2)
ε (t) − v(1)

ε (t)
∥∥
α ≥ K

}
as well as the exponent

α̃
def= (1 − γ )α + γ

2
= 2

3
.

PROPOSITION 5.2. For κ > 0, we have

lim
ε→0

P

(
sup
t≤τK

2

∥∥v(2)
ε (t) − v(1)

ε (t)
∥∥
α > εα̃−κ

)
= 0.

PROOF. Let 0 ≤ s ≤ t ≤ τ ∗ and note that �ε := v
(2)
ε − v

(1)
ε satisfies

�ε(t) = S(t − s)�ε(s) +
∫ t

s
S(t − r)σε(r) dr,

where

σε := F̄
(
v(2)
ε

) − F̄
(
v(1)
ε

) + Dε

(
G

(
v(1)
ε + �ε

)) − ∂xG
(
v(1)
ε

)
.

From the definition of τK
2 , we know that v

(1)
ε and �ε are bounded in L∞ by a con-

stant depending on K . Moreover, we have the bound ‖v(1)
ε ‖α ≤ CKε−γ (α−1/2)−κ .
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Using these facts together with Corollary 3.7 we obtain, for r ≤ τK
2 ,

‖σε‖−1 ≤ ∥∥F̄ (
v(2)
ε

) − F̄
(
v(1)
ε

)∥∥
L∞

+ ∥∥(Dε − ∂x)G
(
v(1)
ε

)∥∥−1 + ∥∥Dε(G(
v(1)
ε + �ε

) − G
(
v(1)
ε

))∥∥−1

≤ CK‖�ε‖L∞ + CKεα(
1 + ∥∥v(1)

ε

∥∥
α

) + ∥∥G(
v(1)
ε + �ε

) − G
(
v(1)
ε

)∥∥
L∞

≤ CK(εα̃−κ + ‖�ε‖L∞),

hence

‖�ε(t)‖α ≤ ‖�ε(s)‖α + C(t − s)(1−α)/2 sup
r∈(s,t)

‖σε(r)‖−1

≤ ‖�ε(s)‖α + CK(t − s)(1−α)/2 sup
r∈(s,t)

(
εα̃−κ + ‖�ε(r)‖L∞

)
.

Arguing as in the proof of Proposition 5.1, it follows that

sup
t∈[0,τK

2 ]
‖�ε(t)‖α ≤ CKεα̃−κ,

which immediately yields the desired result. �

5.3. From v
(2)
ε to v

(3)
ε . Define

τK
3 := τK

2 ∧ inf
{
t ≤ T :

∥∥v(3)
ε (t) − v(2)

ε (t)
∥∥
α ≥ K

}
.

In this case, the singularity (t − s)−α/2 which arises in the proof below, pre-
vents us from arguing as in Proposition 5.1. We nevertheless have the following
proposition.

PROPOSITION 5.3. For κ > 0, we have

lim
ε→0

P

(
sup
t≤τK

3

∥∥v(3)
ε (t) − v(2)

ε (t)
∥∥
α > εζ−κ

)
= 0,

where the exponent ζ is given by

ζ
def= α̃ ∧ (3

2 − α
) ∧ (

2 − γ
(
α + 3

2

)) = 2
3 .

REMARK 5.4. The exponent ζ arises by collecting the bounds (5.2), (5.3),
and (5.5).

PROOF OF PROPOSITION 5.3. Let 0 ≤ s ≤ t ≤ τ ∗. It follows from (2.10b) and
(2.10c) that �ε := v

(3)
ε − v

(2)
ε satisfies

�ε(t) = Sε(t − s)�ε(s) + (
Sε(t − s) − S(t − s)

)
v(2)
ε (s)

(5.1)
+ R1(s, t) + R2(s, t),
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where

R1(s, t)
def= (

ψ̃γ (t) − ψγ (t)
) − (

Sε(t − s)ψ̃γ (s) − S(t − s)ψγ (s)
)

and

R2(s, t) :=
∫ t

s

(
Sε(t − r) − S(t − r)

)(
F̄

(
v(3)
ε (r)

) + DεG
(
v(3)
ε (r)

))
dr

+
∫ t

s
S(t − r)

(
F̄

(
v(3)
ε (r)

) − F̄
(
v(2)
ε (r)

)
+ DεG

(
v(3)
ε (r)

) − DεG
(
v(2)
ε (r)

))
dr.

We shall first prove a bound on R1(s, t). Using both inequalities from Lem-
ma 3.4, we obtain∥∥(

Sε(t − s)ψ̃γ (s) − S(t − s)ψγ (s)
)∥∥

α

≤ ∥∥Sε(t − s)
(
ψ̃γ (s) − ψγ (s)

)∥∥
α + ∥∥(

Sε(t − s) − S(t − s)
)
ψγ (s)

∥∥
α

≤ C
∥∥(

ψ̃γ (s) − ψγ (s)
)∥∥

α + Cε2‖ψγ (s)‖α+2,

and therefore

‖R1(s, t)‖α ≤ ∥∥(
ψ̃γ (t) − ψγ (t)

)∥∥
α + C

∥∥(
ψ̃γ (s) − ψγ (s)

)∥∥
α

+ Cε2‖ψγ (s)‖α+2.

It thus follows from Proposition 4.4 that

E sup
s,t∈[0,T ]

‖R1(s, t)‖α ≤ Cε2−γ (α+3/2)−κ .(5.2)

We shall now prove a bound on R2(s, t). For this purpose, we note that the
definitions of the various stopping times imply that v

(2)
ε (t) is bounded in Hα-norm

by CKε−γ (α−1/2)−κ . Using this fact, together with Lemmas 3.4, 3.5 and 3.2, we
obtain ∥∥∥∥

∫ t

s

(
Sε(t − r) − S(t − r)

)(
F

(
v(3)
ε (r)

) + DεG
(
v(3)
ε (r)

))
dr

∥∥∥∥
α

≤ εα
∫ t

s
(t − r)−(1+α)/2∥∥F (

v(3)
ε (r)

) + DεG
(
v(3)
ε (r)

)∥∥
α−1 dr

≤ Cεα(t − s)(1−α)/2 sup
r∈[s,t]

(∥∥F (
v(3)
ε (r)

)∥∥
α + ∥∥G(

v(3)
ε (r)

)∥∥
α

)

≤ CKεα(t − s)(1−α)/2
(
1 + sup

r∈[s,t]
∥∥v(3)

ε (r)
∥∥
α

)

≤ CKεα(t − s)(1−α)/2
(
1 + sup

r∈[s,t]
(∥∥v(2)

ε (r)
∥∥
α + ‖�ε(r)‖α

))

≤ CKεα̃−κ(t − s)(1−α)/2.
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Furthermore, taking into account the L∞-bounds on v
(2)
ε and �ε enforced by the

stopping times, Lemma 3.5 implies that∥∥∥∥
∫ t

s
S(t − r)

(
F

(
v(3)
ε (r)

) − F
(
v(2)
ε (r)

) + DεG
(
v(3)
ε (r)

) − DεG
(
v(2)
ε (r)

))
dr

∥∥∥∥
α

≤ C(t − s)(1−α)/2 sup
r∈(s,t)

∥∥F (
v(3)
ε (r)

) − F
(
v(2)
ε (r)

)
+ DεG

(
v(3)
ε (r)

) − DεG
(
v(2)
ε (r)

)∥∥−1

≤ C(t − s)(1−α)/2 sup
r∈(s,t)

(∥∥F (
v(3)
ε (r)

) − F
(
v(2)
ε (r)

)∥∥
L∞

+ ∥∥G(
v(3)
ε (r)

) − G
(
v(2)
ε (r)

)∥∥
L∞

)
≤ CK(t − s)(1−α)/2 sup

r∈(s,t)

‖�ε(r)‖L∞ .

It thus follows that

‖R2(s, t)‖α ≤ C′
K(t − s)(1−α)/2

(
εα̃−κ + sup

r∈(s,t)

‖�ε(r)‖L∞
)
,(5.3)

where we gave the constant a name, since it will be reused below.
Choose δK ∈ (0,1) sufficiently small so that C′

K(δ
(1−α)/2
K +δ

α/2
K ) ≤ 1

4 . For k ≥ 0
put �k := kδK ∧ τK

3 , and for k ≥ 1 set

rk := sup{‖�ε(t)‖α : t ∈ [�k−1, �k+1]}.
Our next aim is to find a bound for r1. Observe that, when s = 0, (5.1) simplifies

to

�ε(t) = (
Sε(t) − S(t)

)
v0 + (

ψ̃γ (t) − ψγ (t)
) + R2(0, t)(5.4)

with R2 defined as previously. Using Lemma 3.4 and the definition of τK , we
obtain ∥∥(

Sε(t) − S(t)
)
v0

∥∥
α ≤ Cε3/2−α−κ‖v0‖3/2−κ ≤ CKε3/2−α−κ .(5.5)

Since t ≤ 2δK and C′
Kδ

(1−α)/2
K ≤ 1

4 , it follows from (5.3) and (5.4) that

r1 ≤ CKε3/2−α−κ + sup
t∈[0,T ]

‖ψ̃γ (t) − ψγ (t)‖α + 1

2
(εα̃−κ + r1),

hence, by definition of τK ,

r1 ≤ CKε(3/2−α)∧(2−γ (α+3/2))∧α̃ε−κ = CKεζ−κ ,(5.6)

where ζ is defined as in the statement of the result.
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Next, we shall prove a recursive bound for rk . Note that the nonnegativity of the
function f in the definition of Sε implies that

‖Sε(t − s)�ε(s)‖α ≤ ‖�ε(s)‖α.

Furthermore, by Lemma 3.4 and the fact that ‖v(2)
ε ‖α ≤ CKε−γ (α−1/2)−κ before

time τK
3 , we have∥∥(

Sε(t − s) − S(t − s)
)
v(2)
ε (s)

∥∥
α ≤ Cεα(t − s)−α/2∥∥v(2)

ε (s)
∥∥
α

≤ CK(t − s)−α/2εα̃−κ .

Combining these bounds with (5.1) and (5.3), we find that

‖�ε(t)‖α ≤ ‖�ε(s)‖α + CK(t − s)−α/2εα̃−κ + ‖R1(s, t)‖α

+ C′
K(t − s)(1−α)/2

(
εα̃−κ + sup

r∈(s,t)

‖�ε(r)‖α

)
.

Taking k ≥ 1, s = �k−1, and t ∈ [�k, �k+2], it then follows, since |t −s| ∈ [δK,3δK ]
and C′

Kδ(1−α)/2 ≤ 1
2 , that

‖�ε(t)‖α ≤ ‖�ε(�k−1)‖α + CKεα̃−κ + ‖R1(�k−1, t)‖α + 1
2εα̃−κ + 1

2rk+1.

Taking the supremum over t ∈ [�k, �k+2], we obtain

rk+1 ≤ rk + CKεα̃−κ + sup
s,t∈[0,T ]

‖R1(s, t)‖α + 1

2
rk+1,

hence

rk+1 ≤ 2rk + CKεα̃−κ + 2 sup
s,t∈[0,T ]

‖R1(s, t)‖α.(5.7)

It readily follows from (5.6) and (5.7) that

sup
t∈[0,τK

3 ]
‖�ε(t)‖α = sup

1≤k≤�T/δK�
rk ≤ CK

(
εζ−κ + εα̃−κ + sup

s,t∈[0,T ]
‖R1(s, t)‖α

)
,

hence the result follows in view of the bound on R1(s, t). �

5.4. From v
(3)
ε to v

(4)
ε . Define

τK
4 := τK

3 ∧ inf
{
t ≤ T :

∥∥v(4)
ε (t) − v(3)

ε (t)
∥∥
α ≥ K

}
.

PROPOSITION 5.5. For κ > 0, we have

lim
ε→0

P

(
sup
t≤τK

4

∥∥v(4)
ε (t) − v(3)

ε (t)
∥∥
α > εξ−κ

)
= 0,

where

ξ
def= γ

2
∧

(
α̃ − 1

2

)
∧

(
1

2
− χ

(
α − 1

2

))
= 1

8
.
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REMARK 5.6. Similarly to above, the exponent ξ arises from the bounds
(5.9)–(5.14).

PROOF OF PROPOSITION 5.5. Let 0 ≤ s ≤ t ≤ τ ∗. It follows from (2.10d) and
(2.10c) that �ε := v

(4)
ε − v

(3)
ε satisfies

�ε(t) = Sε(t − s)�ε(s) +
∫ t

s
Sε(t − r)σε(r) dr,

where

σε := F
(
v(4)
ε + ψ̃χ

γ

) − F
(
v(3)
ε

)
+ ∇G

(
v(4)
ε + ψ̃χ

γ

)
Dε

(
v(4)
ε + ψ̃χ

γ

) − DεG
(
v(3)
ε

) + 	�G
(
v(3)
ε

)
.

The definition of Dε , together with (1.3), implies that for any function u the fol-
lowing identity holds:

DεG(u)(x)

= ∇G(u(x))Dεu(x)

+
∫

R

εy2

2
D2G(u(x))[D̂εyu(x), D̂εyu(x)]μ(dy)(5.8)

+
∫

R
ε2y3

∫ 1

0

∫ t

0

∫ s

0
D3G

(
(1 − r)u(x) + ru(x + εy)

)
× [D̂εyu(x), D̂εyu(x), D̂εyu(x)]dr ds dt μ(dy),

where the operator D̂ε is defined by taking μ := δ1 − δ0 in the definition of Dε ,
that is, D̂εu(x) = ε−1(u(x + ε) − u(x)). As a consequence, we may write

σε = F
(
v(4)
ε + ψ̃χ

γ

) − F
(
v(3)
ε

) + Dε

(
G

(
v(4)
ε + ψ̃χ

γ

) − G
(
v(3)
ε

))
+ (

	�G
(
v(3)
ε

) − A
(
u(4)

ε , u(4)
ε

)) − B

= F
(
v(4)
ε + ψ̃χ

γ

) − F
(
v(3)
ε

) + Dε

(
G

(
v(4)
ε + ψ̃χ

γ

) − G
(
v(3)
ε

))
− A

(
v(4)
ε , v(4)

ε

) − 2A
(
v(4)
ε , ψ̃χ

γ

) + (
	�G

(
v(3)
ε

) − A(ψ̃χ
γ , ψ̃χ

γ )
) − B,

where we have used

A(v,w)(x)
def=

∫
R

εy2

2
D2G

(
u(4)

ε (x)
)[D̂εyv(x), D̂εyw(x)]μ(dy),

B(x)
def=

∫
R

ε2y3
∫ 1

0

∫ t

0

∫ s

0
D3G

(
(1 − r)u(4)

ε (x) + ru(4)
ε (x + εy)

)
× [

D̂εyu
(4)
ε (x), D̂εyu

(4)
ε (x),

D̂εyu
(4)
ε (x)

]
dr ds dt μ(dy)
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and u
(4)
ε := v

(4)
ε + ψ̃

χ
γ .

Our next aim is to prove the estimates (5.9)–(5.14) below in order to bound
‖σε‖−1.

First term. Since v
(4)
ε , ψ̃

χ
γ and �ε are bounded in L∞ by definition of τK

4 , it
follows that∥∥F (

v(4)
ε + ψ̃χ

γ

) − F
(
v(3)
ε

)∥∥−1 ≤ C
∥∥F (

v(4)
ε + ψ̃χ

γ

) − F
(
v(4)
ε − �ε

)∥∥
L∞

≤ CK(‖ψ̃χ
γ ‖L∞ + ‖�ε‖L∞)(5.9)

≤ CK(εγ/2−κ + ‖�ε‖α).

Second term. We use Lemma 3.5 and the fact that v
(4)
ε , ψ̃χ

γ and �ε are bounded
in L∞ by definition of τK

4 , to estimate∥∥Dε

(
G

(
v(4)
ε + ψ̃χ

γ

) − G
(
v(3)
ε

))∥∥−1 ≤ C
∥∥G(

v(4)
ε + ψ̃χ

γ

) − G
(
v(4)
ε − �ε

)∥∥
L∞

≤ CK(‖ψ̃χ
γ ‖L∞ + ‖�ε‖L∞)(5.10)

≤ CK(εγ/2−κ + ‖�ε‖α).

Third and fourth term. First, we note that for arbitrary functions v,w, one has

‖A(v,w)‖−1 ≤ C‖A(v,w)‖L1 ≤ Cε
∥∥D2G

(
u(4)

ε

)∥∥
L∞

√
�ε(v)�ε(w).

Since ‖u(4)
ε (t)‖L∞ ≤ CK for t ≤ τK

4 , we have∥∥D2G
(
u(4)

ε

)∥∥
L∞ ≤ CK.

Furthermore, we observe that ‖v(4)
ε ‖α ≤ CKε−γ (α−1/2)−κ before time τK

4 . Using
this bound together with Lemma 3.5 and (1.3), we estimate

�ε

(
v(4)
ε

) =
∫

R
y2∥∥D̂εyv

(4)
ε

∥∥2
L2 |μ|(dy)

≤ CK

∫
R

y2|εy|2(α−1)
∥∥v(4)

ε

∥∥2
α|μ|(dy)

≤ CK

∫
R

y2|εy|2(α−1)ε−2γ (α−1/2)−2κ |μ|(dy)

≤ CKε2α̃−2−κ .

Moreover, by definition of the stopping time τK we have

�ε(ψ̃
χ
γ ) ≤ �ε(ψ̃γ ) ≤ CKε−1−κ .

Putting everything together, we obtain∥∥A(
v(4)
ε , v(4)

ε

)∥∥−1 ≤ CKε2α̃−1−2κ(5.11)
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and ∥∥A(
v(4)
ε , ψ̃χ

γ

)∥∥−1 ≤ CKεα̃−1/2−2κ .(5.12)

Fifth term. Finally, we estimate 	�G(v
(3)
ε ) − A(ψ̃

χ
γ , ψ̃

χ
γ ). By definition

of τK
ε , we have ‖ψ̃χ

γ ‖α ≤ CKε−χ(α−1/2)−κ before time τK
4 . Since ‖v(4)

ε ‖α ≤
CKε−γ (α−1/2)−κ as observed before, we thus have∥∥u(4)

ε

∥∥
α ≤ CKε−χ(α−1/2)−κ .

Furthermore, since α > 1
2 , there exists a constant C > 0 such that we have the

bound∥∥	�G
(
u(4)

ε

) − A(ψ̃χ
γ , ψ̃χ

γ )
∥∥−α = ∥∥tr

(
D2G

(
u(4)

ε

)(
	I − �ε(ψ̃

χ
γ )

))∥∥−α

≤ C
∥∥D2G

(
u(4)

ε

)∥∥
α‖	I − �ε(ψ̃

χ
γ )‖−α.

Since the stopping time τK enforces that ‖	I − �ε(ψ̃
χ
γ )‖−α ≤ CKε1/2, we infer

that ∥∥	�G
(
u(4)

ε

) − A(ψ̃χ
γ , ψ̃χ

γ )
∥∥−α ≤ CKε1/2−χ(α−1/2)−κ .

Since u
(4)
ε − v

(3)
ε = �ε + ψ̃

χ
γ , we have by definition of τK ,∥∥�G(u4

ε) − �G
(
v(3)
ε

)∥∥−α ≤ ∥∥�G(u4
ε) − �G

(
v(3)
ε

)∥∥
L∞

≤ CK‖�ε‖L∞ + CK‖ψ̃χ
γ ‖L∞

≤ CK‖�ε‖α + CKεγ/2−κ .

Putting these bounds together, we obtain∥∥	�G
(
v(3)
ε

) − A(ψ̃χ
γ , ψ̃χ

γ )
∥∥−α

(5.13)
≤ CK

(
ε1/2−χ(α−1/2)−κ + εγ/2−κ + ‖�ε‖α

)
.

Sixth term. To estimate B , we use the fact that ‖u(4)
ε (t)‖L∞ ≤ CK for t ≤ τK

4 ,
so that one has the bound

‖B‖L1 ≤ CK

∫ ∫
R

ε2y3∣∣D̂εyu
(4)
ε (x)

∣∣3|μ|(dy) dx.

We will split this expression into two parts, using the fact that u
(4)
ε = ψ̃

χ
γ + v

(4)
ε .

First, using the fact that �(ψ̃
χ
γ ) ≤ CKε1−κ before time τK

4 by definition of the
stopping time τK , we find that∫ ∫

R
ε2y3|D̂εyψ̃

χ
γ (x)|3|μ|(dy) dx

≤ 2‖ψ̃χ
γ ‖L∞

∫ ∫
R

εy2|D̂εyψ̃
χ
γ (x)|2|μ|(dy) dx

= 2ε‖ψ̃χ
γ ‖L∞�(ψ̃χ

γ ) ≤ CKε−2κ‖ψ̃χ
γ ‖L∞ ≤ CKεγ/2−3κ .
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Second, using the fact that H 1/6 ⊆ L3, Lemma 3.5 and the fact that ‖v(4)
ε ‖α ≤

CKε−γ (α−1/2)−κ , we obtain∫ ∫
R

ε2y3∣∣D̂εyv
(4)
ε (x)

∣∣3|μ|(dy) dx

≤ Cε2
∫

R
|y|3∥∥D̂εyv

(4)
ε

∥∥3
1/6|μ|(dy)

≤ Cε3α−3/2
∫

R
|y|3α−1/2|μ|(dy)

∥∥v(4)
ε

∥∥3
α

≤ CKε3α̃−3/2−3κ .

It thus follows that

‖B‖L1 ≤ CKεγ/2−3κ + CKε3(α̃−1/2)−3κ .(5.14)

Combining inequalities (5.9)–(5.13), we find that

sup
r∈(s,t)

‖σε(r)‖−1 ≤ CK

(
εγ/2−3κ + εα̃−1/2−2κ

+ ε1/2−χ(α−1/2)−κ + sup
r∈(s,t)

‖�ε(r)‖α

)
,

and the result now follows as in Proposition 5.2. �

5.5. From v
(4)
ε to ṽγ . Define

τK
5 := τK

4 ∧ inf
{
t ≤ T :

∥∥ṽγ (t) − v(4)
ε (t)

∥∥
α ≥ K

}
.

PROPOSITION 5.7. For κ > 0, we have

lim
ε→0

P

(
sup
t≤τK

5

∥∥ṽγ (t) − v(4)
ε (t)

∥∥
α > ε1/2χ−1/2−κ

)
= 0.

PROOF. Let 0 ≤ s ≤ t ≤ τ ∗. It follows from (2.4) and (2.10d) that �ε := ṽγ −
v

(4)
ε satisfies

�ε(t) =
∫ t

s
Sε(t − r)σε(r) dr,

where

σε := ∇G(ṽγ + ψ̃γ )Dε(ṽ
γ + ψ̃γ )

− ∇G(ṽγ + ψ̃χ
γ − �ε)Dε(ṽ

γ + ψ̃χ
γ − �ε)

+ F(ṽγ + ψ̃γ ) − F(ṽγ + ψ̃χ
γ − �ε).
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In order to estimate σε , we use (5.8) to write

σε = DεG(ṽγ + ψ̃γ ) − DεG(ṽγ + ψ̃χ
γ − �ε)

−
∫

R

εy2

2

(
D2G(uε) − D2G

(
u(4)

ε

))[D̂εyuε, D̂εyuε]μ(dy)

−
∫

R

εy2

2
D2G

(
u(4)

ε

)[
D̂εy

(
uε + u(4)

ε

)
, D̂εy

(
uε − u(4)

ε

)]
μ(dy)

− ε2(
Rε(uε, uε) − Rε

(
u(4)

ε , u(4)
ε

))
+ F(ṽγ + ψ̃γ ) − F(ṽγ + ψ̃χ

γ − �ε)

=: σε,1 + · · · + σε,5,

where uε := ṽγ + ψ̃γ , u
(4)
ε := v

(4)
ε + ψ̃

χ
γ and

Rε(u
1, u2)(x) :=

∫
R

ε2y3
∫ 1

0

∫ t

0

∫ s

0
D3G

(
(1 − r)u1(x) + ru1(x + εy)

)
× [D̂εyu

2, D̂εyu
2, D̂εyu

2]dr ds dt dμ(y).

We shall now estimate σε,1, . . . , σε,5 individually.

First term. First, we observe that ṽγ , ψ̃γ , ψ̃χ
γ and �ε are bounded in L∞ before

time τK
5 . Using Lemma 3.5, the embedding Hα ⊆ L∞, and the definition of the

stopping time to bound ‖ψ̃χ‖L∞ , we obtain

‖σε,1‖−1 = ∥∥Dε

(
G(ṽγ + ψ̃γ ) − G(ṽγ + ψ̃χ

γ − �ε)
)∥∥−1

≤ C‖G(ṽγ + ψ̃γ ) − G(ṽγ + ψ̃χ
γ − �ε)‖L∞

(5.15)
≤ CK(‖ψ̃χ‖L∞ + ‖�ε‖L∞)

≤ CK(εχ/2−κ + ‖�ε‖α).

Second term. Using Lemma 3.5 and the fact that εγ (α−1/2)+κ‖ṽγ ‖α is
bounded before time τK

5 , we estimate

�ε(ṽ
γ ) =

∫
R

y2‖D̂εy ṽ
γ ‖2

L2 |μ|(dy)

≤ CK

∫
R

y2|εy|2(α−1)‖ṽγ ‖2
α|μ|(dy)

≤ CK

∫
R

y2|εy|2(α−1)ε−2γ (α−1/2)−2κ |μ|(dy)

≤ CKε2α̃−2−κ ,
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and by the definition of the stopping time τK ,

�ε(ψ̃γ ) ≤ CKε−1−κ .

As a consequence,

�ε(uε) ≤ 2
(
�ε(ṽ

γ ) + �ε(ψ̃γ )
) ≤ CK(ε2α̃−2−κ + ε−1−κ) ≤ ε−1−κ .(5.16)

Note that ‖uε‖L∞ and ‖u(4)
ε ‖L∞ are bounded before time τK

5 . Using that L1 ⊆
H−1, we obtain

‖σε,2‖−1 ≤ ‖σε,2‖L1 ≤ ε
∥∥D2G(uε) − D2G

(
u(4)

ε

)∥∥
L∞�ε(uε)

≤ CKε−2κ
∥∥uε − u(4)

ε

∥∥
L∞

(5.17)
≤ CKε−2κ(‖�ε‖L∞ + ‖ψ̃χ‖L∞)

≤ CKε−2κ(‖�ε‖α + εχ/2−κ).

Third term. By Lemma 3.5, we have

�ε(�ε) =
∫

R
y2‖D̂εy�ε‖2

L2 |μ|(dy)

(5.18)
≤ C

∫
R

y2|εy|2(α−1)‖�ε‖2
α|μ|(dy) ≤ Cε2α−2‖�ε‖2

α.

Observe that uε + u
(4)
ε = 2ṽγ − �ε + ψ̃γ + ψ̃

χ
γ and uε − u

(4)
ε = ψ̃χ + �ε . Taking

into account that

ε1+κ�ε(ψ̃γ ), ε1+κ�ε(ψ̃γ ), ε2−χ+κ�ε(ψ̃χ ), ‖�ε‖α

are all bounded before time τK
5 , we obtain

�ε

(
uε + u(4)

ε

) ≤ C
(
�ε(ṽ

γ ) + �ε(�ε) + �ε(ψ̃γ ) + �ε(ψ̃
χ
γ )

)
(5.19)

≤ CK(ε2α̃−2−κ + ε2α−1 + ε−1−κ) ≤ CKε−1−κ

and

�ε

(
uε − u(4)

ε

) ≤ C
(
�ε(ψ̃χ ) + �ε(�ε)

)
(5.20)

≤ CKεχ−2−κ + Cε2α−2‖�ε‖2
α.

Using that ‖u(4)
ε ‖L∞ ≤ CK before time τK

5 , we obtain

‖σε,3‖−1 ≤ ‖σε,3‖L1 ≤ ε
∥∥D2G

(
u(4)

ε

)∥∥
L∞

√
�ε

(
uε + u

(4)
ε

)
�ε

(
uε − u

(4)
ε

)
≤ CK(εχ/2−1/2−2κ + εα−1/2−κ‖�ε‖α).
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Fourth term. We shall show that

‖σε,4‖−1 ≤ CK(ε−2κ‖�ε‖α + εχ/2−1/2−2κ).(5.21)

First, we use the L∞-bound on u
(4)
ε enforced by the stopping time, to obtain the

pointwise bound∣∣Rε(uε, uε) − Rε

(
uε,u

(4)
ε

)∣∣
≤ CK

∫
R

ε2y3(|D̂εyuε|2 + |D̂εyuε|
∣∣D̂εyu

(4)
ε

∣∣ + ∣∣D̂εyu
(4)
ε

∣∣2)
× ∣∣D̂εy

(
uε − u(4)

ε

)∣∣|μ|(dy)

≤ CK

∫
R

εy2(|D̂εyuε| +
∣∣D̂εyu

(4)
ε

∣∣)∣∣D̂εy

(
uε − u(4)

ε

)∣∣|μ|(dy).

In view of (5.20) it thus follows that∥∥Rε(uε, uε) − Rε

(
uε,u

(4)
ε

)∥∥
L1

≤ CKε

∫
R

y2∥∥(|D̂εyuε| +
∣∣D̂εyu

(4)
ε

∣∣)∣∣D̂εy

(
uε − u(4)

ε

)∣∣∥∥
L1 |μ|(dy)

≤ CKε

∫
R

y2(‖D̂εyuε‖L2 + ∥∥D̂εyu
(4)
ε

∥∥
L2

)∥∥D̂εy

(
uε − u(4)

ε

)∥∥
L2 |μ|(dy)

≤ CKε

√(
�ε(uε) + �ε

(
u

(4)
ε

))
�ε

(
uε − u

(4)
ε

)
.

Using (5.16), (5.18), and the definition of the stopping time to bound �ε(ψ̃χ), we
find that

�ε(uε) + �ε

(
u(4)

ε

) ≤ C
(
�ε(uε) + �ε(�ε) + �ε(ψ̃χ)

)
≤ CK(ε−1−κ + ε2α−2 + εχ−1−κ) ≤ ε−1−κ .

Using (5.20), we thus obtain∥∥Rε(uε, uε) − Rε

(
uε,u

(4)
ε

)∥∥
L1 ≤ CK(εχ/2−1/2−2κ + εα−1/2−κ‖�ε‖α).(5.22)

Furthermore, taking into account that∥∥uε − u(4)
ε

∥∥
L∞ ≤ CK(‖ψ̃χ‖L∞ + ‖�ε‖L∞) ≤ CK(εχ/2−κ + ‖�ε‖α),

we have by (5.16),∥∥Rε

(
uε,u

(4)
ε

) − Rε

(
u(4)

ε , u(4)
ε

)∥∥
L1

≤ CKε2∥∥uε − u(4)
ε

∥∥
L∞

∫
R

y3∥∥∣∣D̂εyu
(4)
ε

∣∣3∥∥
L1 |μ|(dy)

≤ CKε
∥∥uε − u(4)

ε

∥∥
L∞

∫
R

y2∥∥D̂εyu
(4)
ε

∥∥2
L2 |μ|(dy)(5.23)

= CKε
∥∥uε − u(4)

ε

∥∥
L∞�2

ε

(
u(4)

ε

)
≤ CK(εχ/2−3κ + ε−2κ‖�ε‖α).
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The claim follows by adding (5.22) and (5.23) and using the embedding L1 ⊆
H−1.

Fifth term. As in the first step, we have

‖σε,4‖−1 = ‖F(ṽγ + ψ̃γ ) − F(ṽγ + ψ̃χ
γ − �ε)‖−1

≤ CK(‖ψ̃χ‖L∞ + ‖�ε‖L∞)(5.24)

≤ CK(εχ/2−κ + ‖�ε‖α).

Combining the five estimates, we obtain

‖�ε(t)‖α ≤ C(t − s)(1−α)/2 sup
r∈(s,t)

‖σε(r)‖−1

≤ C(t − s)(1−α)/2 sup
r∈(s,t)

(
ε−2κ‖�ε(r)‖α + εχ/2−1/2−2κ )

.

The result now follows as in the proof of Proposition 5.1. �
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