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Abstract. Random walks in random scenery are processes defined by Zn :=∑n
k=1 ξX1+···+Xk

, where (Xk, k ≥ 1) and (ξy, y ∈
Zd ) are two independent sequences of i.i.d. random variables with values in Zd and R respectively. We suppose that the distributions
of X1 and ξ0 belong to the normal basin of attraction of stable distribution of index α ∈ (0,2] and β ∈ (0,2]. When d = 1 and
α �= 1, a functional limit theorem has been established in (Z. Wahrsch. Verw. Gebiete 50 (1979) 5–25) and a local limit theorem
in (Ann. Probab. To appear). In this paper, we establish the convergence in distribution and a local limit theorem when α = d (i.e.
α = d = 1 or α = d = 2) and β ∈ (0,2]. Let us mention that functional limit theorems have been established in (Ann. Probab. 17
(1989) 108–115) and recently in (An asymptotic variance of the self-intersections of random walks. Preprint) in the particular case
when β = 2 (respectively for α = d = 2 and α = d = 1).

Résumé. Les promenades aléatoires en paysage aléatoire sont des processus définis par Zn :=∑n
k=1 ξX1+···+Xk

, où (Xk, k ≥ 1)

et (ξy, y ∈ Zd) sont deux suites indépendantes de variables aléatoires i.i.d. à valeurs dans Zd et R respectivement. Nous supposons
que les lois de X1 et ξ0 appartiennent au domaine d’attraction normal de lois stables d’indice α ∈ (0,2] et β ∈ (0,2]. Quand d = 1
et α �= 1, un théorème limite fonctionnel a été prouvé dans (Z. Wahrsch. Verw. Gebiete 50 (1979) 5–25) et un théorème limite local
dans (Ann. Probab. To appear). Dans ce papier, nous prouvons la convergence en loi et un théorème limite local quand α = d (i.e.
α = d = 1 ou α = d = 2) et β ∈ (0,2]. Mentionnons que des théorèmes limites fonctionnels ont été établis dans (Ann. Probab.
17 (1989) 108–115) et récemment dans (An asymptotic variance of the self-intersections of random walks. Preprint) dans le cas
particulier où β = 2 (respectivement pour α = d = 2 et α = d = 1).

MSC: 60F05; 60G52
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1. Introduction

Random walks in random scenery (RWRS) are simple models of processes in disordered media with long-range
correlations. They have been used in a wide variety of models in physics to study anomalous dispersion in layered
random flows [20], diffusion with random sources, or spin depolarization in random fields (we refer the reader to Le
Doussal’s review paper [16] for a discussion of these models).
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On the mathematical side, motivated by the construction of new self-similar processes with stationary increments,
Kesten and Spitzer [15] and Borodin [4,5] introduced RWRS in dimension one and proved functional limit theorems.
This study has been completed in many works, in particular in [3] and [10]. These processes are defined as follows. Let
ξ := (ξy, y ∈ Zd) and X := (Xk, k ≥ 1) be two independent sequences of independent identically distributed random
variables taking values in R and Zd respectively. The sequence ξ is called the random scenery. The sequence X is
the sequence of increments of the random walk (Sn,n ≥ 0) defined by S0 := 0 and Sn :=∑n

i=1 Xi , for n ≥ 1. The
random walk in random scenery Z is then defined by

Z0 := 0 and ∀n≥ 1, Zn :=
n−1∑
k=0

ξSk
.

Denoting by Nn(y) the local time of the random walk S:

Nn(y) := #{k = 0, . . . , n− 1: Sk = y},
it is straightforward to see that Zn can be rewritten as Zn =∑

y ξyNn(y).
As in [15], the distribution of ξ0 is assumed to belong to the normal domain of attraction of a strictly stable

distribution Sβ of index β ∈ (0,2], with characteristic function φ given by

φ(u)= e−|u|β(A1+iA2 sgn(u)), u ∈R,

where 0 < A1 <∞ and |A−1
1 A2| ≤ | tan(πβ/2)|. We will denote by ϕξ the characteristic function of the ξx ’s. When

β > 1, this implies that E[ξ0] = 0. When β = 1, we will further assume the symmetry condition

sup
t>0

∣∣E[ξ01{|ξ0|≤t}]
∣∣ <+∞. (1)

Under these conditions (for β ∈ (0;2]), there exists Cξ > 0 such that we have

∀t > 0, P
(|ξ0| ≥ t

)≤ Cξ t
−β. (2)

Concerning the random walk, the distribution of X1 is assumed to belong to the normal basin of attraction of a stable
distribution S ′

α with index α ∈ (0,2].
Then the following weak convergences hold in the space of càdlàg real-valued functions defined on [0,∞) and on

R respectively, endowed with the Skorohod J1-topology (see [2], Chapter 3):

(
n−1/αS	nt


)
t≥0

L�⇒
n→∞

(
U(t)

)
t≥0

and (
n−1/β

	nx
∑
k=0

ξke1

)
x≥0

L�⇒
n→∞

(
Y(x)

)
x≥0, with e1 = (1,0, . . . ,0) ∈ Zd ,

where U and Y are two independent Lévy processes such that U(0) = 0, Y(0) = 0, U(1) has distribution S ′
α , Y(1)

has distribution Sβ .

1.1. Functional limit theorem

Our first result is concerned with a limit theorem for (Z[nt])t≥0. Intuitively speaking,

• when α < d , the random walk Sn is transient, its range is of order n, and Zn has the same behaviour as a sum
of about n independent random variables with the same distribution as the variables ξx . It was proved in [5] that
for β = 2, n−1/β(Z[nt])t≥0 converges in distribution in the space D([0,∞)) of càdlàg functions endowed with
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the Skorohod J1-topology, to a multiple of the process (Yt ). The case β ∈ (0,2] was also mentioned in [15] (see
Remark 3). When β < 1 and the scenery is positive, a functional limit theorem in the space D([0,∞)) endowed
with the Skorohod M1-topology, is proved in [1] or [13];

• when α > d (i.e. d = 1 and 1 < α ≤ 2), the random walk Sn is recurrent, its range is of order n1/α , its local
times are of order n1−1/α , so that Zn is of order n1−1/α+1/(αβ). In this situation, [4] and [15] proved a functional
limit theorem for n−(1−1/α+1/(αβ))(Z[nt], t ≥ 0) in the space C([0,∞)) of continuous functions endowed with the
uniform topology, the limiting process being a self-similar process, but not a stable one;

• when α = d (i.e. α = d = 1 or α = d = 2), Sn is recurrent, its range is of order n/ log(n), its local times are of
order log(n) so that Zn is of order n1/β log(n)(β−1)/β . In this situation, a functional limit theorem in the space of
continuous functions was proved in [3] for d = α = β = 2, and in [10] for d = α = 1 and β = 2.

Our first result gives a limit theorem for α = d and for any value of β ∈ (0;2). We establish the convergence in the
sense of finite distributions, and prove that the convergence in distribution does not hold for the J1-topology when
β �= 2 but that the convergence in distribution holds for the M1-topology when β �= 1 (for technical reasons, our proof
does not apply when β = 1).

Theorem 1. Let β ∈ (0;2). We assume that the random walk is strongly aperiodic and that

(a) either d = 2 and X1 is centered, square integrable with invertible variance matrix Σ and then we define A :=
2
√

detΣ ;
(b) or d = 1 and ( Sn

n
)n converges in distribution to a random variable with characteristic function given by t �→

exp(−a|t |) with a > 0 and then we define A := a.

Then, the sequence of random variables((
Z[nt]

n1/β log(n)(β−1)/β

)
t∈[0,1]

)
n≥2

converges in the sense of finite distributions to the process

(
Ỹt :=

(
�(β + 1)

(πA)β−1

)1/β

Y (t)

)
t∈[0,1]

.

For β < 2, the convergence does not hold in D([0,1]) endowed with the J1-topology, but when β �= 1, the convergence
holds in D([0,1]) endowed with the M1-topology.

Remark 2. For d > α and β �= 1, the same proof as in Theorem 1 shows that the sequence (n−1/βZ[nt], t ∈ [0,1])
converges in (D([0,1],M1) to the process (E[Nβ−1∞ ]1/βY (t), t ∈ [0,1]), where N∞ is the total number of visits to 0
of a two-sided random walk (Sn,n ∈ Z) such that S0 = 0 and whose increments are distributed according to X1 (see
Remarks 6, 8, 9, 11 below).

1.2. Local limit theorem

Our next results concern a local limit theorem for (Zn)n. The d = 1 case was treated in [7] for α ∈ (0;2] \ {1} and all
values of β ∈ (0;2]. Here, we complete this study by proving a local limit theorem for α = d = 1 (and β ∈ (0;2]). By
a direct adaptation of the proof of this result, we also establish a local limit theorem for α = d = 2 (we just adapt the
definition of “peaks,” see Section 3.5). Let us notice that the same adaptation can be done from [7] (case α < 1) to get
local limit theorems for d ≥ 2, α < d and β ∈ (0;2].

We give two results corresponding respectively to the case when ξ0 is lattice and to the case when it is strongly
nonlattice. We denote by ϕξ the characteristic function of ξ0.

Theorem 3. Assume that ξ0 takes its values in Z. Let d0 ≥ 1 be the integer such that {u: |ϕξ (u)| = 1} = 2π
d0

Z. Let

bn := n1/β(log(n))(β−1)/β . Under the previous assumptions on the random walk and on the scenery, for α = d ∈ {1,2},
for every β ∈ (0,2], and for every x ∈R,
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• if P(nξ0 − 	bnx
 /∈ d0Z)= 1, then P(Zn = 	bnx
)= 0;
• if P(nξ0 − 	bnx
 ∈ d0Z)= 1, then

P
(
Zn = 	bnx


)= d0
C(x)

bn

+ o
(
b−1
n

)

uniformly in x ∈R, where C(·) is the density function of Ỹ1.

When ξ0 is strongly nonlattice, we establish the weak convergence of bnPZn to the Lebesgue measure on R (in the
sense of compact supported function, see Definition 10.2 of [6]). More precisely we state the following result.

Theorem 4. Assume now that ξ0 is strongly nonlattice which means that

lim sup
|u|→+∞

∣∣ϕξ (u)
∣∣ < 1.

We still assume that α = d ∈ {1,2} and β ∈ (0;2]. Then, for every compactly supported continuous function g : R→
C, we have

lim
n→+∞ sup

x∈R

∣∣∣∣bnE
[
g(Zn − bnx)

]−C(x)

∫
R

g(t)dt

∣∣∣∣= 0,

with bn := n1/β(log(n))(β−1)/β and where C(·) is the density function of Ỹ1.

2. Proof of the functional limit theorem

Before proving the theorem, we prove some technical lemmas. For any real number γ > 0, any integer m ≥ 1,
any θ1, . . . , θm ∈ R, any t0 = 0 < t1 < · · · < tm, we consider the sequences of random variables (Ln(γ ))n≥2 and
(L′n(γ ))n≥2 defined by

Ln(γ ) := 1

n(logn)γ−1

∑
x∈Zd

∣∣∣∣∣
m∑

i=1

θi

(
N[nti ](x)−N[nti−1](x)

)∣∣∣∣∣
γ

and

L′n(γ ) := 1

n(logn)γ−1

∑
x∈Zd

∣∣∣∣∣
m∑

i=1

θi

(
N[nti ](x)−N[nti−1](x)

)∣∣∣∣∣
γ

sgn

(
m∑

i=1

θi

(
N[nti ](x)−N[nti−1](x)

))
.

Lemma 5. For any real number γ > 0, any integer m ≥ 1, any θ1, . . . , θm ∈ R, any t0 = 0 < t1 < · · · < tm, the
following convergences hold P-almost surely

lim
n→+∞Ln(γ )= �(γ + 1)

(πA)γ−1

m∑
i=1

|θi |γ (ti − ti−1) (3)

and

lim
n→+∞L′n(γ )= �(γ + 1)

(πA)γ−1

m∑
i=1

|θi |γ sgn(θi)(ti − ti−1). (4)
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Proof. We fix an integer m ≥ 1 and 2m real numbers θ1, . . . , θm, t1, . . . , tm such that 0 < t1 < · · · < tm and we set
t0 := 0. To simplify notations, we write di,n(x) :=N[nti ](x)−N[nti−1](x). Following the techniques developed in [8],
we first have to prove (3) and (4) for integer γ : for every integer k ≥ 1, P-almost surely, as n goes to infinity, we have

1

n(logn)k−1

∑
x∈Zd

(
m∑

i=1

θidi,n(x)

)k

−→ �(k + 1)

(πA)k−1

m∑
i=1

θk
i (ti − ti−1). (5)

Let us assume (5) for a while, and let us end the proof of (3) and (4) for any positive real γ . Given the random walk
S := (Sn)n, let (Un)n≥1 be a sequence of random variables with values in Zd , such that for all n, Un is a point chosen
uniformly in the range of the random walk up to time [ntm], that is

P(Un = x|S)=R−1
[ntm]1{N[ntm](x)≥1},

with Rk := #{y: Nk(y) > 0}. Moreover, let U ′ be a random variable with values in {1, . . . ,m} and distribution

P
(
U ′ = i

)= (ti − ti−1)/tm

and let T be a random variable with exponential distribution with parameter one and independent of U ′.
Then, for P-almost every realization of the random walk S, the sequence of random variables(

Wn := πA

log(n)

m∑
i=1

θidi,n(Un)

)
n

converges in distribution to the random variable W := θU ′T . Indeed, the moment of order k of Wn given S is

E
(
Wk

n |S
)= (πA)k

n(logn)k−1

∑
x∈Zd

(
m∑

i=1

θidi,n(x)

)k
n

log(n)R([ntm]) .

Using (5) and the fact that ((logn)Rn/n)n converges almost surely to πA (see [11,17]), the moments E(Wk
n |S)

converges a.s. to E(Wk)= �(k+1)
∑m

i=1 θk
i (ti− ti−1)/tm. This proves the convergence of the conditional distribution

of (Wn)n given S to W , since the distribution of W is identified by its moments (thanks to the Carleman condition).
This ensures, in particular, the convergence in distribution of (|Wn|γ )n and of (|Wn|γ sgn(Wn))n (given S) to |W |γ
and |W |γ sgn(W) respectively (for every real number γ ≥ 0 and for P-almost every realization of the random walk
S). Since, conditional on S, any moment of |Wn| can be bounded from above by an integer moment, we deduce that,
for any γ ≥ 0, we have P-almost surely

lim
n→+∞E

(|Wn|γ
∣∣S)= E

(|W |γ )
and lim

n→+∞E
(|Wn|γ sgn(Wn)

∣∣S)= E
(|W |γ sgn(W)

)
,

which proves Lemma 5.
Let us prove (5). Let k ≥ 1. According to Theorem 1 in [8] (proved for α = d = 2, but also valid for α = d = 1; see

Appendix for additional comments on the proof of this theorem), we have

∀i ∈ {1, . . . ,m}, lim
n→+∞

1

n(logn)k−1

∑
x∈Zd

(
di,n(x)

)k = �(k + 1)

(πA)k−1
(ti − ti−1), P-a.s. (6)

We define

Σn(θ1, . . . , θm) :=
∑
x∈Zd

(
m∑

i=1

θidi,n(x)

)k

−
∑
x∈Zd

m∑
i=1

(θi)
k
(
di,n(x)

)k
. (7)
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According to (6), it is enough to prove that P-a.s., Σn(θ1, . . . , θm)= o(n(logn)k−1). We observe that Σn(θ1, . . . , θm)

is the sum of the following terms

∑
x∈Zd

k∏
j=1

(
θij dij ,n(x)

)
(8)

over all the k-tuple (i1, . . . , ik) ∈ {1, . . . ,m}k , with at least two distinct indices. We observe that∣∣Σn(θ1, . . . , θm)
∣∣≤max

(|θ1|, . . . , |θm|
)k

Σn(1, . . . ,1).

But, we have

Σn(1, . . . ,1) =
∑
x∈Zd

(
N[ntm](x)

)k −
∑
x∈Zd

m∑
i=1

(
di,n(x)

)k

=
∑
x∈Zd

(
N[ntm](x)

)k −
m∑

i=1

∑
x∈Zd

(
di,n(x)

)k = o
(
n log(n)k−1),

according to (6). �

Remark 6. Case d > α.
In this case, Rn/n converges a.s. to p = P[Sk �= 0 for any k ≥ 1] (cf. [21]), and for all real number k ≥ 0,

1
n

∑
x∈Zd Nk

n(x) converges a.s. to E[Nk−1∞ ] (see Remark 2 for a definition of N∞ and the introduction of [15]
for a proof of this fact). Setting Wn = ∑m

j=1 θj dj,n(Un), it follows that for all integer k ≥ 1 E[Wk
n |S] tends to

EQ[(θU ′N∞)k], where Q is the probability on the random walk’s paths space, whose density w.r.t. the random walk’s
law P is given by dQ/dP= 1/(pN∞). This leads to the following two facts: for any real number γ > 0, any integer
m≥ 1, any θ1, . . . , θm ∈R, any t0 = 0 < t1 < · · ·< tm, the following convergences hold P-almost surely

lim
n→+∞

1

n

∑
x∈Zd

∣∣∣∣∣
m∑

i=1

θi(N[nti ] −N[nti−1])
∣∣∣∣∣
γ

= E
[
N

γ−1∞
] m∑

i=1

|θi |γ (ti − ti−1) (9)

and

lim
n→+∞

1

n

∑
x∈Zd

∣∣∣∣∣
m∑

i=1

θi(N[nti ] −N[nti−1])
∣∣∣∣∣
γ

sgn

(
m∑

i=1

θi(N[nti ] −N[ntj−1])
)

= E
[
N

γ−1∞
] m∑

i=1

|θi |γ sgn(θi)(ti − ti−1). (10)

Lemma 7. For any ρ > 0,

sup
x∈Zd

Nn(x)= o
(
nρ

)
a.s.

Proof. See Lemma 2.5 in [3]. �

Proof of Theorem 1. Convergence of the finite-dimensional distributions.
Let an integer m ≥ 1 and 2m real numbers θ1, . . . , θm, t1, . . . , tm such that 0 < t1 < · · ·< tm ≤ 1. We set t0 := 0,

Again, we use the notation di,n(x) :=N[nti ](x)−N[nti−1](x), and set

bn = n1/β
(
log(n)

)(β−1)/β
, Z̄n := 1

bn

m∑
i=1

θi(Z[nti ] −Z[nti−1]).
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We have to prove that

E
[
eiZ̄n

]→ m∏
i=1

φ

(
θi(ti − ti−1)

1/β

(
�(β + 1)

(πA)β−1

)1/β)
, (11)

as n goes to infinity. We observe that Z̄n = 1
bn

∑
x∈Zd

∑m
i=1 θidi,n(x)ξx . Hence we have

E
[
eiZ̄n |S]= ∏

x∈Zd

ϕξ

(∑m
i=1 θidi,n(x)

bn

)
.

Observe next that∣∣ϕξ (t)− exp
(−|t |β(

A1 + iA2 sgn(t)
))∣∣≤ |t |βh

(|t |) for all t ∈R,

with h a continuous and monotone function on [0,+∞) vanishing in 0. According to Lemma 7, P-almost surely, for
every n large enough, we have

Dn := sup
x

|∑m
i=1 θidi,n(x)|

bn

≤mmax
(|θi |

) supx Nn(x)

bn

≤ ε0

and so∣∣∣∣E[
eiZ̄n |S]− ∏

x∈Zd

e−(|∑m
i=1 θidi,n(x)|β/b

β
n )(A1+iA2 sgn(

∑m
i=1 θidi,n(x)))

∣∣∣∣
is less than

∑
x∈Zd

|∑m
i=1 θibi,n(x)|β

b
β
n

h(Bn). Hence, according to Lemmas 5 and 7, P-almost surely, we have

lim
n→+∞E

[
eiZ̄n |S]= e−(�(β+1)/(πA)β−1)

∑m
i=1 |θi |β (ti−ti−1)(A1+iA2 sgn(θi ))

which gives (11) thanks to the Lebesgue dominated convergence theorem.

Remark 8. Case d > α.
The proof is exactly the same with bn = n1/β .

Study of the tightness.
When β = 2, the sequence is known to be tight for the J1 (so also M1) topology (see [3]). For β < 2, we prove

that the sequence (
Z[nt]
bn

)t∈[0;1] is not tight in (D([0,1]), J1). To this aim, let (Zn(t), t ∈ [0,1]) denote the linear
interpolation of (Z[nt], t ∈ [0,1]), i.e.

Zn(t)=Z[nt] +
(
nt − [nt])ξS[nt] .

Then, ∀ε > 0,

P

[
sup

t∈[0,1]

∣∣Zn(t)−Z[nt]
∣∣≥ εbn

]
= P

[
n−1
max
i=0

|ξSi
| ≥ εbn

]

= P
[∃x ∈ {S0, . . . , Sn−1} s.t. |ξx | ≥ εbn

]
≤ E

(
#{S0, . . . , Sn−1}

)
P
[|ξ0| ≥ εbn

]
≤ C

n

log(n)
ε−βb−β

n = Cε−β log(n)−β,
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where the last inequality comes from (2) and Theorem 6.9 of [17]. Therefore, if ((
Z[nt]
bn

)t∈[0;1])n≥2 converges in dis-

tribution in (D([0,1]), J1) to (Ỹt )t∈[0,1], the same is true for ((
Zn(t)
bn

)t∈[0;1])n≥2 which implies that (
Zn(t)
bn

)t∈[0;1] con-

verges in distribution in C([0,1]), and that the limiting process (Ỹt )t∈[0,1] is therefore continuous, which is false as
soon as β < 2.

M1-tightness for β > 1.
Set Z̃n(t) = Z[nt]

bn
, and let us prove the tightness of the sequence (Z̃n)n in D([0,1]) for the M1-topology when

β > 1. For any y1, y2 and y3 real, let us denote ‖y2−[y1, y3]‖ = inft∈[y1,y3] |y2− t |. For any function z= (z(t))t∈[0,1]
in D([0,1]), we define

ω(z, δ)= sup
t∈[0,1]

sup
{∥∥z(t2)−

[
z(t1), z(t3)

]∥∥: (t − δ)∨ 0≤ t1 < t2 < t3 ≤ (t + δ)∧ 1
}
.

From Skorohod criteria (see [22] or [23], Chapter 12) it is enough to prove that for every ε > 0,

lim
k→+∞ lim sup

n→+∞
P

[
ω

(
Z̃n,

1

k

)
> ε

]
= 0. (12)

The proof is based on two distinct results: the first one by Louhichi and Rio in [19] where they prove that in the case of
a sum of associated random variables, the above M1-tightness criteria can be deduced from a maximal inequality for
the sum; the second one by Louhichi in [18] where a maximal inequality for the sum of associated random variables
without moment conditions (not necessarily stationary) is proved. Let us give the details. Since the sequence (ξSk

)k≥0
is stationary, we have for every k ≥ 3,

P

[
ω

(
Z̃n,

1

k

)
> ε

]
≤ (k − 2)P

[
sup

0≤n1<n2<n3≤1+	3n/k

∥∥Zn2 − [Zn1 ,Zn3 ]

∥∥ > εbn

]
.

Conditionally to the random walk S = (Sn)n≥0, the sequence of random variables (ξSk
)k≥0 is associated, therefore by

applying inequality (3) in [19], we have

P

[
ω

(
Z̃n,

1

k

)
> ε

]
≤ (k − 2)E

[
P

(
max

0≤j≤1+	3n/k

|Zj |> εbn

2

∣∣∣S)2]
. (13)

Now let us apply Lemma 1 in [18] to the random variables X = |ξ0| and Xi = ξSi
, i ≥ 0, conditionally to the random

walk. For any sequence of positive reals (b̃n)n, there exist some constant C > 0 depending on ε (the value of C may
change from line to line in the following inequalities) s.t.

P

(
max

0≤j≤1+	3n/k

Zj >

εbn

2

∣∣∣S)
≤ C

{
(1+ 	3n/k
)

b2
n

E
[
ξ2

0 1{|ξ0|≤b̃n}
]+ (1+ 	3n/k
)

bn

E
[|ξ0|1{|ξ0|>b̃n}

]

+
(

1+
⌊

3n

k

⌋)(
b̃n

bn

)2

P
[|ξ0|> b̃n

]+ 1

b2
n

∑
0≤i<j≤1+	3n/k


Gij (b̃n)

}
,

where, in our setting, if we denote for v ∈R+ by gv the function (u∧ v)∨ (−v),

Gij (v) := E
[
gv(ξSi

)gv(ξSj
)|S]−E

[
gv(ξSi

)|S]
E

[
gv(ξSj

)|S]
≤ E

[
gv(ξSi

)2|S]
1{Si=Sj } = E

[
gv(ξ0)

2]1{Si=Sj }.

The same reasoning holds for the sequence (−ξSi
)i≥0, which is also associated, then since the function gv is odd, we

deduce, by denoting In :=∑n−1
i,j=0 1{Si=Sj }, the following maximal inequality

P

[
max

0≤j≤1+	3n/k

|Zj |> εbn

2

∣∣∣S]
≤ C

{
(1+ 	3n/k
)

b2
n

E
[
ξ2

0 1{|ξ0|≤b̃n}
]+ (1+ 	3n/k
)

bn

E
[|ξ0|1{|ξ0|>b̃n}

]

+
(

1+
⌊

3n

k

⌋)(
b̃n

bn

)2

P
[|ξ0|> b̃n

]+ I1+	3n/k

b2
n

E
[
g

b̃n
(ξ0)

2]}.
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Since for every x, y ∈R+, (x + y)2 ≤ 2(x2 + y2), we get

E

[
P

(
max

0≤j≤1+	3n/k

|Zj |> εbn

2

∣∣∣S)2]
≤ C

4∑
i=1

Σi(n, k), (14)

where

Σ1(n, k)= (1+ 	3n/k
)2

b4
n

E
[
ξ2

0 1{|ξ0|≤b̃n}
]2

,

Σ2(n, k)= (1+ 	3n/k
)2

b2
n

E
[|ξ0|1{|ξ0|>b̃n}

]2
,

Σ3(n, k)=
(

1+
⌊

3n

k

⌋)2(
b̃n

bn

)4

P
[|ξ0|> b̃n

]2
,

Σ4(n, k)= E(I 2
1+	3n/k
)
b4
n

E
[
g

b̃n
(ξ0)

2]2
.

Note that E[ξ2
0 1{|ξ0|≤b̃n}] � b̃

2−β
n , E[|ξ0|1{|ξ0|>b̃n}] � b̃

1−β
n for β < 1, and E[g

b̃n
(ξ0)

2] � b̃
2−β
n . Therefore, by choosing

b̃n = ( n
log(n)

)1/β , we deduce that for i = 1,3,

lim sup
n→+∞

Σi(n, k)= 0, (15)

and (recall that E(I 2
n )= O((n log(n))2)) for i = 2,4, there exist two constants Ci > 0 s.t.

lim sup
n→+∞

Σi(n, k)≤ Ci

k2
. (16)

Therefore, by combining (13), (14), (15) and (16), there exists some constant C > 0 s.t.

lim sup
n→+∞

P

[
ω

(
Z̃n,

1

k

)
> ε

]
≤ C

k

then (12) follows.

Remark 9. Case d > α and β > 1.
It is easy to see that for d > α, E(I 2

n )=O(n2). Taking b̃n = bn = n1/β , the same proof leads to lim supn→∞Σi(n,

k)≤ Ci/k2 for every i ∈ {1, . . . ,4}, and to the tightness in M1-topology.

M1-tightness for β < 1.
For β < 1, to get a control of the oscillation, we write ξx = ξ+x − ξ−x to obtain the decomposition Z̃n = Z̃+

n − Z̃−
n ,

where Z̃+
n (t) := 1

bn
Z+
[nt], and Z+

n is the random walk in the random scenery (ξ+x , x ∈ Zd):

Z+
n =

n−1∑
k=0

ξ+Sk
=

∑
x∈Zd

ξ+x Nn(x).

Z̃−
n is defined in the same way as Z̃+

n using the negative part of the scenery. Since the processes Z̃−
n , Z̃+

n are increasing,
for any δ > 0, ω(Z̃−

n , δ) = ω(Z̃+
n , δ) = 0. Assume for a while that Z̃−

n (1) and Z̃+
n (1) both converge in distribution

(this is false for β ≥ 1 due to centering term). It follows that the processes Z̃−
n and Z̃+

n are tight in M1-topology. To
get the tightness of their difference Z̃n, we have then to prove that the limiting processes of Z̃−

n and Z̃+
n do not have

common discontinuity points (see Corollary 12.7.1 in [23]). This is the case if these two processes are independent.
Therefore, all that remains to prove is the following lemma. �
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Lemma 10. Let an integer m ≥ 1 and 3m real numbers θ1, . . . , θm, γ1, . . . , γm, t1, . . . , tm such that 0 < t1 < · · · <
tm ≤ 1. We set t0 := 0. Then

lim
n→∞E

[
exp

(
i

m∑
j=1

(
θj

(
Z̃+

n (tj )− Z̃+
n (tj−1)

)+ γj

(
Z̃−

n (tj )− Z̃−
n (tj−1)

)))]

=
m∏

j=1

φ1
(
θj (tj − tj−1)

1/β
)
φ2

(
γj (tj − tj−1)

1/β
)
,

where φ1 and φ2 are characteristic functions of positive β-stable laws.

Proof. We use the notation

di,n(x) :=N[nti ](x)−N[nti−1](x), dn(x) := (
d1,n(x), . . . , dm,n(x)

)
.

Observe that

m∑
j=1

(
θj

(
Z̃+

n (tj )− Z̃+
n (tj−1)

)+ γj

(
Z̃−

n (tj )− Z̃−
n (tj−1)

))= 1

bn

∑
x∈Zd

ξ+x
〈
θ;dn(x)

〉+ ξ−x
〈
γ ;dn(x)

〉
.

Therefore

E

[
exp

(
i

m∑
j=1

(
θj

(
Z̃+

n (tj )− Z̃+
n (tj−1)

)+ γj

(
Z̃−

n (tj )− Z̃−
n (tj−1)

)))∣∣∣S
]

=
∏

x∈Zd

E

[
exp

(
i

(
ξ+x
〈θ;dn(x)〉

bn

+ ξ−x
〈γ ;dn(x)〉

bn

))∣∣∣S]
.

Note that for any real s, t , E[exp(i(tξ+0 + sξ−0 ))] = ϕξ+(t) + ϕξ−(s) − 1. Since ξ is in the domain of attraction of
Sβ , the tails of the variables ξ+ and ξ− satisfy P[ξ+ ≥ t] � pP[|ξ | ≥ t], P[ξ− ≥ t] � (1 − p)P[|ξ | ≥ t] for some
p ∈ [0,1]. Thus, ξ+ and ξ− belong to the domain of attraction of positive stable laws with index β whose characteris-
tic functions are denoted by φ+ and φ−. Since β < 1, it follows (see Theorem 2, p. 448 in [12]) that 1

nβ

∑n
j=1 ξ+j con-

verges to a β stable random variable with characteristic function φ+. Therefore, we get |ϕξ+(t)− φ+(t)| ≤ |t |βh+(|t |)
for some increasing continuous function h+ such that h+(0)= 0. The analogous statement is true for ϕξ− . Hence, for
any real numbers s, t∣∣ϕξ+(t)+ ϕξ−(s)− 1− φ+(t)φ−(s)

∣∣
≤ ∣∣ϕξ+(t)− φ+(t)

∣∣+ ∣∣ϕξ−(s)− φ−(s)
∣∣+ ∣∣(φ+(t)− 1

)(
φ−(s)− 1

)∣∣
≤ |t |βh+

(|t |)+ |s|βh−
(|s|)+C|s|β |t |β.

Note also that |〈θ;dn(x)〉| ≤mmax(|θi |)Nn(x). It follows that∣∣∣∣E[
ei(

∑m
j=1(θj (Z̃+n (tj )−Z̃+n (tj−1))+γj (Z̃−n (tj )−Z̃−n (tj−1))))|S]−∏

x

φ+
( 〈θ, dn(x)〉

bn

)
φ−

( 〈γ, dn(x)〉
bn

)∣∣∣∣
≤

∑
x

∣∣∣∣ϕξ+
( 〈θ, dn(x)〉

bn

)
+ ϕξ−

( 〈γ, dn(x)〉
bn

)
− 1− φ+

( 〈θ, dn(x)〉
bn

)
φ−

( 〈γ, dn(x)〉
bn

)∣∣∣∣
≤ Cβ,γ,θ

∑
x N

β
n (x)

b
β
n

[
h+

(
m‖θ‖N∗

n

bn

)
+ h−

(
m‖γ ‖N∗

n

bn

)
+

(
N∗

n

bn

)β]
,
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where N∗
n = supx Nn(x) and ‖θ‖ = max(|θi |). Using Lemmas 5 and 7, the above quantity tends to 0 almost surely.

Now, φ+ and φ− get the same form as φ (with A2/A1 =− tan(πβ/2)). And as in the proof of the convergence o the
finite-dimensional distributions, we get that almost surely

lim
n→+∞

∏
x

φ+
( 〈θ;dn(x)〉

bn

)
=

m∏
j=1

φ+
(

θj (tj − tj−1)
1/β�(β + 1)1/β

(πA)(β−1)/β

)
.

The same is true for
∏

x φ−(
〈γ ;dn(x)〉

bn
). �

Remark 11. Case d > α and β < 1.
The proof is exactly the same using (9) and (10).

3. Proof of the local limit theorem in the lattice case

3.1. The event Ωn

Set

N∗
n := sup

y
Nn(y) and Rn := #

{
y: Nn(y) > 0

}
.

We also define, for every n≥ 1,

Vn :=
n−1∑
i,j=0

Nn(x)β.

Lemma 12. For every n≥ 1 and 1 > γ > 0, set

Ωn =Ωn(γ ) :=
{
Rn ≤ n

(log log(n))1/4
and N∗

n ≤ nγ

}
.

Then, P(Ωn)= 1− o(b−1
n ). Moreover, the following also holds on Ωn:

(
log log(n)

)1/4 ≤N∗
n and Vn ≥ n1−γ (1−β)+ . (17)

Proof. We first prove that

P
(
Rn ≥ n

(
log log(n)

)−1/4)= o
(
b−1
n

)
. (18)

Let us recall that for every a, b ∈N, we have

P(Rn ≥ a + b)≤ P(Rn ≥ a)P(Rn ≥ b). (19)

The proof is given for instance in [9]. We will moreover use the fact that E[Rn] ∼ cn(log(n))−1 and Var(Rn) =
O(n2 log−4(n)) (see [17]). Hence, for n large enough, there exists C > 0 such that we have

P

(
Rn ≥ n

(log log(n))1/4

)
≤ P

(
Rn ≥

⌊
n(log log(n))1/4

log(n)

⌋)	log(n)(log log(n))−1/2


≤ P

(∣∣Rn −E[Rn]
∣∣≥ 1

2

⌊
n(log log(n))1/4

log(n)

⌋)	log(n)(log log(n))−1/2
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≤
(

5 Var(Rn) log2(n)

n2(log log(n))1/2

)	log(n)(log log(n))−1/2


≤
(

Cn2 log2(n)/ log4(n)

n2
√

log log(n)

)	log(n)(log log(n))−1/2


≤
(

C

(log(n))2

)	log(n)(log log(n))−1/2


= exp

(
− log(n)

√
log log(n)

(
1− log(C)

2 log log(n)

))
.

This ends the proof of (18).
Let us now prove that

P
[
N∗

n ≥ nγ
]= o

(
b−1
n

)
. (20)

We have

P
(
N∗

n ≥ nγ
) ≤ ∑

x

P
(
Nn(x)≥ nγ

)

=
∑
x

P
(
Tx ≤ n;Nn(x)≥ nγ

)
, where Tx := inf{n > 1, s.t. Sn = x},

≤
∑
x

P(Tx ≤ n)P
(
Nn(0)≥ nγ

)
≤ E[Rn]P(T0 ≤ n)n

γ

.

Hence, (20) follows now from E[Rn] ∼ cn(log(n))−1, and from P(T0 > n)∼ C/ log(n).
Since n=∑

y Nn(y)≤RnN
∗
n , we get that N∗

n ≥ n
Rn
≥ (log log(n))1/4 on Ωn.

To prove the lower bound for Vn, note that, for β ≥ 1, Vn =∑
y Nn(y)β ≥∑

y Nn(y)= n. For β < 1, on Ωn, we
have

n=
∑
y

Nn(y)=
∑
y

Nn(y)βNn(y)1−β ≤ Vn

(
N∗

n

)1−β ≤ Vnn
γ (1−β).

�

3.2. Scheme of the proof

It is easy to see (cf. the proof of Lemma 5 in [7]) that P(Zn = 	bnx
) = 0 if P(nξ0 − 	bnx
 /∈ d0Z) = 1, and that if
P(nξ0 − 	bnx
 ∈ d0Z)= 1,

P
(
Zn = 	bnx


)= d0

2π

∫ π/d0

−π/d0

e−it	bnx
E
[∏

y

ϕξ

(
tNn(y)

)]
dt.

In view of Lemma 12, we have to estimate

d0

2π

∫ π/d0

−π/d0

e−it	bnx
E
[∏

y

ϕξ

(
tNn(y)

)
1Ωn

]
dt.

This is done in several steps presented in the following propositions.
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Proposition 13. Let γ ∈ (0,1/(β + 1)) and δ ∈ (0,1/(2β)) s.t. γ
(1−β)+

β
< δ < 1/β − γ . Then, we have

d0

2π

∫
{|t |≤nδ/bn}

e−it	bnx
E
[∏

y

ϕξ

(
tNn(y)

)
1Ωn

]
dt = d0

C(x)

bn

+ o
(
b−1
n

)
,

uniformly in x ∈R.

Recall next that the characteristic function φ of the limit distribution of (n−1/β
∑n

k=1 ξke1)n has the following form:

φ(u)= e−|u|β(A1+iA2 sgn(u)),

with 0 < A1 <∞ and |A−1
1 A2| ≤ | tan(πβ/2)|. It follows that the characteristic function ϕξ of ξ0 satisfies:

1− ϕξ (u)∼ |u|β(
A1 + iA2 sgn(u)

)
when u→ 0. (21)

Therefore there exist constants ε0 > 0 and σ > 0 such that

max
(∣∣φ(u)

∣∣, ∣∣ϕξ (u)
∣∣)≤ exp

(−σ |u|β)
for all u ∈ [−ε0, ε0]. (22)

Since ϕξ (t)= ϕξ (−t) for every t ≥ 0, the following propositions achieve the proof of Theorem 3:

Proposition 14. Let δ and γ be as in Proposition 13. Then there exists c > 0 such that

∫ ε0n
−γ

nδ/bn

E

[∏
y

∣∣ϕξ

(
tNn(y)

)∣∣1Ωn

]
dt = o

(
e−nc)

.

Proposition 15. There exists c > 0 such that∫ π/d0

ε0n
−γ

E

[∏
y

∣∣ϕξ

(
tNn(y)

)∣∣1Ωn

]
dt = o

(
e−nc)

.

3.3. Proof of Proposition 13

Remember that Vn =∑
z∈Zd N

β
n (z). We start by a preliminary lemma.

Lemma 16. (1) If β > 1, supn E[( n log(n)β−1

Vn
)1/(β−1)]<+∞.

(2) If β ≤ 1, ∀p ∈N, supn E[( n log(n)β−1

Vn
)p]<+∞.

Proof. For β > 1, using Hölder’s inequality with p = β , we get

n=
∑
x

Nn(x)≤ V
1/β
n R

(β−1)/β
n

which means that(
n log(n)β−1

Vn

)1/(β−1)

≤ log(n)Rn

n
.

But it is proved in [17], Eq. (7.a), that E[Rn] = O(n/ log(n)). The result follows.
The result is obvious for β = 1. For β < 1, Hölder’s inequality with p = 2− β yields

n=
∑
x

N
β/(2−β)
n (x)N

2(1−β)/(2−β)
n (x)≤ V

1/(2−β)
n

(∑
x

N2
n(x)

)(1−β)/(2−β)
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and so

n log(n)β−1

Vn

≤
(∑

x N2
n(x)

n log(n)

)1−β

.

It is therefore enough to prove that there exists c > 0 such that

sup
n

E

[
exp

(
c

∑
x N2

n(x)

n log(n)

)]
<∞. (23)

Note that
∑

x N2
n(x)=∑n−1

k=0 Nn(Sk). By Jensen’s inequality, we get thus

E

[
exp

(
c

∑
x N2

n(x)

n log(n)

)]
≤ 1

n

n−1∑
k=0

E

[
exp

(
c
Nn(Sk)

log(n)

)]
.

Observe now that Nn(Sk)=∑k
j=0 1{Sk−Sj=0} +∑n−1

j=k+1 1{Sj−Sk=0}
(d)= Nk+1(0)+N ′

n−k(0)− 1, where (N ′
n(x), n ∈

N, x ∈ Zd) is an independent copy of (Nn(x), n ∈N, x ∈ Zd). Hence,

E

[
exp

(
c

∑
x N2

n(x)

n log(n)

)]
≤ E

[
exp

(
c
Nn(0)

log(n)

)]2

.

But, ∀t > 0,

P
(
Nn(0)≥ t log(n)

)≤ P(T0 ≤ n)�t log(n)�

and

E

[
exp

(
c
Nn(0)

log(n)

)]
≤ 1+

∫ ∞

0
c exp(ct) exp

(−⌈
t log(n)

⌉
P(T0 > n)

)
dt.

Now (23) follows then from the fact that ∃C > 0 such that P(T0 > n)∼ C/ log(n) for any integer n≥ 1. �

The next step is

Lemma 17. Under the hypotheses of Proposition 13, we have∫
{|t |≤nδ/bn}

e−it	bnx
E
[{∏

y

ϕξ

(
tNn(y)

)− e−|t |β(A1+iA2 sgn(t))Vn

}
1Ωn

]
dt = o

(
b−1
n

)
,

uniformly in x ∈R.

Proof. Let

En(t) :=
∏
y

ϕξ

(
tNn(y)

)−∏
y

exp
(−|t |βNβ

n (y)
(
A1 + iA2 sgn(t)

))
.

Since γ + δ < β−1, we get, on Ωn and if |t | ≤ nδb−1
n

∣∣En(t)
∣∣≤∑

y

∣∣ϕξ

(
tNn(y)

)− exp
(−|t |βNβ

n (y)
(
A1 + iA2 sgn(t)

))∣∣ exp

(
−σ |t |β

∑
z �=y

Nβ
n (z)

)

for n large enough. Observe next that (21) implies∣∣ϕξ (u)− exp
(−|u|β(

A1 + iA2 sgn(u)
))∣∣≤ |u|βh

(|u|) for all u ∈R,
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with h a continuous and monotone function on [0,+∞) vanishing at 0. Therefore we get

∣∣En(t)
∣∣≤ |t |βh

(
nγ+δb−1

n

)∑
y

Nβ
n (y) exp

(
−σ |t |β

∑
z �=y

Nβ
n (z)

)
.

Now, according to (17) and since γ < 1
β+1 ≤ 1

β+(1−β)+ , if n is large enough, we have on Ωn

∑
z �=y

Nβ
n (z)≥ Vn/2 for all y ∈ Z.

By using this and the change of variables v = tV
1/β
n , we get∫

{|t |≤nδb−1
n }

E
[∣∣En(t)

∣∣1Ωn

]
dt ≤ h

(
nγ+δb−1

n

)
E

[
V
−1/β
n

] ∫
R

|v|β exp
(−σ |v|β/2

)
dv = o

(
E

[
V
−1/β
n

])
,

which proves the result according to Lemma 16. �

Finally Proposition 13 follows from the

Lemma 18. Under the hypotheses of Proposition 13, we have

d0

2π

∫
{|t |≤nδb−1

n }
e−it	bnx
E

[
e−|t |βVn(A1+iA2 sgn(t))1Ωn

]
dt = d0

C(x)

bn

+ o
(
b−1
n

)
,

uniformly in x ∈R.

Proof. Set

In,x :=
∫
{|t |≤nδb−1

n }
e−it	bnx
e−|t |βVn(A1+iA2 sgn(t)) dt =

∫
{|t |≤nδb−1

n }
e−it	bnx
φ

(
tV

1/β
n

)
dt.

Since |	bnx
 − bnx| ≤ 1 and δ < (2β)−1, we have

In,x =
∫
{|t |≤nδb−1

n }
e−itbnxφ

(
tV

1/β
n

)
dt + o

(
b−1
n

)
.

Next, with the change of variable v = tbn, we get:∫
{|t |≤nδb−1

n }
e−itbnxφ

(
tV

1/β
n

)
dt = b−1

n

{
V
−1/β
n bnf

(
xV

−1/β
n bn

)− Jn,x

}
, (24)

where f is the density function of the distribution with characteristic function φ and where

Jn,x :=
∫
{|v|≥nδ}

e−ivxφ
(
vb−1

n V
1/β
n

)
dv.

By Lemma 5 (applied with m = 1, t1 = θ1 = 1, γ = β), (Wn := bnV
−1/β
n )n converges almost surely, as n →∞,

to the constant �(β + 1)−1/β(πA)1−1/β . Moreover, Lemma 16 ensures that the sequence (Wn,n ≥ 1) is uniformly
integrable, so actually the convergence holds in L1. From which we conclude that

E
[
Wnf (xWn)

]= E
[
Wf (xW)

]+ o(1)= C(x)+ o(1),

uniformly in x.
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In view of (24), it only remains to prove that E[Jn,x1Ωn] = o(1) uniformly in x. But this follows from the basic
inequality

E
[|Jn,x1Ωn |

]≤ ∫
{|v|≥nδ}

E
[
e−A1|v|βVn/b

β
n 1Ωn

]
dv,

and from the lower bound for Vn given in (17) and from the choice δ > γ (1− β)+/β . �

3.4. Proof of Proposition 14

Recall that on Ωn, Nn(y)≤ nγ , for all y ∈ Zd . Hence by (22),

Kn :=
∫ ε0n

−γ

nδ/bn

E

[∏
y

∣∣ϕξ

(
tNn(y)

)∣∣1Ωn

]
dt ≤

∫ ε0n
−γ

nδ/bn

E
[
exp

(−σ tβVn

)
1Ωn

]
dt.

With the change of variable s = tV
1/β
n , we get

Kn ≤ E

[
V
−1/β
n

∫ ε0n
−γ V

1/β
n

nδV
1/β
n b−1

n

exp
(−σsβ

)
ds1Ωn

]

≤ 1

n1/β−γ (1−β)+/β

∫ +∞

nδ−γ (1−β)+/β log(n)(1−β)/β

exp
(−σsβ

)
ds,

which proves the proposition since δ > γ (1− β)+/β .

3.5. Proof of Proposition 15

We adapt the proof of [7], Proposition 10. We will see that the argument of “peaks” still works here. We endow Zd

with the ordered structure given by the relation < defined by

(α1, . . . , αd) < (β1, . . . , βd)↔∃i ∈ {1, . . . , d}, αi < βi,∀j < i,αj = βj .

We consider C+ = (x1, . . . , xT ) ∈ (Zd \ {0})T for some positive integer T such that:

• x1 + · · · + xT = 0;
• for every i = 1, . . . , T , P(X1 = xi) > 0;
• there exists I1 ∈ {1, . . . , T } such that

– for every i = 1, . . . , I1, xi > 0,
– for every i = I1 + 1, . . . , T , xi < 0.

Let us write C− := (xT−i+1)i=1,...,T . We define B :=∑I1
i=1 xi . We observe that

p := P
(
(X1, . . . ,XT )= C+

)= P
(
(X1, . . . ,XT )= C−

)
> 0.

We notice that (X1, . . . ,XT ) = C+ corresponds to a trajectory visiting B only once before going back to the origin
at time T (and without visiting −B). Analogously, (X1, . . . ,XT )= C− corresponds to a trajectory that goes down to
−B and comes back up to 0 (and without visiting B), and staying at a distance smaller than d̃/2 of the origin with
d̃ :=∑T

i=1 |xi | (where | · | is the absolute value if d = 1 and |(a, b)| =max(|a|, |b|) if d = 2). We introduce now the
event

Dn :=
{
Cn >

np

2T

}
,

where

Cn := #

{
k = 0, . . . ,

⌊
n

T

⌋
− 1: (XkT+1, . . . ,X(k+1)T )= C±

}
.
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Since the sequences (XkT+1, . . . ,X(k+1)T ), for k ≥ 0, are independent of each other, Chernoff’s inequality implies
that there exists c > 0 such that

P(Dn)= 1− o
(
e−cn

)
.

We introduce now the notion of “loop.” We say that there is a loop based on y at time n if Sn = y and
(Xn+1, . . . ,Xn+T ) = C±. We will see (in Lemma 19 below) that, on Ωn ∩ Dn, there is a large number of y ∈ Zd

on which are based a large number of loops. For any y ∈ Zd , let

Cn(y) := #

{
k = 0, . . . ,

⌊
n

T

⌋
− 1: SkT = y and (XkT+1, . . . ,X(k+1)T )= C±

}
,

be the number of loops based on y before time n (and at times which are multiple of T ), and let

pn := #

{
y ∈ Z: Cn(y)≥ log log(n)1/4p

4T

}
,

be the number of sites y ∈ Z on which at least an := 	 log log(n)1/4p
4T


 loops are based.

Lemma 19. On Ωn ∩ Dn, we have, pn ≥ c′n1−γ with c′ = p/(4T ).

Proof. Note that Cn(y)≤N∗
n for all y ∈ Zd . Thus on Ωn ∩ Dn, we have

np

2T
≤

∑
y∈Zd :Cn(y)<an

Cn(y)+
∑

y∈Zd :Cn(y)≥an

Cn(y)

≤ Rnan +N∗
npn ≤ np

4T
+ pnn

γ ,

according to Lemma 12. This proves the lemma. �

We have proved that, if n is large enough, the event Ωn ∩ Dn is contained in the event

En :=
{
pn ≥ c′n1−γ

}
.

Now, on En, we consider (Yi)i=1,...,	c′′n1−γ 
 (with c′′ := c′/(2d̃) if d = 1 and with c′′ := c′/2d̃2 if d = 2) such that

• on each Yi , at least an loops are based;
• for every i, j such that i �= j , we have |Yi − Yj |> d̃/2.

For every i = 1, . . . , 	c′′n1−γ 
, let t
(1)
i , . . . , t

(an)
i be the an first times (which are multiples of T ) when a loop is based

on the site Yi . We also define N0
n(Yi + B) as the number of visits of S before time n to Yi + B , which do not occur

during the time intervals [t (j)
i , t

(j)
i + T ], for j ≤ an.

Since our construction is basically the same as in [7], Section 2.8, the proof of the following lemma is exactly the
same as the proof of [7], Lemma 16, and we do not prove it again.

Lemma 20. Conditionally to the event En, (Nn(Yi + B)−N0
n(Yi + B))i≥1 is a sequence of independent identically

distributed random variables with binomial distribution B(an; 1
2 ). Moreover this sequence is independent of (N0

n(Yi+
B))i≥1.

Let η be a real number such that γ < η < (1− γ )/β (this is possible since γ < 1/(β + 1)). We define

∀n≥ 1, dn := n−η.
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Let now ρ := sup{|ϕξ (u)|: d(u, 2π
d0

Z)≥ ε0}. According to Formula (22) and since limn→∞ dn = 0, for n large enough,
we have

∣∣ϕξ (u)
∣∣ ≤ ρ1{d(u,(2π/d0)Z)≥ε0} + exp

(
−σd

(
u,

2π

d0
Z

)β)
1{d(u,(2π/d0)Z)<ε0}

≤ exp
(−σdβ

n

)
,

as soon as d(u, 2π
d0

Z)≥ dn. Therefore, for n large enough,

∏
z

∣∣ϕξ

(
tNn(z)

)∣∣≤ exp

(
−σdβ

n #

{
z: d

(
tNn(z),

2π

d0
Z

)
≥ dn

})
. (25)

Then notice that

d

(
tNn(z),

2πZ

d0

)
≥ dn ⇐⇒ Nn(z) ∈ I :=

⋃
k∈Z

Ik, (26)

where for all k ∈ Z,

Ik :=
[

2kπ

d0t
+ dn

t
,

2(k + 1)π

d0t
− dn

t

]
.

In particular R \ I =⋃
k∈Z Jk , where for all k ∈ Z,

Jk :=
(

2kπ

d0t
− dn

t
,

2kπ

d0t
+ dn

t

)
.

Lemma 21. Under the hypotheses of Proposition 15, for every i ≤ 	c′′n1−γ 
, t ∈ (ε0n
−γ ,π/d0) and n large enough,

P
(
Nn(Yi +B) ∈ I|En,N

0
n(Yi +B)

)≥ 1

3
almost surely.

Assume for a moment that this lemma holds true and let us finish the proof of Proposition 15. Lemmas 20 and 21
ensure that conditionally to En and ((N0

n(Yi +B), i ≥ 1), the events {Nn(Yi +B) ∈ I}, i ≥ 1, are independent of each
other, and all happen with probability at least 1/3. Therefore, since Ωn ∩ Dn ⊆ En, there exists c > 0, such that

P

(
Ωn ∩ Dn,#

{
i: Nn(Yi +B) ∈ I

}≤ c′′n1−γ

4

)
≤ P

(
Bn ≤ c′′n1−γ

4

)
= o

(
exp

(−cn1−γ
))

,

where for all n≥ 1, Bn has binomial distribution B(	c′′n1−γ 
; 1
3 ).

But if #{z: Nn(z) ∈ I} ≥ c′′n1−γ

4 , then by (25) and (26), there exists a constant c > 0, such that

∏
z

∣∣ϕξ

(
tNn(z)

)∣∣≤ exp
(−cn1−γ dβ

n

)
,

which proves Proposition 15 since 1− γ − βη > 0.

Proof of Lemma 21. First notice that by Lemma 20, for any H ≥ 0,

P
(
Nn(Yi +B) ∈ I|En,N

0
n(Yi +B)=H

)= P(H + βn ∈ I), (27)

where βn is a random variable with binomial distribution B(an; 1
2 ). We will use the following result whose proof is

postponed.
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Lemma 22. Under the hypotheses of Proposition 15, for every t ∈ (ε0n
−γ ,π/d0) and for n large enough, the follow-

ing holds:

(i) For any integer k such that all the elements of Ik −H are smaller than an

2 ,

P
(
βn ∈ (Ik −H)

)≥ P
(
βn ∈ (Jk −H)

)
.

(ii) For any integer k such that all the elements of Ik −H are larger than an

2 ,

P
(
βn ∈ (Ik −H)

)≥ P
(
βn ∈ (Jk+1 −H)

)
.

Now call k0 the largest integer satisfying the condition appearing in (i) and k1 the smallest integer satisfying the
condition appearing in (ii). We have k1 = k0 + 1 or k1 = k0 + 2. According to Lemma 22, we have

P(H + βn ∈ I) ≥
∑
k≤k0

P(H + βn ∈ Ik)+
∑
k≥k1

P(H + βn ∈ Ik)

≥
∑
k≤k0

P(H + βn ∈ Jk)+
∑
k≥k1

P(H + βn ∈ Jk+1)

= P(H + βn /∈ I)− P(H + βn ∈ Jk0+1 ∪ Jk1).

Hence,

P(H + βn ∈ I)≥ 1

2

[
1− P(H + βn ∈ Jk0+1 ∪ Jk1)

]
.

The interval Jk1 being of length 2dn/t , according to the uniform version of the local limit theorem for βn, for every
t ≥ ε0n

−γ , we have

P(H + βn ∈ Jk1)≤
(

2dn

ε0n−γ
+ 1

)
a
−1/2
n .

We conclude that P(H + βn ∈ Jk1)= o(1). The same holds for P(H + βn ∈ Jk0+1), so that for n large enough,

P(H + βn ∈ I)≥ 1

2

[
1− o(1)

]≥ 1

3
.

Together with (27), this concludes the proof of Lemma 21. �

Proof of Lemma 22. We only prove (i), since (ii) is similar. So let k be an integer such that all the elements of
Ik −H are smaller than an

2 . Assume that (Jk −H) ∩ Z contains at least one nonnegative integer (otherwise P(βn ∈
(Jk −H))= 0 and there is nothing to prove). Let zk denote the greatest integer in Jk −H , so that by our assumption
P(βn = zk) > 0 (remind that 0≤ zk < an

2 ). By monotonicity of the function z �→ P(βn = z), for z≤ an

2 , we get

P(βn ∈ Jk −H)≤ P(βn = zk)#
(
(Jk −H)∩Z

)≤ P(βn = zk)

⌈
2dn

t

⌉
.

In the same way,

P(βn ∈ Ik −H)≥ P(βn = zk)#
(
(Ik −H)∩Z

)≥ P(βn = zk)

⌊
2π

d0t
− 2dn

t

⌋
.

Hence

P(βn ∈ Ik −H)≥ 	2π/(d0t)− 2dn/t

�2dn/t� P(βn ∈ Jk −H).
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But π/(d0t)≥ 1 and limn→+∞ dn = 0 by hypothesis. It follows immediately that for n large enough, we have 2dn <

π/(2d0), and so⌊
2π

d0t
− 2dn

t

⌋
≥

⌊
3π

2d0t

⌋
≥ 1+

⌊
π

2d0t

⌋
≥

⌈
π

2d0t

⌉
≥

⌈
2dn

t

⌉
.

This concludes the proof of the lemma. �

4. Proof of the local limit theorem in the strongly nonlattice case

As in [7], the proof in the strongly nonlattice case is closely related to the proof in the lattice case. We assume here
that ξ is strongly nonlattice. In that case, there exist ε0 > 0, σ > 0 and ρ < 1 such that |ϕξ (u)| ≤ ρ if |u| ≥ ε0 and
|ϕξ (u)| ≤ exp(−σ |u|β) if |u|< ε0.

We use here the notations of Section 3 with the hypotheses on γ , and δ of Proposition 13. According to Lemma IV-5
of [14], it is enough to prove that

lim
n→∞ sup

x∈R

∣∣bnE
[
h(Zn − bnx)

]−C(x)ĥ(0)
∣∣= 0 (28)

for any positive, Lebesgue-integrable and continuous real function h with continuously differentiable and compactly
supported Fourier transform (let us notice that such functions exist, take for example h0(u) := ∫ u+π/2

u−π/2 ( sin t
t

)4 dt ). Let
h be such a function. By Fourier inverse transform, we have

bnE
[
h(Zn − bnx)

]= bn

2π

∫
R

e−iubnxE

[ ∏
x∈Zd

ϕξ

(
uNn(x)

)]
ĥ(u)du.

Since ĥ is L1, we can restrict our study to the event Ωn of Lemma 12. The part of the integral corresponding to
|u| ≤ nδb−1

n is treated exactly as in Proposition 13. The only change is that we have to check that

lim
n→∞bn

∫
{|u|≤nδb−1

n }
E

[
e−A1|u|βVn1Ωn

]
sup

|u|≤nδb−1
n

∣∣ĥ(u)− ĥ(0)
∣∣du= 0,

which is obviously true since ĥ is a Lipschitz function.
Now, since ĥ is bounded, the part corresponding to nδb−1

n ≤ |u| ≤ ε0n
−γ is treated as in the proof of Proposition 14

(since it only uses the behavior of ϕξ around 0, which is the same).
Finally, it remains to prove that

lim
n→∞bn

∫
{|u|≥ε0n

−γ }

∣∣∣∣E
[∏

x

ϕξ

(
uNn(x)

)
1Ωn

]∣∣∣∣∣∣ĥ(u)
∣∣du= 0. (29)

We note that, if |u| ≥ ε0n
−γ and x ∈ Zd , we have∣∣ϕξ

(
uNn(x)

)∣∣ ≤ exp
(−σ |u|βNβ

n (x)
)
1{|uNn(x)|≤ε0} + ρ1{|uNn(x)|≥ε0}

≤ exp
(−σε

β

0 n−γβNβ
n (x)

)
1{|uNn(x)|≤ε0} + ρ1{|uNn(x)|≥ε0}.

For n large enough, ρ ≤ exp(−σε
β

0 n−γβ). Therefore, if n is large enough, then for all x and u such that Nn(x) ≥ 1
and |u| ≥ ε0n

−γ , we have∣∣ϕξ

(
uNn(x)

)∣∣≤ exp
(−σε

β

0 n−γβ
)
.

Hence,∣∣∣∣E
[∏

x

ϕξ

(
uNn(x)

)
1Ωn

]∣∣∣∣≤ E
[
exp

(−σε
β

0 n−γβRn

)
1Ωn

]≤ exp
(−σε

β

0 n1−γ (1+β)
)
.
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Therefore, since γ (1+ β) < 1 and ĥ is compactly supported, we have

lim
n→∞bn

∫
{|u|≥ε0n

−γ }

∣∣∣∣E
[∏

x

ϕξ

(
uNn(x)

)
1Ωn

]∣∣∣∣∣∣ĥ(u)
∣∣du= 0.

This concludes the proof of Theorem 4.

Appendix: Complement to Cerny’s paper

There is a missing argument in the proof of (6) in [8]. It concerns the control of the term

An :=
∑

(m0,...,m2k−1)∈Mn

(
P(Smu+mv = 0)− P(Smu+···+mv = 0)

) ∏
i∈{1,...,2k−1}\{u,v}

P(Smi
= 0),

where k ≥ 2, 1≤ u≤ k− 1 and v = u+ k are fixed integers and Mn := {(m0, . . . ,m2k−1) ∈N2k: m0+· · ·+m2k−1 ≤
n; ∀i /∈ {u,v},mi ≥ 1}. In order to obtain (6), it is necessary to prove that

An =O
(
n2(lnn)2k−4).

In [8], this estimate is proved using Karamata’s Tauberian theorem. However, it is not clear that the sequence An is
monotone.

To be complete, let us explain how this can be solved thanks to the argument used in [10] by Deligiannidis and
Utev to prove their Theorem 2.2.

Summing over m0, . . . ,mu−1,mv+1, . . . ,m2k−1, and using the fact that P(Sn = 0)=O(n−1), we have

|An| ≤O
(
n(lnn)k−2)Bn

with

Bn :=
∑

(mu,...,mv)∈M ′
n

∣∣P(Smu+mv = 0)− P(Smu+···+mv = 0)
∣∣ v−1∏
i=u+1

P(Smi
= 0),

and M ′
n := {(mu, . . . ,mv) ∈ Nk+1: mu + · · · +mv ≤ n; ∀i = u+ 1, . . . , v − 1,mi ≥ 1}. Summing over mu,mv , we

get

Bn =
∑

(m1,...,mk−1)∈M̃k−1,n

n−∑k−1
i=1 mi∑

N=0

(N + 1)
∣∣P(SN = 0)− P(S

N+∑k−1
i=1 mi

= 0)
∣∣ k−1∏

i=1

P(Smi
= 0)

with M̃k−1,n := {(m1, . . . ,mk−1) ∈ (N \ {0})k−1: m1 + · · · +mk−1 ≤ n}. Now from the assumptions on the random

walk, there exists σ > 0 such that, for every t ∈ [−π,π]d (d = 1,2) and every j ∈N, we have |ϕX1(t)| ≤ e−σ |t |d and
|1− (ϕX1(t))

j | ≤ (2+ σ)min(j |t |d ,1). Therefore, we have

Bn ≤ O(1)
∑

(m1,...,mk−1)∈M̃k−1,n

(
k−1∏
i=1

1

mi

) n−∑k−1
i=1 mi∑

N=0

(N + 1)

∫
[−π,π]d

∣∣ϕX1(t)
∣∣N ∣∣1− (

ϕX1(t)
)∑k−1

i=1 mi
∣∣dt

≤ O(1)
∑

(m1,...,mk−1)∈M̃k−1,n

( ∏
i∈1,...,k−1

1

mi

) n−∑k−1
i=1 mi∑

N=0

(N + 1)JN

(
k−1∑
i=1

mi

)
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with

JN(x) :=
∫ π

√
d

0
e−Nσt min(tx,1)dt.

We observe that J0 ≤ π
√

d and that, for every N ≥ 1 and every x ∈N, we have

JN(x)≤ x

(Nσ)2

(
1− e−Nσ/x

)+ e−Nσ/x

Nσ
= 1

Nσ
f

(
Nσ

x

)
, (30)

where f (y)= 1
y
(1− e−y)+ e−y . Since f (y)� 1 for y " 1, and f (y)� 1

y
for y # 1, there exists a constant C such

that f (y)≤ Cg(y), where g(y) := 1[0,1](y)+ 1
y
1[1,+∞[(y). Hence, we have for 1≤ x ≤ n,

n−x∑
N=0

(N + 1)JN(x) ≤ O(1)

(
1+

n−x∑
N=1

g

(
Nσ

x

))

≤ O(1)

(
1+ x

σ

∫ nσ/x

0
g(y)dy

)

≤ O(1)

(
x + x log

(
n

x

))
.

Hence,

Bn ≤ O(1)
∑

(m1,...,mk−1)∈M̃k−1,n

(
k−1∏
i=1

1

mi

)(
k−1∑
i=1

mi

)[
1+ ln

(
n∑k−1

i=1 mi

)]

= O(1)

k−1∑
i=1

∑
(m1,...,mk−1)∈M̃k−1,n

(
k−1∏

j=1,j �=i

1

mj

)[
1+ ln

(
n∑k−1

i=1 mi

)]

≤ O(1)In,

with

In :=
∑

(m1,...,mk−1)∈M̃k−1,n

(
k−2∏
i=1

1

mi

)[
1+ ln

(
n∑k−1

i=1 mi

)]

=
∑

(m1,...,mk−2)∈M̃k−2,n

(
k−2∏
i=1

1

mi

)
n∑

l=∑k−2
i=1 mi+1

[
1+ ln

(
n

l

)]

≤
∑

(m1,...,mk−2)∈M̃k−2,n

(
k−2∏
i=1

1

mi

)
n

∫ 1

0
(− lnx + 1)dx =O

(
n(lnn)k−2).
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