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FEYNMAN-KAC FORMULA FOR THE HEAT EQUATION DRIVEN
BY FRACTIONAL NOISE WITH HURST PARAMETER H <1/2

BY YAOZHONG HU, FEI LU AND DAVID NUALART!
University of Kansas

In this paper, a Feynman—Kac formula is established for stochastic partial
differential equation driven by Gaussian noise which is, with respect to time,
a fractional Brownian motion with Hurst parameter H < 1/2. To establish
such a formula, we introduce and study a nonlinear stochastic integral from
the given Gaussian noise. To show the Feynman—Kac integral exists, one still
needs to show the exponential integrability of nonlinear stochastic integral.
Then, the approach of approximation with techniques from Malliavin calcu-
lus is used to show that the Feynman—Kac integral is the weak solution to the
stochastic partial differential equation.

1. Introduction. Consider the stochastic heat equation on R?

ou 1 oW

— d

(1.1 o1 zAu+u at(t’x)’ t>0,xeRY,
u(0, x) =ug(x),

where ug is a bounded measurable function and W = {W(z, x),7 > 0, x € R} is
a fractional Brownian motion of Hurst parameter H € ( }‘, %) in time and it has a
spatial covariance Q(x, y), which is locally y-Holder continuous (see Section 2
for precise meaning of this condition), with y > 2 — 4H. We shall show that the
solution to (1.1) is given by

(1.2) u(t, x) = EB[uo(B;‘)expfot W (ds, B;‘S)],

where B = (B = B; +x,t > 0,x € R4 } is a d-dimensional Brownian motion
starting at x € R, independent of W.

This is a generalization of the well-known Feyman—Kac formula to the case of
a random potential of the form %—‘;V(t, x). Notice that the integral fOt W(ds, B;_;)
is a nonlinear stochastic integral with respect to the fractional noise W. This type
of Feynman—Kac formula was mentioned as a conjecture by Mocioalca and Viens
in [6].
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There exists an extensive literature devoted to Feynman—Kac formulas for
stochastic partial differential equations. Different versions of the Feynman—Kac
formula have been established for a variety of random potentials. See, for instance,
a Feynman—Kac formula for anticipating SPDE proved by Ocone and Pardoux
[9]. Ouerdiane and Silva [10] give a generalized Feynman—Kac formula with a
convolution potential by introducing a generalized function space. Feynman—Kac
formulas for Lévy processes are presented by Nualart and Schoutens [8].

However, only recently a Feynman—Kac formula has been established by Hu et
al. [4] for random potentials associated with the fractional Brownian motion. The
authors consider the following stochastic heat equation driven by fractional noise

ou 1 d+1 J
—=-A e em—— 2 s Z‘ZO, eR s

(1.3) [az AU g Y *
u(0,x) =uop(x),

where W = {W(t, x),t > 0, x € R%} is fractional Brownian sheet with Hurst pa-
rameter (Ho, Hy, ..., Hy). They show ([4], Theorem 4.3) that if Hy,..., Hy €
(%, 1), and 2Hy + H; + --- + Hy > d + 1, then the solution u(¢, x) to the above
stochastic heat equation is given by

(1.4) u(t,x):EB[ (Bx)exp<// 8(B —y)W(dr,dy))],

where B = (B = B; +x,t > 0,x € Rd} 1s a d-dimensional Brownian motion
starting at x € R?, independent of W. The condition 2Ho + Hy +---+ Hy > d + 1
is shown to be sharp in that framework. Since the H;, i = 1,...,d, cannot take
value greater or equal to 1, this condition implies that Hy > %

We remark that if B0 = {B,H 9 t >0} is a fractional Brownian motion with
Hurst parameter Hy > %, then the stochastic integral fOT f (t)dB,H % is well de-
fined for a suitable class of distributions f, and in this sense the above integral
fot Jra 8(B_, — y)W(dr,dy) is well defined for any trajectory of the Brownian
motion B. If Hy < %, this is no longer true and we can integrate only functions
satisfying some regularity conditions. For this reason, it is not possible to write a
Feynman—Kac formula for the equation (1.3) with Hy < %

Notice that ford =1 and Hy = H| = % (space—time white noise) a Feynman—
Kac formula can not be written for equation (1.3), but this equation has a unique
mild solution when the stochastic integral is interpreted in the Itd sense. A renor-
malized Feynman—Kac formula with Wick exponential has been obtained in this
case by Bertinin and Cancrini [1]. More generally, if the product appearing in (1.3)
is replaced by Wick product, Hu and Nualart [3] showed that a formal solution can
be obtained using chaos expansions.

In the present paper, we are concerned with the case Hy < %, but we use a ran-
dom potential of the form %—‘;V(t, x). One of the main obstacles to overcome is to

define the stochastic integral [y W (ds, Bf_,). We start with the construction of a
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general nonlinear stochastic integral ](; W (ds, ¢5) where ¢ is a Holder continu-
ous function of order o > %(1 — 2H). It turns out that the irregularity in time
of W(t, x) is compensated by the above Holder continuity of ¢ through the co-
variance in space, with an appropriate application of the fractional integration by
parts technique. Let us point out that fé W(ds, ¢s) is well defined for all Holder
continuous function ¢ with o > %(% — H), and we consider here only the case

o > %( 1 — 2H) because this condition is required when we show that u(¢, x) is
a weak solution to (1.1). Furthermore, the condition o > %(1 — 2H) also allows

us to obtain an explicit formula for the variance of fé W(ds, ¢s). Contrary to [4],
it is rather simpler to show that f(f W(ds, B}_;) is exponentially integrable. A by-
product is that u (¢, x) defined by (1.2) is almost surely Holder continuous of order
which can be arbitrarily close to H — % + % from below. Let us also mention recent
work on stochastic integral [2] and [5] with general Gaussian processes which can
be applied to the case H < %

Another main effort of this paper is to show that u (¢, x) defined by (1.2) is a so-
lution to (1.1) in a weak sense (see Definition 5.2). As in [4], this is done by using
an approximation scheme together with techniques of Malliavin calculus. Let us
point out that in the definition of fot W (ds, ¢s) one can use a one-side approxima-
tion, but it is necessary to use symmetric approximations (as well as the condition
H > % — %) to show the convergence of the trace term (5.10).

We also discuss the corresponding Skorohod-type equation, which corresponds
to taking the Wick product in [3]. We show that a unique mild solution exists for
He( =LY

The paper is organized as follows. Section 2 contains some preliminaries on
the fractional noise W and some results on fractional calculus which is needed
in the paper. We also list all the assumptions that we make for the noise W in
this section. In Section 3, we study the nonlinear stochastic integral appeared in
equation (1.2) by using smooth approximation and we derive some basic properties
of this integral. Section 4 verifies the integrability and Holder continuity of u (¢, x).
Section 5 is devoted to show that u(z, x) is a solution to (1.1) in a weak sense.
Section 6 gives a solution to the Skorohod type equation. The last section is the
Appendix with some technical results used along the paper.

2. Preliminaries. Fix H € (0, 3) and denote by Ry (z,s) = 31> + s?H —
|t — s|2H) the covariance function of the fractional Brownian motion of Hurst
parameter H. Suppose that W = {W (¢, x),t >0, x € Rd} is a mean zero Gaussian
random field, defined on a probability space (€2, F, P), whose covariance function
is given by

EW(t, x)W(s,y)) =Rg(t,5)0(x,y),

where Q(x, y) satisfies the following properties for some M < 2 and y € (0, 1]:
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(Q1) Q is locally bounded: there exists a constant Co > 0 such that for any
K >0

O(x,y) < Co(1+K)M

for any x, y € R? such that |x|, |y| < K.
(Q2) Q islocally y-Holder continuous: there exists a constant C1 > 0 such that
for any K > 0

10(x,y) — Qu, )| < C1(1+ KM (Ix —ul” + 1y —v[")
for any x, y,u, v € R? such that |x|, [y, lu], |v] < K.

Denote by £ the vector space of all step functions on [0, T]. On this vector
space &£, we introduce the following scalar product

(Lj0,11, [0,s1)3¢, = R (2, 9).

Let Ho be the closure of £ with respect to the above scalar product. Denote by
C%([a, b]) the set of all functions which is Holder continuous of order «, and
denote by || - || the a-Holder norm. It is well known that C*([0, T]) C Ho for
a>5—H.

Let ‘H be the Hilbert space defined by the completion of the linear span of
indicator functions 10 s)xj0.x], £ €0, T], x € R4 under the scalar product

(110.1%10.x1> L[0,s1x[0,y1}y = R (£, ) Q(x, ¥).
In the above formula, if x; < 0 we assume by convention that 1jp ,} = —1|—y, 0]-
The mapping W : 10 s1x[0.x] = W (¢, x) can be extended to a linear isometry be-
tween H and the Gaussian space spanned by W. Then, {W (), h € H} is an isonor-

mal Gaussian process.
Let S be the space of random variables F' of the form:

F=fW(p1,..., W(gn)),

where ¢; € H, f € C*(R"), f and all its partial derivatives have polynomial
growth. The Malliavin derivative DF of an element F in S is defined as an H-
valued random variable given by

"9
pE=Y LWy, ... W
i=1 "1

The operator D is closable from L?() into L?(2, H) and we define the Sobolev
space D2 as the closure of S with respect to the following norm:

IDFIh2=E(F?) + E(IDFI2,).

The divergence operator § is the adjoint of the derivative operator D, determined
by the duality relationship

EGBw)F)=E(DF,u)y)  forany F e D12,
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8(u) is also called the Skorohod integral of u. We refer to Nualart [7] for a detailed
account on the Malliavin calculus. For any random variable F € D!-? and ¢ € H,

2.1 FW(¢) =48(F¢)+ (DF, ¢)n

Since we deal with the case of Hurst parameter H € (0, 1/2), we shall use in-
tensively the fractional calculus. We recall some basic definitions and properties.
For a detailed account, we refer to [11].

Leta,beR,a<b.Let f e LY(a, b) and « > 0. The left and right-sided frac-
tional integral of f of order « are defined for x € (a, b), respectively, as

1% f(x)= /(x— N dy

T (o)

and

o 1 b a—1
b_f<x>=m/x<y—x> F()dy.

Let Ig, (LP) [resp., I;'_(LP)] the image of L”(a,b) by the operator I, (resp.,
If felf (LP) [resp., I’ (LP)] and 0 < a < 1 then the left and right-sided
fractional derivatives are defined by

. 1 ) f@ -0,
(22) Da+f<x):r(1_a)((x_a)a / e )

and

—_1)¢ b _
@3 DY fy=—D ( IACY vo | Md>

P —a)\(—x)* (v —x)et!

for all x € (a, b) [the convergence of the integrals at the singularity y = x holds
point-wise for almost all x € (a, b) if p =1 and moreover in LP-sense if | < p <
o0].

It is easy to check that if f € Ial+(b_)(Ll),

(2.4) D% Dl* f = Df, DY D}~ f =Df
and

b b
2.5) (~1)° / DE, f(x)g(x)dx = / FDE_g(x) dx

prov1dedthat0<a<1 fel% (LP)and g € I¥ (LY) with p> 1,9 > 1, 1

It is clear that D® f exists for all f € CP([a, b)) if @ < B. The following propo-
sition was proved in [12].
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PROPOSITION 2.1. Suppose that f € C*([a, b)) and g € C*(la, b]) with . +
u>1.Let A>«a and u > 1 — «. Then the Riemann—Stieltjes integral ff fdg
exists and it can be expressed as

b b !
2.6) / fdg = (=1)° / DE, f()D\ " gp_(1)dt.
where gy_(t) = g(1) — g(b).

3. Nonlinear stochastic integral. In this section, we introduce the nonlinear
stochastic integral that appears in the Feynman—Kac formula (1.2) and obtain some
properties of this integral which are useful in the following sections. The main idea
to define this integral is to use an appropriate approximation scheme. In order to
introduce our approximation, we need to extend the fractional Brownian field to
t < 0. This can be done by defining W = {W(t,x),t e R, x € R4} as a mean zero
Gaussian process with the following covariance

E[W (@, )W (s, 1= 3P + 15 =1t = sP) 0 (x, y).

For any ¢ > 0, we introduce the following approximation of W (¢, x):

t .
(3.1 WEe(t, x) :/ We(s,x)ds,
0
where W8 (s, x) = 5= (W(s +&,x) — W(s — &,x)).
DEFINITION 3.1. Given a continuous function ¢ on [0, T'], define
t t
|| wias. g0 = tim [ (s, g ds,
0 e—>0J0

if the limit exits in L2($2).

Now we want to find conditions on ¢ such that the above limit exists in
L%(Q). To this end, we set I (¢) = [§ We(s, ¢5)ds and compute E(I:(¢)I5(¢))
for g, 8 > 0. Denote

1
V2 () = ﬂ(|r+g—3|2H — e+ 8P —r—e— 821 +1r — e +521).
’ £
Using the fact that Q(x, y) = Q(y, x), we have
E(L:()I5(9))
1 t o
=5 [ | 0@e @te —n-+e =P — 1o —n+54eP"
4e6 Jo Jo

—10—n—e—38" 410 —n—e+ 5 1dnado.
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VZH

~s » We can write

Making the substitution » = 8 — n and using the notation
t 6 oH
(3.2) EU@1@) = | [ 060V @) drdo.
We need the following two technical lemmas.
LEMMA 3.2. For any bounded function { : [0, T] — R, we have

t K t
(3.3) ‘/O w(s)/o vggf(r)drds—zH/O V()52 ds| < 41yl (e + 8)2H.

PROOF. Let g(s) := [i |r|*" dr and f; 5(t) := [y ¥ (s) [y V2 (r)dr ds. Note
that g” exists everywhere except at 0 and g”(r) = 2H sign(r)|r|*~! for r # 0.
Then

1 t
fos(t) = @fo Y()lg(s +e—8) —gs+e+3)

_g(s_8—8)+g(s_8+8)]ds
1 pl pl gt
=Z/_1f_l/0 U (s)g" (s + ne — £8) ds d& dn

=§/_11 /_11 [ v - sz an,

where A = £8§ — ne.
Case (1): If A <0, we have

Vot W(s)(g"(s — A) —2Hs*H 1) ds

t
(3.4) <2H ¥ / (s2H=1 — (s — A)2H 1) g
0
= ¥l — (¢ — A + (=AY < 2|y ool AP
Case (ii): If A > 0, we assume that A < ¢ (the case A >t follows easily). Then

! A
/ Y(s)g (s — A)ds = —QHf () (A —5)2H=1 g
0 0

t
+2H/ V(s)(s — A1 gs.
A
Therefore,

(3.5) Vot U()(g"(s — A) — 2Hs*H ) ds| < FL 4+ F2,
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where

(3.6) FA:=2H /OA YA =)+ 27 ds <2)|y[loo| AP
and

F2 .= 2H/t V($)[(s — AYZHT _ 2H=1] 4
(3.7) A t
sanwnoo/ [(s — A1 — 201 ds <21y |l A,
A

Then (3.3) follows from (3.4)-(3.7). O

LEMMA 3.3. Let ¢ € C([0, T1?) with ¥ (0, s) =0, and ¥ (-, s) € C*([0, T])
Jorany s € [0, T]. Assume a +2H > 1 and supscro 71 1Y (-, $) |l < 00. Then for
anyl —2H <y <aandt <T we have

‘/t fs W (r, )V (r) —2HQH — )r*" 2] dr ds
0 JO ’

(3.8) 2H+y—1
<C sup [[Y(,9)la(e+9) ;
s€[0,T1]

where the constant C depends on H, y, o and T, but it is independent of 6, ¢
and .

PROOF. Along the proof, we denote by C a generic constant which depends
on H,y,aand T.Seth(r) := |r|?H . Then K’ (r) exists everywhere except at 0 and
h'(r) = 2H sign(r)|r|*#~1 if r #0. Using (2.4) and (2.6), we have

t Ky
fe,a(t)2=f0 /0 l/l(l’,s)Vs%;H(r)drds
1 1 t K 9
=£f_1/0 /0 V() TG+~ §8) — h(r — ¢ — E8)]drds d
1 1 t rs ,
=(—1)“££1[)/008+w<r,s>
x D= [h(r +&—£8) — h(r — e — £8)]dr ds dE

, 1 1 t ps , ,
— (=1)® Z/ f / / DY W (r, )DIZY 1 (r + ne — £8) dr ds dE dn,
-1J-1J0 JO

where y < a’ < «. On the other hand, we also have

2H(2H — 1)/; /Osw(r, s)r?i=2qr

/ t B ! /
:(—1)“/ f DE Ay (r,s)D}=% W (r)dr ds.
0 JO
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Thus,

‘//1//(1’ OV (r) —2HQH — 1)r** 2 dr ds

LT e

X | D=1 (r + ne — £8) — D11 (r)| dr ds d& dn.
Denote A = &6 — ne and

t s / ! !
69 fa0:= [ [1D NP ¢~ &) = DI Wl drds.

Then we may write

1 ¢! !
(3.10) Ly < ZflflfA(t)dédn-
Hence, in order to prove (3.8) it suffices to prove
(3.11) fa) <C sup Y (. )lal AP
s€[0,T]

By (2.2), we have

o B V@s) |, [T Urs) = Yu,s)
|D0+1ﬂ(l’,s)|— r'—a) re’ To 0 (r_u)ot/—&-l du
(3.12)
<C sup [|[¥(,9)la-
s€[0,T]

Therefore,
(3.13) famy=c sup 1V G, 9)lla(FA + FX),
where

Re [l [ OO,

W (r—A)—h(u—A)—h'(r)+h ()
FA _/ / / Sy dudrds.

As in the proof of Lemma 3.2, we consider the two cases separately: A <0 and
A > 0.
Case (1): If A <0, we can write
h(r—A)—h(r)
(s —r)l-«

<C(s —r)“’—1|A|/Ol(r — &N 24k

/
S C(S _ r)(l *1r7y|A|2H+)/*1,
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which implies
(3.14) FA <C|AMHr=L
For 0 < r < u, we have

[W(r—A)—=h(u—A)—h @)+ K]

2H-3
)

1 rl
=C|A|fO /O(r—SA—F@(u—r) dOd&(r — u)

< CrZH—l—ﬁl—ﬁz(u _ r),BI |A|’32
for any B1, B2 > 0 such that 81 + B, <2H.If o' + 81 > 1, we obtain
js W' (r—A)—h(@u—A)—h ) —I—h(u)l

(u —r)2—o

< C,,ZH—l—ﬁl—ﬂz(s — ) '+81-1 |A|’32,

which implies, taking o =2H +y — 1,
(3.15) Fi <C|AMHr=1

Substituting (3.14) and (3.15) into (3.13), we get (3.11).
Case (i1): Now let A > 0. We assume that A < ¢ (the case t < A is simpler and
omitted). Let us first consider the term F i. Define the sets

Dii={0<r<s <A}, Dp={0<r<A<s<t},

Di3y={A<r<s<t}.

Then
FA=F\'+ F+F)
where
. Wir—A)—h
pli [ WO=D=KOL, o
Dy; (s —r)l-«

It is easy to see that

3.16) Fll < C/OA /OS[(A — )2 2 @ ds < AP
and

(3.17) Fi2< C/At /OA[(A — )P 2H Ny g ds < C AP

As for F E, we have

Fls_/f 3 <r— h<r>|drds=/0'—A/u O ACEINI

,,)1 o (u _ v)l—o:/
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Using the estimate
|h' (v) — ' (v+ A)| < Cv*=P=TAP
for all 0 < B8 < 2H, we obtain

(3.18) F}<caf.

Thus, (3.16)—(3.18) yield

(3.19) FL<CAP  forall0<pB <2H.

Now we study the second term Fi. Denote
Dy={0<r<u<s<A<t}, Dypy={0<r<u<A<s<t},
Dn={0<r<A<u<s<t}, Du={0<A<r<u<s<t}.

Then

F2=F + F2 4+ FP 4+ F¥,
where fori =1, 2,3, 4,

2% W@ —A)—h'(u—A)—hGT)+h W]
Fx _/DZi ) du

drds.
Consider first the term Fil. We can write

ﬁwr —A) =1 - A= (A —u)TT (A )2

1
<Cu —r)/ (A—u+0@w—r)"2do
0

< Clu—n)'"Pa —uw?r=2,
where 1 —2H < B < «'. Similarly, we have
W' (r) — B ()| < Cr2fTP=2 —r)1=F.

As a consequence,

A ps s ,
Fil < C/ / / (u—r* P YA =) P2 qudrds
0 0 Jr

A pA A ,
(3.20) < c/ f f (u—r*P A - P2qudrds
0 0 r

< CA2H+0[/.

In a similar way we can prove that
t A A ,
F?SC/ / / (u—r)* PN A - P2 qudrds
A JO r

3.21) /
S CA2H+C( 71'
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For F33, notice that when r < A < u,
| (r—A)—h'(u—A)—h'@)+h' ()
— (A — )2 g — AL 2H1 20
and
(u — r)"‘/_2 =u—A+A-— r)"‘/_2
< (u— A)’ﬂ(A _ r)o/+ﬂ—2 A (i — A)*ﬁ*ZHH(A _ r)2H+o/+/373,
where we can take any B € (0, 1) satisfying 2H + 8 + o' > 2. Then,

FB<cC i [(A —r)2H=1 o — APH-T 4 201 4 2H-1
23

x (u — r)"‘/f2 dudrds
S C/ [(A _ r)2H+Ol/+ﬂ—3(u _ A)_'B
Dy3
+ 20— AYP(A = P2 dudr ds
< CA2H++B-2
Taking 8 =1+ y — o/, we obtain
(3.22) |FP| < cAP+e-1,

Finally we consider the last term F§4. Making the substitutions x =r — A,
y=u — A we can write

F2 = / W= 8) =W =8 = KO+ W]
Doy (u — ,-)Z—a
LA AR () = (p) — W (x + A) +h (y + A)|
o /A ,/0 ,/;C (o — 02— dydxds.

Note that for 0 < x <y and A > 0,
|h'(x) = h'(y) = W' (x + A) + 1 (y + A)|
=y 2H=T L G2H (o AT (o A 2H

1 1 5 B
:c/ / (x+6(—x)+6A)"a04db
0 JO
< Cx2H+/31+ﬂ2—3(y _ x)l—ﬂl Al—fb’
where

0<B1,p62<1, 2H+pB1+pB2>2 and By <a'.
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Taking o =2 —2H — y we get
(3.23) F#* <cna?fir=1,
From (3.20)-(3.23), we see that
(3.24) F} < CAMHr=1

This completes the proof of the lemma. [J

THEOREM 3.4. Suppose that ¢ € C*([0, T]) with ya > 1 —2H on [0, T].
Then, the nonlinear stochastic integral fot Wds, ¢5) exists and

t 2
E(/O Wds, qﬁs))

629 =2 [ "62H1 O (¢, 99) dB

t r0 ) )
+2HQH — 1)/0 /O r*1=2(0(dp. po—r) — O(o. o)) dr do.

Furthermore, for any % <o < a, we have

sup E(’/O Wf(s,qbs)ds—/o W(ds, ¢5)

2)
0<t<T

(3.26) M Y\ 2H+ya -1
= C+[[@llco)™ (1 +lipllg)e ;

where the constant C depends on H, T, vy, «, &' and the constants Cy and C
appearing in (Q1) and (Q2).

PROOF. We can write (3.2) as

t b
EQ@)156) = [ [ (0@a.du—r) — 0u, 40) VY () do
(3.27) 070

t 0
+ /0 /0 O (¢o. do) V2 (r) dr db.

Due to the local boundedness of Q [see (Q1)] and applying Lemma 3.2 to ¥ (0) =
O (e, ¢o), we see that the second integral converges to

lim /I/GQ(QS ¢)V2H(r)drd9=2H/tQ(¢ $0)0* 1 do
o Jo 6, PO £, 0 0, PO .

£,6—0

On the other hand, using the local Holder continuity of Q [see (Q2)] and applying
Lemma 3.3, to ¥ (r,0) = Q(¢a, po—r) — O(dg, Pg), we see that the first integral
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converges to

. t O -
fim /0 /0 (Q(¢0. do—r) — Qo $0)) V5 (r)dr db

£,6—0

! 0 2H-2
=2H(2H—1)f0/0(Q(¢e,¢9_r)—Q<¢e,¢e>)r 247 de.

This implies that {I,, (¢), n > 1} is a Cauchy sequence in L?(2) for any sequence
&n 4 0. As a consequence, lim,_, g I (¢) exists in L2($2) and is denoted by 1(¢) :=
Jo W(ds, ¢s). Letting &, 8 — 0 in (3.27), we obtain (3.25).

From (3.27), Lemma 3.2 and Lemma 3.3, we have for any o’ < «,

|E(I(¢)15(¢)) — E(I*(¢))]
< CU+1¢llo)™ A + 112 (e + 8)> v =1,
In equation (3.28), let 8 — 0 and notice that I5(¢) — I (¢) in L>($2). Then
|E(I($)1 ($)) — ET*(@))] < C( + [plloo)™ (1 + | p[12)eH F7e =1,
On the other hand, if we let £ = § in (3.28), we obtain

EI2@) = EUX@)] = CU+ [$llo0) (1 + 91627,

(3.28)

Thus, we have

E|l:(¢) — I()|* = [E(I2($)) — ET*(#))] — 2[E(I($) 1 (¢)) — E(I*(p))].
Applying the triangular inequality, we obtain (3.26). [J

The following proposition can be proved in the same way as (3.25).

PROPOSITION 3.5.  Suppose ¢,y € C*([0, T]) withay > 1 —2H. Then

E( [ "Wdr. ¢,) [ "W, w»)

=2H/’92”—‘Q<¢>9, Vo) d6
(3.29) 0

L8 ans
+H(2H—1)/0/Or ~2(Q(0, Yo—r) — Oda, Vo)) dr db

Lo 2H-2
+H(2H_1)/O/Or “2(Q(Po—r, V) — O, V) dr do.

The following proposition provides the Holder continuity of the indefinite inte-
gral.
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PROPOSITION 3.6.  Suppose ¢ € C*([0, T]) withay > 1 —2H. Then for all
O0<s<rtr<T,

t K 2
630 E([ Wirgn - [ Ware)) =+ 1ol @ -9,
where the constant C depends on H, T, y, a and the constants Cy and C| appear-
ing in (Q1) and (Q2). As a consequence, the process X; = fé W(dr, ¢,) is almost
surely (H — §)-Holder continuous for any § > 0.
PROOF. We shall first show that

z . s . 2

630 E([ Weogndr= [(Weindr) =ca+iglaMe -9,
0 0

‘We can write

E(/O WE (dr, ¢r>—/os Wf(dr,q»))z

- E(/t WE (dr, ¢,)>2

= [ [ ELW© -+ 60— W6 —.00)
x (W +e,¢y) —Wn—e, ¢y)]db0dn
=$/St/S’Q(¢e,¢n>
x[In— 01" —n—6 =26 — |n— 6 +2¢*"1d0 dy
[ 0ot

x [In =01 —n—0—2e* —|n—6+2¢*1dodn

. 1
~ 8¢2

1 t—s pr0
=z | [ Q@ dusa 2 — 426 — i =2 drdo.

The inequality (3.31) follows from the assumption (Q1) and the inequality (A.2)
obtained in the Appendix. Finally, the inequality (3.30) follows from (3.31), Propo-
sition 3.4 and the Fatou’s lemma. [J

4. Feynman-Kac integral. In this section, we show that the random field
u(t,x) given by (1.2) is well defined and study its Holder continuity. Since
the Brownian motion B; has Holder continuous trajectories of order § for any
6 € (0, %), by Lemma 3.4 the nonlinear stochastic integral fé W(ds, Bf"_;) can be
defined for any H > % — %. The following theorem shows that it is exponentially
integrable and hence u (¢, x) is well defined.
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Set ||Blloo, 7 = supg<7|Bs| and | Blls,7 = sup<,, <r {'=is" for 8 € (0, 3).

THEOREM 4.1. LetH > 5 — % 7 and let ug be bounded. For any t € [0, T] and
x € RY, the random variable fo W(ds, B} ,) is exponentially integrable and the
random field u(t, x) given by (1.2) is in L?(2) for any p > 1.

PROOF. Suppose first that p = 1. By (3.30) with s = 0 and the Fernique’s
theorem we have

t
EVu(, x)| < ||uo||ooEBEW[expf W(ds, B, ]
0

2H M
B[ Cr (1Bl ™ ] < oo,

< lluolloc E

The L? integrability of u (¢, x) follows from Jensen’s inequality

EVu, x)|p<||u0||ooEBEWexp( f W (dr, B ,)

“4.1)
< lluolloo EB[exp(Cp(1 + | Blloo. 1) M T?H)] < 0. O

To show the Holder continuity of u(-, x), we need the following lemma.

LEMMA 4.2.  Assume that ug is Lipschitz continuous. Then for 0 <s <t <T
and forany a« <2H — 1+ %y,

2

) S
EW‘/O W(dr,B;‘_»—fO W(dr, B_,)| <C+ Bl )" IBI} 1t —5)*,

where the constant C depends on H, T, vy and the constant Cy appearing in (Q2).

PROOF. Suppose § € (0, %). ForO<u <v <s <T,denote
AQ(s,t,u,v) = Q(B;_,, _) O(B_,, B_,)
- Q(B;_,,B;_,) + Q(B_,, B;_,).

Note that (Q2) implies
1AQ(s, t,u, )| <2C1 (1 + | Blloo, )™ I BII} 7 (t — )7

and
|AQ(s. t,u, )] <2C1(1+ [ Blloo, )M I BIIY 711 — v]??,

which imply that for any g € (0, 1),

1AQ(s, 1,1, v)| <2C1(1+ [|Blloo, 7)™ [ BI} 7t = $)P7°u — 0|1 =P72,
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Applying (3.29) and using Q(x, y) = Q(y, x), we get

S Ky 2
EW’ /0 W(dr, Bf,) — fo W (dr, BX_,)

—2HQH — 1)

s r0
x/ / PH2[AQ(s,1,0,0 —r) + AQ(t,s,0,0 —r)drdb
0 JO

N
+2H/ p2H-1
0
X [Q(th_e, th_e) - 2Q(th_9, B;C_e) + Q(B;V_g, B;_g)]de
<CA+Blloo.)™IBI} 7t —5)P7°

for any g such that (1 — )yd > 1 —2H, thatis, Byé <2H — 1 + y§. Taking B
and § such that Sy § = «, we get the lemma. [

THEOREM 4.3. Suppose ug is Lipschitz continuous and bounded. Then for
each x e R, u(-, x) e CH ([0, T) for any Hy € (0, H — % + %y).

PROOF. For 0 <s <t < T, from the Minkowski’s inequality it follows that

EV[lu(t, x) —u(s, x)|"]
< [EB(EW’uo(th)efO[ W(dr,B,) _ uo(Bj‘)efOS W(dr,Bf,,)‘p)l/p]p
4.2) , .
S C”MO”OO[EB(EW|€J6 W(dr,B,X,r) _ ej()Y W(dr,B§,,)|P)1/P]P
N X 1
+ C[EB(EW|(u0(BtX) _ MO(B?))E[O W(dr,BS_,.)|P) /p]p.
Since ug is Lipschitz continuous, using (4.1) and Holder’s inequality, we have

@.3)  [EB(EY (luo(BY) — ug(BY)|elo WrB/P1P < (1 — 5)P/?,

For the first term in (4.2), using the formula that |e? — e?| < (e* + eP)|a — b| for
a, b € R and Holder’s inequality we get
]

t s 2pq1/2
(4.4) S[Ew(exp / W(dr, BX,) +exp / W (dr, B;‘_r)> }
0 0

EW[

t s
exp/ w(dr, B_,) — expf w(dr, B;_,)
0 0

t s 2p+1/2
X[EWVO W (dr, B;L,)—/O W (dr, B*_,) ]
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Applying Lemma 3.6 and Lemma 4.2, we obtain

t Ky 2
EWVO W(dr,B;f_,)—/O W(dr, B]_,)

2

<2EW

'
/ W(dr, B,
N

4.5) 5

s N
+2EWVO W (dr, Bf, —/0 W (dr, BX_,)

<CU+[1Blloo, )™ IBIY 7t — $)*™.

Noting that conditional to B, fé W(dr, BX_,)— [, W(dr, B{_,) is Gaussian, and
using (4.4), (4.5) and (4.1) we get
p) l/p]p

(e
.

t N
(4.6) §C[EB (EW‘ / W(dr, B _,) — / W(dr, BX_,)
0 0

t N
exp/ W(dr, Bj"_,) — expf W(dr, B;_,)
0 0

<C(r —s)PH
From (4.2), (4.3) and (4.6), we can see that for any p > 1,
4.7) EV[lu(t, x) — u(s, x)|P] < C(t — )P
Now Kolmogorov’s continuity criterion implies the theorem. [J
5. Validation of the Feynman—Kac formula. In the last section, we have
proved that u(z, x) given by (1.2) is well defined. In this section, we shall show
that u(z, x) is a weak solution to equation (1.1).

To give the exact meaning about what we mean by a weak solution, we follow
the idea of [3] and [4]. First, we need a definition of the Stratonovich integral.

DEFINITION 5.1. Given a random field v = {v(¢,x),t >0,x € Rd} such that
5 Jra [v(s, x)|dx ds < oo a.s. for all # > 0, the Stratonovich integral

/Ot /]Rd v(s, x)W(ds, x)dx

is defined as the following limit in probability if it exists

t .
lim/ / v(s, x)We(s, x)ds dx,
0 JRA

e—0

where We(z, x) is introduced in (3.1).

The precise meaning of the weak solution to equation (1.1) is given below.
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DEFINITION 5.2. A random field u = {u(¢,x),t >0,x € ]Rd} is a weak solu-
tion to equation (1.1) if for any ¢ € C3° (R?), we have

t
(5 D Ad(u(t,X) - MO(X))(p(x)dx :/0 /Rd M(S,X)A(p(x) dxds

t
+/O /Rd u(s, x)p(x)W(ds, x)dx

almost surely, for all # > 0, where the last term is a Stratonovich stochastic integral
in the sense of Definition 5.1.

The following theorem justifies the Feynman—Kac formula (1.2).

THEOREM 5.3. Suppose H > % — %y and ug is a bounded measurable func-
tion. Let u(t, x) be the random field defined in (1.2). Then for any ¢ € C(‘)’O(Rd),
u(t, x)e(x) is Stratonovich integrable and u(t, x) is a weak solution to equation
(1.1) in the sense of Definition 5.2.

PROOF. We prove this theorem by a limit argument. We divide the proof into
three steps.
Step 1. Let u®(t, x) be the unique solution to the following equation:
ou® 1, O0W
(5.2) FE T
uf(0, x) =uo(x).

Since W (t, x) is differentiable, the classical Feynman—Kac formula holds for the
solution to this equation, that is,

&
(t,x), t>0,xeRY,

ut(t, x) = EB[uo(th)efé Ws(Sthx—s)dS]‘

The fact that u®(z, x) is well defined follows from (3.31) and Fernique’s theorem.
In fact, we have (cf. the argument in the proof of Lemma 4.1)

t .
EY (1, )| < ||uo||ooEBEWexp(p [ e B;f_,>dr)
0
(5.3)
< lluollos EB[exp(Cp(1 + || Blloo, 7)™ 1*7)] < 0.

Introduce the following notations

1
gix (r,z) = Zl[s—s,s—ke](r)l[o,x](z),

g2 (r2) =10, px_1(2),

s ]
gF 0.2 = [ Hosara 10,5 1) do.
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From the results of Section 3, we see that g ., g, gf;f € 'H (H is introduced in
Section 2), and we can write

. 1
W (s, x) = W(2—81[s_e,s+e](r)l[o,x]@) —W(gt ).

s s .
/0 W(do, By 4) = W(gfx), /O WO, By_y)do = W(gﬁ,’f)-
Set
ué(s, x) :=uf(s, x) —u(s, x).

Step 2. We prove the following claim:
ut(s,x) — u(s,x) in D2 as ¢ J 0, uniformly on any compact subset of
[0, T] x RY, that is, for any compact K C R4

(5.4) sup  EW[@ (s, ) + | Dt (s, x) 13,1 =0  ase 0.
s€[0,T],xeK

Since ug is bounded, without loss of generality, we may assume uo = 1. Let B!
and B? be two independent Brownian motions, both independent of W. Using the

inequality |e® — e?| < (e? +€”)|a — b|, Holder inequality and the fact that W(gf”f )
and W(gfx) are Gaussian conditioning to B, we have
EW(ue(t, x) —u(t, x))2
— EV[EB (V&) _ Wy
< EBEW Wi _ oWielo)?
< EP[EY ("6 4+ MG EY 1w (g ) — Wil )12
< C[EPEW (V) 4 WG] 2 B8 BV W (g5 ) — W(gP .
Note that (4.1) and (5.3) imply
(5.5) EBEW(epW(gfsf) + epW(ng)) <00
for any p > 1. On the other hand, applying Theorem 3.4, we have
(5.6) sup EEEVIWr P -wEEoP—0 aselo.

0<t<T,xek
Then it follows that as ¢ |, 0
sup  EWjit@, 0= sup  EV(uf(t,x) —u(t,x))* > 0.
0<t<T,xekK 0<t<T,xekK
For the Malliavin derivatives, we have
Du (s, x) = EP[exp(W (g5 ) g0 21,

Du(s, x) = EB[exp(W (g8,))g5 1.
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Then
EY|Duf (s, x) — Du(s, x) |13,
= EV | EB[(exp(W (g5:2)) g5 — exp(W (gE )82 )]l
<2EVEB[expQW (g8 P)) g8 — B 13

+2EVEP[lexp(W (g5 2)) — exp(W (g2 ) 1182, 13,1

Note that ||g{"” — gZ.112, = EV W (g"F) — W(gP,)I?. Then it follows again from
(5.5) and (5.6) thatas ¢ | O

sup  EW|Duf(s, x) — Du(s,x)||%{ — 0.
0<t<T,xekK

S_tep 3. From equation (5.2) and (5.4), it follows that foz Jra u®(s, x)p(x) x
WE(s, x) ds dx converges in L? to some random variable as & J 0. Hence, if

t .

5.7 Ve :=f /l(ua(s,x) —u(s, x))px)We(s,x)dsdx
0 JIRA

converges to zero in L2, then

lim /Ot v/Rdu(s,x)go(x)Wg(s,x)dsdx

e—>0

t .
= limf / u®(s, x)p(x)We(s,x)dsdx,
0 JR4

e—0

that is, u(s, x)@(x) is Stratonovich integrable and u(s, x) is a weak solution to
equation (1.1). Thus, it remains to show that V, converges to zero in L?.

In order to show the convergence to zero of (5.7) in L2, first we write
u’(s, x)W(gg ,) as the sum of a divergence integral and a trace term [see (2.1)]

i (s, x)W(gs ) = 8" (s, x)g5 ) — (D" (s, x), &5 ) m.-

Then we have

t
Ve = fo fR B (5, )p()W (g ) ds dx
t
:/0 /Rd(é(ﬁg(s’x)g;x) — (D" (s, x), & )n) 9 (x) ds dx

t
=8(y°) —/0 /RJ(DES(S,X), gix)mp(x) dsdx =: Vg1 - ng,

where

1t
Ve (r, z):/o /]Rd u (s, x)gs (r,)o(x)ds dx.
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For the term Val, using the estimates on L2 norm of the Skorohod integral (see
(1.47) in [7]), we obtain

(5.8) E[V, 1?1 < ELY 5] + ELIDY® [ Fig]-
Denoting supp(¢) the support of ¢, we have

E[I¥*113,]

=E/Ot/0t /Rd /Rd u’(s1, x)uc (s2, x2)

X (85, xy2 &5r0a ) HP(X1) @ (x2) ds1 dsadxy dxz
t t
<oty [ [ 68 8 e lp G dsi dsad dx
=y [ [ EY W) W)l (n) dx d,
where M| := Supc(o, 71, xesupp(e) E L1 (s, x)|%]. Note that

tim [ [ EY W) W sl )g () dx da

e—0

69 - /H; fR EVW (@, x))W (1, x2)1p(x1) g (x2) dx1 dx;
- /Rd /Rd 27 Q(x1, x2)@(x1)@(x2) dx1 dx; < 0.

Thus by (5.4), we get E[[|[¢¢[2,]1— Oase | 0.
On the other hand, setting Mj := supse[O’T]’xesupp((p)E[||Dﬁ€(s,x)||%{], we
have

E[IDY* |3 1g3]

t t
— ~g & ~g e
_E/O /0 /Rd A‘{d(Du (51, X1) ® &, x,» D™ (52, %2) @ &, 1, )1

x @(x1)@(x2)ds1dsydxy dx;

t t
:E/O /0 /Rd /Rd(Dus(Sl,xl),DuE(Sz,xz))Mgfl,xl,giz,xz)H
X @(x1)@(x2)ds1dsydx1 dxy

t t
<otz [ [ 68 e e dsy dsad .

Then (5.4) and (5.9) imply that E[||Dy® II%@H] converges to zero as € |, 0.



FEYNMAN-KAC FORMULA 1063

Finally, we deal with the trace term

t
V=[] (D5, 85 0o~ (Duts, ), g2 () ds
0 JR
(5.10)
= T]&‘ - T2€,

where

t
Tf:// (Dut (s, x). 8¢ )pp(x) ds dx.
0 JR4

t
I = /o /Rd<Du(S’ x), g ) He(x)dsdx.

We will show that 7 and T converge to the same random variable as € | 0.
We start with the term 75 . Note that

1
(6285 = <1[o,s]<r)1[o,3;c_,]<z>, 2—81[s_g,s+e]<r>1[o,x]<z>>H

1
- <1[o,s]<r>Q(B§_,, ), 2—1[s_g,s+g]<r>> .
& H

Since Q(BY_,x) € Cl/z_‘g([O, T]) for any 0 < § < %, noticing that H > % — %

§—

and applying Lemma A.4 we obtain
t
lim 75 = £% [ [ uo(BY) exp(W (e )) (g8, 8 () ds dx
B ! B
=7 [ [ uo(B) exp(W (8 )
(5.11) X [Q(x,x)HSZH_l
S
+HQH - 1)/0 (Q(BX_,.x)
— Q(x,x))r?H 2 dr} dsdx.

On the other hand, for the term Tf , note that

2 1

1
g gt = ([ 5o om0 5 1210, 5 Lo (z)>H

2e 1 1
< ) 51[9_8’9+8](r)Q(B§_9,x)d9, £1[3_5’3+8](r)>7{'
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Applying Lemma A.5, we obtain

t
tim 17 = £ [ [ uo(BY) exp(W (g5 gt g5 o) d d

e—>0

t
_ EB x B
=E /OA;duo(BS)exp(W(gs,x))w(X)
(5.12) X [Q()c,)c)HSZH_1
+HCH =) [ (Q(BL,.x)

— O(x, )c));’ZH_2 dr] dsdx.
The convergence in L? to zero of VS2 follows from (5.11) and (5.12). [

6. Skorohod type equation and Chaos expansion. In this section, we con-
sider the following heat equation on RY

6.1) E;—l::%Au-i-uo aa—vzl(t,x), t>0,xeR9,

u(0, x) = up(x).
The difference between the above equation and equation (1.1) is that here we use
the Wick product ¢. This equation is studied in Hu and Nualart [3] for the case
Hy=---=Hy =%, andin [4] for the case H, ..., Hy € (3,1),2Ho + Hy +--- +
H; > d + 1. As in that paper, we can define the following notion of solution.

DEFINITION 6.1. An adapted random field u = {u(¢,x),t > 0,x € R?} such
that E(u2(z, x)) < oo for all (¢, x) is a (mild) solution to equation (6.1) if for any
(t,x) € [0, 00) x R9, the process {p;—s(x — y)u(s, y)ljo,n(s),s >0,y € Rd} is
Skorohod integrable, and the following equation holds

t
(6.2) ut,x)=pif @+ [ [ pies = yuts 8w
where p;(x) denotes the heat kernel and p; f (x) = fpa p:(x — ) f(y) dy.

From [3], we know that the solution to equation (6.1) exists with an explicit
Wiener chaos expansion if and only if the Wiener chaos expansion converges.
Note that gfx (r, 2) == 1j0,7(r)1jo, By ,1(2) € ‘H. Formally, we can write gfx (r,z) =
8(B;_, — z) and we have

t t
/W(dr,B;‘_,)=W(g,Bx)=// 8(BY , —z)W(dr,z)dz.
0 ’ 0 JRd

Then in the same way as in Section 8 in [4] we can check that u(z, x) given by
(6.3) below has the suitable Wiener chaos expansion, which has to be convergent
because u(¢, x) is square integrable. We state it as the following theorem.
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THEOREM 6.2. Suppose H > % - %y and ug is a bounded measurable func-

tion. Then the unique (mild) solution to equation (6.1) is given by the process

(6.3) u(t,x) = EBJuo(BY) exp(W (gl — Slgl,17)]-

REMARK 6.3. We can also obtain a Feynman—Kac formula for the coeffi-
cients of the chaos expansion of the solution to equation (1.1)

o0

1
u(t, ) =3 —In(hn(t, %))

n=0"""
with

ha(t,x) = EBJug(BNgE (r1.21) -+ 8P (rnv z) exp(5lIg, 17)]-

APPENDIX

In this section, we denote by B = {BtH ,t € R} a mean zero Gaussian process
with covariance E(B,H BSH) = %(|t|2H + |57 — |t — s|*H). Denote by & the space
of all step functions on [—7, T']. On &, we introduce the following scalar product
(1[0’,], 1[0,s]>7—{0 = Rpy(t,s), where if t < 0 we assume that l[O,t] = —1[;,0]. Let Hy
be the closure of £ with respect to the above scalar product.

Forr >0,e>0and 8 > 0, let

1
FEr) = —[2rf —|r — 26 — (r +2¢)P1.
4¢?
It is easy to see that
(A.1) lim f(r) = B(B — DrP~2.
el0

LEMMA A.1. Foranyr >0,e>0and0< B <2,

(A.2) | FE(r)| < 64rP~2.

PROOE. If0 < r <4e, then |r — 2¢|? < (2¢)P, (r + 2¢)P < (6¢)P, and hence
(noting that 8 < 2)

|£5 ()] < 4PHeP2 < 64rP2,

On the other hand, if r > 4¢, then

1
rf—1r—2¢)f = 28,3/ (r —2xe)P~lda,
0

1
rP—(r420)f = —28/3/ (r +2xe)P~Laa,
0
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and hence

1
FE(r) = iﬁ/ [(r —20e)P~1 — (r +20)P 11 dA
2¢ Jo

1 rl
:25(5—1)/0 /0 A(r —2re +4pre)P2duda.

Therefore, using 8 < 2 and r > 4¢ we obtain

_2e\B2
2] <2B(r —26)~2 < 4rﬂ—2(ﬂ> < 1652, .
r
LEMMA A.2. Foranys>0,0<B <1land ¢ € C*([0,T]) witha > 1— 8,
(A.3)  lim f $) o) dr = OB +(B~1) f (¢ —pO)rF2ar.
e—>0J0 0
Moreover,

(A4) ’/(‘)9 ¢(r)f€(r) dr| < C(IB,O()(H(p”OOsﬂ—l + ||¢||asa+ﬂ_1)_

PROOF. The lemma follows easily from (A.5) and (A.2) if we rewrite
[ enrrwar=90 [ rrorar+ [0 - g0l 0dr o
LEMMA A.3. For any bounded function ¢ € Hy and any s, t > 0, we have
(A5) (L., Loy, = H fos o MIr*A" +sign(t — )|t — r*" " ar.
Ifu <s <t,we have

(A6 (1008 Vs, = H [ S0 =P~ = signtu = r)lu — r 1)

PROOF. We only have to prove (A.5) since (A.6) follows easily. Without loss
of generality, assume that ¢ = Z?:] aily; 1, where 0=1 <t <---<t, =s.
(If t < s, we assume that t = 1; for some 0 <i < n.) Then

n
(1,516, jo.01)y, = E Y _ai (B — Bl )B/
i=1

n
1
2H 2H 2H 2H
=Zai§(tl- — i =P == 5P
i=1

= H/Osqs(r)[rw—l +sign(t — )|t —rP"Ndr. 4

Using Lemma A.3 and similar arguments to those in the proof of Lemma A.2,
we can prove the following lemma.
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LEMMA A.4. Foranys >0, forany ¢ € C*([0,T]) witha >1—2H,

hm<1[0 S]¢ ! l[s & s+g]> = ¢(S)HS2H_1 + ¢o /(;V(¢(s —r)— ¢(S))r2H_2dr,

0

where co = HQ2H — 1). Moreover,

1 _ _
(A7) 1(1[o,s]¢,ﬂl[s_g,m]} < C(H, @) (I¢lloos® " + [ las ).

Ho

PROOF. Applying Lemma A.3 and making a substitution, we get

<1[0 ?]d) l[v —e, v+e]>

Ho

= %/Osqs(s —w)[(u~+ &) —sign(u — &) ju — &> du

=: H¢(S)/Os 8" (u)du +Hfos[¢(s —u) — ¢(s)1g° (u) du,

where we let

gf(u) = —[(u + &)1 —sign(u — &)ju — e|*# 71

If 0 < u < 2¢, we have |g(u)| < 16r>=2. On the other hand, if u > 2¢,
18 ()| = ‘z—lg[w —e)? Tl — (w4 e)* 1]
= %(1 —2H) /_11 (u—re)*12dx < (1 —2H)u?1 =2,
Then the lemma follows by noticing that lim,_,o g°(u) = QH — Du?i—2. O
LEMMA A.5. Forany ¢ € C*([0, T]) witha > 1 —2H, for any s > 0,

hm<zg / ocoe1d @)d6, 5 1[3 mg]}

e—0
(A.8) | Ho
= ¢(S)Hs2H—1 + HQH — 1)‘/(; (qj(s —r) — ¢(S))F2H_2dr.
Moreover,
1 s 1
’<£ /(; Ljg—c.0461¢(0) 9, gl[s—s,s+£]>H
(A9) 0

<C(H, Ol)(||¢||ooHs2H_1 + ||¢||as0!+2H—1).
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PROOF. By Fubini’s theorem and making a substitution, we have

1 s 1
— | [T 0 do, —1j,_
<28/0 [0—e,0+¢19 (0) 7e Lls 8,s+8]>H0

1 N
= @E[[) o) (B2, — B )(BE, — BS’{S)dQ]

1 N
= @/0 ¢ (s —N[2r* — |r — 26 — (r +26)*"1dr.

Then (A.8) and (A.9) follow from Lemma A.2. [

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]

(10]
[11]

[12]
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