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OPTIMAL STOPPING PROBLEMS FOR SOME
MARKOV PROCESSES
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In this paper, we solve explicitly the optimal stopping problem with ran-
dom discounting and an additive functional as cost of observations for a reg-
ular linear diffusion. We also extend the results to the class of one-sided regu-
lar Feller processes. This generalizes the result of Beibel and Lerche [Statist.
Sinica 7 (1997) 93-108] and [Teor. Veroyatn. Primen. 45 (2000) 657-669]
and Irles and Paulsen [Sequential Anal. 23 (2004) 297-316]. Our approach
relies on a combination of techniques borrowed from potential theory and
stochastic calculus. We illustrate our results by detailing some new examples
ranging from linear diffusions to Markov processes of the spectrally negative

type.

1. Introduction. Consider a one-dimensional regular diffusion X = (X;);>0
with state space £ = (I, r), an interval of R, defined on a filtered probability space
(2, (F)i=0, P). We denote by (Py)xcr the family of probability measures associ-
ated to the process X such that P, (Xo = x) = 1, and by E, the associated expecta-
tion operator. Next, let ©X be the family of all stopping times with respect to the
filtration F(= (F;);>0). In this paper, we are first concerned with the study of the
following optimal stopping problem, for any x € E,

(1) sup E[e"47g(X7) — Cr],

TexX

where g is a nonnegative continuous function on E, A = (A;);>0 is a continuous
additive functional of the form

t
) m:Aa@Qm

with a a continuous function on E such that a(x) > 0 for all x € E and, for any
t>0,

3) a=fd&k%ws
0
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with ¢ a nonnegative continuous function on E. We also aim to solve this prob-
lem in the case where X is a Feller process of the spectrally negative type, that
is, when it has only negative jumps. It is of common use to name g as the reward
function, C = (Cy);>0 as the cost of observations and A as the random discount
factor. We mention that in the case A =0 and ¢ = 0 the problem (1) has been
studied by Dynkin [11] and Shiryaev [34] in the general framework of Markov
processes. Moreover, the case ¢ = 0, that is, without cost of observations, has been
intensively studied in the literature for one-dimensional diffusions. In particular,
Salminen [32] by means of the Martin boundary, suggested a solution to this prob-
lem in terms of the excessive majorant function. More recently, Beibel and Lerche
[4, 5], relying on martingales arguments, solve this optimal stopping problem ex-
plicitly. We also mention that, by using standard fluctuation theory, Kyprianou and
Pistorius [19] offer solution to some optimal stopping problem arising in finan-
cial mathematics for appropriate diffusions. A related result on optimal stopping
problems for one-dimensional diffusions with discounting has been presented by
Dayanik and Karatzas [10]. They characterize excessive functions via generalized
concavity and determined the value function as the smallest concave majorant of
the reward function. In the former case, the value function is given as the solution
of a free boundary value problem associated to a second order differential operator
which is the infinitesimal generator of the one-dimensional diffusion X. The term
free, which comes from the a priori, unknown region where the problem is inves-
tigated, forces one to set up an artificial boundary condition of Neumann type to
get a well-posed problem. This is the so-called smooth fit principle. All these tech-
niques are well explained in the book of Peskir and Shiryaev [27]. The literature
regarding optimal stopping problems associated to diffusion with jumps is more
sparse and focused essentially on the study of specific examples. In this vein, we
mention the paper of Alili and Kyprianou [1] where the authors deal with the issue
of pricing perpetual American put options in a market driven by Lévy processes.
We also indicate that Baurdoux [3] solved an optimal stopping problem associated
to generalized Ornstein—Uhlenbeck processes of the spectrally negative type.

In this paper, we propose to solve the optimal stopping problem (1) with a cost
of observations of the form (3) for one-dimensional regular diffusions. Our strategy
can be described as follows. First, by a time change device, we reduce the optimal
stopping problem with random discounting to a one with a deterministic discount
factor but associated to an appropriate time change diffusion. Then, by an argument
of potential theory, we transform the problem (1) to an optimal stopping problem
of the same form with a new reward function but without cost of observations.
We proceed by using a result of Shiryaev [34] which states that in our context
the optimal stopping time is the first exit time of the process from a Borel set.
Finally, with this information at hand, we can use a Doob’s /-transform technique,
with a proper choice of the excessive function, to transform our problem to an
optimization problem which has been studied in detail by Beibel and Lerche [5].
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The remaining part of the paper is organized as follows. In the next section, we
overview the basic facts about one-dimensional diffusions. In Section 3, we state
and prove our main result which consists of solving the general optimal stopping
problem (1). We also show, in Section 4, how to generalize our result to the class
of regular one-sided Feller processes. The last section is devoted to the treatment
of new examples ranging from linear diffusions to processes with one sided jumps,
such as spectrally negative Lévy processes and self-similar positive Markov pro-
cesses of the spectrally negative type.

2. Preliminaries. In this part, we provide some well-known facts about linear
diffusions which can be found, for instance, in Itd and McKean [15] and in Borodin
and Salminen [8]. We recall that (€2, (F;);>0, IP) is a filtered probability space. We
consider a linear diffusion X = (X;),>¢ with state space E, as the solution to the
stochastic differential equation (SDE)

“) dX, =b(X;)dt +o(X;)dW;,

where W = (W;);>0 is a one-dimensional Brownian motion. It is supposed that
and b are continuous and o (x) > 0 for all x € E. We assume that X is regular, that
18,

Py (Ty < +00) >0 Vx,yeE,

where T\, = inf{r > 0; X; = y}. The transition semigroup (P;);>o maps Cp(E), the
space of bounded and continuous functions on E, into itself. It follows that X is
a Feller process. Moreover, for every ¢ > 0 and x € E the corresponding measure
A+ Pi(x, A), with A a Borel set, is absolutely continuous with respect to the
speed measure m, a positive o -finite measure on E. More specifically, we have

Pf<x,A>=Apt<x,y>m<dy),

where p; (-, -) stands for the transition probability density which may be taken to be
positive, jointly continuous in all variables and symmetric. The scale function s of
X is an increasing continuous function from E to R, satisfying, forany a <x < b,

s(b) —s(x)
s(b) —s(a)

s(x)_exp{ 2/ 2((2)) Z}.

We also recall that the infinitesimal generator L. of X is the second order differen-
tial operator given, for a function f € C2°(E), the space of infinitely continuously
differentiable functions with compact support, by

Lf(x)=302() f"(x) +b(x) f'(x).

P(T, <Tp) =

and is given by
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Next, from the general theory of one-dimensional diffusion (see [15], page 128),
the Laplace transform of the first hitting time 7, is expressed, for any g > 0, as

hy (x)
h+( )a X S ya
5) By e 4T]=]"4"
hy (%)
— s x>y,
hy (y)

where h;r (resp., h, ) is the increasing (resp., decreasing) continuous solution to
the differential equation

(6) Lh(x) = qh(x), x€E,
with appropriate conditions at the nonsingular boundary points. These functions,
hj]' and h,, are called the fundamental solutions of the equation (6). They are
linearly independent and their Wronskian is defined by

Wig iy () = g () ——hf () = () =y (2).
and the Wronskian with respect to d/ds(x) denoted by w, is the constant given
by

th{,hq’ (x)

Moreover, for any g > 0, the Green function or the g-potential density u? is de-
fined as the Laplace transform of the transition probability density, that is,

+oo
uq(x,y):/ e p,(x,y)dt Vx,y€E.
0
In particular, we have

wy'hf RS (3),  x <y,

q _
® g (x’”‘{w;lh;@)h;(x), x>y,

We say that the process X is recurrent if and only if lim,_,ou?(x, y) = oo, for all
x,y € E, which is equivalent to P, (T, < o0) =1, for all x,y € E. A diffusion
which is not recurrent is called transient. In this case, the potential u defined as

u(x,y) = lim u?(x, y)
q—0

is finite for all x,y € E. Finally, we mention that if X is transient with
lim;_, oo X; =r then forany x <y

+o00
u(x,y) =/0 pi(x,y)dt,

=s(r) =s(y).



OPTIMAL STOPPING PROBLEMS FOR SOME MARKOV PROCESSES 1247

3. Optimal stopping problem for linear diffusions. Our aim is now to find
the value of the function V;" . defined as the solution of the optimal stopping prob-
lem (1), that is,

Vi (x)= sup Ei[e *"g(Xr)—Crl,
TesX

where A = (A;);>0 is a continuous additive functional of the form (2) and the
cost of observations C; = fé c(X e A ds with ¢ and g nonnegative continuous
functions. Our main result is stated in Theorem 3.9 below. It consists of reducing
the optimal stopping problem (1) into a new one which can be described as fol-
lows. On the one hand, it has a modified reward function but without both cost
of observations and discounting factor. On the other hand, it is associated to a
new diffusion obtained from the original one by a random time change and by a
Doob’s h-transform. It turns out that solving this latter optimal stopping problem
amounts to finding the solution of an optimization problem which has been studied
by Beibel and Lerche [S]. More precisely, our approach can then be split into the
following three steps.

(1) First, we time change X by the inverse of the continuous increasing func-
tional A and we use the well-known fact that in our context the two processes have
identical hitting time distributions. Hence, we may consider without loss of gen-
erality the problem (1) with linear discounting, that is, A; = gt for some constant
q > 0.

(2) Then, we characterize the potential associated to the functional C and we
show how to reduce our problem to an optimal stopping problem without cost of
observations but involving a new reward function.

(3) Finally, we borrow an idea of Williams [35] and Pitman and Yor [28] for
constructing conditioned diffusions by the method of Ai-transform. We transform
the problem described in item (2) to an optimal stopping problem without dis-
counting factor which has been solved by Shiryaev [34].

3.1. Time change for nonnegative additive functional. We start our program
by considering that A is a nonnegative continuous additive functional of X of the
form (2) and we assume, without loss of generality, that Ao, = oo P, a.s. Since
A is a continuous increasing function, it admits an inverse functional which we
denote by V and given, for all r > 0, by

V: =inf{s > 0; A, > t},
r ]
N 0o a(Yy)

where Y; = Xy, for any t > 0. Moreover, if X is the solution to the SDE (4), then
it follows, from the Itd’s formula, that Y is the unique solution to the SDE

ay, = (S)(Y,)dt + (%)(Yt)dvf/,,

ds,
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where W is a Brownian motion with respect to the filtration FY = (F v,)t>0. The
process Y remains a linear diffusion with respect to the filtration FY . In particular,
it is a Feller process (see, e.g., Lamperti [20]) and its infinitesimal generator LY
takes the form

1
9) LY f(x) = —Lf(x)
a(x)

for a smooth function f on E. Next, we consider an open interval B C E and
denote by Tg the first exit time of the process Y from B, it is plain that we have
the following identity:

Y _
Tp = ATé( a.s.

We are now ready to state the following.

LEMMA 3.1. Forany x € E, we have, with the obvious notation,

sup E[e 4T g(X7) — Cr]

TexX

T
= sup Ex[e‘Tg(m— /0 (g)m)e—ws],

Texl

(10)

where Y is characterized by its infinitesimal generator (9).

PROOF. From [31], Section III.21, page 277, we have that for every FX-
stopping time T, A7 is an FY -stopping time. Thus, we obtain that

Vs

sup Ey[e T g(X7) — Crl= sup E, [e_sg(XVS) — / c(Xy)e A dv].
TexX Sexl 0

The proof follows by performing the change of variable u = A, in the integral on

the right-hand side of the previous identity. [

Consequently, in the sequel we can assume, without loss of generality, that the
additive functional A is linear, that is, A; = gt for some ¢ > 0 and the cost of
observations is C; = fé c(X,)e ¥ ds.

3.2. Get rid of the cost of observations. Let us now introduce the function §
defined, for any x € E, by
(11) §(x) =Ex[Cool.

In the following, we provide an expression of § in terms of the characteristics of
X and give some conditions under which it is continuous and finite.
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LEMMA 3.2. Forany q > 0and x € E, we have
5(x) = w;! (h;(x) | reman a5 [ h;(y)e(y)m(dy)),

where wg stands for the Wronskian of h, and h(‘; with respect to the scale func-
tion s, as defined in (7) and m is the speed measure of X. Moreover, if ¢ satisfies
the integrability condition for any x € E,

(12) fl "B (e v R G A De(ymdy) < oo,

then § is continuous and finite on E.
PROOF. By using Fubini’s theorem, we obtain that

s00 = [ PR e(Xy)]ds = [ w e emay)

= [ g v g A DeImdy).

where we have used the identity (8). The proof of the claims follows readily. [

REMARK 3.3. We note that if ¢ = 0 and X is transient with lim;_, o X; =7,
then & is given by

(13) 5(x) = /E (sr) = s()e(Im(dy).

In this case, we mention that Khoshnevisan, Salminen and Yor [16] identify the
law of the perpetual integral functional Cy, of a transient diffusion as the law of
the first hitting time of a random time change diffusion.

We are now ready to state the following.

LEMMA 3.4. If§ is finite on E then, for any x € E, we have

sup Ec[e™Tg(X7) — Crl= sup Ex[e™"" (¢(X71) +38(X7))] = 8(x).
TesX TexX
PROOF. Note that for any F-stopping time 7', we have the identity in law

Co @Cr+eTCy 067,

where (6;);>0 stands for the shift operator, that is, for any 7, s > 0, 6, w(s) = w(r +
s). Since § is finite, the strong Markov property yields

sup B [e 9T g(X7) — Crl= sup E.[e77 (g(X7)+8(X7))] —8(x).

TexX Texf,
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A nice consequence of the previous result is that the general optimal stopping prob-
lem (1) is equivalent to an optimal stopping problem without cost of observations.
Before stating our next result, let us introduce a few further notation. Let O denote
all the open subsets of E containing the starting point x of X. Let X be the class
of stopping times of the form Tp = inf{r > 0; X; ¢ B} where B € O.

LEMMA 3.5. Let f be a continuous nonnegative function. Then, for any g > 0
and x € E,

(14) sup E[e T f(X7)l= sup Ey[e 978 f(X1,)].
Tezgg TpeXp

PROOF. Let X be defined by

A X, ift <ey,
Xl—{a, ifr>e,,

where e, is an exponential variable of parameter ¢ > 0 taken independent of [ and

d is a cemetery state. Note that X is always transient and clearly with a function f
as above and using the convention f(9) =0, we have, for any x € E

Eolf(X)]1=Ele ™ f(X))].

Therefore, there is a one-to-one correspondence between the excessive functions
for X and the g-excessive ones for X (see Definition 3.6 below). Moreover, the
g-excessive functions of the Feller process X are lower semi-continuous ([13],
Theorem 2.1). Then, from Shiryaev [34], Corollary 3, page 129, we obtain that

sup B [f(X7)= sup E.[f(Xry)l.
TexX TseXo

Hence,

sup Exle " f(X7)1= sup Eile 778 f(X7,)].
TexX TpeZo O

3.3. Doob’s h-transform. Our aim in this part is to show how to transform an
optimal stopping problem with discounting factor to an optimal stopping problem
without discounting. To this end, we recall some basic facts on excessive functions
and Doob’s h-transform and we refer to the book of Borodin and Salminen [8],
Section II.5, pages 32-35.

DEFINITION 3.6. A nonnegative measurable function 4 : E +— R U {oo} is
called g-excessive, g > 0, for the process X if the following two statements hold
true: for any x € E,

(i) e MEx[h(X)] < h(x),1 >0,
(i) limpoe 'Ex[h(X))] = h(x).
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A g-excessive function is called g-invariant if for any x € E and ¢ > 0 we have

e MEL[h(X)] =h(x).

A function h is g-excessive (resp., g-invariant) if and only if the process
e 9"h(X,) is a positive supermartingale (resp., martingale). For every y € (I, r)
the functions x — u?(x, y), x — h;(x) and x — h;(x) are g-excessive. These
functions are minimal in the sense that any other arbitrary nontrivial g-excessive
function & can be expressed as a linear combination of them.

DEFINITION 3.7. Let g > 0 and & be a g-excessive function. For any x € E
such that 0 < h(x) < 400, and ¢ > 0, we define the new probability measure Pﬁ as
—qt M(Xy)

dP! = 71" 2 gP on F;.

x—¢€ h(x) x t
The process X under the probability measure IP’Q is called the Doob’s A-transform
(or g-excessive transform) of X. It is also a regular diffusion process and thus a

Feller process.

Next, we use an idea of Williams [35] and Pitman and Yor [28] for constructing
conditioned diffusions by the method of A-transform by means of the Laplace
transform of first passage times. In fact, we slightly generalize their methodology
by considering as g-excessive function the Laplace transform of the first exit time
of an open set by X. To this end, let B € O and we recall that we denote by Tp the
first exit time from B by X, that is,

Tp =inf{t > 0; X; ¢ B}.
For any x € E, we write the Laplace transform of the stopping time 75 as
¢7 (x) = Ex[e™"5].

Thus, without loss of generality, the continuity of X allows us to restrict O to open
intervals (a, b) for some [ < a < b < r. It is well known that the function ¢ is
solution to the following Sturm—Liouville boundary value problem

Lu(x) =qu(x), x € (a,b),
{ u(a)=u)=1.

In other words, ¢? can be written as a linear combination of the fundamental
solutions h, and A} . Setting

#B(y)
#B(x)’

hB(y) =
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it is plain that the mapping h? is a g-excessive function for X. Thus, as in the
Definition 3.7, we define the probability measure PﬁB as

(15) dP"’ = e~1TspB (X1 )dP,  on Frs.

The diffusion X under the family of probability measures Ph’ = (IP’féB) reE 1S tran-
sient with

(16) P¥ (X, €dB) =1,

except if ¢ = 0, where £ stands for the lifetime of X under phe Clearly, the prob-
ability }P’i‘B (€ < 00) is either 1 or O for all x. Moreover, since X is solution to the

SDE (4), then under the probability ]P’hB, the diffusion X can be characterized as
the solution of the SDE

dX, = (b(X,) +log (hB (X))o (X)) dt + o (X;) dW;,

< . . e B
where W is a standard Brownian motion under the new probability Pﬁ .

REMARK 3.8. Asexplained in [28], we take IP)};B to be defined by the require-
ment that for each x € B the process X runs up to the time 75 has the same law
under IP’)};B as it does under P, conditional on Ty < e;, where ¢, is an independent
exponentially distributed random variable with parameter g > 0.

We are now ready to state and prove the main theorem of this section.

THEOREM 3.9. [If § is finite then solving the problem (1) amounts to solving
the following optimal stopping problem:

EhB[g(XTB)‘f‘S(XTB)}

(17) sup 1B (X7.)

TpeXop

where the probability IP’?B is defined in (15). If there exists an open interval B* of
E such that

gu™*) +8u™) — s g(u) +d(u)
hB*(u*) BeO,uedB hB(M)

then, the value function of (17) is given by (18) with the optimal stopping time Tpx.

(18) where u* € 9B*, |[u*| < 00,

REMARK 3.10. (1) We mention that the optimization problem (18) has been
studied in detail by Beibel and Lerche [5]. We refer to their paper for more precise
information concerning its solution for all possible choices of the reward func-
tion g. We also point out that, in the specific case a = 0 and X is a standard
Brownian motion, a similar optimization problem was studied by Graversen and
Peskir [12].
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(2) If B* is a bounded interval, that is, B* = (u7}, u3), (18) reads

gup) +8@y)  gu3) +8u3) gu) +48(u)
sup sup —————

B ) hBTWh)  peoucsn  hB@)

PROOF OF THEOREM 3.9. First, we deal with the additive functional C. Since
§ is finite, we have, from Lemma 3.4, that solving the problem (1) is equivalent to
solving the following optimal stopping problem without cost of observations:

sup B [e™?T (¢(X7) +8(X1))].

TexsX

Then, from Lemma 3.5, we deduce that

sup Ei[e 4T (g(X7) +8(X7))]= sup Ei[e 4"5(g(Xr,) +8(X1))]-
TexX TpeXp

Next, we use the Doob’s h-transform device. Let ]P’ﬁB be the probability measure
defined in (15), then we have

g(XTB) + S(XTB)]

sup Ei[e 978 (g(X1,) +8(X14))] = sup EQB[ B (X1,)

TpeXp TpeXp

. . . . B .
which completes the proof of the first assertion. Finally, since X under ]P’ﬁ is
transient, it is stated above that Tp < co a.s., the value function of the last optimal
stopping problem is the solution to the following optimization problem:

sup sup 80 +3@) +8(M).
Beoucap  hBu) O
4. Extension to one-sided regular Feller processes. Let us now consider X
to be the cadlag modification of a one-sided regular Feller process defined on a
filtered probability space (€2, (F;);>0, [P) and taking values in an interval £ C R. It
means that X is a regular Feller process having jumps only in one direction which
we assume, without loss of generality, to be of the spectrally negative type. That is,
X does not have positive jumps; Py (sup,.o(X; — X;—) > 0) =0, Vx € E. For sake
of simplicity, we also assume that the process X has infinite lifetime. We wish to
extend the results of the previous section to this class of stochastic processes. In
comparison to the diffusion case, the difficulty is that we do not have, in general,
any information on the excessive functions for this class of Markov processes.
Indeed, the infinitesimal generator associated to X is an integro-differential linear
operator for which there does not exist general results regarding the solutions to
the boundary value problem (6). Nevertheless, as explained in the following, the
one-sided feature of X allows us to identify increasing excessive functions.
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PROPOSITION 4.1. For any q > 0, there exists a unique increasing left-
continuous function h;’ : E — [0, 0o], such that, for any x,y € E with x <y,

ooy = )
hg )

In the case X is recurrent, the function x — h;r(x) is continuous.

PROOF. As a consequence of the regularity assumption, it is well known (see,
e.g., [7]) that for each singleton {y} € E, X admits a local time at y, which we
denote by L” = (L) );>0. The continuous additive functional L” is determined by
its g-potential, uz which is finite for any ¢ > 0 and given by

w i)
uz(x)zEx[/ e_q’dL,}]
0

From the definition of LY and the strong Markov property, we obtain the identity
(see [7], Chapter V.3)

uy (x)

Ex _qu = )
=00

x,yekE.

Next, following Itd and McKean [15] or Pitman and Yor [28], for instance, we
write ¢4 (x, y) = Ey [e~47y] and for a fixed zg € E, we define

¢q (¥, 20), y <20,
o ={ 1"

1/¢4(z0, ), y > 20.
Next, using the fact that X has no positive jumps, we get for any x < z <y, and
by means of the strong Markov property,

bq(x,y) = dg(x,2)pg (2, ¥).

Thus, from the identity
bq(x,2) =hS(x)/h(2)

we deduce that the choice of the reference point zg affects h; only by a constant
factor. The monotonicity of the mapping h;‘ follows readily from its definition
and the absence of positive jumps for X. We recall that x — E,[e"97] is a ¢-
excessive function (see, e.g., [7], page 74). By linearity, the mapping x +— hq+(x)
is also g-excessive and thus finely continuous. So, the Feller property of X implies
that the increasing excessive function h; is lower semi-continuous (see [13]) and
hence, left-continuous. Then, the claim of the last assertion is a straightforward
consequence of the fact that if X is also recurrent then the fine topology coincides
with the initial topology of E (see, e.g., [2], page 243). U
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We point out that, in Patie and Vigon [26], Proposition 4.1 is extended to a larger
class of homogenous Markov processes with only negative jumps. Following the
proof of Theorem 3.9, and observing that /1~ (1) = hf @)/ hf (x), the proof
of the theorem below goes through verbatim.

THEOREM 4.2. With the notation used in Theorem 3.9 we assume that
. g(u) +6(u) g(u) +6(u)
uet  hg (u) u=xuck  hg (u)

Then, for any x € E
sup E.[e9"g(X7) — Crl=D*h (x) — 8(x).

TexX

gw*)+é(u

If there exists a point u™ > x such that D* = ) *), then the optimal stopping
q

time of the problem (1) is given by
T, =inf{t > 0; X, > u™}.

REMARK 4.3. Since Lemma 3.1 applies also in this more general framework,
one could have also considered a random discounting factor in the previous result.

5. Examples. We now illustrate our methodology by presenting the solutions
to some new optimal stopping problems. We consider both the diffusion case and
also the case when the processes are of the spectrally negative type.

5.1. An optimal stopping problem with cost of observations for one-sided Lévy
processes. Let Z = (Z;);>0 be a spectrally negative Lévy process starting from
x € R, that is, a process with stationary and independent increments having only
negative jumps. Plainly, the law of Z is characterized by y, the Laplace exponent
of Z1, which admits the following Lévy—Khintchine representation, for any u > 0,

1 0
(19) ¥ (u) = Eazuz + bu +f (" — 1 — uxT{—j<y<o})v(dx),
—00

where b € R and o > 0 and the measure v is such that f?oo(l A yz)v(dy) < 00.
Next, recalling that ¥ is a convex function on [0, co) with lim,,_, o ¥ (1) = 00,
we denote by 6 the nonnegative largest root of the equation ¥ (u) = 0. We also
mention that being continuous and increasing on [0, 00), ¥ has a well-defined in-
verse function ¢ : [0, c0) — [#, 0o) which is also continuous and increasing. We
refer to the excellent monographs of Bertoin [6] and Kyprianou [18] for back-
ground on Lévy processes. We now consider a perpetual American option in a
market driven by Z where the agent takes into account some costs from hedg-
ing, which might come from some transaction costs or liquidity issues. We assume
that the agent hedges continuously and that he chooses the cost of observations
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c(x) = exp(yx) to be of exponential form. The payoff at time ¢ > 0 of such a
product can be written as

t
(20) e_qtg(eZ’)—/ eV %se™9 ds,
0

where g > 0 is the risk-free rate, ¥ > —1 and g is a smooth function. Next, assum-
ing that ¢ = (1) it is easy to check that one may choose the probability P, as
the risk neutral probability measure. Therefore, in the sequel, we suppose that the
characteristics b, o and v are chosen such that

2n q=1v).

5.1.1. The Brownian motion with drift case. 'We start with the case where Z; =

W,(b) = bt + W, is a Brownian motion with drift b starting from O and the reward
function g is defined, for any 0 < L < K, by

L—x, ifx <L,
(22) g(x):[O, if L<x <K,

x—K, ifx>K.
This function corresponds to the payoff function of a strangle option which is a
combination of a put with exercise price L and a call with exercise price K. In this
case, the condition (21) is fulfilled if ¢ = % + b. We want to compute the constant

—4T o (, W Toow® g
Viw= sup Egle ™ g(e"T )— | €' e ?ds|.
TeXwo 0

The case without cost of observations, that is, ¢ = 0, has already been studied by
Beibel and Lerche [4]. Next, it is well known that the functions h;r and h; defined
in (5) are given by

hf(x)=D1e**,  h.(x) = Dye,

where a1 = —b +,/2g + b? and ap = —b — /2q + b2, and Dy, D, are positive

real numbers. The function 8, defined in (11), is finite if ¢ > by + V; and is given
by
e’
S(x) = ————, x eR.
q—yb—y?/2
Next, we introduce the function
g(x) +8(x)
pe®i® + (1 — p)e®2*’
which, according to Theorem 3.9, gives the solution to our problem. Then, if

G,(x) =

qg>yb+ VTZ and b > —1 then o) > 1 and ap < —1. Thus, we verify easily the
following inequalities:
(23) sup(e ™1 (8(x) + g(x))) > sup(e " (8(x) + g(x))) > 0

x<0 x>0
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and
(24) sup(e 2" (8(x) 4+ g(x))) > sup(e”***(8(x) + g(x))) > 0.
x>0 x<0

Note that

o X 1— arx \ —1
supG,(x) = sup Gyx)= ( in pe +( p)e )
x>0 x>0:8(x)+g(x)>0 x>0:8(x)+g(x)>0 g(x) +48(x)
and

arx 1— apx\ —1
supGp(x) = sup Gy :( inf pe’ +U = pe )
x<0 x<0;8(x)+g(x)>0 x=0;8(x)+g(x)>0 g(x) +4d(x)

Then forall p € (0, 1)

1 —o X
0< sup Gp(x) < —sup(e ¥ (g(x) 4+ 8(x))) < 400
x>0;8(x)+g(x)>0 P x>0

and

1
0< sup Gp(x) <
x<0:5(x)+g(x)>0 1 -
We assume that log(L) <0 = Wé’ <log(K),q > 1/2+ b and b > —1. Then (23)
and (24) hold and, as in Beibel and Lerche [4], Lemma 1, page 98, there exists a
number p* € (0, 1) such that

sup(e ™" (g(x) + 8(x))) < +oo.

x<0

sup G p+ (x) = sup G p=(x).

x>0 x<0
Let x1, x2 and p* be solutions with x; > log K, xy <logL and p* € (0, 1) of the
following system:

(g —yb—y*/(" —K)+e™ _(q—yb—y*/D(L —e?) e
p*ealxl + (1 _ p*)eale - p*ealxz + (1 _ p*)eazxz ’
25) exz(yb + )/2/2 _ q) —e X2 B p*alealxz +(1— p*)azeazxz
(@ —yb—y?/2)(L —e%2) + e pre®®2 4 (1 — p*)ex2
el g—yb—y* /D —e™  prage 4 (1 — pHage®™
(e —K)(q—yb—y?/2)+e™™ — pren¥i4 (1 — p*)en
Let
e @b =y —K) o™ (@ —yb—y?/2)(L—e?) +e
- p*eoqxl + (1 _ p*)eale - p*eoqxz + (1 _ p*)eazxz :
Then,
sup Eo [e_ng(W;b)) — /T c(WP)emes ds:| =M"— ;2
TexX, 0 q—yb—y?/2

and the optimal stopping time is

. b
T(x.xy) = inf{t > 0; Wt( ) ¢ (x1,x2)}.
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5.1.2. The spectrally negative Lévy case. In the second example, we consider
as the reward function
gx)=@x—-K)"*.
We write, for any x € E,

T
(26) Vz(x) = sup E, [e_qT(eZT —-Kt - a/ eV%se™4s ds],
TeXo 0

where o > 0 and we recall that we choose ¢ = ¢ (1).

PROPOSITION 5.1.  We assume that p, =¥ (1) — ¥ (y) > 0 and
1 K
27 x<x*=-— log(py—)
Y (I =y
Then

; . yx* yXx
Vz(x)=e"* ((ex —K)++oze )—ae—
Py Py

and the optimal stopping time is Ty+ = inf{t > 0; Z; > x™*}.

PROOF. First, by means of Fubini’s theorem and using the fact that p,, > 0,
we easily get that, for any x € E,

o0 o er
S(x) =alE, / e eV % dt = ae”x/ e VW g — -
0 0 Py
Then, from Lemma 3.4, we deduce that

Vz(x) = sup E.[e™97 (e’ — K)T +8(Z7))] — 8(x).

TeX

Next, we recall from Bertoin [6], pages 189 and 190, that, for any x <y,
E, [e_rTy] — e-d’(r)(y—x)’ r>0.
Then, writing

(" — K)T +56u)

eM*X

Gu) =

we have that
a(y —1
G (u)=e"" (Kjl{uzlog K} + Md’”).
Py
Since G’ (1) > 0 on (—o0, x*] and G’ (1) < 0 otherwise, we deduce from (27) that

sup G (u) = sup G(u) < o0.

uekE u=x

The proof of the claim follows then by applying Theorem 4.2. [
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5.2. Optimal stopping problems associated to self-similar positive Markov pro-
cesses of the spectrally negative type. Let Z = (Z;);>¢ again be a spectrally neg-
ative Lévy process. We introduce, for any « > 0, the process X = (X;);>¢ defined
by

(28) log(X;) = Za,, t>0,

where
S
A; =inf{s > 0; X 2/ % dr > t}.
0

We denote its law by QQ when it starts from x > 0. Lamperti [21] showed that X
is an a-self-similar positive Markov process on (0, 00), that is, a Feller process
which enjoys the following «-self-similarity property, for any ¢ > 0,

(29) (Xerr)r=0. Q) L ((€X)r=0. Qy).

It is plain that X is also of the spectrally negative type, in the sense that it has no
positive jumps. Next, we recall that the law of Z is characterized by its Laplace
exponent, ¥, which is of the form (19). In the sequel, writing 6 for the largest root
in [0, 0o) of the equation ¥ (#) = 0, we assume that the following conditions

(30) 0<a and 1im Y% _ o

u—00 y

hold. The first condition secures that the lifetime of X is infinite since in the case
0 <6 < «, we consider X to be the unique recurrent extension which hits and
leaves O continuously (see Rivero [30] for more details). Under the second con-
dition, the paths of the process X are of unbounded variation on any compact
interval and the process X is regular. Next, we introduce more notation taken from
Patie [25]. Define for any integers n

an () =[] v@k),  aW.e)=1,

k=1

and we introduce the entire function Z which admits the series representation

o.¢]
Tya(2) = Z an (Y, a)z", zeC.
n=0

It is important to note that whenever 6, the largest root of the equation ¥ (1) = 0,
satisfies 6 < «, it follows that all of the coefficients in the definition of Z, , are
strictly positive. Then, Patie [25], Theorem 2.1, characterized the Laplace trans-
form of

T, =inf{t > 0; X; > a}
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as follows. Suppose that 0 < x < a. Then, for any g > 0, we have

I o
(31) Ex[equ“] — M
Iwﬂ(qa“)
Next, we introduce the Ornstein—Uhlenbeck process associated to X which is de-
fined, for any ¢ > 0, by

(32) U =é,(-DXe 0y, 120,

At . . .
where e (1) = ¢ A_l , X = ai and we write v (1) = the continuous in-

creasing inverse function of e, . These processes were introduced and studied by
Carmona, Petit and Yor [9]. In particular, they proved that U is a Feller process
and under the conditions (30), U has also infinite lifetime and is regular. In [23],
the author computed the Laplace transform of the first passage times above of U
as follows. With the obvious notation, for any r > 0 and 0 < x <a,

log(14+At)
A

—r7Y _Il//,a(r;xa)
(33) Erle = T ey
where
L X T@+n o
(34) Iw,a(q,m—’g—w) an(¥; o)x

and ' stands for the gamma function. By means of classical criteria on power
series, it is easily seen that, under the second condition in (30), that Zy, 4 (g; x) is
an entire function in x and is analytic on the domain {g € C; f(g) > —1}. We shall
also need the following representation of the function Zy 4(g; x)

o0
(35) Tya(q;x) = f Tyarx)e " ri"tar,
0

1
N0
which is readily obtained by using the integral representation of the gamma func-
tion I'(g) = [y e™" r4=1dr, M(g) > 0. We postpone to the end of this section the
description of some specific examples of these power series. Let us assume that
g is a continuous function and g, 8 > 0. We are ready to introduce the following
optimal stopping problems:

V¥ 2 sup Eele ™ g(X7)].

TexX

VW) 2 sup Exle 7 g(Un)].
TeXo

t
VWA sup Eile i gl b= [ UTvds,
TeX o 0

s A T et /T
V>4(x)= sup E [e_q g( )]
& TeXoo y 1+ﬂf0T e*Zs ds
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We note that in the case Z is a Brownian motion with drift, the last optimal stop-
ping problem is intimately connected to the so-called integral option problem stud-
ied by Kramkov and Mordetski [17].

PROPOSITION 5.2.  Let us write for some function h

g(u)
ax(h() =arg max oo

() If ay = a+(Ly o(q-)) exists and x < ay then
Il//,a(qxa)

Zw,a (qai{)

2) Ifa, = a*(Il/,’o,(%; X-)) exists and x < ay then

Vi) = 8(ax).

Zy.a(q/a; xx%)

pyu _ = -
s W=7 e a)®

g(ax).
3) Ifa, = a*(Iw’o,(%; X-)) exists and x < ay then

UA L/, a(V/O‘ xx%)

@) Ifa, = a*(Iw’o,(%; X-)) exists and x < ay then
V3 =wg (1)

_ Ty.alq/x: xx%)
Ty.alq/x; xa$)

g(as).
In all the above cases the optimal stopping time is given by T, .

PROOF. The first item follows readily from the identity (33) and Theorem 4.2.
Next, let

T}, =inf{t > 0; X; = y(1 + arn)'/*}.

The Mellin transform of the positive random variable TX has been computed by
Patie (see [23], Theorem 2). However, for sake of completeness we provide a
slightly different proof here which relies on a device introduced by Shepp [33]. In
the proof of [25], Theorem 1, it is shown that the mapping x > Zy o (rx%) is an
r-eigenfunction for the infinitesimal generator of X. Thus, by the Dynkin formula,
using the fact that the function Zy  is increasing and applying the dominated
convergence theorem, we deduce that

X
Exle ™ Ty o (ry® (1 + aAT X)) = Ty o (rx®).
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Integrating both sides of the previous identity by the measure e X" r4/X~1 dr using
Fubini’s theorem and the change of variable u = r(Ty)fa + x), we get

I ; )Ca
E[(1+ xTX)™1/%] = v @/ X5 X a) |
’ Tyalq/x; xa®)
where we have used (35). Moreover, from the definition of U (32), we observe the

identity

(36) TV =v,(T}),)  as

Hence, we obtain that

E [T = Ly.a(q/x: xx")
Zy.a(q/x; xa%)

We deduce the item (2) by an application of Theorem 4.2. We complete the proof
of the proposition from [23], Corollary 3.2. [

REMARK 5.3. We note that the identity (36) combined with the item (2) of
the previous proposition allows us to solve the following nonhomogeneous optimal
stopping time problem

VX (x)= sup E [(1+2AT)_4 <L>]
R Navane)]

Indeed, we easily deduce that

Tyalq/x; xx"‘)g
Ty.alq/x; xa$)

Via®) = (ax),

where a, is characterized by

g(u)
a, =arg max -
u>x,uck Iw,a(Q/XQ xu®)

In what follows, we provide some examples of the power series and we refer to
[25] for the description of additional examples.

The modified Bessel functions. We consider Z to be a Brownian motion with
drift v > 0, that is, ¢ (u) = %uz + vu and we set o = 2. Its associated self-similar
process is well known to be a Bessel process of index v. We have
Frn—v+1)

. —1 _ An
an (3 27 =2l

ap=1.

Thus, we get

Ty (x) = (x/2)"*T'(—v + DI, (v2x),
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2)yv+2n
where I, (x) =02 %

(see, e.g., [22], Chapter 5) and

stands for the modified Bessel function of index v

2
Toy(q;xH) = d)(q, 1—v, 7)

&8 (@n
n=0 (v),n!

tion of the first kind (see, e.g., [22], Section 9.9, page 260) and (gq), =
stands for the Pochhammer symbol.

where ® (g, v, x) = x" stands for the confluent hypergeometric func-

I'(g+n)
T ()

Some generalized Mittag—Leffler functions. In [24], the author introduced a
parametric family of one-sided Lévy processes which are characterized by the fol-
lowing Laplace exponent, forany 1 <a <2,and y > 1 — «,

(37 Uy) = (U+y — Do — (¥ — Da).
Its Lévy measure is absolutely continuous with a density f given by
elaty—Dy

(1— ey)oz+1 ’

fy=C y <0,

where C is a positive constant. We focus on the case y = 1 in (37). We have

Yr1(u) =y (u) = (u)y and

[(a(n+ 1))

o)l —
ap(Yia) " = @)

, ap=1.

Thus, the power series can be written as

I!l’ya(x) = F(a)Ma,a(ax),
Zya(q; x) =T ()M{ , (ax),

where M, g(x) =Y 02, W’;ﬁ) [resp., /\/lfi p(X) = >0 r((?r’zﬁ;)] stands for the
Mittag—Leffler function of parameters «, § > 0 (resp., of parameters «, 8, g > 0)
introduced by Prabhakar [29].
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