
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2013, Vol. 49, No. 1, 160–181
DOI: 10.1214/11-AIHP444
© Association des Publications de l’Institut Henri Poincaré, 2013

Large Deviations Principle by viscosity solutions: The case of
diffusions with oblique Lipschitz reflections1

Magdalena Kobylanski

CNRS – UMR 8050 (LAMA), Université de Paris Est, 5 boulevard Descartes, Cité Descartes – Champs-sur-Marne, 77454 Marne-la-Vallée
cedex 2, France. E-mail: magdalena.kobylanski@univ-mlv.fr

Received 16 January 2011; revised 22 June 2011; accepted 27 June 2011

Abstract. We establish a Large Deviations Principle for diffusions with Lipschitz continuous oblique reflections on regular do-
mains. The rate functional is given as the value function of a control problem and is proved to be good. The proof is based on a
viscosity solution approach. The idea consists in interpreting the probabilities as the solutions to some PDEs, make the logarithmic
transform, pass to the limit, and then identify the action functional as the solution of the limiting equation.

Résumé. Nous établissons un principe de Grandes Déviations pour des diffusions réfléchies obliquement sur le bord d’un do-
maine régulier lorsque la direction de la réflection est Lipschitz. La fonction de taux s’exprime comme la fonction valeur d’un
problème d’arrêt optimal et est compacte. Nous utilisons des techniques de solutions de viscosité. Les probabilités recherchées
sont interprétées comme des solutions de certaines EDPs, leur transformées logarithmiques donnent lieu à de nouvelles équations
dans lesquelles il est aisé de passer à la limites. Enfin les fonctionnelles d’action sont identifiées comme étant les solutions des
dites équations limite.
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1. Introduction

According to the terminology of Varadhan [33], a sequence (Xε) of random variables with values in a metric space
(X , d) satisfies a Large Deviations Principle (LDP in short) if:

There exists a lower semi-continuous functional λ : X → [0,∞] such that for each Borel measurable set G of X
(I) lim supε→0{−ε2 ln P[Xε ∈ G]} ≤ inf

g∈ ◦
G λ(g) (LDP’s upper bound),

(II) inf
g∈G λ(g) ≤ lim infε→0{−ε2 ln P[Xε ∈ G]} (LDP’s lower bound),

λ is called the rate functional for the Large Deviations Principle (LDP). A rate functional is good if for any a ∈ [0,∞),
the set {g ∈ X : λ(g) ≤ a} is compact.

We refer the reder to the books [2,13,14,25,32,33] for the general theory, references and different approches to
Large Deviations.

Partial Differential Equations (in short PDEs) methods have been applied to establish different types of Large
Deviations estimates starting from Fleming [22]. The idea consists in interpreting the probabilities as the solutions to
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some PDEs, make the logarithmic transform, pass to the limit, and then identify the action functional as the solution of
the limiting equation. The notion of viscosity solutions (cf. Crandall–Lions [12], Lions [29], or Crandall–Ishii–Lions
[11]) appeared to be particularly adapted to this problem. Indeed, the half-relaxed semi-limit method (cf. Barles–
Perthame [8]) allows to pass to the limit very easily, moreover the notion of strong uniqueness for viscosity solution
allows to identify the solution of the limiting equation with the action functional. A number of Large Deviations results
have been proved by using this method [1,5,8,9,20,24,31]. One aim of this work is to use this method to provide a
general Large Deviations Principle and not just some Large Deviations inequalities. We establish a LDP for small
diffusions with oblique Lipischitz continuous direction of reflections which explains the technicity. This result is new
to the best of our knowledge. Our method which was first developed in [27], seems very efficient and we hope it gives
a new insight.

Recently [21] came to our knowledge. This book shows also, in a very general setting, that viscosity solutions are
an adapted tool in order to establish LDPs, and illustrates also how deep are the links between viscosity solutions and
Large Deviations.

Let O be a smooth open bounded subset of R
d . For (t, x) ∈ R

+ × O, we consider the oblique reflection problem{
dXs = b(s,Xs)ds − dks, Xs ∈ O (∀s > t),

ks = ∫ s

t
1∂O(Xτ )γ (Xτ )d|k|τ (∀s > t), Xt = x,

(1.1)

where b is a continuous R
d -valued function defined on R

+ × O and γ is a R
d -vector field defined on ∂O. The

solutions of problem (1.1) are pairs (X, k) of continuous functions from [t,∞) to O and R
d respectively such that k

has bounded variations, and |k| denotes the total variation of k.
We shall denote by n(x) the unit outward normal to ∂O at x, and assume that{

γ : Rd → R
d is a Lipschitz continuous function and

∃c0∀x ∈ ∂O, γ (x) · n(x) ≥ c0 > 0.
(1.2)

When b is Lipschitz continuous, γ satisfies condition (1.2) and O is smooth, the existence of the solutions of (1.1)

is given as a particular case of the results of Lions and Sznitman [30] and the uniqueness is a corollary of the result of
Barles and Lions [6]. For more general domains existence and uniqueness of solutions of (1.1) is given as a particular
case of Dupuis and Ishii [18]. The reader can also use the results given in Appendix B.

Let (Ω, F , (Ft )t≥0,P) be a standard filtred probability space which satisfies the usual conditions and (Wt )t≥0
be a standard Brownian motion with values in R

m. Consider for each ε > 0, t ≥ 0, x ∈ O, the following stochastic
differential equation{

dXε
s = bε

(
s,Xε

s

)
ds + εσε

(
s,Xε

s

)
dWs − dkε

s , Xε
s ∈ O (∀s > t),

kε
s = ∫ s

t
1∂O

(
Xε

τ

)
γ
(
Xε

τ

)
d
∣∣kε

∣∣
τ

(∀s > t), Xε
t = x,

(1.3)

where σ is continuous R
d×m-valued. A strong solution of (1.3) is a couple (Xε

s , k
ε
s )s≥t of (Fs)s≥t -adapted processes

which have almost surely continuous paths and such that (kε
s )s≥t has almost surely bounded variations, and |kε|

denotes its total variation.
Let us now make some comments about this reflection problem. Consider equation (1.3) in the case when ε = 1.
This type of stochastic differential equations has been solved by using the Skorokhod map by Lions and Sznitman

in [30] in the case when O belongs to a very large class of admissible open subsets and the direction of reflection is
the normal direction n, or when O is smooth and γ is of class C2. This problem was also deeply studied by Dupuis
and Ishii [16–18]. When O is convex these authors proved in [16] that the Skorokhod map is Lipschitz continuous
even when trajectories may have jumps. As a corollary, this result gives existence and uniqueness of the solution of
the stochastic equation (1.3) and provides the Large Deviations estimates as well. Dupuis and Ishii also proved in
[18] the existence of the solution of equation (1.3) in the following cases: either γ is C2 and O has only an exterior
cone condition, or O is a finite intersection of C1 regular bounded domains Oi and γ is Lipschitz continuous at
points x ∈ ∂O when x belongs to only one ∂Oi but when x is a corner point, γ (x) can even be multivaluated. A key
ingredient is the use of test functions that Dupuis and Ishii build in [15,17] and [26] in order to study oblique derivative
problems for fully nonlinear second-order elliptic PDEs on nonsmooth domains.
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Let us point out that these type of diffusions with oblique reflection in domains with corners arise as rescaled
queueing networks and related systems with feedback (see [1] and the references within).

We study in the present paper Large Deviations of (1.1) under the simpler condition of a domain without corners.
More precisely we suppose that

O is a W 2,∞ open bounded set of R
d . (1.4)

Let us precise now what is the regularity we require on the coefficients b, σ and bε , σε and how bε and σε are
supposed to converge to b and σ .

For all ε > 0, let bε, b ∈ C([0,+∞) × O;R
d), σε, σ ∈ C([0,+∞) × O;R

d×m). And assume that for each T > 0,
there exists a constant CT such that for all ε > 0, for all t ∈ [0, T ], for all x, x′ ∈ O one has∣∣b(t, x) − b

(
t, x′)∣∣, ∣∣bε(t, x) − bε

(
t, x′)∣∣ ≤ CT

∣∣x − x′∣∣,∥∥σ(t, x) − σ
(
t, x′)∥∥,

∥∥σε(t, x) − σε

(
t, x′)∥∥ ≤ CT

∣∣x − x′∣∣. (1.5)

We also assume that

(bε), (σε) converge uniformly to b and σ on [0, T ] × O. (1.6)

By [18] for all ε > 0 and for all (t, x) ∈ [0, T ] × O, there exists a unique solution (Xt,x,ε, kt,x,ε) of (1.3) on [t, T ].
Morever Xt,x,ε converges in probability to the solution Xt,x of (1.1) when ε converges to 0. Obtaining the Large
Deviations estimates provides the rate of this convergence.

We now turn to the definition of the rate functional λ. It is defined under conditions (1.2), (1.4), (1.5) as the
value function of a nonstandard control problem of a deterministic differential equation with L2 coefficients and with
oblique reflections.

More precisely, let (t, x) ∈ [0, T ] × O and α ∈ L2(t, T ;R
m) and consider equation{

dYs = (
b(s,Ys) − σ(s,Ys)αs

)
ds − dzs, Ys ∈ O (∀s > t),

zs = ∫ s

t
1∂O(Yτ )γ (Yτ )d|z|τ (∀s > t), Yt = x.

(1.7)

We prove in Appendix B that there exists a unique solution (Y
t,x,α
s , z

t,x,α
s )s∈[t,T ] of (1.7), and we study the regularity

of Y with respect to t, x,α and s.
In the following we note X = C([0, T ]; O) and, for g ∈ X , ‖g‖X = supt∈[0,T ] |g(t)|.
We make the following abuse of notations. For G ⊂ X and for g ∈ C([t, T ]; O) for some t ∈ [0, T ], we write g ∈ G

if there exists a function in G whose restriction to [t, T ] coincides with g.
For all g ∈ X , we define λt,x(g) by

λt,x(g) = inf

{
1

2

∫ T

t

|αs |2 ds; α ∈ L2(t, T ;R
m
)
, Y t,x,α = g

}
. (1.8)

Note that λt,x(g) ∈ [0,+∞].
The main result of our paper is the proof of the full Large Deviations type estimates for (1.3), as well as the

identification of the rate functional which is proved to be good.

Theorem 1.1. Assume (1.2), (1.4)–(1.6). For each (t, x) ∈ [0, T ]× O, and ε > 0, denote by Xt,x,ε the unique solution
of (1.3) on [t, T ]. Consider λt,x defined by (1.8). Then (Xt,x,ε)ε satisfies a Large Deviations Principle with rate
functional λt,x . Moreover the rate functional is good.

As far as the partial differential equations are concerned, we use the notion of viscosity solutions. We shall not
recall the classical results of the theory of viscosity solutions here and we refer the reader to M. G. Crandall, H. Ishii
and P.-L. Lions [11] (Section 7 for viscosity solutions of second order Hamilton–Jacobi equations), to W. H. Fleming
and H. M. Soner [23] (Chapter 5 for stochastic controlled processes) and to G. Barles [3] (Chapter 4 for viscosity
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solutions of first order Hamilton–Jacobi equations with Neumann type boundary conditions and Chapter 5, Section 2
for deterministic controlled processes with reflections).

The paper is organised as follows. In Section 2, we prove first that assertion (I) amounts to the proof of this upper
bound for a ball B (assertion (A1)). Second, we prove that if the rate is good, assertion (II) amounts to prove the lower
bound for a finite intersection of complementaries of balls (assertion (A2)). Finally, we prove that the fact that the rate
is good holds true if a stability result holds true for equation (1.7) (assertion (A3)). In Section 3, we give the proof of
(A1), and we finish in Section 4 by the proof of (A2).

An important Appendix follows. It includes, in Appendix B, the study of equation (1.7) and the proof of (A3). In
Appendix C, we study different mixed optimal control-optimal single or multiple stopping times problems and we
characterize particular value functions as the minimal (resp. maximal) viscosity supersolution (resp. subsolution) of
the related obstacle problems. These caracterizations are important in order to establish (A1) and (A2). Eventually,
in Appendix D, we prove a strong comparison result for viscosity solutions to an obstacle problem with Neumann
boundary conditions and quadratic growth in the gradient in the case of a continuous obstacle. This result is needed
in the proof of the caracterization of the value functions mentioned above. This long and technical appendix begins
in Appendix A, by the construction of an appropriate test function which is useful in order to establish the results
concerning equation (1.7) (Appendix B) and the uniqueness result (Appendix D).

2. A preliminary result

We now define the action functional. For each (t, x) ∈ [0, T ] × O, and for each G ⊂ X let us define Λt,x(G) as
follows:

Λt,x(G) = inf

{
1

2

∫ T

t

|αs |2 ds; α ∈ L2(t, T ;R
m
)
, Y t,x,α ∈ G

}
, (2.1)

where Y t,x,α is defined by (1.7). Clearly Λt,x is nonincreasing, Λt,x(G) = infg∈G λt,x(g) and λt,x(g) = Λt,x({g}).

We use the following notation: for g0 ∈ X and r > 0 we denote by B(g0, r) the ball of center g0 and of radius r

that is B(g0, r) = {g ∈ X ,‖g − g0‖∞ < r}.
We consider the following assertions.

(A1) for all ball B in X ,

lim sup
ε→0

{−ε2 lnP
[
Xt,x,ε ∈ B

]} ≤ Λt,x(B),

(A2) for all finite collection of balls (Bi )i≤N in X ,

lim inf
ε→0

{
−ε2 lnP

[
Xt,x,ε ∈

N⋂
i=1

Bc
i

]}
≥ Λt,x

(
N⋂

i=1

Bc
i

)
,

(A3) for all αn,α ∈ L2 = L2(0, T ;R
m), if αn ⇀ α weakly in L2 then ‖Y t,x,αn − Y t,x,α‖X → 0.

The following proposition shows that Theorem 1.1 reduces to assertions (A1), (A2) and (A3).

Proposition 2.1. For all (t, x) ∈ [0, T ] × O one has,

(i) (A1) implies (I),
(ii) if the rate is good then (A2) implies (II),

(iii) (A3) implies that the rate functional λt,x defined by (1.8) is good.

Proof. Fix a measurable subset G in X . To prove (i), take g ∈ ◦
G and fix r > 0 such that B = B(g, r) ⊂ ◦

G . Then, by
(A1), lim supε→0{−ε2 lnP [Xt,x,ε ∈ G]} ≤ lim supε→0{−ε2 lnP [Xt,x,ε ∈ B]} ≤ Λt,x(B) ≤ λt,x(g), and we conclude

the proof of point (i) by taking the infimum over all g ∈ ◦
G .
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Let us prove (ii). Fix a < Λt,x(G) and put K = {g ∈ X , λt,x(g) ≤ a}. Note that Λt,x(Kc) ≥ a and that K ⊂ Gc .
Since K is compact, there exists a finite collection of balls (Bi )i≤N in X such that K ⊂ ⋃N

i=1 Bi ⊂ Gc. Passing
to the complementaries, Λt,x(

⋂N
i=1 Bc

i ) ≥ Λt,x(Kc) ≥ a. Note that, by (A2), lim infε→0{−ε2 lnP [Xt,x,ε ∈ G]} ≥
lim infε→0{−ε2 lnP [Xt,x,ε ∈ ⋂N

i=1 Bc
i ]} ≥ Λt,x(

⋂N
i=1 Bc

i ). We have shown that lim infε→0{−ε2 lnP [Xt,x,ε ∈ G]} ≥
a, for all a < Λt,x(G), which completes the proof of (ii).

Let us prove (iii). We suppose that the rate functional λt,x defined by (1.8) satisfies (A3). Fix (t, x) ∈ [0, T ] × O,
and a ∈ R. Put K = {g ∈ X , λt,x(g) ≤ a}. Let (gn)n∈N be a sequence of K. Then, for all n, there exists αn ∈ L2

such that Y t,x,αn = gn and 1
2

∫ T

t
|αn(s)|2 ds ≤ a + o(1) [n → ∞]. Thus (αn)n∈N is bounded in L2 and extracting a

subsequence if necessary, one can suppose that the sequence (αn)n∈N converges weakly in L2 to some α. By (A3),
(Y t,x,αn)n converges uniformly on [t, T ] to Y t,x,α and since for all n, Y t,x,αn = gn the sequence (gn)n∈N converges to
some g = Y t,x,α in X .

Moreover, λt,x(g) ≤ 1
2

∫ T

t
|αs |2 ds ≤ lim infn→∞ 1

2

∫ T

t
|αn(s)|2 ds ≤ a, hence g ∈ K. We have proved that K is

compact. �

3. Proof of assertion (A1)

Fix a ball B = B(g0, r). For each (t, x) ∈ [0, T ] × O consider the probability uε(t, x) defined by uε(t, x) =
P [Xt,x,ε ∈ B] and define the logarthmic transform vε(t, x) = −ε2 lnuε(t, x). The aim of this section is to prove
that lim supε→0{vε(t, x)} ≤ Λt,x(B).

Step 1 (From a probability to a PDE): We first interpret the probability uε(t, x) as the value function of an optimal
stopping problem. This leads naturaly to a PDE, as the value function of an optimal stopping problem with reward ψ

is solution to a variational inequality with obstacle ψ .
Let us define the tube B as the set

B = {
(t, x) ∈ [0, T ] × O,

∣∣x − g0(t)
∣∣ < r

}
. (3.1)

Proposition 3.1. uε(t, x) is the value function of the following optimal stopping problem

uε(t, x) = inf
θ∈Tt

E
[
1B

(
θ,X

t,x,ε
θ

)]
,

where Tt is the set of stopping times θ with value in [t, T ].

The proof can be found at the end of this section.
We now recall that the value function of an optimal stopping time problem with reward ψ is a viscosity solution of

a variational inequality with obstacle ψ .
More precisely for each bounded Borel function ψ on [0, T ] × R

d consider

Uε[ψ](t, x) = inf
θ∈Tt

E
[
ψ

(
θ,X

t,x,ε
θ

)]
, (3.2)

where Xt,x,ε is the solution of (1.3), then Uε[ψ] is a solution to the following variational inequality with obtacle ψ

{
max

(− ∂u
∂t

+ Lεu,u − ψ
) = 0 in [0, T ) × O,

∂u
∂γ

= 0 in [0, T ) × ∂O, u(T ) = ψ(T ) on O,
(3.3)

where Lεu = − ε2

2 Tr[σεσ
T
ε D2u] − bε · Du.

Proposition 3.2. Assume (1.2), (1.4) and (1.5). Then the function Uε[ψ] defined by (3.2) is a viscosity solution of
(3.3).
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This result is a standard consequence of the well-known Dynamic Programming Principle. Under regularity con-
ditions the proof goes back to [6]. For a general proof of the Dynamic Programming Principle see [10] or [19].

This gives that uε = Uε[1B] is a solution of the variational inequality (3.3) with obstacle 1B.
Step 2 (The logarithmic transform): For all nonnegative function ψ bounded away from 0, let Vε[ψ] be the loga-

rithmic transform of Uε[ψ] defined by

Vε[ψ] = −ε2 ln
(
Uε[ψ]). (3.4)

Then Vε[ψ] is a viscosity solution of the following the variational inequality with obstacle ε2 ln(ψ){
min

(− ∂V
∂t

+ Hε

(
D2V,DV

)
,V − ε2 ln (ψ)

) = 0 in [0, T ) × O,
∂V
∂γ

= 0 in [0, T ) × ∂O, V (T ) = ε2 ln
(
ψ(T )

)
on O,

(3.5)

where Hε(D
2V,DV ) = − ε2

2 Tr[σεσ
T
ε D2V ] + 1

2 |σT
ε DV |2 − bε · DV .

Formaly, vε = Vε[1B] is a viscosity solution of variational inequality (3.5) with singular obstacle χBc = −ε2 ln(1B),
which takes infinit values on Bc and is equal to 0 on B.

In order to avoid the singularity, we seek now to approximate the original obstacle 1B in such a way that after the
logarithmic transform, the obstacle becomes A1Bc with A > 0. We define for all A,ε > 0, the real valued functions
ψA

ε , uA
ε and vA

ε by

ψA
ε = exp

(−A1Bc /ε2), uA
ε = Uε

[
ψA

ε

]
and vA

ε = Vε

[
ψA

ε

]
. (3.6)

Note that ψA
ε ≥ 1B, hence uA

ε ≥ uε and vA
ε ≤ vε . As our aim is to majorate lim supvε , it seems at first that we have

the inequality from the wrong side. However, the following lemma shows that we can reduce ourselves to the study
of vA

ε .

Lemma 3.1. For all A > 0, and for all (t, x) ∈ [0, T ] × O, we have lim supε→0 vA
ε = lim supε→0 vε ∧ A.

The proof can be found at the end of this section.
Clearly vA

ε is a viscosity solution of variational inequality (3.5) with obstacle A1Bc .
Step 3 (Passing to the limit): When ε goes to 0, equation (3.5) with obstacle A1Bc converges to the following

variational inequality with obstacle A1Bc{
min

(− ∂v
∂t

+ 1
2

∣∣σT Dv
∣∣2 − b · Dv,v − A1Bc

) = 0 in [0, T ) × O,
∂v
∂γ

= 0 in [0, T ) × ∂O, v(T ) = A1Bc (T ) on O.
(3.7)

By a general stability result for viscosity solutions (see [3], Theorem 4.1, p. 85, or [7]), the half-relaxed upper-limit
lim sup∗ vA defined for all (t, x) in [0, T ] × O by

lim sup∗ vA
ε (t, x) = lim sup

(s,y)→(t,x)ε→0

vA
ε (s, y)

is a viscosity subsolution of the limit equation (3.7).
Step 4 (A first order mixed optimal control-optimal stopping problem: back to the action functional): We now study

a value function of a mixed optimal control-optimal stopping problem which appears to be the maximal viscosity
subsolution of equation (3.7), and which we compare with Λt,x(B).

For each bounded Borel function ψ , and for all (t, x) ∈ [0, T ] × O, define the following value function

v[ψ](t, x) = inf
α∈L2

sup
θ∈[t,T ]

{
1

2

∫ θ

t

|αs |2 ds + ψ
(
θ,Y

t,x,α
θ

)}
, (3.8)

where Y t,x,α is the unique solution of (1.7).
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Proposition 3.3. (1) For each bounded Borel function ψ the function v[ψ∗] defined by (3.8) is the maximal usc
viscosity subsolution of the variational inequality (3.7) with obstacle ψ .

(2) For all A > 0, (t, x) ∈ [0, T ] × O, one has v[A1Bc ](t, x) ≤ A ∧ Λt,x(B).

The proof can be found in Appendix C for point (1) and at the end of this section for point (2).

Conclusion. By Lemma 3.1, by using the half-reaxed semi-limit method, and by Proposition 3.3 we have, for each
A > 0, A ∧ lim supε→0 vε(t, x) ≤ lim sup∗ vA

ε (t, x) ≤ v[A1Bc ] ≤ A ∧ Λt,x(B). The proof of (A1) is now complete.

We now turn to the proofs of Proposition 3.1, of Lemma 3.1 and of Proposition 3.3.

Proof of Proposition 3.1. Obviously, if Xt,x,ε ∈ B then (θ,X
t,x,ε
θ ) ∈ B for all θ ∈ Tt , hence uε(t, x) ≤ E[1B(θ,

X
t,x,ε
θ )]. Taking the infimum over θ ∈ Tt we obtain uε(t, x) ≤ infθ∈Tt E[1B(θ,X

t,x,ε
θ )]. Conversely, define θ̃ :=

inf{s ≥ t, |Xt,x,ε
s − g0(s)| ≥ r}, the first exit time of (s,X

t,x,ε
s )s≥t from B. We have {(θ̃ ∧ T ,X

t,x,ε

θ̃∧T
) ∈ B} ⊂ {Xt,x,ε ∈

B}. Indeed, if (θ̃(ω) ∧ T ,X
t,x,ε

θ̃(ω)∧T
) ∈ B, then θ̃ (ω) > T , and for all s ∈ [t, T ] we have |Xt,x,ε

s (ω) − g0(s)| < r , which

means, as both Xt,x,ε· (ω) and g0(·) are continuous on [t, T ] that ‖Xt,x,ε(ω) − g0‖X < r , hence Xt,x,ε(ω) ∈ B. We
have now infθ∈Tt E[1B(θ,X

t,x,ε
θ )] ≤ E[1B(θ,X

t,x,ε

θ̃∧T
)] ≤ uε(t, x) and the proof is complete. �

Proof of Lemma 3.1. Fix (t, x) ∈ [0, T ] × O, and A > 0. Clearly e−A/ε2 ∨ 1B(t, x) ≤ ψA
ε (t, x) ≤ 1B(t, x) + e−A/ε2

.
This gives easily,

e−A/ε2 ∨ uε(t, x) ≤ uA
ε (t, x) ≤ uε(t, x) + e−A/ε2

.

As for any nonnegative sequence (uε) one has lim supε→0{−ε2 ln(uε + e−A/ε2
)} = A ∧ lim supε→0{−ε2 lnuε}, we

obtain

A ∧ lim sup
ε→0

{−ε2 lnuε

} ≥ lim sup
ε→0

{−ε2 lnuA
ε

} ≥ A ∧ lim sup
ε→0

{−ε2 lnuε

}
,

which completes the proof of the lemma. �

Proof of Proposition 3.3. Point (1) is detailed in Appendix C (Proposition C.1).
Let us prove now the second point. Obviously, vA(t, x) ≤ A. Now, if Λt,x(B) < A, for each η > 0 such that

Λt,x(B) + η < A there exists α̃ ∈ L2 such that Y t,x,α̃ ∈ B and Λt,x(B) ≤ 1
2

∫ T

t
|α̃s |2 ds ≤ Λt,x(B) + η. Thus, for any

θ ∈ [t, T ], one has 1Bc (θ, Y
t,x,α̃
θ ) = 0 so that vA(t, x) ≤ supθ∈[t,T ] 1

2

∫ θ

t
|α̃s |2 ds ≤ Λt,x(B) + η. We have proved that

vA(t, x) ≤ A ∧ Λt,x(B). �

4. Proof of assertion (A2)

Let (gn)n∈N be a sequence of functions in X and (rn)n∈N, a sequence in ]0,∞[. For each nonempty finite subset I of
N and for all (t, x) ∈ [0, T ] × O, we define the probability

uI
ε(t, x) = P

[
Xt,x,ε ∈ G

]
,

where G =
⋂
i∈I

B(gi, ri)
c and its logarithmic transform vI

ε (t, x) = −ε2 ln
[
uI

ε(t, x)
]
, (4.1)

and we prove that lim infε→0 vI
ε (t, x) ≥ Λt,x(G).

In the following we will denote by θI a multiple stopping time (θi)i∈I with θi ∈ Tt for each i ∈ I , and we write
θI ∈ T I

t . We also define the tube Bi for i ∈ N by Bi = {(t, x) ∈ [0, T ] × O; |x − gi(t)| < ri}.
Step 1 (From a probability to a PDE): We first interpret uI

ε(t, x) as the value of an optimal multiple stopping times
problem and we show that it can also be interpreted as the value of an optimal single stopping time problem with a
new reward.
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Proposition 4.1. Let I be a nonempty finite subset of N, ε > 0, and (t, x) ∈ [0, T ] × O.

(1) One has

uI
ε(t, x) = sup

θI ∈T I
t

E

[∏
i∈I

1Bc
i

(
θi,X

t,x,ε
θi

)]
.

(2) One has also

uI
ε(t, x) = sup

θ∈Tt

E
[
ψI

ε

(
θ,X

t,x,ε
θ

)]
,

where

ψI
ε =

{
1Bc

i
if I = {i} with i ∈ N,

maxi∈I

(
1Bc

i
u

I\{i}
ε

)
if card I ≥ 2

is the new reward.
(3) Consequently, uI

ε is a viscosity solution of the following variational inequality with obstacle ψI
ε{

min
(− ∂u

∂t
+ Lεu,u − ψI

ε

) = 0 in [0, T ) × O,
∂u
∂γ

= 0 in [0, T ) × ∂O, u(T ) = ψI
ε (T ) on O.

(4.2)

Proof. The proof of (1) is similar to the proof of Proposition 3.1. The main difference is in the choice of the optimal
stopping time which is here θ̃I ∈ T I

t where for i ∈ I , θ̃i is the first exit time in [t, T ] of (s,X
t,x,ε
s ) from Bi .

Point (2) is a consequence of the reduction result Theorem 3.1 in [28], and (3) follows by Proposition 3.2. �

Note that uI
ε is not bounded away from 0 and at this point logarithmic transform stays formal. We approximate 1Bc

i

and uI
ε , in the following way. We define, for each (t, x) ∈ [0, T ] × O,

ψ {i},A
ε (t, x) = exp

(
−A1Bi

(t, x)

ε2

)
and uI,A

ε (t, x) = sup
θI ∈T I

t

E

[∏
i∈I

ψ {i},A
ε

(
θi,X

t,x,ε
θi

)]
. (4.3)

Clearly

1Bc
i
∨ e−A/ε2 ≤ ψ {i},A

ε and uI
ε ∨ e−A/ε2 ≤ uI,A

ε . (4.4)

The reduction result applies to uI,A
ε (t, x), hence it can be writen as the following single optimal stopping time problem

uI,A
ε (t, x) = supθ∈Tt

E[ψI,A
ε (θ,X

t,x,ε
θ )] with new reward ψI,A

ε (t, x) = maxi∈I (ψ
{i},A
ε (t, x)u

I\{i},A
ε (t, x)). By Propo-

sition 3.2 uI,A
ε is a viscosity subsolution of the variational inequality (4.2) with obstacle ψI,A

ε .
Step 2 (The logarithmic transform): Note that by (4.4), uI,A

ε is bounded away from 0. We define its logarthmic
transform vI,A

ε on [0, T ]× O by vI,A
ε = −ε2 lnuI,A

ε . Then vI,A
ε is a viscosity supersolution of the following variational

inequality with obstacle φI,A
ε{

max
(− ∂v

∂t
+ Hε

(
D2v,Dv

)
, v − φI,A

ε

) = 0 in [0, T ) × O,
∂v
∂γ

= 0 in [0, T ) × ∂O, v(T ) = φI,A
ε (T ) on O,

where

φI,A
ε =

{
A1Bi

if I = {i} with i ∈ N,

mini∈I

{
A1Bi

+ v
I\{i},A
ε

}
if card I ≥ 2.
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Step 3 (A mixed optimal control-optimal multiple stopping problem): Let us turn now to the study of a mixed
optimal control-optimal multiple stopping problem. The value function of this problem will be shown to be smaller
than the half-relaxed lower limit lim∗ vI,A

ε (t, x) and greater than Λt,x(G) ∧ A.
For all finite and nonempty subset I of N and for all (t, x) ∈ [0, T ] × O, define the following value function

vI,A(t, x) = inf
α∈L2

inf
θI ∈[t,T ]I

{
1

2

∫ ∨
i∈I θi

t

|αs |2 ds +
∑
i∈I

A1Bi

(
θi, Y

t,x,α
θi

)}
, (4.5)

where Y t,x,α is the unique solution of (1.7).
This mixed optimal multiple stopping problem can be reduced to a mixed optimal single stopping problem. More

precisely, consider for each bounded real valued measurable φ on [0, T ] × O and for each (t, x) ∈ [0, T ] × O the
following value function

v[φ](t, x) = inf
α∈L2

inf
θ∈[t,T ]

{
1

2

∫ θ

t

|αs |2 ds + φ
(
θ,Y

t,x,α
θ

)}
, (4.6)

where Y t,x,α is the unique solution of (1.7).
Define also for all nonempty finite subset I of N, for all A > 0,

φI,A =
{

A1Bi
if I = {i} with i ∈ N,

mini∈I

{
A1Bi

+ vI\{i},A}
if card I ≥ 2. (4.7)

Proposition 4.2. Let I be a finite subset of N and A > 0, and consider the function vI,A defined by (4.5). Then

(1) for each (t, x) ∈ [0, T ] × O one has vI,A(t, x) = v[φI,A](t, x) where φI,A is defined by (4.7),
(2) one has for all (t, x) ∈ [0, T ] × O, vI,A(t, x) ≥ A ∧ Λt,x(G).

Proof. The proof of (1) is the concequence of a reduction result for optimal multiple stopping problems. It is detailed
in Appendix C (Proposition C.2).

Let us prove (2). Suppose vI,A(t, x) < A, then for each η > 0 such that vI,A(t, x) + η < A, there exists

θI ∈ [0, T ]N and α ∈ L2 such that 1
2

∫ ∨
i∈I θi

t
|αs |2 ds + ∑

i∈I A1Bi
(θi , Y

t,x,α
θi

) ≤ vI,A(t, x) + η < A. This means

in particular that (θi, Y
t,x,α
θi

) ∈ Bc
i for all i ∈ I and therefore Y t,x,α ∈ G . Put α̃s = αs1{s≤∨i∈I θi }, then Y t,x,α̃ ∈ G and

Λt,x(G) ≤ 1
2

∫ T

t
|α̃s |2 ds ≤ vI,A(t, x) + η. Letting η to 0 the proof is complete. �

We now give some results concerning the mixed optimal single stopping problem (4.6), and its links with the
following variational inequality with obstacle φ,{

max
(− ∂v

∂t
+ 1

2

∣∣σT Dv
∣∣2 − b · Dv,v − φ

) = 0 in [0, T ) × O,
∂v
∂γ

= 0 in [0, T ) × ∂O, v(T ) = φ(T ) on O.
(4.8)

Proposition 4.3. Let φ : [0, T ] × O be a measurable, bounded, real valued function then the function v[φ∗] is the
minimal lsc viscosity supersolution of the variational inequality (4.8).

The proof is similar and even simpler than the proof of Proposition C.1 given in Appendix C. Let us remark that
this result is well known for deterministic systems with Lipschitz coefficients in R

n (see Barles and Perthame [7]).
The main difficulty in the present case is to prove the minimality of v[φ∗]. This point is the consequence of a strong
comparison result for equation (4.8) when the obstacle is bounded and continuous on [0, T ] × O. The proof of this
strong comparison result, which is highly technical, is detailed in Appendix D.

Step 4 (Passing to the limit): Let us now prove the following lemma

Lemma 4.1. For each finite nonempty subset I of N and for each A > 0, one has lim inf∗ vI,A
ε ≥ v[φI,A].
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Proof. The result is established by induction on the cardinal of I . If I = {i} for some i in N, then lim inf∗ v
{i},A
ε is a

viscosity supersolution of (4.8) with φ = φ{i},A. By Proposition 4.3, v[φ{i},A] is the minimal viscosity supersolution
of the same equation, hence the proof is complete.

Suppose now that I has N elements with N ≥ 2 and that the lemma holds for any subset J of N
∗ containing

N − 1 elements. Then by using the induction hypothesis on formula (4.7), one has lim inf∗ φI,A
ε = φ̃I,A ≥ φI,A. By a

stability result lim inf∗ vI,A
ε is a viscosity supersolution of (4.8) with obstacle φ̃I,A. By Proposition 4.3, as φ̃I,A is lsc,

the minimal viscosity supersolution of this equation is v[φ̃I,A]. Now as φ̃I,A ≥ φI,A one clearly has v[φ̃I,A] ≥ v[φI,A].
Finally we have lim inf∗ vI,A

ε ≥ v[φ̃I,A] ≥ v[φI,A] which completes the proof of the lemma. �

Conclusion. For all finite nonempty I ⊂ N, A > 0 and (t, x) ∈ [0, T ] × O one has, by (4.4), uI
ε(t, x) ≤ uI,A

ε (t, x),
hence, by Lemma 4.1 and Proposition 4.2, lim infε→0 vI

ε (t, x) ≥ lim inf∗ vI,A
ε (t, x) ≥ v[φI,A](t, x) ≥ Λt,x(G) ∧ A.

The proof of (A3) is complete.

Appendix A: The test-function

Lemma A.1. We assume that γ and O satisfy (1.2) and (1.4). Then, for all ε,ρ > 0, there exists ψε,ρ ∈ C1(O × O,R)

such that,

(ψ i) ∀x, y ∈ O,
1

2

|x − y|2
ε2

− K
ρ2

ε2
≤ ψε,ρ(x, y) ≤ K

( |x − y|2
ε2

+ ρ2

ε2

)
,

(ψ ii)

{
∀x, y ∈ O,

∣∣Dxψε,ρ(x, y) + Dyψε,ρ(x, y)
∣∣ ≤ K

( |x−y|2
ε2 + ρ2

ε2

)
,

∀x, y ∈ O,
∣∣Dxψε,ρ(x, y)

∣∣ + ∣∣Dyψε,ρ(x, y)
∣∣ ≤ K

( |x−y|
ε2 + ρ2

ε2

)
,

(ψ iii)

{∀x ∈ ∂O, y ∈ O, Dxψε,ρ(x, y) · γ (x) > 0,

∀y ∈ ∂O, x ∈ O, Dyψε,ρ(x, y) · γ (y) > 0

for some constant K depending only on O, ‖γ ‖∞, ‖γ ‖Lip and c0.

We use ideas from [4].

Proof of Lemma A.1. We first define the Lipschitz continuous R
d -valued function μ on ∂O by μ(x) = γ (x)

γ (x)·n(x)
as

well as a smooth approximation (μρ)ρ>0 in C1(Rd ,R
d) such that ‖μρ − μ‖∞ ≤ ρ and ‖μρ‖ + ‖Dμρ‖ ≤ K1 for

some K1 > 0 independent of ρ.
Then we set,

φε,ρ(x, y) = |x − y|2
ε2

+ 2
(x − y)

ε
· μρ

(
x + y

2

)
(d(x) − d(y))

ε
+ A

(d(x) − d(y))2

ε2
.

We can choose the constant A > 0 large enough in order to get, for some constant K2 > 0 and for all ε, ρ > 0,

(φi) ∀x, y ∈ O,
1

2

|x − y|2
ε2

≤ φε,ρ(x, y) ≤ K2
|x − y|2

ε2
,

(φii)

{
∀x, y ∈ O,

∣∣Dxφε,ρ(x, y) + Dyφε,ρ(x, y)
∣∣ ≤ K2

|x−y|2
ε2 ,

∀x, y ∈ O,
∣∣Dxφε,ρ(x, y)

∣∣ + ∣∣Dyφε,ρ(x, y)
∣∣ ≤ K2

|x−y|
ε2 ,

(φiii)

{
∀x ∈ ∂O, y ∈ O, Dxφε,ρ(x, y) · γ (x) ≥ −K2

[ |x−y|2
ε2 + ρ2

ε2

]
,

∀y ∈ ∂O, x ∈ O, Dyφε,ρ(x, y) · γ (y) ≥ −K2
[ |x−y|2

ε2 + ρ2

ε2

]
.
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Indeed (φi) comes from a simple application of Cauchy–Schwarz inequality, and from the fact that d is Lipschitz
continuous. Now for all U = (u, v) ∈ R

d × R
d , we have

Dφε,ρ(x, y) · U = 2(x − y) · (u − v)

ε2
+ 2

u − v

ε2
· μρ

(
x + y

2

)(
d(x) − d(y)

)

− 2
x − y

ε2
· μρ

(
x + y

2

)(
n(x)u − n(y)v

)

+ (x − y)

ε2
· Dμρ

(
x + y

2

)
(u + v)

(
d(x) − d(y)

) − 2A

ε2

(
d(x) − d(y)

)(
n(x)u − n(y)v

)
.

Taking U = (u,u), as both d and n are Lipschitz continuous, and using Cauchy–Schwarz inequality we obtain straight-
forwardly the first inequality in (φii). The second inequality in (φii) is clear.

Let us now prove (φiii). By symmetry, there is only one inequality to prove. Take x ∈ ∂O and y ∈ O, and take
U = (γ (x),0), and recall that γ (x) · n(x) ≥ c0 > 0. The sum of all the terms that have (d(x) − d(y)) = −d(y) can be
made nonnegative for A large enough. The remaining term is, taking 2(x−y)

ε2 in factor,

γ (x) − μρ

(
x + y

2

)
n(x) · γ (x) =

(
μ(x) − μρ

(
x + y

2

))(
n(x) · γ (x)

)
.

Writing |μ(x) − μρ(
x+y

2 )| ≤ |(μ(x) − μ(
x+y

2 )| + |μ(
x+y

2 ) − μρ(
x+y

2 )| ≤ K| x−y
2 | + ρ, we have completed the proof

of (φiii).
Finally, we set, for x, y ∈ O,

ψε,ρ(x, y) = eC(2‖d‖∞−d(x)−d(y))φε,ρ(x, y) − B
ρ2

ε2

(
d(x) + d(y)

)
. (A.1)

By choosing B , then C large enough, we obtain the desired result. �

Appendix B: A deterministic reflection problem

In this section, we suppose that b and σ satisfy (1.5). We consider for each fixed α ∈ L2 = L2(0, T ;R
m) and for each

fixed (t, x) ∈ [0, T ] × O the deterministic equation with oblique reflection{
dYs = (

b(s,Ys) − σ(s,Ys)αs

)
ds − dzs, Ys ∈ O (∀s ∈ [t, T ]), Ys = x (∀s ∈ [0, t]),

dzs = 1∂O(Ys)γ (Ys)d|z|s (∀s ∈ [t, T ]) and zs = 0 (∀s ∈ [0, t]). (B.1)

A solution of equation (B.1) is a couple (Y, z) of continuous functions defined on [0, T ] with values in R
d such that z

has bounded variations, and |z|s denotes the total variation of z on the interval [0, s].

Theorem B.1. Assume (1.2), (1.4), (1.5) and let α ∈ L2. Then,

(1) there exists a unique solution (Y t,x,α, zt,x,α) of (B.1),
(2) for each s, the function (t, x) �→ Y

t,x,α
s is continuous and |Y t,x,α

s − Y
t ′,x′,α
s |2 ≤ K(|x − x′|2 + |t − t ′|1/4),

(3) for each (t, x), Y t,x,α· is C 0,1/2: |Y t,x,α
s − Y

t,x,α
s′ | ≤ K|s − s′|1/2 (∀s, s′ ∈ [0, T ]),

(4) assumption (A3) holds true: ∀(αn)n, α in L2, if αn ⇀ α weakly in L2, then ‖Y t,x,αn· − Y t,x,α· ‖X → 0,

where the constant K in (2) and (3) depends only on O, γ , c0 the Lipschitz constant KT of b, σ and ‖α‖L2 .

Proof of Theorem B.1(1). For the sake of completeness, and as the hypothesis on the coefficient c = b − σα are
slightly more general than in [18] or [30], we present a complete proof. To that end, we use the Skorokhod problem.
More precisely, fix (t, x) ∈ [0, T ] × O, and α ∈ L2 and define ct (x) = b(t, x) − σ(t, x)αt for all (t, x) ∈ [0, T ] × O.
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By [30], Theorem 2.2, p. 521, for each X ∈ C([t, T ]; O), there exists at least one solution (Y, z) of the following
Skorokhod problem:{

Ys = x + ∫ s

t
cu(Xu)du − zs, Y ∈ C

([t, T ]; O
)
,

zs = ∫ s

t
1∂O(Yu)γ (Yu)d|z|u, z ∈ Cbv

([t, T ]; O
)
.

(B.2)

We next show that the solution of (B.2) is unique and then we prove the existence and uniqueness for the solutions to
equation (B.1) by a fixed point argument. Note that, as in view of the first equation of (B.2) z is completly defined by
X and Y , it is enough to prove the uniqueness for Y only. �

We define the binary relation S on C([t, T ]; O) in the following way: for all X,Y ∈ C([t, T ]; O), Y SX if and only
if there exists z ∈ Cbv([t, T ]; O) such that (Y, z) is the solution of (B.2).

Lemma B.1. Let X,X′, Y,Y ′ ∈ C([t, T ]; O) and suppose Y SX and Y ′SX′. Then, there exists η > 0, depending only
on O, γ , c0 and aT (and independent of t ), such that for all u ∈ [t, t + η] ∩ [0, T ], one has: |Yu − Y ′

u| ≤ 1
2 |Xu − X′

u|.

Proof. We use the function ψε,ρ defined in Lemma A.1 with ε = 1, and fix s ∈ [t, T ] and we put fx = Dxψ1,ρ ,
fy = Dyψ1,ρ . We have

ψ1,ρ

(
Ys,Y

′
s

) = ψ1,ρ(x, x) +
∫ s

t

fx

(
Yu,Y

′
u

)
cu(Xu)du +

∫ s

t

fy

(
Yu,Y

′
u

)
cu

(
X′

u

)
du

−
∫ s

t

fx

(
Yu,Y

′
u

)
1∂O(Yu)γ (Yu)d|z|u −

∫ s

t

fy

(
Yu,Y

′
u

)
1∂O

(
Y ′

u

)
γ
(
Y ′

u

)
d
∣∣z′∣∣

u
.

By (ψ iii), the two last integrals of the right-hand side of the above inequality are nonpositive. Write the first term of
the right-hand side of the previous inequality as∫ s

t

(fx + fy)
(
Yu,Y

′
u

)
cu(Xu)du +

∫ s

t

fy

(
Yu,Y

′
u

)(
cu

(
X′

u

) − cu(Xu)
)

du.

Put au = 1 + |αu|, by using (ψ i), (ψ ii) and as |cu(Xu)| ≤ Kau and |cu(Xu) − cu(X
′
u)| ≤ Kau|Xu − X′

u|,
1

2

∣∣Ys − Y ′
s

∣∣2 ≤ K

(
2ρ2 +

∫ s

t

(∣∣Yu − Y ′
u

∣∣2 + ρ2)au du +
∫ s

t

(∣∣Yu − Y ′
u

∣∣ + ρ2)∣∣Xu − X′
u

∣∣au du

)
.

This equality holds independently of ρ > 0 and its right-hand term is nondecreasing with s therefore, by letting ρ to 0
we have for all s ∈ [t, T ], and writing for g ∈ X , |g|[t,s] = sup{|g(u)|, u ∈ [t, s]},

∣∣Y − Y ′∣∣2
[t,s] ≤ K

(∫ s

t

au du

)(∣∣Y − Y ′∣∣2
[t,s] + ∣∣Y − Y ′∣∣[t,s]∣∣X − X′∣∣[t,s]).

Now, by using Cauchy–Schwarz inequality, we have for |t − s| small enough: |Y − Y ′|[t,s] ≤ 2K|s−t |1/2‖a‖
L2

1−2K|s−t |1/2‖a‖
L2

|X −
X′|[t,s], and we can chose η > 0 independently of t such that

sup
u∈[t,t+η]∩[0,T ]

∣∣Yu − Y ′
u

∣∣ ≤ 1

2
sup

u∈[t,t+η]∩[0,T ]
∣∣Xu − X′

u

∣∣,
which completes the proof of the lemma. �

Lemma B.1 shows first that for each X there exists a unique Y such that XSY . Changing notation we have proved
that S :X �→ Y is a map. Lemma B.1 shows also that there exists η such that for all t ∈ [0, T ], S contracts C([t, t +η]∩
[0, T ]; O) onto itself. This gives existence and uniqueness for (B.1) by a fixed point argument hence it proves assertion
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(1) of the theorem. Stricly speaking, this fixed point argument holds for a fixed α ∈ L([t, T ];R
m). Lemma B.2 below

shows in particular that Y t,x,α is uniquely comatible with almost everywhere equivalence of α in L2.

Proof of Theorem B.1(2). Let us first establish the following lemma.

Lemma B.2. Fix α,α′ ∈ L2 and t, t ′ ∈ [0, T ] with t ′ ≤ t , x, x′ ∈ O and define Y = Y t,x,α and Y ′ = Y t,x′,α′
. Then,

there exists a constant K > 0 (which only depends on ‖α‖L2 , c0, ‖γ ‖Lip, KT and O) such that, for all ρ > 0 and for
all s ∈ [t, T ], we have

∣∣Ys − Y ′
s

∣∣2 ≤ K

(
gρ(s) +

∫ s

t

gρ(u) · (1 + |αu| +
∣∣α′

u

∣∣)du

)
,

where gρ(s) = ρ2 + |x − x′|2 + |t − t ′|1/2 + | ∫ s

t
Dxψ1,ρ(Yu,Y

′
u)σ (u,Yu)(αu − α′

u)du|.

Proof. We put for (s, y) ∈ [0, T ] × O, cs(y) = b(s, y) − σ(s, y)αs , c′
s(y) = b(s, y) − σ(s, y)α′

s , and as = 1 + |αs |,
a′
s = 1 + |α′

s |. Note that there exists a constant K such that for all (s, y) ∈ [0, T ] × O, one has |cs(y)| ≤ Kas and
|c′

s(y)| ≤ Ka′
s . Define as before fx = Dxψ1,ρ and fy = Dyψ1,ρ . Recall also that the function ψ1,ρ is a continuous

function from R
d × R

d to R
d which is bounded on O × O independently of ρ ∈ (0,1), and write

ψ1,ρ

(
Ys,Y

′
s

) = ψ1,ρ

(
x, x′) +

∫ t

t ′
fy

(
Yu,Y

′
u

)
c′
u

(
Y ′

u

)
du +

∫ s

t

(fx + fy)
(
Yu,Y

′
u

)
cu(Xu)du

+
∫ s

t

fy

(
Yu,Y

′
u

)(
c′
u

(
Y ′

u

) − cu(Yu)
)

du −
∫ s

t ′
fx

(
Yu,Y

′
u

)
1∂O(Yu)γ (Yu)d|z|u

−
∫ s

t ′
fy

(
Yu,Y

′
u

)
1∂O

(
Y ′

u

)
γ
(
Y ′

u

)
d
∣∣z′∣∣

u
.

We then follow similar calculations as Lemma B.1.
By Cauchy–Schwarz inequality, the first integral can be majorated by K|t ′ − t |1/2‖a′‖L2 , the second integral is

smaller than K(ρ2(t − s) + ∫ s

t
|Yu − Y ′

u|2au du). For the third integral write c′
u(Y

′
u) − cu(Yu) = b(u,Yu) − b(u,Y ′

u) −
(σ (u,Yu) − σ(u,Y ′

u))α
′
u + σ(u,Yu)(αu − α′

u) and we use (ψ ii), and eventually we use (ψ iii) in order to estimate the
to last integrals. Hence we have

∣∣Ys − Y ′
s

∣∣2 ≤ K
(∣∣x − x′∣∣2 + (

t − t ′
)1/2∥∥a′∥∥2

L2 + ρ2) + K

∫ s

t

∣∣Yu − Y ′
u

∣∣2
au du + Kρ2(s − t)1/2

∥∥a′∥∥
L2

+ K

∫ s

t

∣∣Yu − Y ′
u

∣∣2
a′
u du +

∣∣∣∣
∫ s

t

Dyψ1,ρ

(
Yu,Y

′
u

) · σ(u,Yu)
(
αu − α′

u

)
du

∣∣∣∣
which implies that

∣∣Ys − Y ′
s

∣∣2 ≤ Kgρ(s) + K

∫ s

t

∣∣Yu − Y ′
u

∣∣2(1 + |αu| +
∣∣α′

u

∣∣)du

for some positive constants K . By Gronwall’s lemma the proof is complete. �

Fix α ∈ L2 and x, x′ ∈ O, and apply Lemma B.2 to Y = Y t,x,α and to Y ′ = Y t ′,x′,α . We have, gρ(s) = ρ2 + |x −
x′|2 +|t − t ′|1/2, which gives |Ys −Y ′

s |2 ≤ K(ρ2 +|x −x′|2 +|t − t ′|1/2). Letting ρ to 0, we have obtained the desired
result. �

Fix s0 ∈ [t, T ] and α ∈ L2. Consider Y : s �→ Y
t,x,α
s and Y ′ : s �→ Y

t,x,α
s0 .

Proof of Theorem B.1(3). Let us first prove that for each (t, x) ∈ [0, T ] × O and for each s ∈ [t, T ] one has

sup
u∈[s,t]

∣∣Y t,x,α
u − x

∣∣ ≤ K
√

t − s. (B.3)
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Indeed, define Y and Y ′ by Yu = Y
t,x,α
u and Y ′

u = x for u ∈ [t, T ]. Put c(u, y) = b(u, y) − σ(s, y)αs and c′(u, y) = 0
for (u, y) ∈ [t, T ] × O. The same computation as in Lemma B.2 gives, for all s′ ∈ [t, s],

ψ1,ρ(Ys′ , x) ≤
∫ s′

t

Dxψ1,ρ(Yu, x)c(u,Yu)du ≤
∫ s

t

K|Yu − x|(1 + |αu|
)

du,

which gives, using Cauchy–Schwarz inequality

|Ys′ − x|2 ≤ K
(

sup
u∈[t,s]

|Yu − x|
)√

t − s
(
1 + ‖α‖L2

)
.

Passing to the supremum over s′ ∈ [t, s], we obtain supu∈[t,s] |Yu − x| ≤ K
√

t − s.

Fix now (t, x) ∈ [0, T ] × O and s, s′ ∈ [t, T ], with s′ ≤ s. Put x′ = Y
t,x,α
s′ . By the previous result we have |Y s′,x′

s −
x′| ≤ K

√
s − s′, and by the uniqueness result we have the flow property Y

t,x
s = Y

s′,x′,α
s , hence we have proved that

|Y t,x,α
s − Y

t,x,α
s′ | ≤ K

√
s − s′. �

Proof of Theorem B.1(4). We apply Lemma B.2 to Y = Y t,x,α and Yn = Y t,x,αn
. Then gn

ρ is given for all s ∈ [t, T ]
by

gn
ρ(s) = ρ2 +

∫ s

t

fρ

(
u,Yu,Y

n
u

)(
αu − αn

u

)
du,

where fρ(t, y, y′) = Dxψ1,ρ(y, y′)σ (t, y) is continuous on [0, T ] × O × O.
We first prove that a subsequence of gn

ρ converges pointwise to ρ2 as n goes to ∞. We remark, by assertion (3)

of Theorem B.1, that the sequence (Y n) is bounded in C 0,1/2([0, T ]; O) and therefore is relatively compact. Let Y be
one of its limit in X. Let us prove that this limit is Y . Extracting a subsequence if necessary, one can suppose that the
sequence (Y np )p converges to Y . We write

g
np
ρ (s) = ρ2 +

∫ s

t

(
fρ

(
u,Yu,Y

np
u

) − fρ(u,Yu,Y u)
)(

αu − α
np
u

)
du +

∫ s

t

fρ(u,Yu,Y u) · (αu − α
np
u

)
du.

The first integral converges to 0 as p goes to ∞ by Lebesgue’s Theorem and the second integral converges to 0 by
definition of the weak convergence of (αn) to α. Now as (αn) is bounded in L2 there exists K > 0 (independent of n

and ρ) such that for all n ∈ N and for all s ∈ [0, T ],
gn

ρ(s) ≤ ρ2 + K.

It follows, applying again Lebesgue’s Theorem in the inequality given by Lemma B.2, that for all ρ ∈ (0,1) and for
all s ∈ (t, T ),

lim
p→∞

∣∣Ys − Y
np
s

∣∣2 ≤ ρ2
(

1 +
∫ s

t

|αu|du

)
.

Letting ρ to 0, we deduce that (Y np )p converges pointwise, and even uniformly to Y and by uniqueness of the limit we
have Y = Y . This implies that the whole sequence (Y n)n converges uniformly to Y and the proof of (A3) is complete.

The proof of Theorem B.1 is now complete. �

Appendix C: Discontinuous mixed single or multiple optimal stopping problems

In this appendix we first study a mixed optimal control-optimal stopping time problem and we prove that a particular
value function is the maximal viscosity supersolution of a variational inequality. Then we prove a reduction result: the
value function of a mixed optimal control-optimal multiple stopping problem can be writen as the value function of a
mixed optimal control-optimal single stopping problem with a new reward defined recursively.
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C.1. A deterministic mixed optimal control-optimal single stopping problem

We first study the following mixed optimal control-optimal single stopping problem. For each bounded Borelian real
valued function ψ defined on [0, T ] × O and for each (t, x) in [0, T ] × O define the value function V [ψ](t, x) by

V [ψ](t, x) = inf
α∈L2

sup
θ∈[t,T ]

{
1

2

∫ θ

t

|αs |2 ds + ψ
(
θ,Y

t,x,α
θ

)}
, (C.1)

where Y t,x,α is the unique solution of (1.7).
When ψ is upper-semicontinuous (usc), we show that this value function is characterized as the maximal viscosity

subsolution of the following equation{
min

(− ∂V
∂t

+ 1
2

∣∣σT DV
∣∣2 − b · DV,V − ψ

) = 0 in [0, T ) × O,
∂V
∂γ

= 0 in [0, T ) × ∂O, V (T ) = ψ(T ) on O.
(C.2)

The proof follows different results of Barles and Perthame [7]. We adapt them here to our context.

Lemma C.1. V [ψ∗] is usc and V [ψ∗] is lsc. In particular, if ψ is continuous, V [ψ] is continuous.

Proof. Step 1: Suppose, by contradiction, that V [ψ∗] is not usc. Then there exist (t, x) ∈ [0, T ] × O, a sequence
(tn, xn)n that converges to (t, x) and ε > 0 such that, V [ψ∗](t, x) + 2ε ≤ lim infn→∞ V [ψ∗](tn, xn). Consider an
ε-control α for V [ψ∗], for all θ ∈ [t, T ],

1

2

∫ θ

t

|αs |2 ds + ψ∗(θ,Y
t,x,α
θ

) + ε ≤ lim inf
n→∞ V

[
ψ∗](tn, xn). (C.3)

Now for each n ∈ N there exists θn ∈ [tn, T ] such that V [ψ∗](tn, xn) ≤ 1
2

∫ θn

tn
|αs |2 ds + ψ∗(θn,Y

tn,xn,α
θn

). Extracting

a sequence if necessary, we have that (θn) converges to θ ∈ [t, T ]. By the regularity of Y given by Appendix B, we
obtain that

lim
n→∞V

[
ψ∗](tn, xn) ≤ 1

2

∫ θ

t

|αs |2 ds + ψ∗(θ,Y
t,x,α

θ

)
. (C.4)

Using (C.3) with θ = θ and (C.4) we obtain ε ≤ 0, which is the expected contradiction.
Step 2: Suppose by contradiction that V [ψ∗] is not lsc. Then there exist (t, x) ∈ [0, T ]× O, a sequence (tn, xn)n that

converges to (t, x) and ε > 0 such that, V [ψ∗](t, x) ≥ limn→∞ V [ψ∗](tn, xn) + 3ε. For each n consider an ε-control
αn ∈ L2 for V [ψ∗](tn, xn)

V [ψ∗](t, x) ≥ lim
n→∞ sup

θ∈[tn,T ]
1

2

∫ θ

tn

∣∣αn
s

∣∣2 ds + ψ∗
(
θ,Y

tn,xn,αn

θ

) + 2ε. (C.5)

The sequence (αn) is bounded in L2 and extracting a subsequence if necessary, it converges to α weakly in L2.
Now, there exists θ ∈ [t, T ] such that

1

2

∫ θ

t

|αs |2 ds + ψ∗
(
θ,Y

t,x,α

θ

) + ε ≥ V [ψ∗](t, x). (C.6)

For each n ∈ N define θn = tn ∧ θ . One has θn ∈ [tn, T ] and as tn → t one has θn → θ . By (C.5) and (C.6) we obtain
ε ≥ 2ε which provides the expected contradiction. �

Lemma C.2. V [ψ∗] (resp. V [ψ∗]) is a viscosity subsolution (resp. supersolution) of (C.2) with obstacle ψ . In par-
ticular, if ψ is continuous, V [ψ] is a continuous solution of (C.2) with obstacle ψ .
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For completeness let us recall the definition of a viscosity subsolution and supersolution of equation (C.2). For
simplicity we define H(Dϕ)(t, x) = 1

2 |σT Dϕ(t, x)|2 − b · Dϕ(t, x)

Definition C.1. An usc locally bounded function v defined on [0, T ] × O is a viscosity subsolution of equation (C.2)
if and only if ∀ϕ ∈ C 1([0, T ] × O), if (t0, x0) ∈ [0, T ] × O is a local minimum of v − ϕ, then

(1) if (t0, x0) ∈ [0, T ] × O, min(− ∂ϕ
∂t

+ H(Dϕ), v − ψ∗)(t0, x0) ≤ 0,

(2) if (t0, x0) ∈ [0, T ] × ∂O, min(− ∂ϕ
∂t

+ H(Dϕ), v − ψ∗, ∂ϕ
∂γ

)(t0, x0) ≤ 0.

A lsc locally bounded function u defined on [0, T ] × O is a viscosity supersolution of equation (C.2) if and only if
∀ϕ ∈ C 1([0, T ] × O), if (t0, x0) ∈ [0, T ] × O is a local maximum of u − ϕ, then

(1) if (t0, x0) ∈ [0, T ) × O, min(− ∂ϕ
∂t

+ H(Dϕ),u − ψ∗)(t0, x0) ≥ 0,

(2) if (t0, x0) ∈ {T } × O, (u − ψ∗)(t0, x0) ≥ 0,

(3) if (t0, x0) ∈ [0, T ) × ∂O, max(min(− ∂ϕ
∂t

+ H(Dϕ),u − ψ∗), ∂ϕ
∂γ

)(t0, x0) ≥ 0,

(4) if (t0, x0) ∈ {T } × ∂O, max(u − ψ∗, ∂ϕ
∂γ

)(t0, x0) ≥ 0.

Proof of Lemma C.2. Let us first recall the Dynamic Programming Principle, which proof is well known in the
deterministic case, even for a discontinuous reward. For each (t, x) ∈ [0, T ] × O and for each τ ∈ [t, T ] we have

V [ψ](t, x) = inf
α∈L2

sup
θ∈[t,T ]

{
1

2

∫ θ∧τ

t

|αs |2 ds + ψ
(
θ,Y

t,x,α
θ

)
1{θ<τ } + V [ψ](τ,Y t,x,α

τ

)
1{θ≥τ }

}
.

Step 1: Let us first prove that V [ψ∗] is a viscosity subsolution.
Let ϕ ∈ C 1([0, T ] × O) and suppose that (t0, x0) is a local maximum of V [ψ∗] − ϕ. Without loss of generality we

can suppose that V [ψ∗](t0, x0) = ϕ(t0, x0), and we fix r > 0 such that for all (t, x) ∈ [0, T ] × O if |t − t0| < r and
|x − x0| < r then V [ψ∗](t, x) ≤ ϕ(t, x).

The only technical point consists in showing that: if [V [ψ∗](t0, x0) > ψ∗(t0, x0) and (
∂ϕ
∂γ

(t0, x0) > 0 if x0 ∈ ∂O)],
then (− ∂ϕ

∂t
+ H(Dφ))(t0, x0) ≤ 0. Consider α ∈ L2 a constant control whose value will be fixed later, and fix θ

in [t0, T ] which maximizes 1
2

∫ θ

t0
|α|2 du + ψ∗(θ, Y

t0,x0,α
θ ) on [t0, T ]. One has ϕ(t0, x0) = V [ψ∗](t0, x0) ≤ 1

2 (θ −
t0)|α|2 + ψ∗(θ, Y

t,x,α

θ
), and in particular, θ > t0. Consider also θ̃ = inf{s ∈ [t0, T ], |Y t0,x0,α

s − x0| ≥ r}. One has

also θ̃ > t0. For each τ such that t0 < τ < θ ∧ θ̃ ∧ t0 + r , the Dynamic Programming Principle gives ϕ(t0, x0) =
V [ψ∗](t0, x0) ≤ 1

2 (τ − t0)|α|2 + V [ψ∗](τ, Y t0,x0,α
τ ) ≤ 1

2 (τ − t0)|α|2 + ϕ(τ,Y
t0,x0,α
τ ). Substracting ϕ(t0, x0), dividing

by −h = t0 − τ < 0, and letting h to 0 we obtain,

−1

2
|α|2 − ∂ϕ

∂t
(t0, x0) − Dϕ(t0, x0) · b(t0, x0) + Dϕ(t0, x0) · σ(t0, x0)α ≤ 0.

We chose now α = (−Dϕ · σ)(t0, x0) and we obtain the desired inequality.
Step 2: Let us prove now that V [ψ∗] is a viscosity supersolution.
Let ϕ ∈ C 1([0, T ] × O) and suppose that (t0, x0) is a local minimum of V [ψ∗] − ϕ. Without loss of generality we

can suppose that V [ψ∗](t0, x0) = ϕ(t0, x0), and fix r > 0 such that V [ψ∗](t, x) > ϕ(t, x) if 0 < |t − t0|+ |x − x0| < r

and B(x0, r) ⊂ O if x0 ∈ O. As clearly V [ψ∗](t0, x0) ≥ ψ∗(t0, x0), we only need to show that: if [(t0, x0) ∈
[0, T ) × O and (

∂ϕ
∂γ

(t0, x0) < 0 if x0 ∈ ∂O)], then (− ∂ϕ
∂t

+ H(Dϕ))(t0, x0) ≥ 0. By fixing r smaller if necessary, we

can suppose that ∂ϕ
∂γ

(t, x) < 0 if x0 ∈ ∂O and |t − t0| + |x − x0| < r . Fix τ ∈ (t0, T ]. By the Dynamic Programming

Principle V [ψ∗](t0, x0) ≥ infα∈L2‖α‖
L2 ≤K

[ 1
2

∫ τ

t0
|αs |2 ds + V [ψ∗](τ, Y t0,x0,α

τ )], where K = V [ψ∗](t0, x0). By the reg-

ularity of Y with respect to α and τ , there exists h > 0 such that for all α ∈ L2 with ‖α‖L2 ≤ K , for all τ ∈ [t0, t0 +h]
one has |τ − t0| + |Y t0,x0,α

τ − X0| < r . Therefore, for each τ ∈ (t0, t0 + h] we have

ϕ(t0, x0) = V
[
ψ∗](t0, x0) ≥ inf

α∈L2‖α‖
L2 ≤K

[
1

2

∫ τ

t0

|αs |2 ds + ϕ
(
τ,Y t0,x0,α

τ

)]
. (C.7)
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Suppose by contradiction that there exists ε > 0 such that ∂ϕ
∂t

(t0, x0) + bDϕ(t0, x0) − 1
2 |σT Dϕ|2(t0, x0) > ε. Taking

r smaller if necessary, we can suppose that this inequality holds for all (t, x) ∈ [0, T ] × O, such that |t − t0| + |x −
x0| < r . Note that if τ ∈ [t0, t0 + h] then for all α ∈ L2 with ‖α‖L2 ≤ K we have 1∂O(Y

t0,x0,α
τ )

∂ϕ
∂γ

(τ, Y
t0,x0,α
τ ) ≤ 0.

Noticing that infα∈Rm
1
2 |α|2 − Dϕσ(t, x)α = − 1

2 |σT Dϕ(t, x)|2, we have for τ ∈ (t0, t0 + h], and for all α ∈ L2

with ‖α‖L2 ≤ K

ϕ
(
τ,Y t0,x0,α

τ

) ≥ ϕ(t0, x0) +
∫ τ

t0

(
∂ϕ

∂t
+ Dϕb − Dϕσα

)(
u,Y t0,x0,α

u

)
du

≥ ϕ(t0, x0) + ε(τ − t0) − 1

2

∫ τ

t0

|αu|2 du.

Now (C.7) gives

ϕ(t0, x0) ≥ ϕ(t0, x0) + ε(τ − t0) > ϕ(t0, x0),

which provides the expected contradiction. �

Lemma C.3. Let (ψn) be a nonincreasing sequence of continuous functions on [0, T ] × O such that ψ∗ = lim ↓ ψn.
Then V [ψ∗] = lim ↓ V [ψn].

Proof. Suppose that ψn ↓ ψ∗. Clearly, V [ψn] ≥ V [ψ∗] and the sequence V [ψn] is nonincreasing hence we obtain
V [ψ∗] ≤ lim ↓ V [ψn]. Let us prove the second inequality. Fix (t, x) ∈ [0, T ] × O, and ε > 0. There exists α∗ ∈ L2

and θ∗ ∈ [t, T ] such that for all θ ∈ [t, T ] one has

V
[
ψ∗](t, x) + ε ≥ 1

2

∫ θ∗

t

∣∣α∗
s

∣∣2 ds + ψ∗(θ∗, Y t,x,α∗
θ∗

) ≥ 1

2

∫ θ

t

∣∣α∗
s

∣∣2 ds + ψ∗(θ,Y
t,x,α∗
θ

)
. (C.8)

Now, for each n ∈ N, there exists θn ∈ [t, T ] such that V [ψn](t, x) ≤ 1
2

∫ θn

t
|α∗

s |2 ds + ψn(θn,Y
t,x,α∗
θn

). Extracting a

sequence if necessary, we can suppose that θn tends to θ . Fix p ∈ N. For each n ≥ p, we have

V [ψn](t, x) ≤ 1

2

∫ θn

t

∣∣α∗
s

∣∣2 ds + ψp

(
θn,Y

t,x,α∗
θn

)
.

Letting n to ∞, limn→∞ V [ψn](t, x) ≤ 1
2

∫ θ

t
|α∗

s |2 ds + ψp(θ,Y
t,x,α∗
θ

). Now passing to the limit in p and using (C.8)
we obtain limn→∞ V [ψn](t, x) ≤ V [ψ∗](t, x) + ε. �

Proposition C.1. V [ψ∗] is the maximal usc viscosity subsolution of (C.2) with obstacle ψ .

Proof. In view of Lemmas C.1 and C.2, the only point which is left to show is the maximality of the solution. Let v

be a usc function which is a viscosity subsolution of (C.2) with obstacle ψ . Let ψn be a nonincreasing sequence of
continuous functions on [0, T ] × O such that ψ∗ = lim ↓ ψn. Since ψn ≥ ψ∗, v is also a viscosity subsolution to the
variational inequality (C.2) with obstacle ψn. By Lemma C.2, V [ψn] is a continuous viscosity solution to the same
equation, and v ≤ V [ψn] by Theorem D.1. As by Lemma C.3, V [ψ∗] = lim ↓ V [ψn], we obtain v ≤ V [ψ∗]. �

C.2. Reduction of multiple stopping to single stopping problems

Let (ψi)i∈N be a family of real valued bounded measurable functions defined on [0, T ] × O and consider for each
nonempty finite subset I of N and for each (t, x) ∈ [0, T ] × O the mixed optimal control–optimal multiple stopping
problem

vI (t, x) = inf
α∈L2

inf
θI ∈[t,T ]N

{∫ ∨
i∈I θi

t

|αs |2 ds +
∑
i∈I

ψi

(
θi, Y

t,x,α
θi

)}
(C.9)
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the value function of the following mixed optimal control-optimal single stopping problem

uI (t, x) = inf
α∈L2

inf
θ∈[t,T ]

{
1

2

∫ θ

t

|αs |2 ds + φ
(
θ,Y

t,x,α
θ

)}
, (C.10)

where the new reward is defined recursively by

φ =
{

ψi if I = {i} with i ∈ N,
mini∈I

{
ψi + vI\{i},A}

if I contains 2 or more elements. (C.11)

Proposition C.2. For each finite nonempty subset I of N let vI be defined by (C.9) and let uI be defined by (C.10)
and (C.11). Then for each (t, x) ∈ [0, T ] × O one has vI (t, x) = uI (t, x).

Proof. Fix a nonempty finite subset I of N of cardinal N . When I contains only one element, there is nothing to prove.
Suppose now that I has two or more elments. Let us prove first that for each (t, x) ∈ [0, T ] × O, vI (t, x) ≤ uI (t, x).
Fix (t, x) ∈ [0, T ] × O. Consider a partition (Aj )j∈I of [t, T ]N such that for each θI ∈ [t, T ]N if θI ∈ Aj then one
has θj = ∧

i∈I θi .
Fix α ∈ L2 and θI ∈ [t, T ]N ,

∫ ∨
i∈I θi

t

|αs |2 ds +
∑
i∈I

ψi

(
θi, Y

t,x,α
θi

)

=
∑
j∈I

1Aj
(θI )

{∫ θj

t

|αs |2 ds + ψj

(
θj , Y

t,x,α
θj

) +
∫ ∨

i∈I\{j } θi

θj

|αs |2 ds +
∑

i∈I\{j}
ψi

(
θi, Y

t,x,α
θi

)}
.

Clearly, by uniqueness for equation (1.7), the second terme of the right-hand side can be minorated by vI\{j}(θj ,

Y
t,x,α
θj

), hence

∫ ∨
i∈I θi

t

|αs |2 ds +
∑
i∈I

ψi

(
θi, Y

t,x,α
θi

) ≥
∑
j∈J

1Aj
(θI )

{∫ θj

t

|αs |2 ds + ψj

(
θj , Y

t,x,α
θj

) + vI\{j}(θj , Y
t,x,α
θj

)}

≥
∑
j∈J

1Aj
(θI )

{∫ θj

t

|αs |2 ds + φ
(
θj , Y

t,x,α
θj

)}

≥ uI (t, x).

Taking the infimum over α ∈ L2 and θI ∈ [t, T ]N , we obtain vI (t, x) ≥ uI (t, x).
Let us now prove the reverse inequality. For simplicity, suppose first that there exist an optimal time θ∗ ∈ [t, T ]

and an optimal control α∗ ∈ L2(t, T ;R
m) for uI (t, x), and for each i ∈ I there exist α̃i∗ ∈ L2(θ∗, T ;R

m) and θ̃ i∗ ∈
[θ∗, T ]N−1 that are optimal for vI\{i}(θ∗, Y t,x,α∗

θ∗ ). Define αi∗ = α∗1[t,θ∗) + α̃i∗1[θ∗,T ). Note that αi∗ is optimal for

uI (t, x), that Y
t,x,α∗
θ∗ = Y

t,x,αi∗
θ∗ and that αi∗ is also optimal for vI\{i}(θ∗, Y t,x,α∗

θ∗ ).

Let (Bi)i∈I be a partition of [t, T ] such that for each s ∈ [t, T ], if s ∈ Bi then φ(s,Y
t,x,α∗
s ) = ψi(s, Y

t,x,α∗
s ) +

vI\{i}(s, Y t,x,α∗
s ). We have

uI (t, x) =
∑
i∈I

1Bi

(
θ∗)(∫ θ∗

t

∣∣α∗
s

∣∣2 ds + {
ψi + vI\{i}}(θ∗, Y t,x,α∗

θ∗
))

=
∑
i∈I

(
1Bi

(
θ∗){∫ θ∗

t

∣∣αi∗
s

∣∣2 ds + ψi

(
θ∗, Y t,x,αi∗

θ∗
) +

∫ ∨
j∈I\{i} θ̃ i∗

j

θ∗

∣∣αi∗
s

∣∣2 ds +
∑

j∈I\{i}
ψj

(
θ̃ i∗
j , Y

t,x,αi∗
θ̃ i∗
j

)})
.
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For each i define θi∗ ∈ [t, T ]N by θi∗
i = θ∗

i and θi∗
j = θ̃ i∗

j for j ∈ I \ {i}. One has now

uI (t, x) =
∑
i∈I

1Bi

(
θ∗){∫ ∨

j∈I θ i∗
j

t

∣∣αi∗
s

∣∣2 ds +
∑
j∈I

ψj

(
θi∗
j , Y

t,x,αi∗
θi∗
j

)} ≥ vI (t, x).

In general, there is no optimal stopping control and stopping times, but for each ε > 0 on can find ε/2 optimal θ∗ and
α∗ for uI (t, x) and ε/2 optimal θ̃ i∗

p and α̃i∗
p for vI\{i}(θ∗, Y t,x,α∗

θ∗ ). Building αi∗ and θ∗i as above we obtain that for
each ε > 0, uI (t, x) + ε ≥ vI (t, x). �

Appendix D: A strong comparison result

In this appendix we prove a strong comparison result for viscosity solutions to a first order variational inequality with
Neumann boundary conditions and with continuous obstacle.

Theorem D.1. Assume (1.2) and (1.5)–(1.6) and let ψ ∈ C([0, T ] × O;R). If u,v : [0, T ] × O → R are respectively
usc viscosity subsolution and lsc viscosity supersolution to{

min
(− ∂w

∂t
+ 1

2

∣∣σT Dw
∣∣2 − b · Dw,w − ψ

) = 0 in [0, T ) × O,
∂w
∂γ

= 0 in [0, T ) × ∂O, w(T ) = ψ(T ) on O,
(D.1)

then u ≤ v on [0, T ] × O.

Note that the difficulty of proving this strong comparison result is double. First, we have to handle the Neuman
condition, and the test function of Appendix A was built to that aim. Second, even though the equation is of first order
and no Ishii lemma is needed, the quadratic term |σT Dv|2 has to be taken with care.

Proof of Theorem D.1. In the following we denote for all ε > 0 by Ψε the function Ψε := ψε,ε2 where ψε,ρ is the
test-function of Lemma A.1.

Let u, v be respectively a bounded usc viscosity subsolution and a bounded lsc viscosity supersolution of (D.1).
We first remark that the terminal condition holds in a stronger sense that the viscosity sense.

Proposition D.1. For all x ∈ O, u(T , x) ≤ ψ(T ,x).

Proof. Fix x0 ∈ O. For all ε > 0, put ϕε(t, x) = Ψε(x, x0) + T −t

ε2 and let (tε, xε) be a global maximum of the usc

function u − ϕε . Then u(T , x0) − ϕε(x0, x0) ≤ u(tε, xε) − ϕε(xε, x0) which implies, by Lemma A.1, 1
2

|xε−x0|2
ε2 −

Kε2 + T −tε
ε2 ≤ ϕ(tε, xε) ≤ u(tε, xε) − u(T , x0) + ϕε(T , x0) ≤ 2‖u‖ + Kε2. We deduce that tε and xε go respectively

to T and x0 as ε goes to 0 and, by the upper semicontinuity of u, that,

lim
ε→0

u(tε, xε) = u(T , x0) and lim
ε→0

|xε − x0|2
ε2

= 0, lim
ε→0

T − tε

ε2
= 0. (D.2)

As, by Lemma A.1, ∂ϕε

∂γ
(t, x) > 0 if x ∈ ∂O, by definition of viscosity subsolution, one has, for all ε > 0 and xε ∈ O,

min

(
1

ε2
+ 1

2

∣∣σT Dxϕε

∣∣2 − b · Dxϕε,u − ψ

)
(tε, xε) ≤ 0.

Now, assume that, for some subsequence, u(tε, xε) > ψ(tε, xε). Then, necessarily, for this subsequence,

1 ≤ ε2
∣∣DxΨε(xε, x0)

∣∣(‖σ‖2

2

∣∣DxΨε(xε, x0)
∣∣ + ‖b‖

)
. (D.3)
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But, by Lemma A.1, ε|DxΨε(xε − x0)| ≤ K(
|xε−x0|

ε
+ ε3) and therefore (D.3) cannot occur because of (D.2) and for

all ε > 0, u(tε, xε) ≤ ψ(tε, xε). We conclude by letting ε go to 0 and using (D.2). �

For all 0 < ν < 1 and all δ > 0, let

Mν,δ = sup
(t,x)∈[0,T ]×O

(
νu(t, x) − v(t, x) − δ(T − t)

)
.

Our aim is to prove that Mν,δ ≤ (1 − ν)‖ψ‖ which will give the conclusion of the theorem by letting ν and δ tend
to 1 and 0 respectively. To do so, we define, for all ε, α > 0, M

ε,α
ν,δ as being the supremum over [0, T ]2 × O2 of the

function

(t, s, x, y) �→ νu(t, x) − v(s, y) − δ(T − s) − Ψε(x, y) − (t − s)2

α2

and denote by (t̂, ŝ, x̂, ŷ) an optimal point (recall that u and v are bounded and respectively usc and lsc). It is clear
that Mν,δ ≤ M

ε,α
ν,δ .

We first notice that, for all x ∈ ∂O, since Ψε(x, x) = 0,

νu(T , x) − v(T , x) ≤ M
ε,α
ν,δ = νu(t̂, x̂) − v(ŝ, ŷ) − δ(T − ŝ) − Ψε(x̂, ŷ) − (t̂ − ŝ)2

α2
,

which implies, by Lemma A.1, that 1
2

|x̂−ŷ|2
ε2 + (t̂−ŝ)2

α2 ≤ 2(‖u‖ + ‖v‖) + Kε2. Therefore, up to some subsequences, t̂ ,

ŝ and x̂, ŷ converge respectively to some t and x in [0, T ] × O as α and ε go to 0.
Now we use again the maximality of M

ε,α
ν,δ . For all α, ε > 0

νu(t, x) − v(t, x) − δ(T − t) − Ψε(x, x) ≤ M
ε,α
ν,δ = νu(t̂, x̂) − v(ŝ, ŷ) − δ(T − ŝ) − Ψε(x̂, ŷ) − (t̂ − ŝ)2

α2
,

so that, by Lemma A.1, the upper semicontinuity of u and the lower semicontinuity of v, we have both

lim
(ε,α)→(0,0)

|x̂ − ŷ|2
ε2

+ (t̂ − ŝ)2

α2
= 0 and lim

(ε,α)→(0,0)
M

ε,α
ν,δ = Mν,δ. (D.4)

Note that in the above limits the order of the convergence of α and ε to 0 does not matter.
We define, for all (t, x), (s, y) ∈ [0, T ] × O,

ϕ1(t, x) = 1

ν

(
v(ŝ, ŷ) + δ(T − ŝ) + Ψε(x, ŷ) + |t − ŝ|2

α2

)
,

ϕ2(s, y) = u(t̂, x̂) − δ(T − s) − Ψε(x̂, y) − |t̂ − s|2
α2

and we apply the definition of viscosity solutions to u and v: u − ϕ1 reaches its maximum at (t̂, x̂) and when x̂ ∈ ∂O
we can check easily that Dϕ1(t̂, x̂) · γ (x̂) > 0 by Lemma A.1 and therefore the Neumann boundary condition never
holds. This imply that for all α, ε,

min

(
−∂ϕ1

∂t
+ 1

2

∣∣σT Dϕ1
∣∣2 − b · ϕ1, u − ψ

)
(t̂, x̂) ≤ 0. (D.5)

For v, the situation is slightly different. As in the former case, we deduce from Lemma A.1 that the Neumann boundary
condition cannot hold when ŷ ∈ ∂O, but if for some subsequence of (α, ε), ŝ = T then we can have v(ŝ, ŷ) ≥ ψ(ŝ, ŷ)

and no information on the partial differential inequation. In this case, we remark that t̂ goes to T (hence t = T ) and
that, by Proposition D.1 and the upper semicontinuity of u, for all δ0, u(t̂, x̂) ≤ u(T , x) + δ0/2 ≤ ψ(T ,x) + δ0/2 ≤
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ψ(t̂, x̂) + δ0 for α and ε small enough. We deduce, from those two inequalities, by passing to the limit as α and ε go
to 0 and using (D.4), that

Mν,δ = νu(T , x) − v(T , x) ≤ νψ(T , x) − ψ(T ,x) + δ0 ≤ (1 − ν)‖ψ‖ + δ0ν

for all δ0 > 0, so that finally Mν,δ ≤ (1 − ν)‖ψ‖.
Now we are left with the case, when ŝ < T at least along a subsequence of (ε,α). We have

min

(
−∂ϕ2

∂t
+ 1

2

∣∣σT Dϕ2
∣∣2 − b · ϕ2, v − ψ

)
(ŝ, ŷ) ≥ 0. (D.6)

If, for some subsequence, u(t̂, x̂) > ψ(t̂, x̂) then (D.5) and (D.6) give respectively

−∂ϕ1

∂t
(t̂, x̂) + 1

2

∣∣σ(t̂, x̂)T Dϕ1(t̂, x̂)
∣∣2 − b(t̂, x̂) · ϕ1(t̂, x̂) ≤ 0

and

−∂ϕ2

∂t
(ŝ, ŷ) + 1

2

∣∣σ(ŝ, ŷ)T Dϕ2(ŝ, ŷ)
∣∣2 − b(ŝ, ŷ) · ϕ2(ŝ, ŷ) ≥ 0.

We multiply the first inequality by ν and substract the second one; we obtain a rather complicated inequality which
has three kinds of terms: the time derivative term, the linear term and the quadratic term.

The time derivative term is the simplest one

−ν
∂ϕ1

∂t
(t̂, x̂) + ∂ϕ2

∂t
(ŝ, ŷ) = δ.

The linear term can be writen(
b(ŝ, x̂) − b(t̂, x̂)

) · DxΨε(x̂, ŷ) + (
b(ŝ, ŷ) − b(ŝ, x̂)

) · DxΨε(x̂, ŷ) − b(ŝ, ŷ) · (DxΨε(x̂, ŷ) + DyΨε(x̂, ŷ)
)

and can be estimated, if ωb and Kb denote respectively the modulus of continuity with respect to t and the Lipschitz
constant with respect to x of b on [0, T ] × O and by using Lemma A.1, by

K

((
ωb

(|t̂ − ŝ|) + Kb|x̂ − ŷ|)( |x̂ − ŷ|
ε2

+ ε2
)

+ ‖b‖
( |x̂ − ŷ|2

ε2
+ ε2

))
.

We know, by (D.4), that |t̂ − ŝ| ≤ Cα for some constant C independent of α and ε < 1, therefore, the above term goes
to 0 as α and ε go to 0, providing that 1 > ε > ωσ (Cα) by (D.4).

As far as the quadratic term is concerned, we first remark that for all a, b in R
m and all 0 < ν < 1,

1

ν
|a|2 − |b|2 ≥ − 1

1 − ν
|a + b|2

so that we are reduced to estimate∣∣σ(t̂, x̂)T DxΨε(x̂, ŷ) + σ(ŝ, ŷ)T DyΨε(x̂, ŷ)
∣∣2

,

which we do as for the linear term, concluding that it goes to 0 as α and ε go to 0, providing that 1 > ε > ωσ (Cα).
In conclusion to all those estimates we obtain the contradiction δ ≤ 0, and finally we necessarily have, for all α and

ε > ωb(Cα) small enough, u(t̂, x̂) ≤ ψ(t̂, x̂). This, combined with (D.4) and (D.6), yields Mν,δ ≤ (1 − ν)‖ψ‖ and the
proof is complete. �
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