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For an ergodic Markov chain {X(t)} on N, with a stationary distribution
π , let Tn > 0 denote a hitting time for [n]c, and let Xn = X(Tn). Around
2005 Guy Louchard popularized a conjecture that, for n → ∞, Tn is almost
Geometric(p), p = π([n]c), Xn is almost stationarily distributed on [n]c and
that Xn and Tn are almost independent, if p(n) := supi p(i, [n]c) → 0 ex-
ponentially fast. For the chains with p(n) → 0, however slowly, and with
supi,j ‖p(i, ·) − p(j, ·)‖TV < 1, we show that Louchard’s conjecture is in-
deed true, even for the hits of an arbitrary Sn ⊂ N with π(Sn) → 0. More pre-
cisely, a sequence of k consecutive hit locations paired with the time elapsed
since a previous hit (for the first hit, since the starting moment) is approxi-
mated, within a total variation distance of order k supi p(i, Sn), by a k-long
sequence of independent copies of (�n, tn), where tn = Geometric(π(Sn)),
�n is distributed stationarily on Sn and �n is independent of tn. The two con-
ditions are easily met by the Markov chains that arose in Louchard’s studies
as likely sharp approximations of two random compositions of a large in-
teger ν, a column-convex animal (cca) composition and a Carlitz (C) com-
position. We show that this approximation is indeed very sharp for each of
the random compositions, read from left to right, for as long as the sum of
the remaining parts stays above ln2 ν. Combining the two approximations,
a composition—by its chain, and, for Sn = [n]c, the sequence of hit loca-
tions paired each with a time elapsed from the previous hit—by the indepen-
dent copies of (�n, tn), enables us to determine the limiting distributions of
μ = o(lnν) and μ = o(ν1/2) largest parts of the random cca-composition and
the random C-composition, respectively. (Submitted to Annals of Probability
in June 2009.)

1. Introduction. Consider a Markov chain X(t) on N. Given S ⊂ N, let T (S)

be the hitting time, that is, T (S) = min{t > 0 :X(t) ∈ S}. Keilson [14] proved that
if a state i is positive-recurrent, and a nested sequence S1 ⊇ S2 ⊇ · · · is such that
i /∈ S1 and Ei[T (Sn)] → ∞, then

Pi

{
T (Sn)

Ei[T (Sn)] ≥ t

}
→ e−t ∀t ≥ 0.(1.1)
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The basic idea of the proof was that the probability of hitting Sn between two
consecutive returns to i is small, of order 1/Ei[T (Sn)], and so T (Sn) is roughly the
sum of the geometrically distributed number of i.i.d. times between those returns
to i.

If a chain is ergodic, with a stationary distribution π , the condition Ei[T (Sn)] →
∞ is met if (and only if) π(Sn) := ∑

i∈Sn
π(i) → 0. Indeed, by Derman’s theorem

[9] (see Durrett [10], Chapter 5), the expected number of visits to Sn between two
returns to i is π(Sn)/π(i). So the probability of hitting Sn between two returns to
i is π(Sn)/π(i) at most, whence Ei[T (Sn)] ≥ π(i)/π(Sn).

Aldous [1] estimated accuracy of the exponential approximation of the hit-
ting time for a finite-state ergodic Markov chain, when an initial state is chosen
at random, in accordance with the stationary distribution π . Roughly, the dis-
crepancy is small if the expected hitting time far exceeds a relaxation time τ =
maxi min{t :‖pt(i, ·)−π(·)‖TV ≤ ρ}, ρ < 1/2. τ “measures the time taken for the
chain to approach stationarity” in a sense that maxi ‖pt(i, ·)−π(·)‖TV ≤ (2ρ)�t/τ�.

Precisely because these results are so strikingly general, more subtle questions
remain open. Is there a geometrically distributed random variable close to T (S) in
terms of the total variation distance? What is, asymptotically, the joint distribution
of the hitting time T (S) and the hit location X(T (S))? Is there an explicit conver-
gence rate in terms of the total variation distance? Are X(T (S)) and T (S) almost
independent? How does one describe asymptotic behavior of the first k visits to
the rare set S, if k = k(S) is not too large?

For an ergodic Markov chain {X(t)} on N, with a stationary distribution
π , let Tn > 0 denote a hitting time for [n]c = N \ [n], and let Xn = X(Tn).
Around 2005 Guy Louchard [18] popularized the following conjecture. If p(n) :=
supi p(i, [n]c) = O(qn), q < 1, then Tn is almost Geometric(p), (p = π([n]c)), Xn

is almost stationarily distributed on [n]c, and Xn and Tn are almost independent.
The Markov chains with p(n) = O(qn) arose in the studies of two random compo-
sitions, Louchard [19, 20] and Louchard and Prodinger [21], as possibly sharp ap-
proximations of those random compositions. Louchard’s thought-provoking idea
was that if the conjecture and approximability of each random compositions by
a chain would be proved, potentially one could obtain the limiting distributions,
marginal and joint, of extreme-valued parts and, possibly, of other related charac-
teristics of the random compositions.

In this paper we introduce a class of Markov chains that contains the chains from
[19–21] for which we can give full answers to the questions posed above and, in
particular, fully confirm Guy Louchard’s conjecture. We also prove that the chains
in [19–21] indeed provide a good approximation of the random compositions. The
two approximations made in tandem lead to the asymptotic distributions of the
extreme-valued parts of the compositions, together with the convergence rates.

Let us give a more specific description of our results.
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DEFINITION 1.1. An ergodic Markov chain on N, with a transition probabil-
ity matrix P = {p(i, k)}i,k∈N and a stationary distribution π , is called tight if the
family of row probability measures {p(i, ·)}i∈N is tight, that is,

lim
n→∞ sup

i

∑
k>n

p(i, k) = 0.(1.2)

For a tight P , we will prove that if ∅ 
= Sn ⊂ N is such that π(Sn) → 0, then
uniformly for all initial states i,

Ei[T k(Sn)] ∼ k!
πk(Sn)

, k ≥ 1,(1.3)

so Ei[T (Sn)] ∼ π−1(Sn) in particular. Thus all the moments of T (Sn)/Ei[T (Sn)]
converge, uniformly over i, to the moments of the exponential random vari-
able, which implies convergence in distribution as well. As for the hit location
X(T (Sn)), given Un ⊆ Sn,

lim
n→∞

∣∣∣∣Pi{X(T (Sn)) ∈ Un} − π(Un)

π(Sn)

∣∣∣∣ = 0,(1.4)

uniformly for i ∈ N. Thus, marginally, T (Sn) and X(T (Sn)) behave in the limit as
if X(t) is a Bernoulli sequence with each trial outcome having distribution π .

Now suppose that, besides being tight, the chain meets a condition

δ0 := inf
i,j∈N

∑
k∈N

p(i, k)p(j, k) > 0.(1.5)

For a tight chain, this condition is equivalent to

ρ0 := sup
i,j∈N

‖p(i, ·) − p(j, ·)‖TV < 1,

which implies that

‖pn(i, ·) − π‖TV ≤ ρn
0 .

(So, for the relaxation time τ in [1], we have τ = �ln 2/ ln(1/ρ0)�.)
Given a random vector Y with integer components, we denote its probability

distribution by d(Y). Under conditions (1.2) and (1.5), we show that, uniformly
for the initial state i ∈ N,

‖d((X(T (Sn)), T (Sn))) − d((�n, tn))‖TV = O(p(Sn)),
(1.6)

p(S) := sup
k∈N

p(k,S),

where �n and tn are independent,

P {tn = τ } = π(Sn)
(
1 − π(Sn)

)τ−1
, τ ≥ 1,

P {�n = k} = π(k)

π(Sn)
, k ∈ Sn.
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More generally, the k-long sequence of chronologically ordered locations of first
k hits of Sn, each paired with the time elapsed since a preceding hit [paired with
T (Sn) in the case of the first hit] is approximated by the k-long sequence of inde-
pendent copies of (�n, tn), within the total variation distance of order O(kp(Sn)).
(Aldous and Brown [2, 3] had used Stein’s method to show that, for a station-
ary, continuous-time, reversible Markov process, the hitting times for a subset A

of states after prolonged excursions outside of A form an approximately Poisson
process.)

Equation (1.6) yields, rather directly, the limiting distributions of the ex-
treme values for {X(t)}1≤t≤N . Given μ, let X(μ) denote the μth largest among
X(1), . . . ,X(N). Then

Pi

{
X(μ) ≤ n

} = P {Poisson(Nπ(Sn)) < μ}
(1.7)

+ O
(
μ2/N + Np2(Sn)

)
,

and we have an extended version of (1.7) for the joint distribution of X(1), . . . ,

X(μ).
Turn now to the application of these results to the random compositions studied

in [19–21].
A composition of a positive integer ν is y = (y1, . . . , yμ), μ ≤ ν, such that

y1, . . . , yμ are positive integers satisfying

μ∑
i=1

yi = ν.(1.8)

Since, for each μ, there are
(ν−1
μ−1

)
compositions, we have 2ν−1 compositions over-

all. Assuming that a solution of (1.8) is chosen uniformly at random (uar), we have
a random composition Y of ν, its dimension M being random as well. It is known
(Andrews [4]) that

Y →D≡ (Z1, . . . ,ZM−1, ẐM),(1.9)

(→D≡ meaning equality of distributions), where Z1,Z2, . . . are independent geo-
metrics with success probability 1/2,

M = min{m :Z1 + · · · + Zm ≥ ν}(1.10)

and

ẐM := ν −
M−1∑
j=1

Zj .(1.11)

Hitczenko and Savage [12] used this connection to the well-studied success runs
in a fair coin-tossing process as an efficient tool for asymptotic analysis of various
characteristics of the random composition.
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If a random composition Y is not uniformly distributed on the set (1.8), one can
only hope for asymptotic independence of most of the parts. Lowering expectations
then, one may search for a Markov chain that approximates the behavior of Y in
question; ergodicity of such a chain would mean near independence of parts Yt1

and Yt2 with |t1 − t2| sufficiently large.
Here are two examples of such random compositions. A column-convex-animal

(cca) composition of ν is a collection of lengths of an ordered sequence of con-
tiguous columns on Z

2, whose total sum is ν, such that every two successive
columns have a common boundary consisting of at least one vertical edge of Z

2;
Klarner [15], Privman and Forgacs [22], Privman and Svrakic [23], Louchard [19,
20]. A Carlitz (C) composition meets a condition that no two adjacent parts coin-
cide; Carlitz [8], Knopfmacher and Prodinger [16], Louchard and Prodinger [21],
Hitczenko and Louchard [11].

One obtains a certain, nonuniform, distribution on the set of solutions of (1.8),
if a column-convex animal is chosen uar from among all such creatures. One ob-
tains another nonuniform distribution, if a composition of ν is chosen uar from
among all C-compositions. We call these objects a random cca-composition Y,
and a random C-composition Y, and denote the random number of components of
Y by M . For both schemes, Louchard [19, 20] and Louchard and Prodinger [21],
determined a limiting joint distribution of two successive parts, Yt and Yt+1, in the
case when t and M − t are of order ν, and also the limiting distribution, π1, of
the first (last) part Y1 (YM ). These results strongly suggest, though do not actually
prove that, in both cases,

p(i, k) := lim
ν,t→∞ P{Yt+1 = k|Yt = i} (i, k ∈ N),(1.12)

might well be the transition probabilities of a Markov chain, with an initial dis-
tribution π1, that closely approximates the whole random composition. We fully
confirm this conjecture, proving an approximational counterpart of (1.9)–(1.11).
The chains turn out to be tight, exponentially mixing and this enables us to use our
results for asymptotic analysis of extreme-valued parts of both random composi-
tions. Let Y (μ) denote the μth largest part of the random composition in question.
For the random cca-composition, we show that, for μ = o(lnν),

Y (μ) = ln(μ−1ν ln2 ν)

ln(1/z∗)
+ Op(1),(1.13)

where z∗ = 0.31 . . . is the smallest-modulus root of

4z3 − 7z2 + 5z − 1 = 0.

For the random C-composition, if μ = o(ν1/2), then

Y (μ) = ln(μ−1ν)

ln(1/z∗)
+ Op(1),(1.14)
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where z∗ = 0.57 . . . is the smallest-modulus root of

∑
j≥1

zj

1 + zj
− 1 = 0.

[Op(1) stands for a random variable bounded in probability.] It follows from (1.13)
and (1.14) that the number of distinct values among X(1), . . . ,X(μ) is likely to be
at most (1 + o(1)) lnμ/ ln(1/z∗), for the corresponding z∗, for μ = o(lnν) and
μ = o(ν1/2), respectively. It can be shown that, in fact, the range is asymptotic
to lnμ/ ln(1/z∗), in probability. (See Hitczenko and Louchard [11] regarding a
limiting distribution of a “distinctness” (range size) of the random C-composition.)

We plan to extend this approach to other constrained compositions, such as quite
general Carlitz-type compositions studied by Bender and Canfield [6].

The rest of the paper is organized as follows. In Section 2 we show that, for
the tight Markov chains {X(t)}, the hitting time of a rare set Sn, that is, with
π(Sn) → 0, scaled by π−1(Sn) converges, with all its moments, to the exponen-
tially distributed random variable of unit mean, while the hit location has, in the
limit, a stationary distribution restricted to Sn. And convergence is uniform over all
initial states. In Section 3 we add a second condition that guarantees exponential
mixing, calling such chains tight, exponentially mixing (t.e.m.) chains. Signifi-
cantly sharpening the results of Section 2, we demonstrate that the hitting time and
the hit location are asymptotic, with respect to the total variation distance, to a pair
of independent random variables, one being geometrically distributed with success
probability π(Sn), and another having the restricted stationary distribution. The er-
ror term is O(p(Sn)); see (1.6) for definition of p(·). We extend this result to the
first k hits of Sn, and then state and prove the claims about the limiting distribu-
tion of the μ largest values among X(1), . . . ,X(N), useful for μ = o(N1/2). In
Section 4 we apply these claims to the extreme-valued parts of two random com-
positions of a large ν, the cca-composition and the C-composition. Specifically,
in Section 4.1 we briefly survey the basic known facts about the compositions.
In Section 4.2 we show that each composition is sharply approximated, in terms
of total variation distance, by a related Markov chain, for as long as the current
sum of parts does not exceed ν − ln2 ν. In Section 4.3, for each composition, we
derive the limiting distributions of the μ largest values of a random composition
parts, assuming that μ = o(lnν) for the cca-composition and μ = o(ν1/2) for the
C-composition. In the Appendix we prove an auxiliary result on large deviations
of the number of parts in each of the random compositions.

2. Tight Markov chains. Consider an ergodic Markov chain X(t) on N

with the stationary distribution π = {π(j)}j∈N. Given S ⊂ N, we denote π(S) =∑
j∈S π(j). Introduce T (S) the positive hitting time of S, that is, T (S) = min{t >

0|X(t) ∈ S}, and the hit location X(T (S)). Our focus is on a rare S, that is, with
a small π(S).
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Assuming that the chain satisfies a tightness condition (1), namely

lim
n→∞ sup

i

∑
k>n

p(i, k) = 0,(2.1)

we will show that, uniformly for an initial state in N, (1) T (S) is asymptotically
exponential, with mean π−1(S), and (2) the distribution of X(T (S)) is asymptotic
to {π(s)/π(S)}s∈S .

As a first step we prove the following.

LEMMA 2.1. Let a possibly infinite Sn 
= ∅ be such that limn→∞ π(Sn) = 0.
Under condition (2.1),

Ei[T (Sn)] ∼ 1

π(Sn)
, n → ∞,(2.2)

uniformly for i ∈ N.

NOTE. Consider a simple asymmetric random walk on N, that is, the Markov
chain with p(1,1) = q , p(1,2) = p and p(i, i − 1) = q , p(i, i + 1) = p for
i ≥ 2. For p < q this chain is ergodic, with the stationary distribution π(j) =
(1 − p/q)(p/q)j−1, but it is clearly not tight. For i = 1, T ({n + 1}) = T ({n +
1, n + 2, . . .}), but π({n + 1}) 
∼ π({n + 1, n + 2, . . .}). So (2.2) cannot hold for all
Sn with π(Sn) → 0. In fact, the expected common hitting time for these two sets
is not asymptotic to the reciprocal of either of these stationary probabilities.

PROOF OF LEMMA 2.1. By tightness condition (2.1), there exists K such that
∑
j≤K

p(i, j) ≥ 1/2 ∀i ≥ 1.

Then, for t ≥ 1,

Pi{T ([K]) > t} ≤ 1

2t
�⇒ Ei[T ([K])] ≤ 2.

Now, one (possibly not the shortest) way of hitting Sn, starting at i, is to hit the
set [K] and from there to hit Sn. By the strong Markov property, conditionally
on X(T ([K])) = j (j ∈ [K]), the residual travel time T̂ (Sn) till hitting Sn is dis-
tributed as T (Sn) under Pj . So

E[T̂ (Sn)|X(T ([K])) = j ] = Ej [T (Sn)], j ∈ [K].
Then, introducing � ∈ [K] such that

E�[T (Sn)] = max
j∈[K]Ej [T (Sn)],
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we have

Ei[T (Sn)] ≤ Ei[T [K]] + ∑
j∈[K]

Pi{X(T ([K])) = j}Ej [T (Sn)]
(2.3)

≤ 2 + E�[T (Sn)];
in particular, supi Ei[T (Sn)] < ∞.

By the Markov property,

Ej [T (Sn)] = 1 + ∑
k∈Sc

n

p(j, k)Ek[T (Sn)], j ∈ N.(2.4)

Multiplying both sides of (2.4) by π(j) and summing for j ∈ N, we get∑
j∈N

π(j)Ej [T (Sn)] = 1 + ∑
k∈Sc

n

Ek[T (Sn)]
∑
j∈N

π(j)p(j, k)

= 1 + ∑
k∈Sc

n

π(k)Ek[T (Sn)],

as π(·) is stationary. So, as both series converge,∑
k∈Sn

π(k)Ek[T (Sn)] = 1.(2.5)

(We note that (2.5) is a special case of a well-known result, due to Kac [13], with
inevitably harder proof, for a general discrete-time stationary process; see also
Breiman [7], Section 6.9.) Then, by (2.3),

E�[T (Sn)] + 1 ≥ 1

π(Sn)
�⇒ E�[T (Sn)] � 1

π(Sn)
.(2.6)

Now, given a state k, we have

E�[T (Sn)] ≤ E�[T ({k})] + Ek[T (Sn)],(2.7)

T ({k}) being the hitting time for the singleton {k}. Combining (2.6) and (2.7), we
obtain that for every fixed k,

Ek[T (Sn)] � 1

π(Sn)
.(2.8)

Picking arbitrary L, by (2.4), we have that for n ≥ n(L),

Ej [T (Sn)] ≥ 1 + ∑
k≤L

p(j, k)Ek[T (Sn)], j ∈ N.

Therefore, by (2.8),

lim inf
n→∞

(
inf
j∈N

Ej [T (Sn)]
)
π(Sn) ≥ lim inf

n→∞ inf
j∈N

∑
k≤L

p(j, k),
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where, by (2.1), the RHS approaches 1 as L ↑ ∞. So

Ej [T (Sn)] � 1

π(Sn)
,(2.9)

uniformly for j ∈ N.
It remains to show that

Ej [T (Sn)] � 1

π(Sn)
,

uniformly for j ∈ N. Using (2.4)–(2.5), we obtain then
∑
j∈Sn

π(j)∑
i∈Sn

π(i)

(
1 + ∑

k∈Sc
n

p(j, k)Ek[T (Sn)]
)

= 1

π(Sn)
.(2.10)

Suppose that there exists a subsequence nm → ∞ and δ > 0, such that

lim
n∈{nm}E�[T (Sn)]π(Sn) ≥ 1 + δ.

Then, by (2.7),

lim
n∈{nm}Ek[T (Sn)]π(Sn) ≥ 1 + δ,

for every fixed k. Picking M > 0 and dropping the summands for k > M in (2.10),
we get then: for n = nm large enough,

(1 + δ/2)
∑
j∈Sn

π(j)∑
i∈Sn

π(i)

( ∑
k≤M

p(j, k)

)
≤ 1.

This is impossible if M is chosen so large that

inf
j

∑
k≤M

p(j, k) ≥ 1

1 + δ/3
.

Therefore

E�[T (Sn)] � 1

π(Sn)
,

and so, invoking (2.3),

Ek[T (Sn)] � 1

π(Sn)
,(2.11)

uniformly for k ∈ N.
Combining (2.9) and (2.11), we complete the proof of Lemma 2.1. �

The fact that Ei[T (Sn)] → ∞ already implies, via Keilson’s theorem [14], that,
for each fixed initial state i, T (Sn)/Ei[T (Sn)] is, in the limit, exponentially dis-
tributed, with parameter 1. The tightness condition allowed us to estimate the scal-
ing parameters Ei[T (Sn)] asymptotically, uniformly for i ∈ N. Interestingly, this
uniformity can be used for a simple alternative proof of asymptotic exponentiality
of T (Sn)/Ei[T (Sn)].
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LEMMA 2.2. Under condition (2.1), for each fixed k ≥ 1,

Ei[T k(Sn)] ∼ k!/πk(Sn),(2.12)

uniformly for i ∈ N. Consequently, uniformly for i ∈ N,

Pi{T (Sn)π(Sn) > x} → e−x ∀x ≥ 0.(2.13)

PROOF. Introduce the moment generating functions

φi(u) = ∑
r≥0

ur

r! Ei[T r(Sn)], i ∈ N.

As formal power series, these functions satisfy

φi(u) = eu

( ∑
j∈Sn

p(i, j) + ∑
j∈Sc

n

p(i, j)φj (u)

)
, i ∈ N.(2.14)

Differentiating both sides of (2.14) k times at u = 0, we get

Ei[T k(Sn)] = b(i, k) + ∑
j∈Sc

n

p(i, j)Ej [T k(Sn)], i ∈ N,

(2.15)

b(i, k) := 1 +
k−1∑
r=1

(
k

r

) ∑
j∈Sc

n

p(i, j)Ej [T r(Sn)].

For k = 1 we get (2.4). Let k ≥ 2, and suppose that, for r < k,

Ei[T r(Sn)] = (
1 + o(1)

) r!
πr−1(Sn)

Ei[T (Sn)],(2.16)

uniformly for i ∈ N. (This is obviously true for k = 2.) Then

b(i, k) = 1 + (
1 + o(1)

) k−1∑
r=1

(k)r

πr−1(Sn)

∑
j∈Sc

n

p(i, j)Ej [T (Sn)]

[using (2.4)]
(2.17)

= 1 + (
1 + o(1)

) k−1∑
r=1

(k)r

πr−1(Sn)

(
Ei[T (Sn)] − 1

)

= (
1 + o(1)

) (k)k−1

πk−1(Sn)
= (

1 + o(1)
) k!
πk−1(Sn)

,

uniformly for i ∈ N. Using (2.17), we rewrite (2.15) as

Ei[T k(Sn)] = (
1 + o(1)

) k!
πk−1(Sn)

+ ∑
j∈Sc

n

p(i, j)Ej [T k(Sn)],
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uniformly for i ∈ N. Now if we define x0(i, k) = b(i, k) and, for t ≥ 0,

xt+1(i, k) = b(i, k) + ∑
j∈Sc

n

p(i, j)xt (j, k), i ∈ N,

then xt (i, k) ↑ Ei[T k(Sn)], i ∈ N. In particular, for k = 1, we have b(i,1) = 1 and
xt (i,1) ↑ Ei[T (Sn)]. Using this observation and (2.17), and Ei[T (Sn)] ∼ 1/π(Sn)

uniformly for i ∈ N, we conclude

Ei[T k(Sn)] = (
1 + o(1)

) k!
πk−1(Sn)

Ei[T (Sn)],
uniformly for i ∈ N. Thus (2.16) holds for all r ≥ 1, and so

Ei[T k(Sn)] = (
1 + o(1)

) k!
πk(Sn)

, k ≥ 1,

uniformly for i ∈ N.
Since lim sup k−1(k!)1/k/k < ∞, the exponential distribution is the only one

with the moments k! (Durrett [10]). The proof of Lemma 2.2 is complete. �

Turn now to Hn := X(T (Sn)), H reminding us that X(T (Sn)) is the hit location.

LEMMA 2.3. Let Un ⊆ Sn. Uniformly for i ∈ N,

lim
n→∞

∣∣∣∣Pi{Hn ∈ Un} − π(Un)

π(Sn)

∣∣∣∣ = 0.(2.18)

PROOF. By the Markov property,

Pi{Hn ∈ Un} = p(i,Un) + ∑
j∈Sc

n

p(i, j)Pj {Hn ∈ Un}, i ∈ N,(2.19)

where we use the notation p(i,A) = ∑
k∈A p(i, k), A ⊆ N.

(a) Assuming only that {p(i, k)} is ergodic, let us show that, for all fixed i, j ∈ N,

lim
n→∞|Pi{Hn ∈ Un} − Pj {Hn ∈ Un}| = 0.(2.20)

By Cantor’s diagonalization device, any subsequence {nm} of 1,2, . . . contains
a further subsequence {nm�

} such that for n → ∞ along this subsequence, there
exists

fi = lim
n→∞Pi{Hn ∈ Un} ∈ [0,1], i ∈ N.

The limits f i may well depend on {nm}, of course. Letting n = nm�
→ ∞ in (2.19),

we obtain

fi = ∑
j∈N

p(i, j)fj , i ∈ N.(2.21)
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Since the matrix {p(i, j)} is ergodic, fi does not depend on i; Durrett [10], Exer-
cise 3.9. So (2.20) follows.

(b) By tightness, given ε ∈ (0,1), there exists J = J (ε) such that
∑
j≤J

p(i, j) ≥ 1 − ε ∀i ∈ N.

For n ≥ n(J ), [J ] ⊆ Sc
n. So, by (2.19),

inf
i∈N

Pi{Hn ∈ Un} ≥ (1 − ε)min
i≤J

Pi{Hn ∈ Un}

and

sup
i∈N

Pi{Hn ∈ Un} ≤ ε + max
i≤J

Pi{Hn ∈ Un}.

So

lim sup
n

[
sup
i∈N

Pi{Hn ∈ Un} − inf
i∈N

Pi{Hn ∈ Un}
]

≤ 2ε + lim
n→∞

[
max
i≤J

Pi{Hn ∈ Un} − min
i≤J

Pi{Hn ∈ Un}
]
= 2ε.

Thus

lim
n→∞

[
sup
i∈N

Pi{Hn ∈ Un} − inf
i∈N

Pi{Hn ∈ Un}
]
= 0.(2.22)

(c) Multiplying both sides of (2.19) by π(i), summing for i ∈ N and using sta-
tionarity of π(·), we obtain

∑
i∈N

π(i)Pi{Hn ∈ Un} = ∑
i∈N

π(i)p(i,Un) + ∑
j∈Sc

n

Pj {Hn ∈ Un}
∑
i∈N

π(i)p(i, j)

= π(Un) + ∑
j∈Sc

n

π(j)Pj {Hn ∈ Un},

so that ∑
i∈Sn

π(i)Pi{Hn ∈ Un} = π(Un).(2.23)

Consequently

inf
i∈Sn

Pi{Hn ∈ Un} ≤ q(n,Un) ≤ sup
i∈Sn

Pi{Hn ∈ Un},

where

q(n,Un) := π(Un)

π(Sn)
.
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Combining (2.22) and the double inequality we conclude that

lim
n→∞

∣∣∣∣Pi{Hn ∈ Un} − π(Un)

π(Sn)

∣∣∣∣ = 0,

uniformly for i ∈ N. The proof of Lemma 2.3 is complete. �

Thus, considered separately, T (Sn) and X(T (Sn)) asymptotically behave as if
X(t) is a Bernoulli sequence with each trial outcome having distribution π . Of
course, the Bernoulli sequence possesses finer properties; in particular, T (Sn) and
X(T (Sn)) are independent of each other. We are about to impose an additional
condition on {p(i, k)}. It will be used to to establish a limit distribution of the
vector (T (Sn),X(T (Sn))), together with a convergence rate in terms of the ‖ · ‖TV
distance. In particular, under the two conditions, T (Sn) and X(T (Sn)) turn out to
be asymptotically independent.

3. Tight, exponentially mixing Markov chains. The extra condition (2) is

ρ := sup
i,j∈N

∑
k∈N

|p(i, k) − p(j, k)| < 2.(3.1)

(Of course, ρ ≤ 2 always.) Then (Durrett [10], Exercise 5.11),
∑
k∈N

|pn(i, k) − pn(j, k)| ≤ 2(ρ/2)n,

where pn(·, ·) are the n-step transition probabilities. Consequently, multiplying by
π(j) and summing over j ∈ N,

∑
k∈N

|pn(i, k) − π(k)| ≤ 2(ρ/2)n.

Equivalently, denoting e = ({1}i∈N)T ,

‖(P n − eπ)T ‖L1(N) = ‖P n − eπ‖L∞(N) ≤ 2(ρ/2)n.(3.2)

We call the chains meeting (3.2) exponentially mixing, and use the abbreviation
“t.e.m.” chains for tight, exponentially mixing Markov chains. Now

1

2

∑
k∈N

|p(i, k) − p(j, k)| = min
(X,Y )

P {X 
= Y },

where minimum is over all random vectors (X,Y ) such that P {X = k} = p(i, k),
P {Y = k} = p(j, k), k ∈ N; see Durrett [10]. Therefore, selecting independent X

and Y ,

1

2

∑
k∈N

|p(i, k) − p(j, k)| ≤ 1 − P {X = Y } = 1 − ∑
k∈N

p(i, k)p(j, k).
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Hence condition (3.1) is met if

δ0 := inf
i,j∈N

∑
k∈N

p(i, k)p(j, k) > 0,(3.3)

in which case ρ/2 ≤ 1 − δ0. In fact, for the tight chains the converse is true: (3.1)
implies (3.3). Suppose not. Then there exists {(ir , jr)}r≥1 such that

lim
r→∞

∑
k∈N

p(ir , k)p(jr , k) = 0.(3.4)

By the tightness condition, we may assume that p(ir , ·) and p(jr , ·) converge,
weakly, to some probability distributions, p1 and p2, respectively, that is,

p(ir , k) → p1(k), p(jr , k) → p2(k), k ∈ N.

Combining this with (3.1) and (3.4), we obtain∑
k∈N

|p1(k) − p2(k)| < 2,
∑
k∈N

p1(k)p2(k) = 0.

This is impossible, since the second condition implies that

|p1(k) − p2(k)| = p1(k) + p2(k).

THEOREM 3.1. Let ∂n,i denote the joint distribution of X(T (Sn)) and T (Sn)

for an initial state i ∈ N. Let ∂n denote the product probability measure on Sn ×N,
such that

∂n(A × B) = π(A)

π(Sn)
· ∑
τ∈B

π(Sn)
(
1 − π(Sn)

)τ−1
, A ⊆ Sn,B ⊆ N.

Under conditions (1) and (2), uniformly for i ∈ N,

‖∂n,i − ∂n‖TV = O(p(Sn)),(3.5)

where

p(Sn) := sup
i∈N

p(i, Sn).(3.6)

PROOF. Introduce

εn = sup
i∈Sc

n

p(i, Sn), p(i,A) := ∑
k∈A

p(i, k);

by the tightness and limπ(Sn) = 0, we have lim εn = 0. Let Pn = {p(i, k)}i,k∈Sc
n
.

As a first step let us prove the following claim.

LEMMA 3.2. For n large enough, Pn has an eigenvalue λn ∈ [1 − εn,1) and
a corresponding eigenvector fn = ({fn(i)}i∈Sc

n
)T , such that

1 ≤ fn(i) ≤ 1

1 − (6/δ0)εn

,(3.7)

with δ0 coming from condition (3.3).
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PROOF. Given m > 0, introduce Sn,m = Sn ∪ {m + 1,m + 2, . . .}, so that
Sc

n,m = Sc
n ∩ [m], which is a finite set. Denote Pn,m = {p(i, k)}i,k∈Sc

n,m
. By con-

ditions (2.1) and (3.3), there exist n0 and m0 such that

inf
n≥n0
m≥m0

min
i∈Sc

n,m

p(i, Sc
n,m) > 1 − δ0/3,(3.8)

inf
n≥n0
m≥m0

min
i,j∈Sc

n,m

∑
k∈Sc

n,m

p(i, k)p(j, k) ≥ δ0/2.(3.9)

Let n ≥ n0, m ≥ m0. Call ∅ 
= A ⊆ Sc
n,m closed (in Sc

n,m), if p(i, Sc
n,m \ A) = 0

for each i ∈ A. Call a closed set minimal if it does not contain a closed subset.
Condition (3.9) clearly ensures that there exists exactly one minimal closed subset
A, which may be the whole set Sc

n,m. A submatrix PA := {p(i, k)}i,k∈A is irre-
ducible; so it has a positive eigenvalue λ(A) with a positive eigenvector fA, and
the absolute values of the remaining eigenvalues of PA do not exceed λ(A). In
fact, those absolute values are strictly less than λ(A). Otherwise, by Frobenius’s
theorem, there exists a partition A = ⊎h

r=1 Ar , h > 1, such that, for r = 1, . . . , h,
{k ∈ A|∃i ∈ Ar,p(i, k) > 0} = Ar+1 (h + 1 := 1). So, for i ∈ A1, j ∈ A2,

∑
k∈L

p(i, k)p(j, k) = ∑
k∈A

p(i, k)p(j, k) = ∑
k∈A2∩A3

p(i, k)p(j, k) = 0.

And this contradicts (3.9). Furthermore, by (3.8),

λ(A) ≥ min
i∈A

p(i,A) = min
i∈A

p(i, Sc
n,m) > 1 − δ0/3,

while, denoting A′ = Sc
n,m \ A and using (3.9),

max
i∈A′ p(i,A′) ≤ 1 − min

i∈A′ p(i,A)

≤ 1 − min
i∈A′,j∈A

∑
k∈A

p(i, k)p(j, k)

≤ 1 − min
i∈A′,j∈Sc

n,m

∑
k∈Sc

n,m

p(i, k)p(j, k) ≤ 1 − δ0/2.

Therefore λ(A) is strictly larger than λ(A′), the largest eigenvalue of PA′ . Denoting
PA′,A = {p(i, k)}i∈A′,k∈A, let fA′ be a solution of

PA′,AfA + PA′fA′ = λ(A)fA′ .

Since PA′,AfA > 0 and λ(A) > λ(A′), fA′ exists uniquely and is positive. The
combined vector fn,m = (fA, fA′) is a unique, positive, eigenvector of Pn,m for its
largest eigenvalue

λn,m = λ(A) ≥ 1 − δ0/3.
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Let us bound maxi fn,m(i)/mini fn,m(i). Introduce pi(τ ) (i ∈ Sc
n,m, τ ≥ 0), the

probability that, starting at state i, the Markov process X(t) stays in Sc
n,m for all

t ≤ τ . The sequence p(τ ) = {pi(τ )}i∈Sc
n,m

, satisfies a recurrence

p(τ + 1) = PSc
n,m

p(τ ), p(0) = (1, . . . ,1)T .

Moreover, there exists Cn,m > 0 such that

p(τ ) ∼ Cn,mλτ
n,mfn,m, τ → ∞.(3.10)

To exploit this connection, let us first use a coupling device to derive a recurrence
for the differences pi(τ )−pj (τ ), i 
= j . Consider two independent processes, X(t)

and Y(t), starting at i and j in Sc
n,m. Introduce the events U(t) = {X(t) ∈ Sc

n,m}
and V (t) = {Y(t) ∈ Sc

n,m}, and let 1(W) denote the indicator of an event W . By
the Markov property,

pi(τ + 1) − pj (τ + 1)

= E(i,j)

[ ∏
t≤τ+1

1(U(t)) − ∏
t≤τ+1

1(V (t))

]

= ∑
k1,k2∈Sc

n,m

k1 
=k2

p(i, k1)p(i, k2)E(k1,k2)

[∏
t≤τ

1(U(t)) − ∏
t≤τ

1(V (t))

]

+ ∑
k1∈Sc

n,m,k2∈Sn,m

p(i, k1)p(i, k2)Ek1

[∏
t≤τ

1(U(t))

]

− ∑
k1∈Sn,m,k2∈Sc

n,m

p(i, k1)p(i, k2)Ek2

[∏
t≤τ

1(V (t))

]

= ∑
k1,k2∈Sc

n,m

k1 
=k2

p(i, k1)p(i, k2)[pk1(τ ) − pk2(τ )]

+ p(j, Sn,m)
∑

k1∈Sc
n,m

p(i, k1)pk1(τ ) − p(i, Sn,m)
∑

k2∈Sc
n,m

p(j, k2)pk2(τ ).

Letting τ ↑ ∞ and using (3.10) we obtain

λn,m

(
fn,m(i) − fn,m(j)

) = ∑
k1,k2∈Sc

n,m

k1 
=k2

p(i, k1)p(j, k2)
(
fn,m(k1) − fn,m(k2)

)

+ p(j, Sn,m)
∑

k1∈Sc
n,m

p(i, k1)fn,m(k1)(3.11)

− p(i, Sn,m)
∑

k2∈Sc
n,m

p(j, k2)fn,m(k2).
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Let fn,m(i1) = maxi∈Sc
n,m

fn,m(i), fn,m(i2) = mini∈Sc
n,m

fn,m(i). Then it follows
from (3.11) that
(
fn,m(i1) − fn,m(i2)

)(
λn,m − ∑

k1,k2∈Sc
n,m

k1 
=k2

p(i1, k1)p(i2, k2)

)
≤ p(i2, Sn,m)fn,m(i1).

Here [see (3.3)]∑
k1,k2∈Sc

n,m

k1 
=k2

p(i1, k1)p(i2, k2) ≤ 1 − ∑
k∈Sc

n,m

p(i1, k)p(j, k) ≤ 1 − δ0/2

and

p(i2, Sn,m) ≤ εn,m := max
i∈Sc

n

p(i, Sn,m).

As λn,m ≥ 1 − δ0/3, we obtain

fn,m(i1)

(
1 − 6

δ0
εn,m

)
≤ fn,m(i2) ∀n ≥ n0,∀m ≥ m0.(3.12)

Now

0 ≤ εn,m − εn ≤ sup
i

∑
k>m

p(i, k),

so that limm→∞ εn,m = εn, uniformly for n, and limn→∞ εn = 0. So there exist
n1 > n0, m1 ≥ m0 such that εn,m ≤ δ0/7 for n ≥ n1, m ≥ m1. For those n,m,
relation (3.12), with fn,m(i2) = mini fn,m(i) = 1, yields

1 ≤ fn,m(i) ≤ 1

1 − (6/δ0)εn,m

, i ∈ Sc
n,m.(3.13)

A standard argument shows then existence of a subsequence ms ↑ ∞ such that
(1) for each i ∈ Sc

n, there exists fn(i) = limms→∞ fn,ms (i), which necessarily sat-
isfies

1 ≤ fn(i) ≤ 1

1 − (6/δ0)εn

, i ∈ Sc
n,

and (2) there exists λn = limms→∞ λn,ms ∈ [1 − εn,1). Clearly then fn :=
({fn(i)}i∈Sc

n
)T ∈ L∞(Sc

n) is an eigenvector of Pn, λn being a corresponding eigen-
value. The proof of Lemma 3.2 is complete. �

Let Fn be a diagonal Sc
n × Sc

n matrix with Fn(i, i) = fn(i), i ∈ Sc
n. Define a

Sc
n × Sc

n matrix

Qn = λ−1
n F−1

n PnFn = λ−1
n {(fn(i))

−1p(i, k)fn(k)}i,k∈Sc
n
.

Let en = ({1}i∈Sc
n
)T . Since Fnen = fn, we have

Qnen = λ−1
n F−1

n Pnfn = F−1
n fn = en,
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so that Qn is stochastic. From tightness of P = {p(i, k)}i,k∈N and (3.9) it follows
that, for each fixed n, and even uniformly over n, Qn is tight as well, that is,

δ(K) := sup
n,i∈Sc

n

∑
k∈Sc

n : k>K

Qn(i, k) → 0, K ↑ ∞.

Now from

(Qn)
ν(i, k) = ∑

j∈Sc
n

Qn(i, j)(Qn)
ν−1(j, k),

by induction on ν it follows that

sup
ν,i∈Sc

n

∑
k∈Sc

n : k>K

(Qn)
ν(i, k) ≤ δ(K).

Hence, given n, the rows of all matrices (Qn)
ν form a tight set of probability dis-

tributions. Therefore there exists νs → ∞ and a family of probability distributions
πn(i, ·) on Sc

n, (i ∈ Sc
n), such that, for i, k ∈ Sc

n,

(Qn)
ν(i, k) → πn(i, k), ν → ∞.

In addition, by (3.7) and (3.9), for i, j ∈ Sc
n,

∑
k∈Sc

n

Qn(i, k)Qn(j, k) = λ−2
n

∑
k∈Sc

n

(f n
k )2

f n
i f n

j

p(i, k)p(j, k)

≥ (
1 − (6/δ0)εn

)2
δ0/2 ≥ δ0/3,

for n large enough. Therefore [cf. (3.2)]∑
k∈Sc

n

|(Qn)
ν(i, k) − (Qn)

ν(j, k)| ≤ 2(1 − δ0/3)ν → 0, ν → ∞.(3.14)

Letting ν → ∞ along {νs} in (3.14) we obtain that the family {πn(i, ·)}i∈Sc
n

consists
of a single probability distribution πn(·) on Sc

n. Thus, for any distribution q(·) on
Sc

n, q(Qn)
νs → πn. Applying this to q = πn, and then to q = πnQn,

πnQn = lim
νs→∞πn(Qn)

νsQn = lim
νs→∞(πnQn)(Qn)

νs = πn,

that is, πn is a stationary distribution of Qn. Using stationarity of πn and (3.14) we
obtain

‖[(Qn)
ν − enπn]T ‖L1(S

c
n) = ‖(Qn)

ν − enπn‖L∞(Sc
n)

(3.15)
≤ 2(1 − δ0/3)ν;

cf. (3.2). Since (Qn)
ν = λ−ν

n F−1
n P ν

n Fn, the combination of (3.3) and (3.2) implies
that

(Pn)
ν = λν

nfnσ n + Rn,ν, σ n := {πn(i)/fn(i)}i∈Sc
n
,(3.16)
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where

‖RT
n,ν‖L1(S

c
n) = ‖Rn,ν‖L∞(Sc

n) ≤ 2(1 − δ0/3)ν.(3.17)

Estimates (3.16)–(3.17) enable us to determine the limiting joint distribution of
T (Sn) and X(T (Sn)). Given A ⊆ Sn, and z with |z| ≤ 1, define

ψi(z) = Ei

[
zT (Sn)1

(
X(T (Sn)) ∈ A

)]
, i ∈ Sc

n,

and ψ(z) = [{ψi(z)}i∈Sc
n
]T . Using the Markov property, we have

ψi(z) = zp(i,A) + z
∑
k∈Sc

n

p(i, k)ψk(z), i ∈ Sc
n,

or

ψ(z) = zpn + zPnψ(z), pn := [{p(i,A)}i∈Sc
n
]T .

Therefore, introducing the Sc
n × Sc

n identity matrix In and using (3.16)–(3.17),

ψ(z) = z(In − zPn)
−1pn = z

∑
ν≥0

zν(Pn)
νpn

= z

1 − zλn

fn(σ npn) + Rn(z);(3.18)

Rn(z) := z
∑
ν≥0

zνRn,νpn.

By (3.17) and

‖pn‖L∞(Sc
n) ≤ p(A) := sup

i∈N

p(i,A),

we have that each component of Rn(z) is analytic for |z| < (1 − δ0/3)−1, and

‖Rn(z)‖L∞(Sc
n) ≤ 2p(A)

1 − |z|(1 − δ0/3)
.

Therefore each ψi(z) initially defined in the unit disk admits a meromorphic
extension to the open disk of radius (1 − δ0/3)−1 > 1, with a single, simple pole
z = 1/λn in that disk.

As for the explicit term in (3.18),

[fn(σ npn)]i = C(A)fn(i), C(A) := ∑
j∈Sc

n

σn(j)p(j,A).

In particular, setting z = 1,

Pi{X(T (Sn)) ∈ A} = ψi(1) = C(A)fn(i)

1 − λn

+ O(p(A)).
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Since Pi{X(T (Sn)) ∈ Sn} = 1, we then obtain

1 − λn = C(Sn)fn(i)

1 + εi(n)
, εi(n) = O(p(Sn)).(3.19)

Therefore

Pi{X(T (Sn)) ∈ A} = C(A)

C(Sn)
+ O(p(Sn)), i ∈ Sc

n.

This uniform estimate and (2.23), with Un = An, easily imply that

C(A)

C(Sn)
= π(A)

π(Sn)
+ O(p(Sn)).(3.20)

Furthermore, given a positive integer τ ,

Pi{T (Sn) = τ,X(T (Sn)) ∈ A} = [zτ ]ψi(z) = 1

2πi

∮
L

ψi(z)

zτ+1 dz,

where L is a circular contour |z| = 1. By (3.18), the extended ψi(z) has a unique
singularity, a simple pole, in a ring between L and L1, which is the circular contour
of radius (1 − δ0/4)−1. Using (3.18) and the residue theorem, we obtain

1

2πi

∮
L

ψi(z)

zτ+1 dz = −C(An)fn(i)

2πi

∮
L1

1

(1 − zλn)zτ
dz + O

(
(1 − δ0/4)τp(A)

)

= C(An)fn(i)λ
τ−1
n + O

(
(1 − δ0/4)τp(A)

)
.

Thus, by (3.19) and (3.20),

Pi{T (Sn) = τ,X(T (Sn)) ∈ A}
= (1 − λn)λ

τ−1
n

π(A)

π(Sn)
(3.21)

+ O[(1 − λn)λ
τ−1
n p(Sn)] + O[(1 − δ0/4)τp(Sn)].

In particular, for A = Sn,

Pi{T (Sn) = τ } = (1 − λn)λ
τ−1
n

(3.22)
+ O[(1 − λn)λ

τ−1
n p(Sn)] + O[(1 − δ0/4)τp(Sn)].

Now we had proved already that, under the tightness only,

Ei[T k(Sn)] ∼ k!Ek
i [T (Sn)] ∼ k!π−k(Sn),

so that

Ei[(T (Sn))k] ∼ k!π−k(Sn).

According to (3.22), we also have

Ei[(T (Sn))k] = k!
(1 − λn)k

+ O
(
p(Sn)(1 − λn)

−k).
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Comparing the two formulas we see that 1−λn ∼ π(Sn). In fact, we can say more.
From (3.22) it follows that, uniformly for i ∈ Sc

n,

Ei[T (Sn)] = 1 + O(p(Sn))

1 − λn

.

Combining this with (2.10), we get

1 − λn = π(Sn)
(
1 + O(p(Sn))

)
.(3.23)

The rest is short. Let C ⊆ Sn × N, and Cτ = {k ∈ Sn : (k, τ ) ∈ C}. From (3.21) it
follows that, uniformly for i ∈ Sc

n and C,

Pi{(X(T (Sn)), T (Sn)) ∈ C} = ∑
τ∈N

(1 − λn)λ
τ−1
n

π(Cτ )

π(Sn)
+ O(p(Sn)).(3.24)

And, by (3.23),
∣∣∣∣
∑
τ∈N

(1 − λn)λ
τ−1
n

π(Cτ )

π(Sn)
− ∑

τ∈N

π(Sn)
(
1 − π(Sn)

)τ−1 π(Cτ )

π(Sn)

∣∣∣∣

≤ |(1 − λn) − π(Sn)|
∑
τ∈N

xτ−2[1 + τ(1 − x)]π(Cτ )

π(Sn)
,

[x between λn and 1 − π(Sn)]
≤ |(1 − λn) − π(Sn)|

[
2(1 − x)

∑
τ≥1

τxτ−1 + 2
∑
τ≥1

xτ−1
]

= |(1 − λn) − π(Sn)| · 4(1 − x)−1 = O(p(Sn)).

So (3.24) becomes

‖∂n,i − ∂n‖TV = O(p(Sn)), i ∈ Sc
n.

Suppose that i ∈ Sn. Then

Pi{(X(T (Sn)), T (Sn)) ∈ C}
(3.25)

= ∑
k∈Sc

n

p(i, k)Pk

{(
X(T (Sn)), T (Sn) + 1

) ∈ C
} + O(p(Sn)),

where, by (3.24),

Pk

{(
X(T (Sn)), T (Sn) + 1

) ∈ C
} = ∑

τ∈N

(1 − λn)λ
τ−1
n

π(Cτ+1)

π(Sn)
+ O(p(Sn))

= ∑
τ≥2

(1 − λn)λ
τ−2
n

π(Cτ )

π(Sn)
+ O(p(Sn))
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= ∑
τ≥2

(1 − λn)λ
τ−1
n

π(Cτ )

π(Sn)
+ O

(
1 − λn + p(Sn)

)

= ∑
τ∈N

(1 − λn)λ
τ−1
n

π(Cτ )

π(Sn)
+ O

(
1 − λn + p(Sn)

)

= ∑
τ∈N

(1 − λn)λ
τ−1
n

π(Cτ )

π(Sn)
+ O(p(Sn)).

Therefore, by (3.25), (3.24) holds for i ∈ Sn as well. This completes the proof of
Theorem 3.1. �

Let Tn,r be the time intervals between consecutive visits to Sn. So Tn,1 = T (Sn),
and, for r > 1,

Tn,r = min{t > Tn,r−1 :X(t) ∈ Sn} − Tn,r−1,

Tn,r−1 := ∑
k<r

Tn,k,

that is, Tn,r is the time of r th visit to Sn. Let Xn,r = X(Tn,r ), that is, Xn,r is a
state in Sn visited at time Tn,r . Introduce a random sequence {�r; tr}r≥1, where all
�1, t1, �2, t2, . . . are independent and, for each r ,

P {�r ∈ A} = π(A)

π(Sn)
, A ⊆ Sn,

while tr is distributed geometrically, with success probability π(Sn). Also, for two
random vectors, Y and Z, of a common dimension ν, let dTV(Y,Z) denote the
total variation distance between the distributions of Y and Z, that is,

dTV(Y;Z) = sup
B∈Bν

|P {Y ∈ B} − P(Z ∈ B)|.
Since |x| is convex,

0.5 sup
f : ‖f ‖L∞(Nν )≤1

|E[f (Y)] − E[f (Z)]|

≤ dTV(Y;Z)

≤ sup
f : ‖f ‖L∞(Nν )≤1

|E[f (Y)] − E[f (Z)]|.

Theorem 3.1 implies the following.

THEOREM 3.3. Uniformly for an initial state i ∈ N,

dTV({Xn,r;Tn,r}1≤r≤k; {�r; tr}1≤r≤k) = O(kp(Sn)).(3.26)

Thus, if k = k(n) is such that kp(Sn) → 0, the random sequence {Xn,r;Tn,r}1≤r≤k

is asymptotic, with respect to the total variation distance, to the
Bernoulli sequence {�r, tr}1≤r≤k .
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PROOF. We prove (3.26) by induction on k. For k = 1, it is the statement of
Theorem 3.1. Assume (3.26) holds for some k ≥ 1. Let f : Nk+1 ×N

k+1 → R have
‖f ‖L∞(Nk+1×Nk+1) ≤ 1. Denote

X = {Xn,r}1≤r≤k+1, X(k) = {Xn,r}1≤r≤k,

Y = {Tn,r − δ(i, r)}1≤r≤k+1, Y(k) = {Tn,r − δ(i, r)}1≤r≤k,(3.27)

x(k) = {xr}1≤r≤k, y(k) = {yr}1≤r≤k.

We write first

Ei[f (X;Y)]
(3.28)

= Ei

[
Ei

[
f

((
X(k),Xn,k+1

); (
Y(k), Tn,k+1 − 1

))|(X(k),Y(k))]].
By the strong Markov property,

Ei

[
f

((
X(k),Xn,k+1

); (
Y(k), Tn,k+1 − 1

))|(X(k),Y(k))]
(3.29)

= Exk

[
f

((
x(k),X

)
,
(
y(k), T − 1

))]|x(k)=X(k),y(k)=Y(k);
here X,T are the location and the time of the first hit of Sn for the chain starting
at xk ∈ Sn. Using (3.26) for k = 1, we have∣∣Exk

[
f

((
x(k),X

)
,
(
y(k), T − 1

))] − E
[
f

((
x(k), �

)
,
(
y(k), t

))]∣∣
(3.30)

= O(p(Sn)),

uniformly for j ∈ Sn. [Here (�, t) →D≡ (�r , tr ).] So, introducing f̃ : Nk × N
k → R

by

f̃
(
x(k),y(k)) = E

[
f

((
x(k), �

)
,
(
y(k), t

))]
,

and using (3.28)–(3.30), we have∣∣Ei[f (X,Y)] − Ei

[
f̃

(
X(k),Y(k))]∣∣ = O(p(Sn)).(3.31)

Besides, applying the inductive hypothesis to f̃ , we also have

Ei

[
f̃

(
X(k),Y(k))] − E[f̃ ({�r, tr}1≤r≤k)] = O(kp(Sn)).(3.32)

It follows from Fubini’s theorem and (3.31)–(3.32), that

Ei[f (X,Y)] − E[f ({�r, tr}1≤r≤k+1)] = Ei[f (X,Y)] − E[f̃ ({�r, tr}1≤r≤k)]
= O

(
(k + 1)p(Sn)

)
,

which proves the inductive step. So (3.26) holds for all k. �

Let us apply Theorem 3.3 to the extreme values for the t.e.m. chains. Given a
large N , let X(j) = X(N,j) denote the j th largest among X(1), . . . ,X(N); in par-
ticular, X(1) = max1≤t≤N X(t). From now on we will use a notation Sn = {n + 1,

n + 2, . . .}.
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COROLLARY 3.4. Uniformly for i = X(0),

Pi

{
X(μ) ≤ n

} = P {Poisson(Nπ(Sn)) < μ} + O
(
μ2/N + Np2(Sn)

)
.(3.33)

PROOF. X(μ) ≤ n iff during [1,N] the chain visited Sn at most μ − 1 times.
So, by Theorem 3.3,

Pi

{
X(μ) ≤ n

} = ∑
j<μ

(
N

j

)
πj (Sn)

(
1 − π(Sn)

)N−j + O(μp(Sn)).(3.34)

Here

(N)j
(
1 − π(Sn)

)−j = Nj (
1 + O(μ2/N) + O(μp(Sn))

)
and (

1 − π(Sn)
)N − e−Nπ(Sn) ≤ 2Ne−Nπ(Sn)(e−π(Sn) − (

1 − π(Sn)
))

≤ Nπ2(Sn)e
−Nπ(Sn).

So, as π(Sn) ≤ p(Sn), (3.34) becomes (3.33). �

Corollary (3.4) is a special case of the following result. Given a < b ≤ ∞, de-
note Sa,b = (a, b], that is, Sa,b = Sa \ Sb. Let Va,b = VN,a,b denote the number of
visits to Sa,b during [1,N], and λa,b = λN,a,b = Nπ(S(a, b)).

THEOREM 3.5. Let (a1, b1], . . . , (ak, bk] be disjoint. Uniformly for i = X(0),

Pi

{ ⋂
1≤�≤k

{Va�,b�
≤ μ�}

}
= ∏

1≤�≤k

P {Poisson(λa�,b�
) ≤ μ�}

(3.35)
+ O

(
μ2/N + Np2(Sa)

)
,

where μ = μ1 + · · · + μk , a = min� a�. Thus, if μ = o(N1/2) and Np2(Sa) =
o(1), the numbers of visits to nonoverlapping intervals (a�, b�] are asymptotically
independent Poissons with parameters Nπ(Sa�,b�

).

PROOF. Applying Theorem 3.3 to S := ⋃
1≤�≤k Sa�,b�

,

Pi

{ ⋂
1≤�≤k

{Va�,b�
≤ μ�}

}
= ∑

j1≤μ1;...;jk≤μk

(
N

j1, . . . , jk

) ∏
1≤�≤k

πj�(Sa�,b�
)

×
(

1 − ∑
1≤�≤k

π(Sa�,b�
)

)N−j

+ O(μp(Sa)),

where j = j1 + · · · + j�, and(
N

j1, . . . , jk

)
= N !

j1! · · · jk!(N − j)! .
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The rest runs parallel with the proof of Corollary 3.4. �

Analogously we obtain a relatively simple asymptotic formula for the joint dis-
tribution of X(1), . . . ,X(μ).

THEOREM 3.6. Let ∞ = n0 ≥ n1 ≥ n2 ≥ · · · ≥ nμ. Uniformly for i = X(0),

Pi

{ ⋂
1≤�≤μ

{
X(�) ≤ n�

}}

= ∑
ν1,...,νμ

∀r≤μ :
∑r

j=1 νj≤r−1

∏
1≤r≤μ

P {Poisson(λnr ,nr−1) = νr}(3.36)

+ O
(
μ2/N + Np2(Snμ)

)
.

More generally, let

B ⊆ {x = (x1, . . . , xμ) ∈ N :x1 ≥ · · · ≥ xμ}.
Given x, let y1(x) > · · · > ym(x) denote all the distinct values (range) of the se-
quence x1, . . . , xμ, and let aj = aj (x) > 0 be the multiplicity of yj = yj (x). So
m = m(x) ≤ μ, and a1 + · · · + am = μ. Then, denoting n(B) = infx∈B xμ and
setting y0 = ∞,

Pi

{(
X(1), . . . ,X(μ)) ∈ B

}

= ∑
x∈B

∏
1≤r≤m

e−Nπ([yr ,yr−1))
(Nπ(yr))

ar

ar ! + O
(
μ2/N + Np2(

Sn(B)

))
(3.37)

= ∑
x∈B

e−Nπ([ym,∞))(Nπ([ym,∞)))μ
∏

1≤r≤m

σar (yr)

ar !
+ O

(
μ2/N + Np2(

Sn(B)

))
,

where σ(y) = π(y)/π([ym,∞)), y ∈ [ym,∞).

In the next section we will describe two models of a random constrained compo-
sition, and show that each random composition is sharply approximated by a t.e.m.
chain. It will enable us to use Corollary 3.4 and Theorems 3.5, 3.6 for analysis of
the limiting distribution of the larger parts.

4. Two random constrained compositions and Markov chain approxima-
tions. We focus on two interesting cases of such compositions, the column-
convex-animals (cca) compositions and the Carlitz (C) compositions.
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4.1. Definitions and some basic facts. (a) A column-convex animal (cca) is a
sequence of contiguous vertical segments of unit squares in Z

2, ordered from left to
right, such that every two successive columns have a common boundary consisting
of at least one vertical edge of Z

2. If the total number of unit squares involved
is ν, then the lengths of the vertical segments form a composition of ν; we call it
a cca-composition. Let T (ν,μ) denote the total number of the cca-compositions
of ν with μ parts; then T (ν) := ∑

μ≥1 T (ν,μ) is the total number of the cca-
compositions of ν. Introduce f (w, z), the bivariate generating function (BGF) of
T (ν,μ),

f (w, z) = ∑
μ,ν≥1

T (ν,μ)wμzν.

Louchard [19] found that

f (w, z) = wz(z − 1)3

h(w, z)
,

(4.1)
h(w, z) := z4(w − 1) + z3(w2 − w + 4) − z2(w + 6) + z(w + 4) − 1.

Therefore f (z), the GF of T (ν), is

f (z) = f (1, z) = z(z − 1)3

h(1, z)
= (z − 1)3

4z3 − 7z2 + 5z − 1
,(4.2)

a formula discovered earlier by Klarner [15]. Privman and Forgacs [22] used (4.2),
and Darboux theorem, to show that

T (ν) = C

zν∗
(
1 + O(γ ν)

)
,(4.3)

where γ < 1, C = 0.18 . . . , and z∗ = 0.31 . . . is the smallest-modulus solution of
h(1, z) = 0.

We get a uniformly random cca-composition of ν, if we assume that each com-
position has the same probability, 1/T (ν). It was discovered in [19, 20] that the
distribution of the last (first) part is asymptotic to

π1(k) = zk∗(k + a),
(4.4)

a := 1 − z∗
z∗

− 1

1 − z∗
= 0.75 . . . ,

which is directly seen as a probability distribution. Besides, the joint distribution
of two consecutive parts Yt and Yt+1, with both t and M − t of order �(ν), was
shown to be asymptotic to that of two consecutive states of an ergodic Markov
chain on N, in a stationary regime, with transition probabilities

p(i, k) = zk∗(i + k − 1)
k + a

i + a
,(4.5)
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and a stationary distribution

π(k) = A−1zk∗(k + a)2,
(4.6)

A := ∑
k≥1

zk∗(k + a)2 = z2∗
(1 − z∗)3 + 1 − z∗

z∗
.

That
∑

k≥1 p(i, k) = 1 follows from another formula for a,

a = 2z2∗
(1 − 2z∗)(1 − z∗)

.

(The given formulation is slightly different from, but equivalent to that in [19,
20].) One way to derive (4.4) is to use (4.3) and a formula for fk(z), the generating
function of the cca-compositions with the first (last) part equal k,

fk(z) = zk + zkf (z)

[
k + z3 − z2 + z

(1 − z)3

]
,(4.7)

which can be read out of [19]. Comparing the first line in (4.4) and (4.7) we must
also have yet another formula for a, namely,

a = z3∗ − z2∗ + z∗
(1 − z∗)3 ,(4.8)

which is indeed the case.
(b) A Carlitz (C) composition of ν is defined as a composition such that every

two consecutive parts are distinct from each other. The counterparts of the cited
results for the cca-compositions are as follows. Carlitz [8] proved that

f (w, z) = −1 + 1

h(w, z)
,

(4.9)

h(w, z) := 1 − ∑
j≥1

(−1)j+1 wjzj

1 − zj
;

for |w| ≤ 1, h, as a function of z is analytic for |z| < 1, and for |w| ≥ 1, h is
analytic for |z| < 1/|w|. Louchard and Prodinger [21] found a rather more tractable
expression for h, namely,

h(w, z) = 1 − ∑
j≥1

wzj

1 + wzj
.(4.10)

(4.9) and (4.10) were used in [20] to show that

T (ν) = C

zν∗
(
1 + O(γ ν)

)
,(4.11)

where γ < 1, C = 0.456 . . . , and z∗ = 0.57 . . . is the smallest-modulus solution of
h(1, z) = 0.
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We get a uniformly random C-composition of ν, if we assume that each C-
composition has the same probability, 1/T (ν). In a striking analogy with the ran-
dom cca-composition, the two consecutive parts Yt and Yt+1, deep inside the com-
position, are also jointly asymptotic to the two consecutive states of an ergodic
Markov chain, with transition probabilities

p(i, k) =
⎧⎨
⎩ zk∗

1 + zi∗
1 + zk∗

, i 
= k,

0, i = k

(4.12)

and a stationary distribution

π(k) = A−1 zk∗
(1 + zk∗)2 , A := ∑

k≥1

zk∗
(1 + zk∗)2 .(4.13)

And the limiting distribution of Y1 is

π1(k) = zk∗
1 + zk∗

,(4.14)

which follows from (4.11) and a counterpart of (4.7),

fk(z) = zk+1

1 + zk+1 + f (z)
zk

1 + zk
.(4.15)

[That (4.12) and (4.14) are indeed probability distributions follows from the defi-
nition of z∗ as a root of h(1, z) = 0 and (4.10).]

For each of the compositions, an equation h(w, z) = 0 [for the attendant func-
tion h(w, z)] determines a root z(w), well defined for w sufficiently close to 1,
such that z(1) = z∗, z(w) is infinitely differentiable, and z′(1) < 0. The number
of parts M for each of the random compositions was shown, in [19] and [21],
respectively, to be Gaussian in the limit ν → ∞, with mean αν and variance βν,
where

α = −z′(1)

z(1)
= −z′(1)

z∗
, β = α2 + α − z′′(1)

z∗
.(4.16)

In particular,

α =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 12z2∗ − 14z∗ + 5

z4∗ + z3∗ − z2∗ + z∗
= 0.45 . . . , (for cca),

−
∑

j≥1 jz
j−1∗ /(1 + z

j∗)2

∑
j≥1 z

j∗/(1 + z
j∗)2

= 0.35 . . . , (for C);
(4.17)

needless to say, in each case z∗ is the root of the corresponding equation h(1, z) =
0.

In the Appendix we will prove the following large deviation result.
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LEMMA 4.1. For each of the compositions, there exists an absolute constant
c > 0 such that

P {|M − αν| ≥ s} ≤ cν exp(−s2/3βν),

provided that s = o(ν). Thus

P {|M − αν| ≤ ν1/2 lnν} ≥ 1 − ν−K ∀K > 0.(4.18)

NOTE. Borrowing a term from Knuth, Motwani and Pittel [17], the event on
the left of (4.18) happens quite surely (q.s.).

4.2. Approximating the random compositions by the Markov chains. The re-
sults cited above strongly suggest, though not actually prove, that the random cca-
composition and the random C-composition considered as random processes are
each asymptotic to its own Markov chain, defined in (4.4)–(4.5) and (4.11)–(4.13),
respectively.

The following theorem confirms this natural conjecture.

THEOREM 4.2. Let Y = {Yt }t≥1 be either the random cca-composition, or
the random C-composition of ν. Let Z = {Z(t)}t≥1 be the corresponding Markov
chain with the transition probabilities p(i, k), and Z(1) having the distribution
{π1(i)}i≥1. Introduce

M̂ = max{1 ≤ m < M :Y1 + · · · + Ym ≤ ν − ln2 ν},
(4.19)

M̂ = max{m ≥ 1 :Z(1) + · · · + Z(m) ≤ ν − ln2 ν};
in particular, M̂ ∈ (M − ln2 ν − 1, M). Let ∂̂ and d̂ denote the probability distri-
bution of (M̂, (Y1, . . . , YM̂)) and (M̂, (Z(1), . . . ,Z(M̂)), respectively. For each
chain,

‖∂̂ − d̂‖TV = O(ν−K) ∀K > 0.(4.20)

So, the random composition of ν, read from left to right, is closely approximated
by the corresponding Markov chain, as long as the accumulated sum of parts stays
below ν − ln2 ν. (A restriction of this sort is unavoidable: like the first part, the
last part of the random composition has the distribution π1, which differs from
the stationary distribution π .) Now, we will see that, with high probability, the
extreme-valued parts are in this “bulk” of the composition, implying that they are
well approximated by the extreme-valued states of the M̂-long segment of the
corresponding Markov chain. It is easy to verify that

sup
i

∑
k>n

p(i, k) =
{

O(zn∗n2), cca-chain,
O(zn∗), C-chain,

(4.21)
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where z∗ = 0.31 . . . for the cca-chain and z∗ = 0.57 . . . for the C-chain. That is,
the chains meet the tightness condition (2.1). And the exponential mixing property
in the form of (3.3) is easily verified as well. So we are able to use Corollary 3.4
and Theorem 3.6, say, for derivation of the limiting distribution of those extreme
values, and then the last theorem for a quick proof of the corresponding results
regarding extreme-valued parts of each of the random compositions.

Turning the tables, we can also use Theorem 4.2 and Lemma 4.1 to determine
the very likely bounds of M̂ with sufficient accuracy. Since M̂ ∈ (M − ln2 ν −
1, M), Lemma 4.1 implies that q.s.

|M̂ − αν| ≤ 2ν1/2 lnν.

So, applying Theorem 4.2, we immediately see that

|M̂ − αν| ≤ 2ν1/2 lnν(4.22)

q.s. as well. (!)

PROOF. The key element is the following claim.

LEMMA 4.3. Let Y be either the random cca-composition or the random C-
composition of ν. Let k ≥ 1, i = (i1, . . . , ik) ∈ N

k , where i1 + · · · + ik < ν. Denote
Pν(i) = P {Y1 = i1, . . . , Yk = ik} and P(i) = P {Z(1) = i1, . . . ,Z(k) = ik}. Then,
uniformly for k and i,

Pν(i) = P(i) exp
(
O

(
kγ ν−|i|)), |i| = i1 + · · · + ik,(4.23)

where γ comes from either (4.3) or (4.10).

PROOF. Let Y be the random cca-composition of ν. We will prove (4.23) by
induction on k.

For k = 1,

Pν(i1) = [zν]fi1(z)

[zν]f (z)
,(4.24)

where f (z) and fi1(z) are given by (4.2) and (4.7), respectively. Here, by (4.3),

[zν]f (z) = T (ν) = C

zν∗
exp(O(γ ν)).(4.25)

Further, by (4.7),

[zν]fi1(z) = δν,i1 + [zν−i1]f (z)

[
i1 + z3 − z2 + z

(1 − z)3

]

= i1T (ν − i1) + [zν−i1]f (z)
z3 − z2 + z

(1 − z)3(4.26)

= i1
C

z
ν−i1∗

exp(O(γ ν−i1)) + C

z
ν−i1∗

z3∗ − z2∗ + z∗
(1 − z∗)3 exp(O(γ ν−i1)).
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[z∗ is the smallest modulus pole of f (z)(z3 − z2 + z)(1 − z)−3, as well.] It follows
from (4.24)–(4.26) and (4.8) that

Pν(i1) = zi1∗
[
i1 + z3∗ − z2∗ + z∗

(1 − z∗)3

]
exp(O(γ ν−i1))

= zi1∗ (i1 + a) exp(O(γ ν−i1)) = P(i1) exp(O(γ ν−i1)),

which is (4.23) for k = 1.
Suppose that (4.23) holds for some k ≥ 1. Let i = (i1, . . . , ik+1) be such that

|i| < ν. Let i′ = (i2, . . . , ik+1); then |i′| < ν − i1. Let T (i, ν) and T (i′, ν − i1)

denote the total number of the cca of area ν (ν − i1, resp.) with the first k + 1
parts i1, . . . , ik+1 (the first k parts i2, . . . , ik+1, resp.). By the definition of the cca-
composition,

T (i, ν) = (i1 + i2 − 1)T (i′, ν − i1).

Therefore,

Pν(i) = T (i, ν)

T (ν)

= [zν]fi1(z)

T (ν)
· T (ν − i1)

[zν]fi1(z)
· (i1 + i2 − 1)T (i′, ν − i1)

T (ν − i1)

= Pν(i1)
exp(O(γ ν−i1))

i1 + a
· (i1 + i2 − 1)Pν−i1(i

′)

= P(i1)
exp(O(γ ν−i1))

i1 + a
· (i1 + i2 − 1)P (i′) exp

(
O

(
kγ ν−i1−|i′|))

= P(i1)
i1 + i2 − 1

i1 + a
P (i′) exp

(
O

(
(k + 1)γ ν−|i|)),

and we observe that

i1 + i2 − 1

i1 + a
P (i′) = i1 + i2 − 1

i1 + a
P (i2)

k∏
r=2

p(ir , ir+1)

= p(i1, i2)

k∏
r=2

p(ir , ir+1) =
k∏

r=1

p(ir , ir+1).

Hence

Pν(i) = P(i1)

k∏
r=1

p(ir , ir+1) exp
(
O

(
(k + 1)γ ν−|i|))

= P(i) exp
(
O

(
(k + 1)γ ν−|i|)),
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which completes the inductive proof of (4.23) for the random cca-composition.
The proof for the random C-composition is similar, and we omit it. �

Lemma 4.3 implies the bound (4.20) of Theorem 4.2 without much difficulty.
Consider, for instance, the random cca-composition of ν. Let m, i = (i1, . . . , im)

be given. Clearly

P {M̂ ≥ m,Y1 = i1, . . . , Ym = im}
= P {M̂ ≥ m,Z(1) = i1, . . . ,Z(m) = im} = 0,

unless |i| ≤ ν − ln2 ν. In the latter case m ≤ ν − ln2 ν, and, by Lemma 4.3,

P {M̂ ≥ m,Y1 = i1, . . . , Ym = im}
= P(i) exp

(
O

(
mγ ν−|i|))

= P {M̂ ≥ m,Z(1) = i1, . . . ,Z(m) = im} exp(O(νγ ln2 ν)),

uniformly for m and i in question. Consequently, uniformly for all m and B ⊆ N
m,

P {M̂ ≥ m, (Y1, . . . , Ym) ∈ B}
= P {M̂ ≥ m, (Z(1), . . . ,Z(m)) ∈ B} exp(O(γ 0.5 ln2 ν)),

whence

P {M̂ = m, (Y1, . . . , Ym) ∈ B}
(4.27)

= P {M̂ = m, (Z(1), . . . ,Z(m)) ∈ B} + O(γ 0.5 ln2 ν).

Let D ⊆ N
ν+1 be given. For z ∈ N

k , k ≤ ν + 1, we write z ∈ D if z is a projection
of a point in D on the first k coordinates. Noticing that M̂ ≤ ν and M̂ ≤ ν, we
obtain from (4.26): uniformly for all D ∈ N

ν+1,

P {(M̂, (Y1, . . . , YM̂)) ∈ D}
= P {(M̂, (Z(1), . . . ,Z(M̂))) ∈ D} + O(γ 0.5 ln2 ν).

This completes the proof of Theorem 4.2. �

4.3. Limiting distributions of the extreme parts of the random compositions.
By (4.21), for each of the two chains, q.s.

N1 + 1 ≤ M̂ ≤ 1 + N2, N1,2 = �αν ± 2ν1/2 lnν�.(4.28)

So q.s. the extreme values of {Z(t)}0<t≤M̂
are sandwiched between those of

{Z(t)}0<t≤N1+1 and {Z(t)}0<t≤N2+1. Picking a generic N ∈ [N1,N2], introduce
{X(t)}0≤t≤N = {Z(t)}0<t≤N+1. Here X(0) has distribution π1(·).

Let X(μ) be the μth largest among X(t), t ∈ [1,N], for X(0) = i, i ∈ N. By
Corollary 3.4,

Pi

{
X(μ) ≤ n

} = P {Poisson(Nπ(Sn)) < μ} + O
(
μ2/N + Np2(Sn)

)
,(4.29)
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where

π(Sn) = ∑
k>n

π(k), p(Sn) = sup
i

∑
k>n

p(i, k).

Here p(Sn) = O(n2zn∗) for the cca-chain and p(Sn) = O(zn∗) for the C-chain, see
(4.21). (Again, z∗ = 0.31 . . . for the cca-chain and z∗ = 0.57 . . . for the C-chain.)
Turn to π(Sn). For the cca chain by (4.6),

π(Sn) = n2zn∗B
(
1 + O(n−1)

)
, B := z2∗(1 − z∗)2

z3∗ + (1 − z∗)4 .(4.30)

For the C-chain, by (4.13),

π(Sn) = Bzn∗
(
1 + O(zn∗)

)
, B := A−1 z∗

1 − z∗
.(4.31)

LEMMA 4.4 (cca-chain). Suppose that

n = ln[λ−1BN(lnN/ ln z∗)2]
ln(1/z∗)

∈ N,(4.32)

where λ = o(lnN). If μ = o(lnN), then, uniformly for i ∈ N,

Pi

{
X(μ) ≤ n

} = P {Poisson(λ) < μ} + O[(λ + μ)/ lnN ].(4.33)

Equivalently, define WN,μ by

X(μ) = ln[W−1
N,μBN(lnN/ ln z∗)2]

ln(1/z∗)
;(4.34)

then, for s = o(lnN) such that

ln[s−1BN(lnN/ ln z∗)2]
ln(1/z∗)

∈ N,(4.35)

we have

Pi{WN,μ ≥ s} = P {Wμ ≥ s} + O[(s + μ)/ lnN ];(4.36)

here Wμ = V1 + · · · + Vμ, and V1, . . . , Vμ are independent exponentials with unit
mean.

This lemma implies the following cruder result. [We use a symbol Op(1) to
denote a random variable bounded in probability as N → ∞.]

COROLLARY 4.5. If μ = o(lnN), then, uniformly for i ∈ N,

X(μ) = ln(μ−1N ln2 N)

ln(1/z∗)
+ Op(1).(4.37)
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Here are the counterparts for the chain associated with the random C-
composition.

LEMMA 4.6 (C-chain). Suppose that

n = ln(λ−1BN)

ln(1/z∗)
∈ N,(4.38)

where λ = o(N1/2). If μ = o(N1/2), then, uniformly for i ∈ N,

Pi

{
X(μ) ≤ n

} = P {Poisson(λ) < μ} + O[(λ2 + μ2)/N].(4.39)

Equivalently, define WN,μ by

X(μ) = ln(W−1
N,μBN)

ln(1/z∗)
;(4.40)

then, for s = o(N1/2) such that

ln(s−1BN)

ln(1/z∗)
∈ N,(4.41)

we have

Pi{WN,μ ≥ s} = P {Wμ ≥ s} + O[(s2 + μ2)/N].

COROLLARY 4.7 (C-chain). If μ = o(N1/2), then, uniformly for i ∈ N,

X(μ) = ln(μ−1N)

ln(1/z∗)
+ Op(1).(4.42)

PROOF OF LEMMA 4.4 AND COROLLARY 4.5. (a) By (4.30), (4.32) and
(4.21),

Nπ(Sn) = λ + O(λ/ lnN), Np2(Sn) = O[N−1(Nπ(Sn))
2] = O(λ2/N).

Then, for j ≤ μ,

(Nπ(Sn))
j = λj (

1 + O(μ/ lnN)
)
.

So, by Corollary 3.4, (3.33) and (4.21), (4.30),

Pi

{
X(μ) ≤ n

} = ∑
j<μ

e−Nπ(Sn) (Nπ(Sn))
j

j ! + O
(
(μ2 + λ2)/N

)

= ∑
j<μ

e−λ λj

j ! + O
(
(λ + μ)/ lnN

)
.
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(b) Given s > 0,
⌊

ln[s−1BN(lnn/ ln z∗)2]
ln(1/z∗)

⌋
= ln[s−1

1 BN(lnn/ ln z∗)2]
ln(1/z∗)

,

where s1 ∈ [s, sz−1∗ ). Using the definition of WN,μ in (4.34) and the asymptotic
formula (4.36) we obtain then, for s = o(lnN),

P {z∗Wμ ≥ s} + O[(s + μ)/ lnN ]
≤ Pi{WN,μ ≥ s}(4.43)

≤ P {Wμ ≥ s} + O[(s + μ)/ lnN ].
For μ fixed, (4.43) implies that

lim
A→∞ lim inf

N→∞ Pi{WN,μ ∈ [A−1,A]} = 1,

that is, in probability, WN,μ is bounded away from zero and infinity, whence
lnWN,μ = Op(1). Suppose μ → ∞. Then (Wμ − μ)/μ1/2 is asymptotically nor-
mal, with zero mean and unit variance. Consequently,

lnWμ = lnμ + Op(1).(4.44)

Let y = y(N) → ∞ so slow that s = μey = o(lnN) as well. Using the right-hand
side of (4.43), we obtain

Pi{lnWN,μ ≥ lnμ + y}
= Pi{WN,μ ≥ μey}

(4.45)
= P {Wμ ≥ μey} + O

(
(s + μ)/ lnN

)
= P {lnWμ ≥ lnμ + y} + O

(
(s + μ)/ lnN

) = o(1).

Analogously, the left-hand side of (4.43) delivers

lim
N→∞Pi{lnWN,μ ≥ lnμ − y} = 0.(4.46)

The relations (4.44)–(4.46), together with (4.34) prove (4.37). �

The proof of Lemma 4.6 and Corollary 4.7 is similar and we omit it.
Recall that N ∈ [N1,N2], N1,2 = �αν ± 2ν1/2 lnν�. Introduce N0 = �αν�. It is

easy to check that the proof of Lemma 4.4 and Corollary 4.5 goes through with
very minor changes if, instead of (4.32), we define an integer n by

n = ln[λ−1BN0(lnN0/ ln z∗)2]
ln(1/z∗)

.

[The key is that

N(lnN)2 = (
1 + O(N

−1/2
0 lnN0)

)
N0(lnN0)

2,
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uniformly for N in question.] The same change can be made in the formulation
of Lemma 4.6 and Corollary 4.7 for the C-chain. This observation coupled with
the fact that X̂

(μ)
+ , the μth largest value of {X(t)}0<t<M̂

, is sandwiched between
those for {X(t)}0<t≤N1 and {X(t)}0<t≤N2 , show that in Lemma 4.4, Corollary 4.5,

Lemma 4.6 and Corollary 4.7 we can put X̂
(μ)
+ instead of X(μ). Below, by relations

(4.33) and (4.39) we will mean their modifications, that is, with X̂
(μ)
+ on their LHS.

Turn to X̂(μ), the μth largest value among X(0),X(1), . . . ,X(M̂). X(0) has the
distribution π1 given by either by (4.4) or by (4.14). Hence

P {X(0) ≥ n} =
{

O(nzn∗), for cca,
O(zn∗), for C.

(4.47)

Now

X̂
(μ)
+ ≤ X̂(μ) ≤ X(0) + X̂

(μ)
+ ;

so, for the cca case, we use n defined by (4.32) and add an extra error term coming
from (4.47), that is,

nzn∗ = O
(
zln(ν ln2 ν)/(λ ln(1/z∗))∗ lnν

) = O(ν−1),

to the RHS of (4.33), to obtain the corresponding claim for X̂(μ). Likewise, in the
C-case we need to add an error term O(ν−1/2) to the RHS of (4.39). Again, we
will refer to these new relations as (4.33) and (4.39).

But then, according to Theorem 4.2, the μth largest among the parts Y1, . . . , YM̂
of the corresponding random composition can replace X̂(μ) on the LHS of (4.33)
and (4.39), respectively. These are our newest, (4.33) and (4.39).

Finally, if we include the rightmost parts YM̂+1, YM̂+2, . . . , it will not substan-
tially affect the the limiting behavior of the μth largest overall part either. Here
is why. The number of these parts is m := �ln2 ν�, at most. The total number of
parts is q.s. of order ν � m, which means the last m parts are q.s. well defined.
Those parts, read from right to left, and the first m parts, read from left to right, are
equidistributed. By Theorem 4.2, these m first parts are within the total variation
distance O(ν−K) (∀K > 0), from Z(1), . . . ,Z(m). We know that Z(1) has the
distribution π1. Since

sup
i∈N,t≥1

∑
k≥n

pt (i, k) ≤ sup
i∈N

∑
k≥n

p(i, k), t ≥ 1,

we see that

P {Z(t) ≥ n} ≤ sup
i∈N

∑
k≥n

p(i, k), t ≥ 2.

In view of (4.4) and (4.21), we obtain then, for the cca-chain,

P

{
max

1≤t≤m
Z(t) ≥ ln[λ−1BN0(lnN0/ ln z∗)2]

ln(1/z∗)

}
= O

(
(ln4 ν)zln(ν ln2 ν)/(λ ln(1/z∗))∗

)

= O(ν−1 ln3 ν).
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For the C-chain, the analogous probability is of order ν−1/2 ln2 ν. Therefore, by
adding the error terms O(ν−1 ln3 ν) and O(ν−1/2 ln2 ν) to the RHS of (4.33) and
(4.39) (where N = N0 = �αν�, of course), we obtain the limiting distributions
of the μth largest part of both random compositions, together with explicit er-
ror terms. [For the cca-composition, the order of the total error term remains un-
changed, that is, O((λ + μ)/ lnν).]

In summary, we have proved the following.

THEOREM 4.8. For a random composition Y of ν, let Y (μ) denote the μth
largest part. Let N0 = �αν�, α being defined in (4.17). Let Wμ be the sum of μ

independent exponentials with unit mean.
(i) For the random cca-composition, define Wν,μ by

Y (μ) = ln[W−1
ν,μBN0(lnN0/ ln z∗)2]

ln(1/z∗)
,

B being defined in (4.30). Then, for s = o(lnν) such that

ln[s−1BN0(lnN0/ ln z∗)2]
ln(1/z∗)

∈ N,

we have

P {Wν,μ ≥ s} = P {Wμ ≥ s} + O[(s + μ)/ lnν].
(ii) For the random C-composition, define Wν,μ by

Y (μ) = ln[W−1
ν,μBN0]

ln(1/z∗)
,

B being defined in (4.31). Then, for s = o(ν1/2) such that

ln(s−1BN0)

ln(1/z∗)
∈ N,

we have

P {Wν,μ ≥ s} = P {Wμ ≥ s} + O
(
ν−1/2 ln2 ν + (s2 + μ2)/ν

)
.

Here is a cruder estimate implied by Theorem 4.8.

COROLLARY 4.9. (i) For the random cca-composition,

Y (μ) = ln(μ−1ν ln2 ν)

ln(1/z∗)
+ Op(1) [μ = o(lnν)].

(ii) For the random C-composition,

Y (μ) = ln(μ−1ν)

ln(1/z∗)
+ Op(1) [μ = o(ν1/2)].
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(iii) So, for both cases,

Y (1) − Y (μ) = lnμ

ln(1/z∗)
+ Op(1),

if μ = o(lnν) and μ = o(ν1/2), respectively.

APPENDIX

PROOF OF LEMMA 4.1. Consider the case of the random C-composition. The
BGF of T (μ, ν), the number of C-compositions of ν with μ parts and ν and μ

marked by z and w, respectively, is given by (4.9)–(4.10)

f (w, z) = −1 + 1

h(w, z)
, h(w, z) = 1 − ∑

j≥1

wzj

1 + wzj
.

This bivariate series converges for |z| < 1 and |w| < 1/|z|. So, choosing r1 < 1,
and r2 < 1/r1, we have

P {M = μ} = [zνwμ]f (w, z)

T (ν)

= 1

T (ν)

1

(2πi)2

∮
z∈C1

∮
w∈C2

f (w, z)

zν+1wμ+1 dw dz,

where C1, C2 are circles of radius r1 and r2, respectively. In essence, it is this
formula that, via Bender’s method [5], enabled Louchard [19] and Louchard
and Prodinger [21] to establish a sharp local limit theorem for M for the cca-
composition and the C-composition. Since our goal is to bound the probability of
large deviations, we use a considerably less analytical argument, which is a bivari-
ate extension of Chernoff’s method.

As a preparation, we need to define a differentiable extension of z∗ = 0.57 . . . ,

the smallest-module root of h(1, z) = 0. To this end, we compute

hz(1, z) = − ∑
j≥1

jzj−1

(1 + zj )2 , hw(1, z) = − ∑
j≥1

zj

(1 + zj )2 .(A.1)

So hz(1, z) < 0, hw(1, z) < 0 for z ∈ (0,1). By continuity of hz(z,w), hw(z,w),
we obtain: there exists ε ∈ (0,1 − z∗) such that (1) (z∗ + ε)(1 + ε) < 1, and (2)

hz(z,w) < 0, hw(z,w) < 0(A.2)

∀(z,w) ∈ R
2+ : z ≤ z + ε, |w − 1| ≤ ε.

Consequently, for |w − 1| ≤ ε, the equation h(z,w) = 0 has a unique root z =
z(w), of multiplicity 1, in [0, z∗ +ε], which is infinitely differentiable as a function
of w, and z(1) = z∗. In particular,

z′(w) = −hw(z(w),w)

hz(z(w),w)
< 0,
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that is, z(w) is strictly decreasing. So z(w) > z∗ for w < 1 and z(w) < z∗ for
w > 1.

Now, the series for the bivariate generating function f (w, z) converges for |w−
1| ≤ ε and |z| < z(w). Since all the coefficients in the series are nonnegative,

∑
�≥m

[zνw�]f (w, z) ≤ f (w, z)

zνwm
, w ∈ [1,1 + ε0], z ∈ (0, z(w)).

Likewise,

∑
�≤m

[zνw�]f (w, z) ≤ f (w, z)

zνwm
, w ∈ [1 − ε0,1], z ∈ (0, z(w)).

Here, by the definition of f (w, z) and z(w),

f (w, z) ≤ c

z(w) − z
, z < z(w).

Therefore, for each m,

P(M ≥ m) ≤ c
z−nw−m(z(w) − z)−1

T (ν)
, w ∈ [1,1 + ε0], z ∈ (0, z(w)),(A.3)

and

P(M ≤ m) ≤ c
z−nw−m(z(w) − z)−1

T (ν)
, w ∈ [1 − ε0,1], z ∈ (0, z(w)).(A.4)

Consider (A.3). To get the most out of this upper bound we need to determine z

and w that minimize the RHS, that is,

H(m)(w, z) := −ν ln z − m lnw − ln
(
z(w) − z

)
.

Let us find a stationary point (w̄, z̄) of H(m)(w, z) in the region w ∈ [1,1 + ε0],
z ∈ (0, z(w)). From the equations

H(m)
z = −ν

z
+ 1

z(w) − z
= 0,

H (m)
w = −m

w
− z′(w)

z(w) − z
= 0,

we obtain that

z̄ = ν

ν + 1
z(w̄),

where w̄ = w̄(m) must be a root of

wz′(w)

z(w)
= − m

ν + 1
.(A.5)
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Equation (A.5) has a solution w = 1, if

m = m̄ := (ν + 1)μ, μ := −z′(1)

z(1)
.

Furthermore, in [19] it was shown that

d

dw

wz′(w)

z(w)

∣∣∣∣
w=1

= z′′(1)

z(1)
− μ − μ2

is negative; this is, −β , β defined in (4.16). Since

d

dm

(
− m

ν + 1

)
= − 1

ν + 1
< 0

as well, for

0 ≤ m − m̄ = o(ν),

equation (A.5) defines a strictly increasing w̄(m); so w̄(m) > 1 for m > m̄. More
precisely,

w̄(m) = 1 + β

ν + 1
(m − m̄) + O

(
(m − m̄)2/ν2)

= 1 + β

ν
(m − μν) + O

(
(m − μν)2/ν2)

.

Now

H(m̄)(w̄(m̄), z̄(w̄(m̄))) = −ν ln
(

ν

ν + 1
z∗

)
− ln

(
z∗

ν + 1

)

= −ν ln z∗ + lnν + O(1).

Also
d

dm
H(m)(w̄(m), z̄(m))

= H(m)
m (w̄(m), z̄(m)) + H(m)

w (w̄(m), z̄(m)) + H(m)
z (w̄(m), z̄(m))

= H(m)
m (w̄(m), z̄(m)) = − ln w̄(m),

which implies that

d

dm
H(m)(w̄(m), z̄(m))

∣∣∣∣
m=m̄

= − ln w̄(m̄) = 0,

and also that

d2

dm2 H(m)(w̄(m), z̄(m))

∣∣∣∣
m=m̄

= −w̄′(m)

w̄(m)

∣∣∣∣
m=m̄

= −w̄′(m̄)

= − β

ν + 1
.
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Therefore, for 0 ≤ m − m̄ = o(ν),

H(m)(w̄(m), z̄(m)) = −ν ln z∗ + lnν − (
1 + o(1)

) β

2(ν + 1)
(m − m̄)2 + O(1)

≤ −ν ln z∗ + lnν − β

3ν
(m − μν)2 + O(1).

Using this bound in (A.3) for w = w̄(m), z = z̄(w̄(m)), and recalling that T (ν) is
of order z−ν∗ , we obtain

P(M ≥ m) ≤ cν exp
(
− β

3ν
(m − μν)2

)
, 0 < m − μν = o(ν).

Likewise,

P(M ≤ m) ≤ cν exp
(
− β

3ν
(m − μν)2

)
, 0 < μν − m = o(ν).

The case of the random cca-composition is quite analogous, so we omit the
proof. �

Acknowledgments. It is my genuine pleasure to thank Guy Louchard for in-
troducing me to the random compositions and to his conjecture on hitting times
for Markov chains with uniformly exponential tails of the row distributions. His
strong belief in the conjecture, kind encouragement and insightful feedback helped
to sustain my effort during months of work on this study. I thank a referee for a
painstaking effort to evaluate the paper and for a series of penetrating critical com-
ments. I am grateful to an Associate Editor and to the Editor for their thoughtful
consideration.

REFERENCES

[1] ALDOUS, D. J. (1982). Markov chains with almost exponential hitting times. Stochastic Pro-
cess. Appl. 13 305–310. MR0671039

[2] ALDOUS, D. J. and BROWN, M. (1992). Inequalities for rare events in time-reversible Markov
chains. I. In Stochastic Inequalities (Seattle, WA, 1991). Institute of Mathematical Statis-
tics Lecture Notes—Monograph Series 22 1–16. IMS, Hayward, CA. MR1228050

[3] ALDOUS, D. J. and BROWN, M. (1993). Inequalities for rare events in time-reversible Markov
chains. II. Stochastic Process. Appl. 44 15–25. MR1198660

[4] ANDREWS, G. E. (1976). The Theory of Partitions. Encyclopedia of Mathematics and Its Ap-
plications 2. Addison-Wesley, Reading, MA. MR0557013

[5] BENDER, E. A. (1973). Central and local limit theorems applied to asymptotic enumeration. J.
Combinatorial Theory Ser. A 15 91–111. MR0375433

[6] BENDER, E. A. and CANFIELD, E. R. (2005). Locally restricted compositions. I. Restricted
adjacent differences. Electron. J. Combin. 12 1–27 (electronic). MR2180794

[7] BREIMAN, L. (1968). Probability. Addison-Wesley, Reading, MA. MR0229267
[8] CARLITZ, L. (1976). Restricted compositions. Fibonacci Quart. 14 254–264. MR0414479
[9] DERMAN, C. (1954). A solution to a set of fundamental equations in Markov chains. Proc.

Amer. Math. Soc. 5 332–334. MR0060757

http://www.ams.org/mathscinet-getitem?mr=0671039
http://www.ams.org/mathscinet-getitem?mr=1228050
http://www.ams.org/mathscinet-getitem?mr=1198660
http://www.ams.org/mathscinet-getitem?mr=0557013
http://www.ams.org/mathscinet-getitem?mr=0375433
http://www.ams.org/mathscinet-getitem?mr=2180794
http://www.ams.org/mathscinet-getitem?mr=0229267
http://www.ams.org/mathscinet-getitem?mr=0414479
http://www.ams.org/mathscinet-getitem?mr=0060757


1576 B. PITTEL

[10] DURRETT, R. (2005). Probability: Theory and Examples, 3rd ed. Brooks/Cole, Thomson
Learning, Belmont, CA.

[11] HITCZENKO, P. and LOUCHARD, G. (2001). Distinctness of compositions of an integer:
A probabilistic analysis. Random Structures Algorithms 19 407–437. MR1871561

[12] HITCZENKO, P. and SAVAGE, C. D. (2004). On the multiplicity of parts in a random compo-
sition of a large integer. SIAM J. Discrete Math. 18 418–435 (electronic). MR2112515

[13] KAC, M. (1947). On the notion of recurrence in discrete stochastic processes. Bull. Amer. Math.
Soc. 53 1002–1010. MR0022323

[14] KEILSON, J. (1979). Markov Chain Models—Rarity and Exponentiality. Applied Mathematical
Sciences 28. Springer, New York. MR0528293

[15] KLARNER, D. A. (1965). Some results concerning polyominoes. Fibonacci Quart. 3 9–20.
MR0186569

[16] KNOPFMACHER, A. and PRODINGER, H. (1998). On Carlitz compositions. European J. Com-
bin. 19 579–589. MR1637748

[17] KNUTH, D. E., MOTWANI, R. and PITTEL, B. (1990). Stable husbands. Random Structures
Algorithms 1 1–14. MR1068488

[18] LOUCHARD, G. (2005). Private communication.
[19] LOUCHARD, G. (1997). Probabilistic analysis of column-convex and directed diagonally-

convex animals. Random Structures Algorithms 11 151–178. MR1610265
[20] LOUCHARD, G. (1999). Probabilistic analysis of column-convex and directed diagonally-

convex animals. II. Trajectories and shapes. Random Structures Algorithms 15 1–23.
MR1698406

[21] LOUCHARD, G. and PRODINGER, H. (2002). Probabilistic analysis of Carlitz compositions.
Discrete Math. Theor. Comput. Sci. 5 71–95 (electronic). MR1902415

[22] PRIVMAN, V. and FORGÁCS, G. (1987). Exact solution of the partially directed compact lattice
animal model. J. Phys. A 20 L543–L547. MR0893296

[23] PRIVMAN, V. and ŠVRAKIĆ, N. M. (1988). Exact generating function for fully directed com-
pact lattice animals. Phys. Rev. Lett. 60 1107–1109. MR0932171

DEPARTMENT OF MATHEMATICS

OHIO STATE UNIVERSITY

COLUMBUS, OHIO 43210
USA
E-MAIL: bgp@math.ohio-state.edu

http://www.ams.org/mathscinet-getitem?mr=1871561
http://www.ams.org/mathscinet-getitem?mr=2112515
http://www.ams.org/mathscinet-getitem?mr=0022323
http://www.ams.org/mathscinet-getitem?mr=0528293
http://www.ams.org/mathscinet-getitem?mr=0186569
http://www.ams.org/mathscinet-getitem?mr=1637748
http://www.ams.org/mathscinet-getitem?mr=1068488
http://www.ams.org/mathscinet-getitem?mr=1610265
http://www.ams.org/mathscinet-getitem?mr=1698406
http://www.ams.org/mathscinet-getitem?mr=1902415
http://www.ams.org/mathscinet-getitem?mr=0893296
http://www.ams.org/mathscinet-getitem?mr=0932171
mailto:bgp@math.ohio-state.edu

	Introduction
	Tight Markov chains
	Tight, exponentially mixing Markov chains
	Two random constrained compositions and Markov chain approximations
	Definitions and some basic facts
	Approximating the random compositions by the Markov chains
	Limiting distributions of the extreme parts of the random compositions

	Appendix
	Acknowledgments
	References
	Author's Addresses

