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Abstract. In many applications, one needs to make statistical inference on the parameters defined by the limiting spectral distribu-
tion of an F" matrix, the product of a sample covariance matrix from the independent variable array (X jx) pxn, and the inverse of
another covariance matrix from the independent variable array (Y i) pxn, - Here, the two variable arrays are assumed to either both
real or both complex. It helps to find the asymptotic distribution of the relevant parameter estimators associated with the F matrix.
In this paper, we establish the central limit theorems with explicit expressions of means and covariance functions for the linear
spectral statistics of the large dimensional F' matrix, where the dimension p of the two samples tends to infinity proportionally to
the sample sizes (n, nz). Moreover, the assumptions of the i.i.d. structures of arrays (X jx) pxn;, (Yjk)pxn, and the restriction
of the fourth moments equaling 2 or 3 made in Bai and Silverstein (Ann. Probab. 32 (2004) 553—-605) are relaxed to that arrays
(X jx)pxn; and (Yjr) pxn, are independent respectively but not necessarily identically distributed except for a common fourth
moment for each array. As a consequence, we obtain the central limit theorems for the linear spectral statistics of the beta matrix
that is of the form I+ d - F rnatrix)f1 , where d is a constant and I is an identity matrix.

Résumé. Dans beaucoup d’applications, on cherche a effectuer une inférence statistique sur des parametres définis a partir de
la mesure spectrale d’une F-matrice, matrice obtenue comme le produit d’une matrice de covariance du tableau de variables
indépendantes (X ji)pxn,; et de inverse d’une autre matrice de covariance (Y jx)pxn,. Les variables sont soient toutes réelles
soient complexes. Il est donc utile d’étudier les distributions asymptotiques des estimateurs de ces parametres associés a la F'-
matrice. Dans cet article, nous établissons des théorémes centraux limites pour les statistiques linéaires du spectre de la F-matrice
dans la limite ou p, ny, ny tendent vers I’infini en restant de méme ordre, et donnons des formules exactes pour leurs moyennes et
covariances. De plus, I’hypothése que les variables (X jx) pxn; €t (Yjg) pxn, sont i.i.d. et la restriction que le quatrieme moment
est égal a 2 ou 3 comme dans Bai et Silverstein (Ann. Probab. 32 (2004) 553-605) sont affaiblies de la manicre suivante; les
coefficients (X jx)pxn; €t (Yjk)pxn, sont indépendants mais non nécessairement €quidistribués, pourvu qu’ils aient le méme
quatrieme moment dans chaque tableau. Par conséquent, nous obtenons le théoreme de la limite centrale pour les statistiques
linéaires de la matrice beta qui est de la forme (I+d - F matrix)_l, ou d est une constante et I la matrice identité.
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1. Introduction

The central limit theorems (CLT) for linear spectral statistics (LSS) of large dimensional random matrices have a
long history, and received considerable attention in recent years. They have important applications in various domains
like number theory, high-dimensional multivariate statistics or wireless communication networks; see a survey by
Johnstone [25]. A CLT is proposed by Jonsson [26] for (tr(A,), ..., tr(Aﬁ)) for a sequence of Wishart matrices (A,),
where k is a given fixed order of moments, and the dimension p of the matrices grows to infinity proportionally to
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the sample size n. Sinai and Soshnikov [36,37] consider the same problem for the Wigner matrices where the order k
can grow at the rate o(n%/3) and where more general functions can be employed in place of the simple trace function.
Johansson [24] establishes a CLT for a large class of random Hermitian matrices that includes the Gaussian unitary
ensemble. Diaconis and Evans [13] obtain the CLT for the Haar matrices using the method of moments. Bai and
Yao [7] establish the CLT for LSS of Wigner matrices using the Stieltjes transformation method. Other CLTs can be
found in Girko [15] and Khorunzhy et al. [28]. The method of stochastic calculus is introduced in Cabanal-Duvillard
[10]. Guionnet [16] obtains CLTs for non-commutative functionals of Gaussian large random matrices. Anderson and
Zeitouni [1] establish CLTs for a band matrix model. Actually, there is a vast literature on CLTs for the eigenvalues
of random matrices of various types, see e.g., Costin and Lebowtz [12], Boutet De Monvel et al. [9], Johansson [23],
Keating and Snaith [27], Hughes et al. [20], Israelson [21], Soshnikov [38], Wieand [39], Dumitriu and Edelman [14],
Mingo and Speicher [29], Ridelury and Silverstein [32], Hachem et al. [17,18], Rider and Virag [33], Chatterjee [11]
and Jiang [22].

In this article, we consider CLTs for a specific matrix ensemble called Fisher matrices, or simply F-matrices. Let
{(Xjk, j, k=1,2,...}and {Y}i, j, k =1,2, ...} be either both real or both complex random variable arrays. For p > 1,
ny>1andn, > 1, let

X:(Xjk lSjSpﬂ1Sk§nl):(x-lﬂ'~~»x~n])v
Y=V 1<j<p,1<k<n)=1,....,Yy)

be the upper-left p x n1 and p x nj sections of the above arrays, with column vectors (X.x) and (Y.x), respectively.
The reason for considering such sub-arrays is that (X.1, ..., X,,;,) and (Y 1, ..., Y.,,) are two independent samples of
p-dimensional observations of sizes n; and n,, respectively. Note that in this statistical interpretation, it is common
to assume that the p-dimensional vectors (X.x)1<k<n, as well as the vectors (Y.x)1<k<n, are identically distributed.
However, the CLTs developed in this paper do not need this equal distribution property.

Let us introduce the following sample covariance matrices:

1 & 1

Si=— inkxi“ = —XX*, (1.1)
= ”1
1 < * 1 *

S, = — ZY.kY, = —YY*, (1.2)
np p np

where * stands for complex conjugate and transpose. These two matrices are both of size p x p. Then the Fisher
matrix (or F-matrix) is defined as

F:=S$;S;". (1.3)

When considering the asymptotic limits as p A n; A np — 00, it will be necessary to ensure that almost surely, the
matrix S, is invertible for all large enough p, n; and n>. In particular, we will assume that n, > p for large enough p
and n;.

Let us take a moment to explain the importance of the F-matrices in multivariate statistical analysis. Assume
that in the two-sample problem introduced above, cov(X ) = X and cov(Y ;) = X5. Clearly, ES; =X;, j =1,2.
Following the pioneering work of R. Fisher, we can use the F'-matrices F =8,S; !to test the hypothesis “X| = X,.”
Intuitively speaking, one would reject this equality hypothesis when F deviates significantly from the identity matrix.
More precisely, assuming that the two samples are both Gaussian, the likelihood ratio statistic equals

p p
- L Pyr)_ M F
W,,_Zlog(n1 +n2Al> = glog(xl),

i=1
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where ()\I.F) denote the eigenvalues of F. The random variable Wy, is a special instance of the so-called linear spectral
statistics (LSS) of the random matrices F, because it can be rewritten in the form

Wh = pf Ja(x) dFp(x), (1.4)
where
falx) =1og<ﬁ n ﬁx) ~ M og(o) (1.5)
ni ny ny+ny
and
1 14
Fa==) 68
p i=1 l

denotes the empirical spectral distribution (ESD) of F.

The goal of this paper is to find when p Anj Any — o0, p/ny — y1 € (0, +00) and p/ny — y; € (0, 1), whether
rn(Wn — o) has a limiting distribution with some suitable centering and scaling parameters r, and oy. It is worth
mentioning that f, in Wy can be a general analytic function and not only the function defined in (1.5).

For earlier references on the F-matrices, we would like to mention that their spectral properties are studied in Yin
et al. [40], Silverstein [34], Bai [2], Bai et al. [8], Pillai [30] and Pillai and Flury [31]. A closely related piece of work
is that of Bai and Silverstein [5] and the work establishes a CLT for the LSS of a general sample covariance matrices of
the form ST, where (T),) is a sequence of non-negative definite Hermitian matrices. Explicit formula are provided
for the mean and covariance parameters of the limiting Gaussian distributions. From one point of view, this result
covers the LSS of the F-matrices as a special case because S, ! can be viewed as an instance of T,. However, in
such an application of [5], the centering term «;, in rn(Wy — o) depends on S_l, so it is a random variable. In the
applications of the CLT, the normalizing center should be related to the population property, which should be non-
random. For example, in the statistical inference, the normalizing center used in the test should be a functional of the
null hypothesis, which is non-random. A non-random centering constant is also required for constructing confidence
intervals for certain population parameters. Hence, their results will be of limited use in inference. Moreover, Bai
and Silverstein [5] require X;; to be i.i.d., EXZ‘.‘]. = 3 when X;; is real, and EXZZJ =0, E|X;;|* =2 when X;; is
complex. In this paper, X;; is required to be independent with finite fourth moments. Bai and Silverstein’s [5] CLT is
not directly applicable to this case. Finally, assuming that all the entries of S; and S, are Gaussian, one could use a
result from Chatterjee [11] to obtain conditions ensuring a Gaussian limit for the LSS of the F-matrices. However, the
method of Chatterjee [11] does not provide explicit formula for the mean and covariance parameters of the asymptotic
distribution, hence will be of limited practical interest for applications.

The paper is organized as follows. In Section 2 we recall some useful background about the spectral theory of the
F-matrices. Section 3 presents the main results of the paper about the CLTs for LSS of large dimensional F' matrices
and beta matrices. In Section 4, we present several applications of these CLTs. Section 5 gives some comments and
conclusions. The proofs of the main results are then given in Section 6.

2. Limits of the spectral distribution of an F-matrix

Before formulating the CLT for the LSS of an F-matrix, we introduce some basic concepts and notations. Recall that
given a real or complex-valued matrix A of size p x p with eigenvalues denoted by {)L‘].A}, the distribution % le 16 x4

is called the empirical spectral distribution (ESD) of A. The Stieltjes transform of a cumulative distribution function
(c.d.f.) G on the real line is defined as

1
mg(z)E/EdG(k), zeCT={z: z€C,3(2) > 0}. 2.1
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This definition has a natural extension to the lower-half of the complex space by letting
mg(z) =mg(Z) forzeC™ ={z: zeC,3(z) <0}.

Throughout the paper, we will use the following assumptions.

Assumption [A]. Either all real or all complex random variables {Xy;, i,k =1,2,...} and {Yy;i,i,k=1,2,...} are
independent but not necessarily identically distributed, and with mean O and variance 1.

Moreover, for any fixed n > 0 and when n1, n, — oo,

T A 1 Lom A
HZZEMJH L x 120y = 0, @ZZEIY!’H Lyy,i12n. ) = 0. 2.2)
j=1k=1 j=1k=1

Assumption [B]. The sample sizes n1, n> and the dimension p grow to infinity in such a related way that
Yn, i=p/n1 — y1 € (0,400), Yn, :=p/n2— y2 € (0, 1). (2.3)

The assumption (2.2) is a standard one of Lindeberg type, which is necessary as the columns vectors {X;} and
{Y .} are not necessarily identically distributed. Moreover, it allows a suitable truncation of these random variables
without modifying limiting results.

Let

n:(nlan)v Yn:(ynl»)’nz), y:(yla y2)

Subsequently, the limiting scheme (2.3) will be simply refereed as n — co.
It is well-known (e.g., [6], p. 79) that under Assumptions [A]-[B], when n — oo, almost surely the random ESD
fn of the F-matrix $18; ! converges to a distribution

Fy(dx) = gy(x)1[g,p1(x) dx + (1 — 1/y1)1{y;>1380(dx), 249
where
(1—h)? (1+h)?
a = P IE—— = -,
(1—y)? (1—y2)?

gy(x) = &\/(b —x)(x —a), a<x<b.

27 x (y1 + y2x)

h=/y1+y2—y1y2,
2.5)

In other words, this so-called limiting spectral distribution (LSD) has an absolutely continuous component on [a, b]
and a point mass at the origin if y; > 1. Furthermore, under Assumptions [A]-[B], the Stieltjes transform my(z) of Fy
equals

11 yilz( =y 1=yl 42z + /[0 — ) 2 — )P — 4z
my(z) = — — — — ,

zeC* (2.6)
1z 2zy1(n + z22)

(see [6], p. 79). Let us denote the Stieltjes transform of the ESD f,, by my(z) which will converge almost surely and
pointwisely to my(z).

For technical reasons, we will also need two Stieltjes transforms of the ESD of the random matrix X*S5 X and its
limit when n — oo. Their Stieltjes transforms will be denoted by m,, (z) and my(z). Because the spectra of X*Sy 'x
is different from that of $;S; ! by |n1 — p| zeros, then from the definition (2.1) of the Stieltjes transform we have

l_ynl

m,(z) =— + Ynymn(2), .7

1—y

my(z) = — + yimy(2). 2.8)
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So from (2.6) and (2.8) we obtain

Cyilz( =)+ 1=yl 42z + iV IA —y) +z(1— )P — 42

zeCT. 2.9
2z(y1 +zy2) @9

my(z) =

In the i.i.d. case, it is proved by [35] that m (z) satisfies the following important equation

x +my(2) TINE)

7= (2.10)

B 1 f y1dFy, (x) o _ 1 / Yny dFyn2 (x)
my(2) x+my (2)
where Fy,(x) denotes the LSD of S;. Recall that in the proof of (2.10), after the truncation, all arguments remain
true provided that the second moments of the truncated variables tend to 1 uniformly, which is a straightforward
consequence of Assumption [A]. Since F,, — F),, a.s. under Assumption [A], the equation remains true under
Assumption [A].
In the remainder of the paper, for brevity, my(z) and my(z) will be simplified as m(z) and m(z) or even more
simpler as m and m, if no confusion would arise.
With a slight abuse of notation, let m,,, (z) denote the Stieltjes transform of the ESD F,,, (x) of Sy and let m, (z) de-
note the Stieltjes transform of the LSD F), (x) with density fy, ). Note that Fy, is simply the well-known Marcenko—
Pastur distribution of index y;. And similar to Eqgs (2.7)—(2.8), the following Stieltjes transforms for some distributions

_ynl

1
m, (z) =— + Yn mn, (2), 2.11)

11—y

my (2) = — + yimy, (2) (2.12)

are needed. It follows from all these definitions that

foi = 8(1,0)» My, =M(y,0) m, =mq, o-

Replacing S| by S>, we get a similar ESD F,,, and its LSD Fy, with density fy, with respect to the Stieltjes transforms
my, and m, . Definitions of m, and m,, are similar to (2.11) and (2.12).

Furthermore, let Hy,(x) and Hy,(x) denote the ESD and LSD of S5, respectively. Clearly if A is a positive
eigenvalue of S_l, then 1/A is a positive eigenvalue of S,. Therefore, we have for all x > 0,

Hy,(x_)=1—F,,(/x),  Hy(x_)=1—F,(/x). (2.13)

3. Main results

As explained in the introduction, Bai and Silverstein [5] establish the CLT for the LSS of a general sample covariance
matrix of the form B, =8,T), where S is a p x p sample covariance matrix generated by i.i.d. entries and T, is
a non-negative definite matrix in two cases: either both X1 and T, are real with E|X1; |4 = 3 (referred to as the
real case) or both X1 and T, are complex with EX %1 =0and E|X1 |4 = 2 (referred to as the complex case). This
paper will establish the CLTs for the LSS of F-matrices with two additional improvements: first, the initial arrays of
random vectors {X} and {Y .x} are not necessarily identically distributed; second, a common value will be assumed
for the forth moment of all the variables {X j} as well as for the variables {Yj}, but these two common values can be
arbitrary instead of fixed constants used as in [5].

For a given function f and the associated LSS f f(x)dfa(x), we will consider the following centered and scaled
variables

P/f(x)d[fn(x)—Fy..(X)] =:/f(X)d(~?n(x) (3.1)
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with
Gy = [f n(x) — ]

Due to the exact separation theorem (see [4]), for large enough n; and p, the discrete part, i.e., the mass at the origin
of fn will coincide exactly with that of Fy,, so that in (3.1) we can reduce the integral to the continuous part only.
Therefore, we have

p
/ f)dGa(x) =" f(2 / f(x) dFy, (x)

j=1

p

=D F()grag) - /f(x)gynu)dx (32)

j=1

where gy, is the density function defined in (2.4) with the substitution of yn = (yn,, yn,) for y = (y1, y2) and the
associated constants (hp, ap, bp) for (h, a, b), namely

(1 —hp)? _ (14 hp)?
(1= yn,)? P =)

hpz\/ynl + Yny = Yni1 Ynas ap =

The main results of the paper are the following. Let
mo(z) =m,, (-m(2)), zeCT, (3.3)
and

‘= 1, if all the X- and Y-variables are complex,
2, if all the X- and Y-variables are real.
Theorem 3.1. Assume that

1. Assumptions [A]-[B] are satisfied.
2. Forall j, k, E|Xjk|4 =1+4«, E|ij|4 =14 «.If both X and Y are complex valued, then EX?k = EY].zk =0.

Let f1, ..., fs (s is a fixed integer) be functions analytic in an open region in the complex plane containing the interval
[a, b] which is the support of the continuous part of the LSD Fy defined in (2.4).
Then, as n — 00, the random vector

U fj(x)dc?n(x)}, 1<j<s,

converges weakly to a Gaussian vector (Xy,, ..., X y,) with means

Kk —1 (1 — y2)m2(2) +2mo(z) + 1 — y1>
EXy = —— (2)dl
B i 74 /i@ Og( (1= y)m3(2) + 2mo(0) + 1

(@) dlog(1 — yom3(@) (1 +mo(2) ) (3.4)

and covariance functions

cov(X ;. X)) = __?gyg fl(Zl)fj(Zz)dmO(Zl)dmO(Zz)' 3.5)

412 (mo(z1) — mo(z2))?

Here all the contour integrals can be evaluated on any contour enclosing [a, b].
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Remark 3.1. An interesting example can be found on p. 513 of [6] that different distributions have identical moments
for all orders. Moreover, as demonstrated by the examples developed later, to get more explicit expressions for the
asymptotic means and covariances, it is necessary to evaluate the involved contour integrals on a contour approaching
the interval |a, b]. If y1 < 1, then |a, b] is exactly the limiting support of the LSD Fy, and we can choose the contours
very close to [a,b]. If y1 > 1, Fy has a positive mass at the origin and a priori, the contours should enclose the
whole support {0} U [a, b] of Fy However, as explained earlier, due to the exact separation, we can restrict the
integrals [ f;(x) dGn(x) t0 positive eigenvalues of the F-matrix F and the continuous part of the distributions Fy, .
Consequently, in Theorem 3.1, we can choose contours close to [a, b].

Generally, it is difficult to compute the asymptotic means and covariances by using the expressions given in Theo-
rem 3.1. In the following corollary, we convert the integrals into another form of contour integrations for computing
the means and covariance functions.

Corollary 3.1. Under the assumptions of Theorem 3.1, the asymptotic means and covariances of the limiting random
vector can be computed as follows

-1 1+h2+2hm(g))[ | 1 2 ]
— i . _
EXp=m 7|§g|=1f( A=y? Je—r TexrT  Eraynl®

and
cov(Xf,,,ij)
i Fi((L+h2 4+ 200 (ED) /(1= y2) D) £ (1 + h% 4+ 20%R(E2) /(1 — y2)?)
un—— 5 d&; d&,,
ril &11=1J & 1=1 (61 —ré&2)

where () denotes the real part of a complex number and r |, 1 means that “r approaches 1 from above.”
Next, we extend Theorem 3.1 to the case where the common values of the 4th moments of X and Y are arbitrary.

Theorem 3.2. Assume that

1. Assumptions [A]-[B] are satisfied.
2. Forall j,k, E|X jk|* = Bx + 1 +«, E|Yj|* = By + | +k, and if both X and Y are complex valued, then EX?k =
EY; =0.

Let f1, ..., fs (s is a fixed integer) be functions analytic in an open region in the complex plane containing the interval
[a, b], which is the support of the continuous part of the LSD Fy defined in (2.4).
Then, as n — 00, the random vector

[/ fj(x)dan(X)], 1<j<s,

converges weakly to a Gaussian vector (X 7, ..., X ) with means

K —1 (1 — y2)m§(2) 4+ 2mo(2) + 1 —y1>
EXf=— i dl
Y 4mi ,(ff @ og( 1 - yz)m(z)(z) +2mp(z) +1

) '(Z)dlog(l - yzm(z)(z)(l —|—mo(z))_2)

Bx - y1

ffi(Z)(mo(Z) + 1)_3 dmo(z)

+ % f F:@(1 = y2md@) (1 +mo(2) %) dlog(1 — yam3(2) (1 +mo(2) ) (3.6)
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and covariance functions

K ygyg fi(z1) fj(z2) dmo(z1) dmo(z2)

coviXy. Xg) = 42 (mo(z1) — mo(22))?

_ (Bay1 +Byy2) ?gﬁ fi(z1) fj(z2) dmo(z1) dmo(z2)
4n2 (mo(z1) + D% (mo(z2) + 1)

3.7

Similar to Corollary 3.1, the following corollary helps the evaluation of the asymptotic means and covariance
functions in Theorem 3.2.

Corollary 3.2. Under the assumptions of Theorem 3.2, the asymptotic means and covariance functions of the limiting
Gaussian vector can be written as

k=1 (142 +200(E) 1 2
EXp =N am f@f’( 1— 7. )[s—r—l+s+r—l $+y2/h]d€
+ﬂx-y1<1—y2)27g _(1+h2+2hm(s>> !
2mi - h2 [El=1 1- y2)2 ¢+ yZ/h)3

LBy ‘<1+h2+2h§ﬁ(§)>52—y2/h2
4mi E]=1 (1—y)? &+ y2/h)?

1 1 2
- d 3.8
X[s—m/h+s+¢y—2/h yz/hi|$ (3.8)
and

cov(X g, ij)
K ?g yg F((L+h2 4+ 2hR(ED) /(1 — y2)P) £ (1 + h? 4+ 2h%(E2) /(1 — y2)?
[&11=1 J & ]=1

. )
= —lim — dérd
n (& — r&y)? 512

ri1 4m?
_(Bxyi+ Byy) (1= y2)? ?g fi((L+h* 4 210(1) /(1 = y2)?)
[11=1

A2 h? & + y2/ h)? a1

y yg Fi((L+ 1 4210 (52)) /(1 = y2)?)

dé>. 3.9
- & + y2/ h)? 52 (3.9)

4. Applications
4.1. Beta-matrices

In multivariate statistical analysis, many commonly used matrices are beta matrices. Because the beta matrix is a
functional of the F matrix, we can use the result on the F matrix to get asymptotic results for the beta matrix.
Because of its common use, we give the CLT of the beta matrix here so that the result can be directly used in later

applications. We first give an application of our CLTs to the set of so-called beta-matrices. A beta-matrix takes the
form

Ba=S282+d-S)7 = (1+d-88;")7", .1
where d is a positive constant. This is a matrix-valued functional of a F-matrix. Let

Gn(x) = p(Fon(®) — Foy,(¥)),

where Fo n(x) and Fo y, (x) are the ESD and LSD of B,,, respectively.
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Theorem 4.1. Under the same assumptions as in Theorem 3.2, the vector of LSS

( / A1) dBa(o), ... / fk(x>d6n(x))

of the beta matrix
Ba=52(82+d-S)7!

with a positive constant d, verifies

/fi(x)dan(x) _ / £ (d - 1) 4G,

where f ﬁ(ﬁ)dén(x) is as in (3.2). Moreover, as n — 00, this vector converges weakly to a Gaussian vector
(X, ..., X)) whose means and covariances are the same as those in Theorem 3.2 except that f;(x) and f;(x) are

replaced by fi(#ﬂ) and fj(#“), respectively.

4.2. Popular LSS of F-matrices

This section aims to illustrate how one can use Theorems 3.1 and 3.2 for some LSS popular in multivariate statistical
analysis. In particular, the goal is to compute explicitly the asymptotic means and covariance functions of the limiting
Gaussian distribution. We only restrict our attention to the real variables. Three examples will be given, but we only
detail the computations for the first one, because those of the other examples are very similar.

Example 4.1. If f =log(a + bx), f' =log(a’ +b'x),a,a’,b, b’ > 0, then

ex L (@R (=P =) 2w P0F-y)
F= 38 (ch = )2 2(ch —dy,)? 2 ch—dy, " (ch—dy)?

and

! y2)(1 — y)2dd’
cov(Xf,Xf/)=210g(cccc ) (Bxy1 + Byy2)(1 — y2)

'—dd (ch —dy2)(c’h —d'y»)
2 2 ’ 2 ’ 2
where ¢ >d > 0, ¢’ > d' > 0 satisfying ¢> + d* = %W’ ()2 + )= %w, d = #
and ¢'d' = L0
(1=y2)

2 M 9
Proof. We have f(%z)";@)_logchaz) and f’ (M) =log(|c’ + d'E[?).

In the formula

1 1+h2+2h9i(s)><1 ! 2 )
= lim — -
EXp) rlfll41tifs|=1f< (1—y)? r$+1+r§—l E+h~y *
1 2 1 ! 2
_1’1&14—‘“1%' log(le +dé )<r§+1+rg_1_§+h1y2>d§

Beyi(1 — y2)? ?g 2
—_ = 1 d
+ 2751]12 |E]=1 0g(|c+ S| )

1
4
CERY

Ez—y2/h2[ 1 1 2 }

LB , B
log(je +déT’) E= ik T Erah Etoalh

4mi IE]=1 &+ yz/h)2
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we have

1 1 1 2
lim — 1 dg? - d
rlf?4mfi| (Jog(le +dt| )<ré+l+r€—1 §+h1y2> :

o O 1 1 2
_11m—,¢;|=1(10g(c+d§)+log((c+d§ )))<r§+1+r5_1_ a )dg

ril4mi J, E+hly,
:limi'ff 10g(c+d€)( ! + L 27 )dE
il 4w Jig ré+1 rE—1 §4+h7ly
Hlim oL § log(c—i-dé)( U S — )s—zds (making £ — &)
ril 4T Jig= rE1 41 rEl—1 g 141y,

1 1 1 2
=lim — log(c +d + —
ril 4ti /g’;|:1 g( E)(}"E +1 r%‘ -1 S—f-/’l_lyz

1 1 2
— d
Yo Tt Ea +h—1yzs)) :

| B 1. (2 —dhn?
= 2 (log[(¢? = @*)’] — 210g](c — y2an™")*]) = 5 m(m)’

Beyi(1—y2)? ?g 5 1
2mih? 1E]=1 log(lc dé] ) &+ )’Z/h)3 d

B —y)?
© 2mik?
Beyi(l—y2)* ?g [ 1 3 ]
== -~ ! d d
it Do ECT O ey T e |

_Bn—y)Pomi 2% —Beyi(1 - y)*d?
Amih2 2 (c—dy,/h)? 2(ch —dy»)?

1

1 d 1 A1) —d
fﬁ;:l(og(c—}— §) +logle+d8 ™)) s 46

and
Byl —y2) g2 — yz/h2|: 1 1 2 }
| d — d.
el TR Gt oyl ey vyl vyl
_ By(l—y) i E2 =/ h?
i Jg (BT A Flosle R e i

X[ 1 N 1 2 }dg
E—Vy/h E+Yn/h E+y/h

_Bd=y) {52—y2/h2[ 1 1 2 ]
1 d - d.
e (AL 2) Franevyyse) [y i .y Ry
N 1—yé& /hz[ 1 1 B 2 }dé}
A+ ok/ 2 E0 — e/l B+ oae/h) B+ va/h)

4 c—dy/h c—dwn/h c—dy/h (c—dyz/h)2

_ A= 2y A=)
2 ch—dy, (ch—dy)? ]|

zﬂya—yz)[zd((w——yz)/m L2y 8dys/h +2d2((y%—y2)/h2)}
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So we obtain

oxo— o ((©@ A Bon(l—y)’d®  By(i—y)[ 2dyy  dP03 )
! *\(eh = d)? 2(ch — dy»)? 2 ch—dyy = (ch—dy»)?]

2

Furthermore, in the formula

d§; dé;
cov(X s, X 1) _—Rmfﬁ]l . ]log(|c+d«§1| )log(|¢' +d'& | )m

_ Byt + By — ) 7{ log(lc +d&1») | 7§ log(lc' +d'&*)
An>h? =1 &1+ 2/ h)? 6i=1 &2+ y2/h)?

dé&

we have

d§; d&
1 d 1 d
ry 1 2752%‘7{5” &2]=1 og(le +ds| ) og(|¢'+d'% | )(51 ré)?

1 _ dé;
=lim —— 1 dz%l’d’l’d’li}d
lim —— %Sllzl og(lc + d&]| )[ |§2|=1(og(c +d'&) +log(c +d'E; ")) & —riy)? &1
1 dé dé,
=lim—— 1 dZ[f log(c’ +d’ ( )}d
A 2w fs =1 og(le +51T) le2l=1 og(¢ +d'%) E@—re? | @E 1) d
i N N
= lrlflln |§1|:110g(|c+d§1|)726’4‘0"”51 dg; (the second term is analytic)
__1 —iy_ 4
= nfgll:l(log(c—i-d&)—f-log(c—i—dé‘l ))c’+d’§1 dg
iyg 10(+d€)( d 4 )dg
=—— c
Tl o SN eras T aen +ay)
cc’
and
f lOg(|C—|—d§|2)d % (log(c+d§) log(c +d§) _2)d$= 21thd ;
el=1 (& +y2/h)? el=1 \ (€ +y2/1)?>  (E"1+y2/h)? ch—dy,”
Therefore,

By + By (1= y2)? yg log(le +d&1*) | ?{ log(|¢' +d'& )
13 13

Am>h? (=1 E1+y2/h)? J=1 (&2 + y2/(hr2))? s
~(Beyi 4 Byy) (1 — y)? An’h’dd’
N 422 (ch —dyy)(c'h — d'y»)

_ (Bxy1 + Byy2)(1 — y2)2dd’
(ch —dy>)(c’h —d'y»)

So we obtain

cc' ) (Bxy1 + Byy2)(1 — y2)?dd’

X, Xp)=21
coviXs. X ) Og(cc’—dd/ (ch —dy2)(ch —d'y2)
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Example 4.2. For any positive integers k > 1 > 1 and fi.(x) = x* and fi(x) = x', we have

k k
1 (1+h&)E+h) ( 1 1 2 )dé

X5 Pl Ami Jgog (1—y)?k gk \&+r=1  E—r=1 &+ y/h

+ﬁx~y1(1—y2)2y§ (1 4+ hE(E + h)k 1
|&

d

2mi - h2 =1 (1 =y . gk ($+y2/h)3§
LAy (L+he*E + ) €2 —yo/h?
4mi =1 (1—y2)% -5 (& + y2/h)?

X[ 1 N 1 2 ]ds

E—m/h E+m/h E+y/h

= ;[(1 —m* 4+ 1+ -2a —yz)k<1 - h—z)k
2(1 = yp)* »

k- Rli3N (=13 4 (= D2ty
+ > C—inlk—t

i1+ir+iz=k—1
N Z 2k - kliz! - hk+i1—i2 <_£>i3+li|

i1 +iztiz=k—1 (k — itk —ix)! Y2

. k-kl(k+ix—DI(=1)5B3 . C(h2— k—i h k+i3
T - 1:8)5 y12(k_l)|: Z 2(5{ _+'l3)'(ki(. )') h”(l—yz)k_”( ; )’2> (__)
( - y2) i Figtiz=2 11): 12): A2)

S KQ+i3)(— 1) ,hkﬂ-._iz(ﬁ)”’*‘]

iyt ek k—i)!(k—ix)!2! 2

By [ 3 k.k!(k+i4—1)!(—1)i4hi,(l_yz)k—il

o
— yy)2k—1 RN ERY
2= T, A T ik =)

5 h2_y2 k—ip N 1—i3 _ﬁ k+ig
h h »

k- KUk +is — DI(= 1)
o2 (k—inl(k —in)!

R — yp)kh
i1 +iz+iz+ig=1

5 h2_y2 k—iy _\/y—_yz 1—i3 _ﬁ k+is
h h »

k- ki + DID" @)1—% (_@>l—ia><h>2+i4
LD DR T e L (( i =7

i1+iz+iz+ig=k—1

_ Z k- k\(k +is — DRI (1 — yp)k—i
(k— i)k —ix)!(=1)is

i1+ia+iz+ig+is=2

y h2_y2 k—i \/y—_yz 1—i3 —\/y_—yz 1—ig _ﬁ k+is
) h h ¥z

k- k\(is +2)1(—1)'s i N S A S B
- 2 (k—iDlk—i»)! (T) (‘T) < ) ]

i1 FintisHiatis=k—1 Y2
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cov(X s Xp) = —— ﬁg (+he)' & +n' - A+ G+
ot 2”2 g amlea=t (1= )2 ¥ (&) —r&)2E18)

Byt + By — ) % (L+h&)'E +n)' ?g (1+h&)* &+ )" i,
4n2h? al=1 /M2 eal=1 (&2 + y2/(hr))?€}

dé dé&

where

dé; d&

7§ ?g (1+h&D'E +h)' - (1 + hE)KE + h)F

2n2 o 61 =12 =1 (1 — yp) 242k (&) — r&))2ElEX

1+ hé&)k h)k 1+ hép! h!

(1 +hé&) k($2+ ) (?g ( +l £ (& +2 ) d$1>d%_2
& lgl=1 & &1 —ré&)

TC(l _ y2)21+2k f$2=1

i DR s ?g (1 +het G+t
e . : . )
m(l -yt e =il =) S pai
- ¥ 5 | LD+ DR ks
(1= y)%* (=il — D!k + i3 + DIk — jDlk — jo)!

i1 +ig+iz=I—1 ji+jo=k+iz+1

and

dé;

?g (1+h&) & +h)!
E=1 &1+ y2/h)2E!

s L0 +is—DI=DB (R TR R\ E
_2’“[ L i e < h ) <y2)

i1+ia+iz=1

LI +i)!(=D3 13 s
+ (=i =iy " Z(yz) '

i1+ir+iz=l—1

So we obtain

cov(X g, X7)
_ 2 Z Z L1353 + 1D)kk! ik =it ji— o
(1 — yp)?+2k (= iDld — i)k + i3+ DIk — jD!k — j2)!

i1+ix+iz=l—1 ji+jr=k+iz+1

n (Bxyi + Byy2)(1 = y)?

h2
-1 +i3— D=1 Ry \T s B
([ 3 by
ft A=l (—=iD!d —ir)! 2
+ Z l ~l!(l'+ i3)!(—.1)"3 =i (£>2+i3i|
btigtiamt—1 iD= )] y2
k-kKl'(k+ix— DI(—=1)3 . Ch2— k—i> h k+i3
« [ Z k( 'i“l?y' . )( ' ) hll(l _yz)k—ll(Tyz> (__)
e KTk —0)! »

KR+ =D W]}
S0 S o s 2()’2) '

i1+iy+iz=k—1
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Example 4.3. If f =e¢*, then by Taylor expansion, we have

+00 +00

1
EXs= 12(; G EXj and var(X) = klzocov(xfk, X5,

where fi(x) = x', EXy and cov(X f, X 1) can be obtained in Example 4.2.

5. Comments and conclusions

In this paper, we have established the CLTs for LSS of an F matrix with explicit expressions of the asymptotic means
and covariance functions. As a consequence, we have established the CLT for the LSS of a beta matrix, which is a
matrix function of an F' matrix.

It is well-known that high-dimensional problems are very important in practice. In the past, dimension reduction
and feature extraction played pivotal roles in high-dimensional statistical problems. But a large portion of informa-
tion contained in the original data would inevitably get lost if the dimension is very large. For example, in variable
selection of multivariate linear regression models, one will lose all information contained in the unselected variables;
in principal component analysis, all information contained in the “non-principal” components would be gone.

More work remains to be done. In the future, we hope to establish the CLTs for more general large-dimensional
problems in practice.

6. Proofs
6.1. Two lemmas

Lemma 6.1. Let mo(z) = m},z(—m(z)) where m(z) is the solution of (2.10), then we have the following identities

_ mo(z)(mo(z) +1 — y1) _ (I=y2)(mo(z2) +1/(1 = y2))
=— and m(z) = s (6.1)
(mo(2) + 1/(1 = y2))(1 = y2) mo(z)(mo(z) + 1)
1—yy)? 1/(1 - y))?
i (2) = — (1—y2) 2(mo(z) +1/(1—y2)) 7 62)
(I = y2)my(z) +2mo(z) + 1 — y
/ dFy, () _ mo(z) 63)
x+mi)  (I—y2)-(mo(z)+1/(1—y))’ '
| m*(2)dFy, (x) (1= y)m§(2) +2mo(x) + 1 -y
(x +m(z)) (1 = y2)mg(z) 4+ 2mo(z) + 1
/ x - dFy, (x) m3(z)
= , (6.5)
(+m@)* (1= y)m§(z) +2mo(2) + 1

, (1—y)md+2mo+1 o o,

@)= (m‘; T @ =—(1- vam(1 +mo)~?)my*mi(2), (6.6)
(1 —y)m§2) +2mo(2) +1—y1\'  —2y1 [m* (@ (@)x(x +m(2)) 2 dFy, (x)
lo > = . — =, (6.7)
(1 = y2)m(2) 4+ 2mo(z) + 1 [1—y1 [ m2(2)(x +m(2)) "2 dFy, (x)]
/ 3 -3

[log(1 — yom(1 +mo)2)] = 2y @i+ mo) (6.8)

(1= yam3 (1 4+ mg)=2)2’

where m{y(z) = L£mo(z) and m'(z) = L£m(2).
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Proof. Because

1=y
my, (2) = T + y2-my,(2)

(—m(2)).

1

then we obtain m), (z) = =522 - b+ L./ (2), thatis,
=y, 1 1
m', (—m(2)) = — +—-m
n(-1@) 2 (m@)?* oy 7
So we have
dFy,(x) 1—y . 1

m =My, (_ﬂ(z)) = _

By (2.10), we have
R / y1dFy ()
m(z) x +m(z)
__ L nd=y» »n
m(z) y2m(z) 2

Yi+y2—yiy 1 v
= : +=m, (-m(2)).
) -m(z) 2 n )

=

my, (—m(Z))

Using the notation 22 = y; + y» — y; y» and differentiating both sides of the above identity, we obtain

1= Lm’(z) M (—m(2))m'(2)
y2(m(2))*™ y2 ot T

y(m(2))?
W=y ) m, (—m@)

This implies m’(z) =

_ »m@)?
m'(z)

)

n(m@)’m, (~m(2) = b

where m’yz(—m(z)) = %mn (6)|g=—m(z) instead of d%myz(—m(z)). So by (6.10) and (6.12), we have

v @@2 3 e

/

(—m(2)).

(m(2)*dFy,(x) _ " yim(@)’m)(=m(z) _ (@)

Differentiating both sides, we obtain

1—y > =—- p .
(x +m(z)) y2 »2 m'(z)
That is,
’ ﬂz(z)
m(z) = 5 5
1—y1 [(m(2))?dFy,(x)/(x + m(z))

. . . _ 1 y,

The Stieltjes transform my, (z) satisfies z = — @ + WZ(Z)

1=( : — 72 )m’ (2)
m,,(2)*  (+m,(2)?)72"

(m,, ()
1=y2(my, (2))* (14, (2)

Therefore, m’yz (2) = =2 and thus

[m,, (—=m(2)]*

2 () = T o, 0P [

(—m(2))]72

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)
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Because z = — then we have

L wm
m,@ T Tim, @
1 ) =D (my, (=m(2)) = 1/(y2 = 1))

-m(z) =—
myz(—m(z)) l+m, (- m) m,, (—m(2)) - (m, (—m(z)) + 1)

Let mg = m,, (—m(2)) by (6.11), then we prove the conclusion (6.1) of the lemma
1— . 1/(1 — 1-—
A=y -Gmo+1/(A=y)) 0 __ mo(mo +1—y1) . 6.16)

m(z) =
mg - (mg + 1) (mo+1/(1—y2))-(1—y2)

Differentiating the second identity in (6.16), we obtain

_[@mo+1—y1)(mo +1/(1 = y2)) —mo(mo + 1 — yl)]mo
(mo+1/(1 — y2))2(1 — y2)

Solving mé), we obtain the second assertion (6.2) of the lemma

(1= y2)2(mo + 1/(1 — y2))?
(1 —y)m3+2mo+1—y

/—_
my=

By the identity m, (—m(2)) = ,,féf + y2 - my, (—m(z)), we obtain

/ dFy,(x) (cm(2)) = m,, (—m(z)) -y 1

x+m@) - 2 2 m(@)
o my(m@) 1y my, (-mE@)(m, (-m@) + 1)
T w » (-, (—m@)+1/0 )
my, (—m(z))
T (=) (my, (~m(@) + 1/(1 = y2)
mg

T U—y)mo+1/(0—y))

This is the third conclusion (6.3) of the lemma. By (6.13), (6.15) and (6.16), we obtain the 4th conclusion (6.4) of the
lemma

L=y [ S By 02— D*(mo — 1/(y2 = 1)* - mg(1 + mo)?
) GHm? Ty oy mime+ D2 [(1+ mo)? — y2 - mg]

(L= y)m§+2mo+1—y
(1 = y2)m3 +2mg + 1

6.17)

where m0+ Wmo—i-l I — (mg + 11+h) (mo+1 = "Ly We obtain

x -dFy,(x) _/ dFy,(x) ()/ dFyz(x)
(x

C+m@)? ) x+m@ +m(2))?
__mo/(l=y) mo(mo +1)/(1 — y2)
(mo+1/(1=y2))  [(1 = y))m§ +2mo+ 11(mo +1/(1 — y2))
2
my

(= ymE+2mo+1°
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This is the 5th conclusion (6.5) of the lemma. By (6.16), we obtain

(1= y2)(mo(mo + 1) — (mo + 1/(1 — y2))2mo + 1))m,
m3(mo + 1)

m'(z) =

_ —(—y)(mo+ 1/<1 — )2+ y2/(1—y2) o
m3 - (mo + 1)2 o

(1 —yz)m0+2mo+l ,

= — - Mp.
m(mo + 1) =0

This is the 6th conclusion (6.6) of the lemma. Furthermore, we obtain

(1—yz)m3<z>+zmo(z)+1—y1>’ [ ( / ) ) >]
1 =1 1— F,
<°g (= y2)m(@) + 2mo () + 1 O

_ U=y [m’ @G +m@) 2 dFy, ()
L= y1 [ m?@)(x +m(2)) 2 dFy, (x)

—2y1 [ m@)m' @)x(x +m(z)) 7 dFy, (x)
1=y [m2(2)(x + m(z))~2dF),(x)

_ 21 [’ @@+ m(@) 7} dFy, (1)
(1= y1 [ m?*(@)(x +m(2) "2 dFy, ()1’

where the last equation holds by (6.14). This is the 7th conclusion (6.7) of the lemma.

—2yam{y(z)mo(1 4+ mg) >
1 — yom3(1 +mg)—2

[log(1 — yam3 (1 —i—mo)*z)]/ =

—2yampy(2)[1 — yomd (1 + mo) 2 lmy *m (1 + mo) >
(1 — yom3(1 4 mg)~2)2

_ 2ym' @mi(1 +mg)
(1 — yom3(1 +mg)=2)?%

This is the 8th conclusion (6.8) of the lemma.
So the proof of Lemma 6.1 is completed. (|

In the computation of the mean function and covariance function of Bai and Silverstein [5], without their conditions
on the 4th moment of X, by their (1.15), their (4.10) and (2.7) each should contain an additional term
2

b
0 2 (el s e sy Dy (s 1) )

and

MZZ ¢S, PEDT @Sy P eieSy P E;D T (208, e
nl j=li=1

respectively, where b, (z) = and the definitions of Dy, ¢;, E; are in Lemma 6.2. The following

v

1+n ' Ews; "D (2)
Q- 1/2pn-1g—1/2 Q= 1/2p-1 —1 —1g—1/2 :

lemma proves the convergence E(¢}S, "D, ! S, "Ter-€}S, "D, ! (mS," +D)™'S, ““e1) and the uniform conver-

1/2

gence of the diagonal elements ¢S, ]71 (z1)S, 1/ Zei forall i and j.
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Lemma 6.2. Suppose that the assumptions of Theorem 3.2 hold. Then for any z, we have

max
i,j

— 0 inp, (6.18)

=12 elyna—l/2 1 [ dFy,(x)
eiSZ E]Dj (Z)SZ €; +2/@

E(}S,"?D; 'S, et -1, D, (mS; ! +1) 'Sy Pey)

N i/ dFy,(x) [ xdFy,(x) (6.19)
2) x+m J x+m?’
where
ei=(0,...,0,1,0,...,0),  D()=S,"?8;8;"* —zI,
N — ——
i—1 p—i
1 12
D;(z) =D(z) —r;r}, rj=—msz X,
for j=1,...,n1 and E; denotes the conditional expectation givenri, ..., r;.

In the proof of Lemma 6.2, we need Lemma 9.1 of Bai and Silverstein [6], Kolmogorov inequality and Burkholder
inequality which are quoted below for easy reference.
Lemma 6.3. Suppose that x;, i = 1,...,n, are independent, with Ex; =0, E|xi|2 =1, supE|xi|4 =V < o0 and
|x;| < n/n with n > 0. Assume that A is a complex matrix. Then for any given 2 < p < blog(nv~'n*) and b > 1, we

have
Ela*Aa — tr(A)|” < vn? (ny*) ' (4067 A19%)",
where ||A|| is the operator norm and o = (x1, ..., x,)7.

Lemma 6.4 (A generalization of Kolmogorov’s inequality). If {S;, 7;, 1 <i < n} is a sub martingale, then for
each A,

AP (max s = 2) < ESulimaricy 5:-2) (6.20)
i<n

(see Theorem 2.1 of Hall and Heyde [19]).

Lemma 6.5 (Burkholder inequality). Ler {X;} be a complex martingale difference sequence with respect to the
increasing o -field Fi, and let Ey denote conditional expectation w.r.t. Fy. Then, for p > 2,

E

n p n p/2 n
> Xk sK,,<E(ZEk_1|Xk|2) +EZ|Xk|P) (6.21)
k=1 k=1 k=1

(see Lemma 2.13 of Bai and Silverstein [6]).

Proof of Lemma 6.2. First, we claim that for any random matrices M with non-random bound |M|| < K, fixed ¢ > 0,
i < p and z with |Jz| = v > 0, we have

P(sup[EjeiS; °D7 @8] P Mei — EjelS; D7 (@), P Me; | z ) = o(ni). (6.22)

Jj=<ni
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In fact,
|Eje;Sy "D ()8, /*Me; — EjejS; '/’ D71 ()8 '/ Me;
=|Eje[S; (D7 () =D ()8} /*Me; |
¢Sy D7 yr;riD; 'Sy PM

=|E; .
l+erj

—1/2v— 2
<K -Ej|ej8;'* D7 @r; .

By noticing ;- |e S, 172 fl (z)S;lD;1 (Z)S;1/2)€i| < K/n; and applying Lemma 6.3 by choosing n = [logn], one
can easily prove (6.22).

To show the convergence of the first conclusion (6.18) in Lemma 6.2, we consider

1/2 ~1/2p 12,

elS; ' PE D (2)S; e = EjelS; P D7 (0)S]

where D(z) =S, 1 2S1 S, 2 _ ;. I, E; denotes the conditional expectation with respect to the o -field generated by
r1,...,r;j and Eg denotes conditional expectation given S;. Now, we further extend the definition of E; for negative j,
that is, E; denotes the conditional expectation when Y._;,Y._;11,...,Y.,, are given. Note that E_,,_; denotes the
unconditional expectation, and
—1/25v— —-1/2 — ~_
S, D708, P =81 —z- 57 =D 2).
That is, the limits of the diagonal elements of

E;S; ' *D7' ()8, P = E;D ()

are identical. To this end, employing Kolmogorov inequality (6.20) for martingales, we have

I; ::P( sup |E‘,~e;82_1/2 (7 )S, 1/2 e,/-Sz_l/2 1(Z)S l/ze,| 28)
—ny<j=<nj
e E|En €S, "D ()8, Pe; — E_py_1€}S; P D7 (0)S, e
(using Kolmogorov inequality (6.20))
ni 4
=eE| Y (Ex— Ex-1)eiD ' 2)e;
k=—n»
ni 4
= e E| Y (B — Ex-1e,(D7' () = D' (0)e;
k=—ny
ni 4
< e *K\EY (Ex — Ex-1)e; (D7 (2) = D' (2))e;
k=1
4
+e 'K\ E Z (Ex — Ex—n)e}(D7'(2) = D' (@))es
k=—n»

(using E(|1X1| + |X2)) <2 "NWE|Xi|" + E|X2|"),r > 1)
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4
K |& eD; 1ka D, e
= S ED (B = Bt om
& nl k=1 1+X Xk/nl
~ ~ 4
2¢ DY, Y* Dl
+—E Z(Ek—Ekl ek
k—n, 1— ZY,_kD_kY-fk/nZ

where the last inequality uses the common-used formula of the inverse matrix

1

(A+BD'B) '=A"'—A"'BBA'B+D)'BA", (6.23)

K is a positive constant and

D- XX ifk >0,
D, ={D, ifk=0,
1~)+ZY_kY* ., ifk<O.

Thus, by Burkholder inequality for martingale difference sequence, we have

1+ X5 D X /ny 1+ XD Xy /ny

Kl < DX XD e |
li= 3B (Ex = BT s
N P 1+ XD X /ny
~ ~ 4
2-¢D7LY. Y5 DT le;
2 Z (Ex — Ex—)——% ~k_1'7k £
S n2 Py 1 —zY" D, Y. «/n2
2
K < DX XED e |
< | E( D] Eva|(Bx — B o) kl L
847’11 P 1+X%D, X /n
/D X X4 D e | . . :
E|(Ey — Ej_ l)l—i—X*D X y (using Burkholder inequality (6.21))
k/n
K 0 ze/D Y Y D_ke, :
+—44 E ZEkI‘(Ek—Ek 1) ”
€ k=—ns - ZY_,kD,kY-—k/”Q
2 DTIY._ Y* DT le; |4
+ E|(Ep — Ep_y) =k ke k T (using Burkholder inequality (6.21))
* —1 g q y
ke, 1—zY" DT, Y. /n2
~ ~ 2
2K a DX XED e P & DX XED e |
SM{E(ZEk—l Ey +Z Ej—1
k=1

k=1
ni

e’l~)71X kX* ]3]:16,' 4
1+X* D; X /n

’f)*lx X* D e
+ 3 | ST
=1 1+X Xk/nl

ni
+> E|E

k=1
(using E(1X 1|+ |X2))" <277 YEIX1]" + E|X2|"), r > 1)

0
2K
+—|:E( Z Ep_1|Ex

4
€ n2 Pl

4}
ze;ﬁ:}(Y._ka"_kﬁ:,l(e,-
1 —2Y* D Y.x/n2

zel’.IN):,iY._ka“_kﬁ:,iei 2
1—2Y* DY _¢/n2

J

+ ‘Ek—l
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0
+ > E|E

k=—ny

ze’D Y YE ﬁ_kel
1 - ZYT_kD_kY-fk/HZ

4 0 -1 *
ze D" Y. _ Y D Lo
+ 2 : E‘Ek—l i k —k*1
1- ZYT_kD_kY-fk/HZ

k=—ny
4:|

2eD7IY._ Y* D le;
- ZY?k_kD_kY_k/’Q

4]
(using E(IX1]+ X)) <2"""(EIX1" + E|Xa|), r > 1)

2
4K ni /D ka* Dk e; 2 ni
< 23 3

ng 1+X* lXk/nl Pt

- [E( >

2 k:—n2

D7 XkX*Dk e
1+X5D 1Xk/nl

zel/.IN):,iY._ka"_kﬁ:,ie,- 2
1—2Y* DY 4/na

2 0 4
k=—n2
(using E(Ex|X|)? < E|X|%, (Ex|X|)? < Ex|X|? and E(Ex|X)* < E|X|*, for r.v. X). (6.24)

We quote the inequalities (3.4) of Bai and Silverstein [3] and (3.4) of Bai and Silverstein [5] as follows.

1 X:D7'X ; —turD7! K, 824

‘ |Z|, E‘ i / <L (p even) and

1+X*D Xk/”l v ni ni

(6.25)

=y

L+n7laD 7 v

Through some computations similar to (4.22) of Bai and Silverstein [5], we have

E|eMX[>=0(1) and E|e;MX;|*=0(1), (6.26)

where M is a non-random matrix with finite operator norm.
Therefore, by (6.25) and (6.26), we have

%E(i 2)25 K'ff' (ZWD X X5D e | )2=O(n1_2)

DX (X ‘D le;

e4n] 1+ X45D, X e/ g4njv? P
and
K&, DXy X D e [ K|zt &
Sy B\ ST 2 < S5 N E oDy XX D e[ = 0(n ).
ny = 1+X.ka Xx/n v i’ll =1
Furthermore, by noticing that
‘ 1 - z _ Il
1—2Y* DYy /mal 12— [2PYS DY g /ma|” v

we can similarly prove that

0
K

k=—n2

zelfﬁ:,iY._ka“_kf):,iei 2
11— ZYfk_kf):]lcY._k/nz

and
0

K
_4.215

k=—n

e?ﬁzlY._ka_kﬁ:iei
1 —2Y* D7 Y.x/n2

= o(n3?).
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That is,
I;=0(n7?) +0(n?).
Then we obtain

P(maX|E]eS 172y -1, S5 12, i — EelSy 12y -1, Sy 1/2€z|28)

p
P|:U<max|EJelS 1/ZD_I(z)S 1/2 — Ee S 1/ZD_l(z)S21/261'|Z£>:|

i=1

SZP(m X|Eje[S; P07 (08, e — Eejsy DT (8] Ve | z )

I
_

= Z ILi=p- (O(nl_z) + O(nz_z)) =o(l)

because the dimension p tends to infinity proportionally to the sample sizes n; and n;. So we have

—12

1 2
max| Eje;S, /
i,j

D! (2)S;%e; — E€jS, P D7 ()8, 2

e,-| — 0 in p.

If the X variables and Y variables are respectively identically distributed, then
E€jS, "D ()8; e ; wES; ' *D~' (208, "2,

Similar to (2.17) of Bai and Silverstein [5], we have

EeS;' " D71 ()s; ' %e _;E[tr(sglnl(z))]:%.< ! —1)

by(2)
B l+zm(z) _/ dFy,(x) 627)
wyim(z) z(x +m(2)’ '

where b, (z) = . Thus, the first conclusion (6.18) in Lemma 6.2 follows.

1
1+n ' EuS;'D (2)
Next, we shall show that the above limit holds true under the assumptions of Theorem 3.2. Let D; ,, =D —
LX -X*. + LW -W* where W consists of i.i.d. entries distributed as X1, that is, we change the jth term %X‘ij“j

w1th an analogue W W* with i.i.d. entries. We have

Eel’-f)f Ee’DJ_we, = E¢| (D ! ]N);l)e,- — Eel’(ﬁj_}u — ]N);l)ei

=ny ' EejD; ' [X ;X5 8; — W;WiB; , D e;

where ﬁ, = +n1 IX* 1X N7V and B = (1 +ny lW*D 'W;)~! by (6.23). Let ; = (1 +n} trD h-1,

pj=ny ' XEDIX - trDj 1and 9., =ny ' [WiD;'W; — trD]f‘]. Noticing that 8., = f; — 5],3,,,1);/,,,,} and
similar decomposition for 8, we have by (6.25)

|Ee;]~)_lei — Ee;ﬁ;}yei|
-1 = Ao Ao IRl
=n |Eel/~Dj [X~jxfjﬁj:3jyj _ijj'ﬁj,wﬂjyj,w]l)j ei|

K n A —
< L(ELDF X [ E17) 7 + (B LD Wi Bl )] = 0(n ),
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Using the same approach, we can replace all terms 1 X X* in Sy by W W* the total error will be controlled by

O(n, 172 ), and replace all terms in S, by i.i.d. entries w1th a total error controlled by O(n_l/ 2) And then, we can show
that the first conclusion (6.18) in Lemma 6.2 holds under the the assumptions of Theorem 3.2.
Now we consider the convergence of E (¢} Sz_l/an_l1 Sz_l/2 eS8, 172 Dnl1 mS; ! + I)_lsz_l/zel). First, we have

572018, Ve iy 0 (s 1) s )
=E{((E
x(( ni—1— E_p,— 1)eS 12p (mS +I) 1S2_1/26,~+E_n2_1e§S;1/2D;ll(mS2_1+I)_IS;1/26,-)}
( ~1/2y _152_1/261-)
ni

E(e

—1 2 1/2 —1 2 —1/2
n—1— E—n2 1)6S / IS /€1+E—n2 1eS / IISQ /ei)

E{( =1 — E_py— 1)eS 12p 1S_1/2el—|—EeS
x ((Eny—1 = E—np—1)€/S; Dy (S5 +1) 'Sy 2e; + EelS, /°D,  (mS; ' +1) 'S, Ver))
= E¢S; "D, 'S, e - EelS, D, (mSy ! +1) 'S, e
+ E((Enj—1 — E—np1)€}Sy *D 18, Pei - (Eny—1 — E—y-)€]S, °Dy 1 (mSy ! +1) 'S5 2ey),
where
En—1€/S, 7D, s, P = ¢S, 7D, 1S, e,
E_nz_1e<s‘1/2D—1s;1/2ei = Ee}S; '°D; 18y e,
En—1€8; "D, (mSy ' +1) 'S, e = /S, ' PD; | (mS5 ! +1) 'Sy e
and
E_p_1€8; D, (mS;' +1) 'Sy e = ElS, ' °D, H(mSy ! +1) 'Sy e,
Furthermore,
|E((En—1 — E—my—)€lS; /D, 185 Pe; - (Eny—t — E_np)€lS; /2D (mSy ! +1) 'Sy 2e)) )
< E|(Eny—1 — E—np1)€}S; ' *D; 18, Pei|* - E|(Eny—1 — E—p—1)€lS; /D (mSy ! +1) 'S, e
< (E|(Eny—1 — E_ny1)€[S; 7D, 'S, e |
CE|(Enj—1 = E—ny—)€[S, °D,  (mS5 ' +1) 'S, e [) V2,

Similar to in the proof of /; of Lemma 6.2, wehave E|(Eyp -1 — E_n2 1)e/S_1/2D 1S l/2e |4 = O(n_2)+0(n_2)
and E|(Ep,—1 — E—n,—D)€}S; "Dy 1 mS5 + DS, %e;|* = O(n7%) + O(n; ). Then we have

E(elS;'D; 1S, Pe; - el8y D, (mSy ! + 1) 'S, ey

1g—1/2

= Ee[S, D18, e - €Sy PD (S 4+ 1) 'Sy e 4+ o(1).
Similar to (6.27), we have —E[tr(S; an 11 @] — f ggﬁg; . Using the decomposition (4.13) of Bai and Silverstein

—1/2v—1 —1 la—1/2 xdFy, (x)
[5] and similar arguments (4.14)—(4.20), we have ;ES2 Dn1 mS," +D7'S, e - —- f (x+miz))2 Then we

obtain

E(e}S, DS, e - €18, 7D, HmSy  +1) 'S, Per) » — /

dF}z(x)/ xdFy,(x)
x+m (x +m(2)?
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Similarly, we can obtain that the above limit holds true under the assumptions of Theorem 3.2.
The proof of Lemma 6.2 is completed. |

6.2. Proofs of Theorem 3.1 and Corollary 3.1
Proof of Theorem 3.1. Following the same techniques of truncation and normalization given in Bai and Silverstein

[5] (see lines —9 to —6 from the bottom of p. 559), we may assume the following additional assumptions:

e EXjy=0,EY;;=0and E|Xx|>=1, E|Yj|* = 1;
o E|X,k|4—1+;<+o(1)and E|Y,k|4—1+,<+o(1)
e for the complex case, EX/k_o(n1 )and EY/k_o(n2 )

In fact, through truncation and normalization, the means and variances of X j; and Yj; can equal to zero and one,
respectively. But the second moments of complex r.v.’s X j; and Y have o(nfl) and o(n, 1) respectively, and their
fourth moments have o(1) except for 1 + «.

Split our proofs into two steps. Write

ni[my(2) = my ()] =n1[my(2) — mPm-Hrd @] 4+ 0y [mOmFrd () — my ()],

where m{y"l Hiz}(z) and my (z) are unique roots whose imaginary parts having the same sign as that of z to the
following equations by (2.10)

1 dF,, (1) 1 / Fy, (t)
I=——F—F%—+ | —————— and z=——+ S ——
m s Hn} m /l—i—m{y"l’H"z} My, - t+my,

In the following Steps 1 and 2, we unify the real and complex cases, by the notation «, 8¢ and B,.
Step 1. Consider conditional distribution of

ni[my(z) — mm-Hr2d ()] (6.28)

given Sy = {all S}. Going along the lines of the proof of Lemma 1.1 of Bai and Silverstein [5], we can similarly prove
that the conditional distribution of

m [y (@) —mUn o) @)] = plma(@) —mt el )]
given S; converges to a Gaussian process M1 (z) on the contour C with mean function

yi [ m@)>x[x + m(z)] 73 dF,y, (x)

=(k—-=1)- 6.2
EM@IS:) = =1 5 o G+ m(@) 2aFn 07 (0:29)
for z € C and covariance function
(M) m(z) 1
cov(Mi(z1), M1(22)[82) =« ((m(m) R Z2)2> (6.30)

for z1,z2 € C. Note that the mean and covariance of the limiting distribution are independent of the conditioning
S>, which shows that the limiting distribution of this part is independent of the limit of the next part because the
asymptotic mean and covariances are non-random.

Step 2. Now, we consider the limiting process of

ni [m{ynl Hiol () — my“(z)] = p[m{yn, Hi by — My, (Z)] (6.31)
By (2.10), we have
dFy,, (1

1 t 1
e [y, [0
m}’n 1+1 .m)ﬁl : myn t+m)’n
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On the other hand, m{y"l “Hny} s the solution to the equation

1 t-dH,, (¢ 1 dF,,(t
7= 7_‘_})”1./ ny (1) +Yn1‘/ ny (1)

_m{)’nl»an} 1+t_m{Yn1an2} :_m{y”l’H’Q} t+m{yn1’Hn2}.

By the definition of Stieltjes transform, then the above two equations become

1
Z:__+yn1'myn2(_ﬂyn) and z=-—

my, Yy iy (=0 Fral).

m{}’nl anz}
The difference of the above two identities yields

m{y”I’H"Z} _my O
0= —m .m{ynl7H’12} +)’n1 [mnz(—_ Y1,y ) _mnz(_my“) +mn2(_my“) —myﬂz (—myn)]
—Yn

R Y | L

(Vg Hny } = Ym (f‘i‘ﬂ{y'”’H”Z})(t‘i‘my ) ym[mnz(—ﬂyn) —my,, (—myn)].

my -m
Therefore, we obtain
ni- [m{yillanz}(Z) _ myn (Z)]

ni [ml’l2 (_myn) - my,,2 (_myn)]

I —yp, - fmyn .m{)’manz} dFy,, (@) /((t +myn) (¢ +m{yn|,Hn2}))

= "Vn My - m{ynl’H"Z} .
—Jn

nalm,, (=my ) —m, (=my )]

1=y, 'fﬂy“ . ﬂ{y""H"Z}anz(t)/((t +myn)(t +m{)7nl-,an})).

. mynl ’H"Z .

(6.32)

= _mYn

We then consider the limiting process of
ny - [mnz (_m)'n @) - my,., (_m}'n @)]

Noticing that for any z € CT U C—+, my (z) = m(z), the limiting distribution of
ny - [m,, (—my, (2)) - LT (-my, ()]

is the same as that of
ny - [m,, (—m () —my, (—m()]-

It can be shown that when z runs along C clockwise, —m(z) would enclose the support of F), clockwise without
intersect the support. Again, using Lemma 1.1 in Bai and Silverstein [5] (with minor modification), we conclude that
nalm,, (—m(z)) — my, (—=m(z))] converges weakly to a Gaussian process M3(-) on z € C with mean function and
covariance function

y2 - lmy, (=m@)P - [14+m,, (—m(2)]7?

E(M; =k-1)- 6.33
(M2@) = e =D = o @) (0 F m, Cn @) T (¢33
and
!, (—m(z) - (~m(22)) |
Ms(z1), Ma(z2)) = —2 2 — ) 6.34
cov(Maz1). Ma(z)) K([myz(—m(m))—myz(—m(m))]z (m(z1) —m(z2))? (©39

for z1,z2 €C.
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Because
—m, (2) - mPmfnl(z)
L=y, - [ my, @) - mne e dE, 0/ (@ + my, (2) (¢ + mPfreh)

converges to

—m?(z)
1—y1-m2(z) - [dF, 1)/t +m(z)]?

by (6.14), then we conclude that by (6.32)

—m'(z) =

ni- [ﬂ{y"l ;an}(z) — myn (Z)]
converges weakly to a Gaussian process M3(-) satisfying
M3(z) = —m/(2) - Ma(z)

with the means E(M3(z)) = —m/(z) - EM3(z) and covariance functions cov(M3(z1), M3(z2)) = m'(z1)m'(z2) -
cov(M»r(z1), M>(z2)). Because the limit of

ny - [y (@) = mPr 2l )]
conditioning on 4> is independent of the ESD of §,,, we know that the limits of
ni - [my@) —mP Ml @] and oy [mne ) z) —my ()]

are asymptotically independent. Finally, we conclude that n; - [m,(z) — m,, (z)] converges weakly to a two-
dimensional Gaussian process M1(z) + M3(z) with mean function

yi [ m3@)x[x +m(2)] 72 dF,, (x)

=k-1)- 6.35
E(Mi@) + M) = (c = 1) T2 (x4 m() 2R, ()P (6.35)
.2 -m' @lmy, (—m@)P - [1+my, (-m(2))] 3 6.36)
[1—y2- (my, (=m(2))/(1 +m, (—m(2))))*]?
and covariance function
cov(M(z1) + M3(z1), M1(22) + M3(22))
_ @ @)my, (—m(z) -my, (-mz2)) o« 637
[, (—m(z1)) — 1, (—m(22)) P (@1 — 222 '
Because [ f(x)dG(x) = —zini [ f(z)mg () dz, then we obtain that the LSS of F matrix
(] £103Bacor.e, [ ) 0Gato))
converges weakly to a Gaussian vector (X £, ..., X ) where
1
EXy = o 7{ f[i@E(M(2) + M3(2)) dz

and

1
cov(Xy, Xp,) = ) ?{ ?{ fi @) fij(z) cov(Mi(z1) + M3(z1), M1(z2) + M3(z2)) dz1 dza.
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(—m(z)). By Lemma 6.1, we have

(7) - — — 2 —
_ﬁﬁ@(ﬁﬁmz=2 1fﬁ@Mm%C1 YD) + 2@ + | yv
T (1= y2)mi (@) +2mo(2) + 1

2mi

Recall mo(z) =m

i(2)-(6.36)d —1 _
_§ £ (6304 == o fﬁ(z)dlog(l — yam{(2) (1 +mo(2)) 2)

2mi

and

$fi@DSi ) (6.37)dz fyg Ji(z1) fj(z2) dmo(z1) dmo(z2)
T o4m '

412 (mo(z1) —mo(22))?

Finally we obtain

2 11—
EX; = @ dlo ( — y2)md(2) +2mo(2) + Y1>
(1 — y2)m}(2) 4+ 2mo(z) + 1
-2
i (2) dlog(l — yzm(z)(z)(l + mo(z)) )
and
; d d
cov(Xp,. X ) = fyg fi(z1) fj(z2) dmo(z1) n;o(zz)‘
(mo(z1) —mo(z2))
Proof of Theorem 3.1 is completed. ]
Proof of Corollary 3.1. In Lemma 6.1 it is proved that m(z) satisfies the equation
(6.38)

_ mo@)(mo(z) +1—y1)
(1= y2)(mo(z) +1/(1 — y2))’

It is also known that the support of the LSD Fy, ,(x) of F' matrix is

[ a-n? _(1+hﬂ]
A=) A=)
when y; <1 or the above interval with a singleton {0} when y; > 1. Therefore, mo(a) =m yz( m(a)) and mq(b)
(—m(b)) are real numbers which are the real roots of equations
_ mo(b) - [mo(D) + 1 —yi]
[mo() —1/(y2—=D]- (2= 1)’

—1=I Clearly, when z runs in the positive direction around the support

1
1_y2 .. .o, . . . .
( m(z)) runs in the positive direction around the interval

__ mo@ - [mo(@) +1 =il
[mo@ — /(2 = DI+ (2 = 1)

1+

So we obtain mqy(b) =
interval [a, b] of Fy(x), mo(z)

1—( L+h l—h)
1=y 1-n)

1+hr$ , where r > 1 but very close to 1, |§| = 1. By (6.38), we have

Let mo(z) =

14+ h? 4+ hr='E + hr&
=
(1—y)?
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This shows that when & anticlockwise runs along the unit circle, z anticlockwise runs a contour which closely incloses

the interval [a, b] when r is close to 1, where a, b = ((11 jF}h))z Therefore, as r | 1, we have

Kk —1 (1 — y2)m2(2) +2mo(z) + 1 — y1>
EXp = —— 7(2)dl
= i 7€ /i@ Og( (1= y)m3(2) + 2mo(0) + 1

(z)dlog(1 — yzm(z)(z)(l +mo(z))_2)
_ 2
=limK .1'¢ f,-<1+h +2h2%($)>|: 17]+ 17]_ 1 _ 1 ]d§
ril A Jigog (1—=1y2) E—r E+r E—n2/h &+ y/h
K —1 1+h2+2hm(g))[ 1 1 2 }
i — d
* 4mi y|§g|=1f( (1—y)? %‘—\/y_z/h+$+\/y_2/h §+y/h :

k=1 1+h2+2h91($)>|: 1 1 2 }
=1 ; — d
rlFll 4mi fg—1f< (1—y)? E—r-1 +€+r_1 E+y2/h :

By Lemma 6.1, we have

(1 — y2)m3(2) +2mo + 1 _
m3(z) - (mo(z) + 1)?

(1= y2)* €+ 32/ hr)E — 32/ hr)E’
hr (€ +y2/ hr)? (& +1/hr)?

m'(z) = — my(z) =

and

(1—y)? &
hr (§+1/hr)(€ + y2/hr)

m(z) = —

1+hrj§j

Making variable change mo(z;) = ———

for j = 1,2 where r, > r; > 1. Similarly, one can prove thatas 1 <r; <
ry — 11, we have

cov(Xy, ij
?gyg fi(z1) fj(z2) dmo(z1) dmo(z2)
a2 (mo(z1) —mo(22))?

=— 7§ 7§ Sil + R +2h0ED) /(1= y2)*) £i((L+ 1> +2h0(&)) /(1 = y2)*)
l<r1<r2 41‘52 1&11=1J |5 |=1 (Vlsl - r2s2)2

d¢; d&

)2~>1

55 % i ((L+h2 4+ 200 (ED) /(1= y2) D) £i((1 + h% +20%(E2)) /(1 — y2)?)
r¢147t2 le11=1 J 162 =1 (&1 —ré)?

Proof of Corollary 3.1 is completed. g

dé; dé,.

6.3. Proofs of Theorem 3.2 and Corollary 3.2

Proof of Theorem 3.2. Similar to the proof of Theorem 3.1, we use the same truncation and centralization technique
of Bai and Silverstein [5]. That is, we may assume the same additional assumptions as described in the proof of
Theorem 3.1 except the fourth moments of X jx and Y ;. Here we assume that E|Xjk|4 = By +«+o(l)and E|Yj; |4 =
By + Kk +o(1).

Similar to the proof of Theorem 3.1, we split

ni[my(2) — my, ()] =ni[my(z) = mO-d )]+ 0y [mOm el 2) — my (2)].



472 S. Zheng

In Step 1, checking the proof of Lemma 1.1 of Bai and Silverstein [5], one finds that conditional distribution of
ni[my(2) — mPm-Hrel (7)) (6.39)

given S, still converges to a Gaussian process M (z) on the contour C. When computing the asymptotic mean function
where their formula (1.15) is used, without their condition on the 4th moment of X-variables, the mean function should
include an additional term by Lemma 6.2

N m?(2) - [dFy, (0)/(x +m(2)) [ x - dFy, (0)/(x + m(2))*
1= y1 [m?(@)(x +m(2) 72 dFy, (x)

Bx (6.40)

which is the limit of

—1/2n—-1c—1/2 —1/2— — _1a—1/2
m@) - By - (p/m) - bAE(]S, *D; 185 2e; - ¢/S, 2D LmS5 ' + D718y e

1=y [m2(2)(x +m(z))~2dFy, (1)

ever dropped in (4.10) and (4.12) of Bai and Silverstein [5]. Similarly, when computing the asymptotic covariance
function, one finds that there should be an additional term by Lemma 6.2

5, - 1./m’(m)-)wdFyz(X) m'(z2) - x - dFy, (x) 6.41)

(x +m(z1))? (o +m(z2))?

which is the limit of

92 [ B bp(2)bp(22) < “1/2 1 el ~1,2 —1/2 1 =1 —1,2
i 8Z2< - DY €S, CED @S, e €S, TE; D (22)8; e
j=li=1
ever dropped in (2.7) of Bai and Silverstein [5]. Note that the mean and covariance of the limiting distribution are
independent of the conditioning Sy, which shows that the limiting distribution of this part is independent of the limit
of the next part because the asymptotic mean and covariances are non-random.
As in Step 2 of the proof of Theorem 3.1, we have the same formula (6.32). The process

na- [mnz (_myn @) = my,, (_myn @)]

also tends to Gaussian process M»(z) on the contour C.
Checking the computation of the asymptotic mean function and covariance function, we find that they each have
an additional terms respectively

v mp(@) - (L mo(2)
1=y -mi@) - (1 4+mo(z)2

y

and

mo(z)) — mg(22)
(1+mo(z1))? (1+mo(z2))?’

,By Y2
which are the special cases of (6.40) and (6.41) respectively and mq(z) = m,, (—m(2)).
Because
—my (2) -mPn-fnl ()
L=y, + [ my ) -mPm b dF, (0 /(0 4 my, () 4+ mPr by

—m?(z)
1—y1-m2(2) - [dFy,(0)/[t + m(2)]*’

— —m'(z) =
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we conclude that 7 - [m{y"l Hinh(z) — my (z)] converges weakly to a Gaussian process M3(-) satisfying

M3(z) = —m'(2) - Ma(2)

with the means E(M3(z)) = —m/(z) - EM>(z) and covariance functions cov(M3(z1), M3(z2)) = m/(z1)m’'(z2) -
cov(M>(z1), M2(z2)). Because the limit of ny - [m,(z) — m{y”l Hiod ()] conditioning on {all Sy} is independent of
the ESD of S,, we know that the limits of

n1 - [my@) —mPm @] and oy [t 2) —my ()]

are asymptotically independent. Then we obtain that ny - [m,(z) — my (z)] converges weakly to a two-dimensional
Gaussian process M1(z) + M3(z) with means
i Jm @xlx +m(2)] 7 dFy, (x)

[1—y1 [ m*(@)(x +m(2))2dFy, ()]
1m @) [dFy, )/ +mE) [ x - dFy, (@0)/(x +m(2))?

1=y [m?(2)(x + m(z))2dFy,(x)

y2 - [mo@)P - [1 +mo ()]
[1— 2+ (mo(2)/(1 + mo(2))*]?

y2 - mi(z) - (1 +mo(2)
1= y2-mj(2) - (1 +mo(2)) 2

E(Mi(z) + M3(z)) = (k — 1) -

+ Bx

—(k=1-m'(2)

—By- ﬂ/(z)

and

cov(M(z1) + M3(z1), M1(z2) + M3(z22))

m'(z1) - x -dF,,(x) [ m'(z2)-x-dFy,(x) K
=Bx-y1- 5 5 - 5
(x +m(z1)) (x +m(z2)) (z1 — 22)
m'(z1)m'(z2)my(z1) - mg(z2) LBy m'(z)my(z1)  m'(z2)mg(22)
. Sy - . )

[mo(z1) — mo(z2)]? T (T moz)? (14 mo(z2))?

Because f f(x)dG(x) = —ﬁ f f(2)mg(z2) dz, then we obtain that the Linear spectral statistics of F matrix
( / i) dGn(x), ..., / fk(x>d5n(x>)

converge weakly to a Gaussian vector (X fir--+» X ) Where

1
EXj=-72 f JiRE(M1(z) + M3(2)) dz
and
1
cov(Xy, Xp) = —mygygﬁ(Z)fj(Z)COV(Ml(Zl) + M3(z1), M1(z2) + M3(22)) dz; dzo.

Then by Lemma 6.1, we have

k=1 (1 —yz)m%(z)+2mo(z)+1—y1>
7T i 5& /i@ Og( (1 — y)m3(2) + 2mo(@) + 1

Bx - )1
2mi

+ }{ fi (@) (mo(z) + 1)_3 dmg(2)
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k—1 2 _2
+ e ?g fi (@) dlog(1 — yam(z) (1 +mo(z)) ")

+ 4'3—7; % fi@ (1= yamG)(1+ mo(z))_z) dlog(1 — yom(z) (1 + mo(z))—z)

and

COV(Xﬁ’ij):_:??g% fi(z1) fj(z2) dmo(z1) dmo(z2)

(mo(z1) —mo(22))?

By +Byy2) %j& fi(z1) fj(z2) dmo(z1) dmo(z2)
(mo(z1) + D2(mo(z2) + D* O

Proof of Corollary 3.2. By the same variable change mo(z) = 1+hrf as given in proof of Corollary 3.1, the proof

of the corollary can be done by only technical calculus and hence the details are omitted. ]
6.4. Proof of Theorem 4.1
Proof of Theorem 4.1. As a consequence of the CLTs for F-matrix, we establish the CLT for LSS of beta matrix

of the form: $>(S» +d -S))"'=d+d-S 1S5 1y~1, a matrix functional of F-matrix, where d is a positive constant.
Because the ith eigenvalues A and A; of beta matrix and F matrix have the relation

, 1
T 4 d ]

then the ESD of the beta matrix satisfies

1 <& 1 < 1 < 1 <
Fon(x) = > Z Ipi<xy = > Z I1/Q4dny<x) = > Z Ipi=17a0/x-1y =1 = P Z I <1/d(1/x—1))
.:1 : I —

that is,

1 < Tpa=1/d(1/x-1)) 171 Tpi=1/da01/x-1))
Fon(x)=1-— ; ;I{Aigl/a’(l/x—l)} + f =1- f"(E i 1))+ ————.

Then we have

1/1
=1 (1))

except some discontinuous points. So we obtain

1 1 1/1
/0 fi(x)dFpy, (x) = /0 fi(x)d<1 - Fy,.(g(; - 1>>>
0 1
Ltz

+00 1

dFpp= - p ) Ly L )a
/fk(x) O’H_;Ef( ;; (1+d k) /fk<l+dx> fo.

and
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Then the linear spectral statistics of the beta matrix and F' matrix satisfy

( / f1(x)dGp(x), ..., / fk(x>d6n(x>>

1 ~ 1 ~
=(/f1<dx+]>dGn(x),...,/fk<dx+])dGn(x)>.

Then under Assumptions [A]-[B], the linear spectral statistics

( f AEABa(0), ... / ﬁ(x)dén(x))

of the beta matrix S>(S; +d - S1)™!, converge weakly to a Gaussian vector (X fi»---»Xp) whose means and co-
variances are the same as Theorem 3.2 except that f;(x) and f;(x) are replaced by f; (Flﬂ) and f; ((z-xlﬁ)’ respec-
tively. (Il
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