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In this paper, we study the discrete-time approximation of multidimen-
sional reflected BSDEs of the type of those presented by Hu and Tang
[Probab. Theory Related Fields 147 (2010) 89–121] and generalized by
Hamadène and Zhang [Stochastic Process. Appl. 120 (2010) 403–426]. In
comparison to the penalizing approach followed by Hamadène and Jean-
blanc [Math. Oper. Res. 32 (2007) 182–192] or Elie and Kharroubi [Statist.
Probab. Lett. 80 (2010) 1388–1396], we study a more natural scheme based
on oblique projections. We provide a control on the error of the algorithm by
introducing and studying the notion of multidimensional discretely reflected
BSDE. In the particular case where the driver does not depend on the vari-
able Z, the error on the grid points is of order 1

2 − ε, ε > 0.

1. Introduction. The main motivation of this paper is the discrete-time ap-
proximation of the following system of reflected backward stochastic differential
equations (BSDEs)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y i
t = gi(XT ) +

∫ T

t
f i(Xs, Y

i
s ,Z

i
s)ds −

∫ T

t
Zi

s dWs

+ Ki
T − Ki

t , 0 ≤ t ≤ T ,

Y i
t ≥ max

j∈I
{Y j

t − cij (Xt )}, 0 ≤ t ≤ T ,∫ T

0

[
Y i

t − max
j∈I

{Y j
t − cij (Xt)}

]
dKi

t = 0, i ∈ I ,

(1.1)

where I := {1, . . . , d}, f , g and (cij )i,j∈I are Lipschitz functions and X is the
solution of a forward stochastic differential equation (SDE).

These equations are linked to the solutions of optimal switching problems, aris-
ing, for example, in real option pricing. In the particular case where f does not
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depend on (Y,Z), a first study of these equations was made by Hamadène and
Jeanblanc [13]. They derive existence and uniqueness of solution to this prob-
lem in dimension 2. The extension of this result to optimal switching problems
in higher dimension is studied by Djehiche, Hamadène and Popier [9], Carmona
and Ludkovski [5], Porchet, Touzi and Warin [23] or Pham, Ly Vath and Zhou
[22] for an infinite time horizon consideration. In this last paper, the resolution of
optimal switching problems relies mostly on their link with systems of variational
inequalities.

Considering deterministic costs, Hu and Tang [15] derive existence and unique-
ness of solution to this type of BSDE and relate it to optimal switching problems
between one-dimensional BSDEs. Extensions developed in [14] and [8] cover, in
particular, the existence of a unique solution to the BSDE (1.1). Recently two of the
authors related in [11] the solution of (1.1) to corresponding constrained BSDEs
with jumps. As presented in [12], this type of BSDE can be numerically approx-
imated combining a penalization procedure with the use of the backward scheme
for BSDEs with jumps; see [2]. Unfortunately, no convergence rate is available
for this algorithm. We present here a more natural discretization scheme based
on a geometric approach. For any t ≤ T , all the components of the Yt process are
interconnected, so that the vector Yt lies in a random closed convex set Q(Xt) char-
acterized by the cost functions (cij )i,j∈I . The vector process Y is thus obliquely
reflected on the boundaries of the domain Q(X) and we approximate these contin-
uous reflections numerically.

As in [1, 6, 18], we first introduce a discretely reflected version of (1.1),
where the reflection occurs only on a deterministic grid � = {r0 := 0, . . . , rκ :=
T } :Y�

T = Ỹ�
T := g(XT ) ∈ Q(XT ), and, for j ≤ κ − 1 and t ∈ [rj , rj+1),⎧⎨⎩ Ỹ�

t = Y�
rj+1

+
∫ rj+1

t
f (Xu, Ỹ

�
u ,Z�

u )du −
∫ rj+1

t
Z�

u dWu,

Y�
t = Ỹ�

t 1{t /∈�} + P(Xt , Ỹ
�
t )1{t∈�},

(1.2)

where P(Xt , ·) is the oblique projection operator on Q(Xt), for t ≤ T . Extending
the approach of Hu and Tang [15], we observe that the solution to (1.2) interprets
as the value process of a one-dimensional optimal BSDE switching problem with
switching times belonging to �. This allows us to prove a key stability result for
this equation. We control the distance between (Y�,Z�) and (Y,Z) in terms of
the mesh of the reflection grid. Due to the obliqueness of the reflections, the di-
rect argumentation of [1, 6] does not apply. Using the reinterpretation in terms of
switching BSDEs, we first prove that Y� approaches Y on the grid points with a
convergence rate of order 1

2 − ε, ε > 0 uniformly in �, whenever the cost function
is Lipschitz and f is bounded in z (see Theorem 5.2). Imposing more regular-
ity on the cost functions, we control the convergence rate of (Y�

t ,Z�
t )0≤t≤T to

(Yt ,Zt )0≤t≤T (see Theorem 5.3).
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We then consider a Euler type approximation scheme associated to the BSDE
(1.2) defined on π = {t0, . . . , tn} by Y

�,π
T := g(Xπ

T ) and, for i ∈ {n − 1, . . . ,0},⎧⎪⎪⎨⎪⎪⎩
Z̄

�,π
ti

:= (ti+1 − ti)
−1

E[Y�,π
ti+1

(Wti+1 − Wti )
′ | Fti ],

Ỹ
�,π
ti

:= E[Y�,π
ti+1

| Fti ] + (ti+1 − ti)f (Xπ
ti
, Ỹ

�,π
ti

, Z̄
�,π
ti

),

Y
�,π
ti

:= Ỹ
�,π
ti

1{ti /∈�} + P(Xπ
ti
, Ỹ

�,π
ti

)1{ti∈�},
(1.3)

where Xπ is the Euler scheme associated to X. It is now well known (see, e.g.,
[4, 24]), that the convergence rate of the scheme (1.3) to the solution of (1.2) is
controlled by the regularity of (Y,Z) through the quantities

E

[∑
i<n

∫ ti+1

ti

|Y�
t − Y�

ti
|2 dt

]
and E

[∑
i<n

∫ ti+1

ti

|Z�
t − Z̄�

ti
|2 dt

]

with Z̄�
ti

= 1
ti+1−ti

E[∫ ti+1
ti

Z�
t dt | Fti ], for i ≤ n.

Using classical Malliavin differentiation tools, we prove a representation
for Z�, extending the results of [1, 6] to the system of discretely reflected BS-
DEs (1.2). We deduce the expected regularity results on (Y�,Z�) and, using the
techniques of [7], Chapter 3, we obtain in a very general setting the convergence
of (1.3) to (1.2). However, due to the obliqueness of the reflections, the projection
operator P(X, ·) is only LP -Lipschitz with LP := √

d > 1, leading to a conver-
gence rate controlled by |LP |κ(|π |1/4 + κ1/2|π |1/2), where we recall that κ is the
number of points in the reflection grid �. The term |LP |κ can be very large even
for small κ and leads to a poor logarithmic convergence rate when passing to the
limit κ → ∞ for the approximation of (1.1). In the particular case where f does
not depend on z, we are able to get rid of the |LP |κ term.

Our innovative approach relies on the use of comparison results to get a control
of the involved quantities:

• we interpret the solution of (1.2) as a value process of an optimization problem,
which allows us to get a control of the distance between the continuously and
discretely reflected BSDEs;

• we introduce a convenient auxiliary process dominating both solutions (1.2) and
(1.3) to get a control of the distance between these quantities.

Combining the previous estimates, we deduce the convergence of the discrete time
scheme (1.3) to the solution of (1.1) with a convergence rate of order 1

2 − ε, ε > 0,
on the grid points, whenever � = π and f is independent of Z. Whenever the
cost functions are constant, all the previous estimates hold true with ε = 0. We
want to emphasize that all these results are obtained without any assumption on
the nondegeneracy of the volatility matrix σ .

The rest of the paper is organized as follows. In Section 2, we introduce the
notion of discretely obliquely reflected BSDEs, connect it with optimal switching
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problems and give the fundamental stability result. Section 3 focuses on the reg-
ularity of the solution to this new type of BSDE. This analysis leads to precious
estimates allowing us to deduce the convergence of the associated discrete time
scheme (see Section 4). Afterward, Section 5 focuses on the extension to the con-
tinuously reflected case and provides a convergence rate of the discretely reflected
BSDE to the continuously one, whenever the driver f is bounded in the variable Z.
The global error of the scheme is provided at the end of this section. Some a priori
estimates are reported in the Appendix.

Notation. Throughout this paper we are given a finite time horizon T and a
probability space (�, F ,P) endowed with a d-dimensional standard Brownian
motion W = (Wt)t≥0. The filtration F = (Ft )t≤T generated by the Brownian mo-
tion is supposed to satisfy the usual conditions. Here, P denotes the σ -algebra
on [0, T ] × � generated by F-progressively measurable processes. Any element
x ∈ R

� with � ∈ N will be identified to a column vector with ith component xi and
Euclidean norm |x|. For x, y ∈ R

�, x · y denotes the scalar product of x and y,
and x′ denotes the transpose of x. We denote by 
 the component by component
partial ordering relation on vectors. Mm,d denotes the set of real matrices with m

lines and d columns. We denote by Ck
b the set of functions from R

d to R with con-
tinuous and bounded derivatives up to order k. For a function f ∈ C1, ∇xf denotes
the Jacobian matrix of f with respect to x. For ease of notation, we will sometimes
write Et [·] instead of E[·|Ft ], t ∈ [0, T ]. In the following, we shall use the notation
without specifying the dimension nor the dependence in ω ∈ � when it is clearly
given by the context. Finally, for any p ≥ 1, we introduce the following:

• the set S p of real-valued càdlàg2 P-measurable processes Y = (Yt )0≤t≤T satis-
fying ‖Y‖Sp := E[sup0≤t≤T |Yt |p]1/p < ∞.

• the set Hp of R
d -valued P-measurable processes Z = (Zt )0≤t≤T such that

‖Z‖Hp := E[(∫ T
0 |Zt |2 dt)p/2]1/p < ∞.

• the closed subset Ap of S p consisting of nondecreasing processes K satisfying
K0 = 0.

In the sequel we denote by CL a constant whose value may change from
line to line but which depends only on L. We use the notation C

p
L whenever it

depends on some other parameter p > 0.

2. Discretely obliquely reflected BSDE. In the beginning of this section we
define and study discretely obliquely reflected BSDEs in a general setting. In par-
ticular, we show how their solutions relate to the solutions of one-dimensional
optimal switching problems, where the switching times are restricted to lie in a
discrete time set. This allows us to prove a stability result for obliquely RBSDEs
which will be used several times in the paper.

2French acronym meaning right continuous with left limit.
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2.1. Definition. A discretely obliquely reflected BSDE is a reflected BSDE
where the reflection is only allowed on a discrete time set.

We thus consider a grid � := {r0 = 0, . . . , rκ = T } of the time interval [0, T ]
satisfying

|�| := max
1≤k≤κ

|rk − rk−1| ≤ L

κ
.(2.1)

We also consider a matrix valued process C = (Cij )1≤i,j≤m such that Cij be-
longs to S 2 for i, j ∈ {1, . . . , d} and satisfies the structure condition⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Cii
t = 0, for 1 ≤ i ≤ d and 0 ≤ t ≤ T ;

inf
0≤t≤T

C
ij
t >

1

L
, for 1 ≤ i, j ≤ d with i 
= j ;

inf
0≤t≤T

C
ij
t + C

jl
t − Cil

t > 0, for 1 ≤ i, j, l ≤ d with i 
= j, j 
= l.

(2.2)

We introduce a random closed convex set family associated to C:

Qt :=
{
y ∈ R

d | yi ≥ max
j

(yj − C
ij
t ),1 ≤ i ≤ d

}
, 0 ≤ t ≤ T ,

and the oblique projection operator onto Qt , denoted Pt and defined by

Pt :y ∈ R
d �→

(
max
j∈I

{yj − C
ij
t }
)

1≤i≤d
,

which is P ⊗ B(Rd)-measurable.

REMARK 2.1. (i) It follows from the structure condition (2.2) that P is in-
creasing with respect to the partial ordering relation 
, where y 
 y′ means
yi ≥ (y′)i for all i ∈ I .

(ii) An easy calculation leads to

|Pt (y1) − Pt (y2)| ≤
√

d|y1 − y2| for any y1, y2 ∈ R
d .

We observe that the constant
√

d is optimal in our setting taking, for example,
y1 := (maxi,j C

ij
t ,0, . . . ,0) and y2 := (maxi,j C

ij
t + 1,0, . . . ,0). Thus Pt is LP -

Lipschitz continuous with LP := √
d .

Finally, we are also given a random variable ξ ∈ [L2(FT )]d valued in QT , rep-
resenting the terminal value of the BSDE and a random function F :� × [0, T ] ×
R

d × Md,q → R
d which is P ⊗ B(Rd) ⊗ B(Md,q)-measurable and satisfies the

Lipschitz property

|F(t, y, z) − F(t, y′, z′)| ≤ L(|y − y′| + |z − z′|)
for all (t, y, y′, z, z′) ∈ [0, T ]× (Rd)2 × (Md,q)2, P-a.s. We shall also assume that
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(HF) The component i of F(t, y, z) depends only on the component i of the
vector y and on the row i of the matrix z, that is, F i(t, y, z) = F i(t, yi, zi).

Given this set of data (�,C,F, ξ), a discretely obliquely reflected BSDE, de-
noted D(�,C,F, ξ), is a triplet (Ỹ�, Y�,Z�) ∈ (S 2 × S 2 × H2)I satisfying
Y�

T = Ỹ�
T := ξ ∈ QT , and defined in a backward manner, for j ≤ κ − 1 and

t ∈ [rj , rj+1), by⎧⎨⎩ Ỹ�
t = Y�

rj+1
+
∫ rj+1

t
F (u, Ỹ�

u ,Z�
u )du −

∫ rj+1

t
Z�

u dWu,

Y�
t = Ỹ�

t 1{t /∈�} + Pt (Ỹ
�
t )1{t∈�}.

(2.3)

This rewrites equivalently for t ∈ [0, T ] as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Ỹ�

t = ξ +
∫ T

t
F (u, Ỹ�

u ,Z�
u )du −

∫ T

t
Z�

u dWu + (K�
T − K�

t ),

K�
t := ∑

r∈�\{0}

K�

r 1{r≤t},

with 
K�
t := Y�

t − Ỹ�
t = −(Ỹ�

t − Ỹ�
t−).

(2.4)

Observe that K� ∈ (A2)I , since Cij is nonnegative and valued in S 2, for any
i, j ∈ I .

We shall also use the following integrability condition for some p ≥ 2:

|ξ |p + sup
t∈[0,T ]

|Ct |p +
∫ T

0
|F(s,0,0)|p ds ≤ β,(Cp)

where β is a positive random variable satisfying E[β] ≤ CL. Importantly, β does
not depend on �.

The proof of the following a priori estimates is postponed until the Appendix.

PROPOSITION 2.1. Assume that (Cp) holds for some given p ≥ 2, there exists
a unique solution (Ỹ�, Y�,Z�) to (2.3) and it satisfies

‖Ỹ�‖Sp + ‖Z�‖Hp + ‖K�
T ‖Lp ≤ C

p
L.

2.2. Corresponding optimal switching problem. In this subsection, we inter-
pret the solution of the discretely obliquely RBSDE (2.4) as the value process of a
corresponding optimal switching problem, where the possible switching times are
restricted to belong to the grid �. Our approach relies on similar arguments as the
one followed by Hu and Tang [15] in a framework with continuous reflections.

A switching strategy a is a nondecreasing sequence of stopping times (θj )j∈N,
combined with a sequence of random variables (αj )j∈N valued in I , such that αj

is Fθj
-measurable, for any j ∈ N. We denote by A the set of such strategies. For

a = (θj , αj )j∈N ∈ A, we introduce Na the (random) number of switches before T

as

Na = #{k ∈ N
∗ : θk ≤ T }.(2.5)
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To any switching strategy a = (θj , αj )j∈N ∈ A, we associate the current state pro-
cess (at )t∈[0,T ] and the compound cost process (Aa

t )t∈[0,T ] defined, respectively,
by

at := α01{0≤t<θ0} +
Na∑
j=1

αj−11{θj−1≤t<θj } and Aa
t :=

Na∑
j=1

C
αj−1αj

θj
1{θj≤t≤T }

for 0 ≤ t ≤ T . For (t, i) ∈ [0, T ] × I , the set At,i of admissible strategies starting
from i at time t is defined by

At,i = {a = (θj , αj )j ∈ A | θ0 = t, α0 = i,E[|Aa
T |2] < ∞}.

Similarly, we introduce A�
t,i , the restriction to �-admissible strategies

A�
t,i := {a = (θj , αj )j∈N ∈ At,i | θj ∈ �,∀j ≤ Na}

and denote A� :=⋃
i≤d A�

0,i .

For (t, i) ∈ [0, T ] × I and a ∈ A�
t,i , we consider as in [15] the associated one-

dimensional switched BSDE defined by

Ua
u = ξaT +

∫ T

u
F as (s,Ua

s ,V a
s )ds −

∫ T

u
V a

s dWs

(2.6)
− Aa

T + Aa
u, t ≤ u ≤ T .

Theorem 3.1 in [15] interprets each component of the solution to the continu-
ously reflected BSDE (1.1) as the Snell envelope associated to switched processes
of the form (2.6), where the switching strategies a are not restricted to lie in the
reflection grid �. The next theorem is a new version of this Snell envelope repre-
sentation adapted to the context of discretely obliquely reflected BSDE (2.4).

THEOREM 2.1. Assume that (C2) is in force. For any i ∈ I and t ∈ [0, T ], the
following hold:

(i) The process Ỹ� dominates any �-switched BSDE, that is,

Ua
t ≤ (Ỹ�

t )i , P-a.s. for any a ∈ A�
i,t .(2.7)

(ii) Define the strategy a∗ = (θ∗
j , α∗

j )j≥0 recursively by (θ∗
0 , α∗

0) := (t, i) and,
for j ≥ 1,

θ∗
j := inf

{
s ∈ [θ∗

j−1, T ] ∩ � ∣∣ (Ỹ�
s )

α∗
j−1 ≤ max

k 
=α∗
j−1

{(Ỹ�
s )k − C

α∗
j−1k

s }
}
,

α∗
j := min

{
� 
= α∗

j−1
∣∣ (Ỹ�

θ∗
j
)� − C

α∗
j−1�

θ∗
j

= max
k 
=α∗

j−1

{(Ỹ�
s )k − C

α∗
j−1k

θ∗
j

}
}
.

Then, we have a∗ ∈ A�
t,i and

(Ỹ�)it = Ua∗
t , P-a.s.(2.8)
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(iii) The following “Snell envelope” representation holds:

(Ỹ�)it = ess sup
a∈A�

t,i

Ua
t , P-a.s.(2.9)

PROOF. Observe first that assertion (iii) is a direct consequence of (i) and (ii).
Let us fix t ∈ [0, T ] and i ∈ I .

Step 1. We first prove (i).
Set a = (θk, αk)k≥0 ∈ A�

t,i and the process (Ỹ a,Za) defined, for s ∈ [t, T ], by

Ỹ a
s := ∑

k≥0

(Ỹ�
s )αk 1{θk≤s<θk+1} + ξaT 1{s=T } and

(2.10)
Za

s := ∑
k≥0

(Z�
s )αk 1{θk≤s<θk+1}.

Observe that these processes jump between the components of the discretely re-
flected BSDE (3.5) according to the strategy a, and, between two jumps, we have

Ỹ a
θk

= (Y�
θk+1

)αk +
∫ θk+1

θk

F αk (s, (Ỹ�
s )αk , (Z�

s )αk )ds −
∫ θk+1

θk

(Z�
s )αk dWs

+ (K�
θk+1−)αk − (K�

θk
)αk

(2.11)

= Ỹ a
θk+1

+
∫ θk+1

θk

F as (s, Ỹ a
s ,Za

s )ds −
∫ θk+1

θk

Za
s dWs + (K�

θk+1−)αk

− (K�
θk

)αk + (
(Y�

θk+1
)αk − (Ỹ�

θk+1
)αk+1

)
, k ≥ 0.

Introducing

Ka
s :=

Na−1∑
k=0

[∫
(θk∧s,θk+1∧s)

d(K�
u )αk

+ 1{θk+1≤s}
(
(Y�

θk+1
)αk − (Ỹ�

θk+1
)αk+1 + C

αkαk+1
θk+1

)]
for s ∈ [t, T ], and summing up (2.11) over k, we get, for t ≤ u ≤ T ,

Ỹ a
u = ξaT +

∫ T

u
F as (s, Ỹ a

s ,Za
s )ds −

∫ T

u
Za

s dWs − Aa
T + Aa

u + Ka
T − Ka

u .

Using the relation Y�
θk

= Pθk
(Ỹ�

θk
) for all k ∈ {0, . . . ,Na}, we check that Ka is

increasing. Since Ua solves (2.6), we deduce by a comparison argument (see [21],
Theorem 1.3) that Ua

t ≤ Ỹ a
t . Since a is arbitrary in A�

t,i , we deduce (2.7).

Step 2. We now prove (ii).
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Consider the strategy a∗ given above as well as the associated process
(Ỹ a∗

,Za∗
) defined as in (2.10). By definition of a∗, we have

(Y�
θ∗
k+1

)α
∗
k = (Pθ∗

k+1
(Ỹ�

θ∗
k+1

))α
∗
k = (Ỹ�

θ∗
k+1

)α
∗
k+1 − C

α∗
k α∗

k+1
θ∗
k+1

, k ≥ 0,

which gives∫
(θ∗

k ,θ∗
k+1)

d(K�
s )α

∗
k = 0 and (Y�

θ∗
k+1

)α
∗
k − (Ỹ�

θ∗
k+1

)α
∗
k + C

α∗
k α∗

k+1
θ∗
k+1

= 0(2.12)

for all k ∈ {0, . . . ,Na∗ − 1}. We deduce from (2.2) that

Ỹ a∗
u = ξa∗

T +
∫ T

u
F a∗

s (s, Ỹ a∗
s ,Za∗

s )ds −
∫ T

u
Za∗

s dWs −Aa∗
T +Aa∗

u , t ≤ u ≤ T .

Hence, (Ỹ a∗
,Za∗

) and (Ua∗
,V a∗

) are solutions of the same BSDE and (Ỹ�
t )i =

Ua∗
t . To complete the proof, we only need to check that a∗ ∈ A�, that is, E|Aa∗

T |2 <

∞. By definition of a∗ on [t, T ] and the structure condition on the cost (2.2), we
have |Aa∗

t | ≤ maxk 
=i |Ci,k
t | which gives E[|Aa∗

t |2] ≤ CL. Combining

Aa∗
T = Ỹ a∗

T − Ỹ a∗
t +

∫ T

t
F a∗

s (s, Ỹ a∗
s ,Za∗

s )ds −
∫ T

t
Za∗

s dWs + Aa∗
t

with the Lipschitz property of F and the fact that (Ỹ�,Z�) ∈ (S 2 × H2)I (recall
Proposition 2.1), we get the square integrability of Aa∗

T and the proof is complete.
�

REMARK 2.2. Although the optimal strategy a∗ depends on the initial param-
eters t and i, we omit the script (t, i) for ease of notation.

Combining the previous representation with the a priori estimates of Propo-
sition 2.1 and the structure condition (2.2), we deduce the following estimates,
whose proof is postponed until the Appendix.

PROPOSITION 2.2. Assume that (Cp) holds for some given p ≥ 2, then

E

[
sup

s∈[t,T ]
|Ua∗

s |p +
(∫ T

t
|V a∗

u |2 du

)p/2

+ |Aa∗
T |p + |Na∗ |p

]
≤ C

p
L

for the optimal strategy a∗ ∈ A�
t,i , (t, i) ∈ [0, T ] × I .

2.3. Stability of obliquely reflected BSDEs. We now study the dependence on
the solution with respect to the parameters of the BSDE. In the “abstract” setting
considered, we obtain precious estimates for the analysis of the regularity of the
solution to the discretely obliquely reflected BSDE as well as the convergence of
the discrete-time scheme.
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We consider two discretely reflected BSDEs, with the same reflection grid �
but different parameters. For � ∈ {1,2}, we consider an FT -measurable random
terminal condition �ξ , a random L-Lipschitz continuous map (y, z) �→ �F (·, y, z),
satisfying (HF) and a matrix of continuous cost processes (�Cij )1≤i,j≤d satisfying
the structural condition (2.2).

We suppose that the coefficients satisfy the integrability condition (C4). For
� ∈ {1,2}, we denote by (�Y�, �Ỹ�, �Z�) ∈ (S 2 × S 2 × H2)I the solution of the
obliquely discretely reflected BSDE D(�, �C, �F, �ξ).

Defining δY� = 1Y� − 2Y�, δỸ� = 1Ỹ� − 2Ỹ�, δZ� = 1Z� − 2Z�, δξ :=
1ξ − 2ξ together with

|δCs |∞ := max
i,j∈I

|1Cij − 2Cij |(s),

|δF s |∞ := max
i∈I

sup
y,z∈Rd×Md,q

|1F i − 2F i |(s, y, z)

for s ∈ [0, T ], we prove the following stability result.

PROPOSITION 2.3. Assume that (C4) holds. Then we have, for any t ∈ [0, T ],
E[|δY�

t |2] + E[|δỸ�
t |2] + 1

κ
E

[∫ T

t
|δZ�

s |2 ds

]

≤ CL

(
E

[∫ T

t
|δF s |2∞ ds + |δξ |2

]
+ E

[
sup
r∈�

|δCr |4∞
]1/2

)
.

PROOF. The proof is divided into three steps and relies heavily on the rein-
terpretation in terms of switching problems. We first introduce a convenient dom-
inating process and then provide successively the controls on the δY� and δZ�
terms.

Step 1. Introduction of an auxiliary BSDE.
Let us define F := 1F ∨ 2F , ξ := 1ξ ∨ 2ξ and C by Cij := 1Cij ∧ 2Cij . Observe

that F satisfies (HF), C satisfies the structure condition (2.2) and that (C4) holds
for the data (C,F, ξ). We denote by (Y�, Ỹ�,Z�) the solution of the discretely
obliquely reflected BSDE D(�,C,F, ξ), recalling (2.3).

Using (HF), the definition of F and the monotonicity property of P [see
Remark 2.1(i)], we easily obtain by a comparison argument on each interval
[rk, rk+1), k ∈ {0, . . . , κ − 1}, that

Ỹ� 
 1Ỹ� ∨ 2Ỹ�.(2.13)

Recalling Theorem 2.1, we introduce the switched BSDEs associated to 1Y�,
2Y� and Y� and denote by ǎ = (θ̌j , ǎj )j≥0 the optimal strategy related to Y�
starting from a fixed (i, t) ∈ I × [0, T ]. Therefore, we have

(Ỹ�
t )i = Uǎ

t = ξ ǎT +
∫ T

t
F ǎs (s,U ǎ

s ,V ǎ
s )ds −

∫ T

t
V ǎ

s dWs − Aǎ
T + Aǎ

t .(2.14)
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Step 2. Stability of the Y component.
Since ǎ ∈ A�

t,i , we deduce from Theorem 2.1(iii) that

(�Ỹ�
t )i ≥ �U

ǎs
t = �ξ ǎT +

∫ T

t

�F ǎs (s, �U ǎ
s , �V ǎ

s )ds −
∫ T

t

�V ǎ
s dWs − �Aǎ

T + �Aǎ
t ,

� ∈ {1,2},
where �Aǎ is the process of cumulated costs (�Cij )i,j∈I associated to the strat-
egy ǎ. Combining this estimate with (2.13) and (2.14), we derive

|(1Ỹ�
t )i − (2Ỹ�

t )i | ≤ |Uǎ
t − 1Uǎ

t | + |Uǎ
t − 2Uǎ

t |.(2.15)

Since both terms on the right-hand side of (2.15) are treated similarly, we focus on
the first one and introduce the continuous processes �ǎ := Uǎ + Aǎ and 1�ǎ :=
1Uǎ + 1Aǎ . Applying Itô’s formula, we compute, for all t ≤ u ≤ T ,

Et

[
|�ǎ

u − 1�ǎ
u|2 +

∫ T

u
|V ǎ

s − 1V ǎ
s |2 ds

]
≤ Et

[
|�ǎ

T − 1�ǎ
T |2(2.16)

+ 2
∫ T

u
(�ǎ

s − 1�ǎ
s )[F ǎs (s,U ǎ

s , 1V ǎ
s ) − 1F ǎs (s, 1Uǎ

s , 1V ǎ
s )]ds

]
.

Since F = 1F ∨ 2F and 1F is Lipschitz continuous, we also get

|F ǎs (s,U ǎ
s , 1V ǎ

s ) − 1F ǎs (s, 1Uǎ
s , 1V ǎ

s )|
≤ |δF s |∞ + L(|�ǎ

s − 1�ǎ
s | + |Aǎ

s − 1Aǎ
s | + |V ǎ

s − 1V ǎ
s |),

0 ≤ s ≤ T .

Using classical arguments, we then deduce from the last inequality and (2.16) that

|�ǎ
t − 1�ǎ

t |2
(2.17)

≤ CL

(
Et

[
|δξ ǎT |2

∫ T

t
|δF s |2∞ ds

]
+ sup

t≤s≤T

Et [|Aǎ
s − 1Aǎ

s |2]
)
.

Moreover, using the inequality |x ∨y −y| ≤ |x −y| for x, y ∈ R and the convexity
of the function x �→ x2, we compute

Et [|Aǎ
s − 1Aǎ

s |2]

= Et

[∣∣∣∣∣
Nǎ∑
k=1

[2Cα̌k−1α̌k ∧1 Cα̌k−1α̌k −1 Cα̌k−1α̌k ](θ̌k)1{θ̌k≤s}

∣∣∣∣∣
2]

(2.18)

≤ Et

[
|Nǎ| sup

r∈�
|δCr |2∞

]
, t ≤ s ≤ T .
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Plugging in (2.17) and recalling the definition of �ǎ and 1�ǎ , we get

|Uǎ
t − 1Uǎ

t |2 ≤ CLEt

[
|Nǎ| sup

r∈�
|δCr |2∞ +

∫ T

t
|δF s |2∞ ds + |δξ |2

]
.

The exact same reasoning leads to the same estimate for |Uǎ
t − 2Uǎ

t |2. Therefore,
we deduce from (2.15) and the Cauchy–Schwarz inequality that

E[|(2Ỹ�
t )i − (1Ỹ�

t )i |2]
(2.19)

≤ CL

(
E[|Nǎ|2]1/2

E

[
sup
r∈�

|δCr |4∞
]1/2 + E

[∫ T

t
|δF s |2∞ ds + |δξ |2

])
.

Using Proposition 2.2, we compute, since i is arbitrary,

E[|2Ỹ�
t − 1Ỹ�

t |2]
(2.20)

≤ CL

(
E

[∫ T

t
|δF s |2∞ ds + |δξ |2

]
+ E

[
sup
r∈�

|δCr |4∞
]1/2

)
.

Step 3. Stability of the Z component.
Applying Itô’s formula to the càdlàg process |δỸ�|2 and noting δK̃ = 1K� −

2K�, we obtain

E

[
|δỸ�

t |2 +
∫ T

t
|δZ�

s |2 ds + ∑
t<r≤T

|
δK̃�
r |2

]

= E

[
|δỸ�

T |2 + 2
∫ T

t
δY�

s δF s ds + 2
∫ T

t
δY�

r dδK̃�
r

]
,

where we used the fact that |δỸ�|2 − |δY�|2 − 2δY�(δỸ� − δY�) = |
δK̃�|2.
Since δK is a pure jump process, we compute

E

[∫ T

t
δY�

r dδK̃�
r

]
≤ E

[
α

∑
t<r≤T ,r∈�

|δY�
r |2 + 1

α

∑
t<r≤T

|
δK̃�
r |2

]
, α > 0,

which, for α large enough and using standard arguments, leads to

E

[∫ T

t
|δZ�

s |2 ds + ∑
t<r≤T

|
δK̃�
r |2

]

≤ CL

(
E[|δξ |2] + E

[∫ T

t
|δF s |2∞ ds + ∑

t<r≤T ,r∈�
|δY�

r |2
])

.

Since (2.20) holds true for any t ∈ [0, T ], we deduce

E

[∫ T

t
|δZ�

s |2 ds + ∑
t<r≤T

|
δK̃�
r |2

]

≤ CLκ

(
E[|δξ |2] + E

[∫ T

t
|δF s |2∞ ds

]
+ E

[
sup
r∈�

|δCr |4∞
]1/2

)
,
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which concludes the proof of the proposition. �

3. Regularity of discretely obliquely reflected BSDEs. This section is ded-
icated to the derivation of regularity properties for the solution of discretely re-
flected BSDEs. These results are obtained in a Markovian diffusion setting. This
means that the randomness of the parameter (C,F, ξ) is due to a state process X,
which is the solution of a stochastic differential equation (SDE). In this framework,
we focus on the H2-regularity of the Z� component of the solution of the BSDEs.
The main results are retrieved by means of kernel regularization and Malliavin
differentiation arguments. Finally, we extend this result to the case where the dif-
fusion X is replaced by its Euler scheme.

3.1. A diffusion setting for discretely RBSDEs. Let X be the solution on [0, T ]
to the following SDE:

Xt = X0 +
∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dWs, 0 ≤ t ≤ T ,(3.1)

where X0 ∈ R
m and (b, σ ) : Rm → R

m × Mm,q(R) are L-Lipschitz functions.
Under the above assumption, the following estimates are well known (see, e.g.,

[17]):

E

[
sup

t∈[0,T ]
|Xt |p

]
≤ C

p
L and

(3.2)

sup
s∈[0,T ]

(
E

[
sup

u∈[0,T ],|u−s|≤h

|Xs − Xu|p
])1/p ≤ C

p
L

√
h

for any p > 0. In the sequel, we shall denote by βX a positive random variable,
which may change from line to line, but which depends only on supt∈[0,T ] |Xt |
and which satisfies E[|βX|p] ≤ C

p
L for all p > 0. Importantly, βX does not depend

on �.

REMARK 3.1. Observe that, as in [1, 7] and contrary to [18], we make no uni-
form ellipticity condition on σ . This allows us to treat the case of nonhomogenous
diffusion by setting, for example, X1

t = t , t ∈ [0, T ].

In this context, we are given a matrix valued maps c := (cij ) where cij : Rm →
R

+, are L-Lipschitz continuous and satisfy⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
cii(·) = 0, for 1 ≤ i ≤ d;
inf

x∈Rm
cij (x) > 0, for 1 ≤ i, j ≤ d with i 
= j ;

inf
x∈Rm

{cij (x) + cjl(x) − cil(x)} > 0, for 1 ≤ i, j, l ≤ d

with i 
= j, j 
= l.

(3.3)
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We then introduce a family (Q(x))x∈Rm of closed convex domains:

Q(x) :=
{
y ∈ R

d
∣∣ yi ≥ max

j∈I

(
yj − cij (x)

)
,∀i ∈ I

}
(3.4)

where I := {1, . . . , d}.
We introduce the oblique projection operator P(x, ·) onto Q(x) defined by

P : (x, y) ∈ R
m × R

d �→
(
max
j∈I

{yj − cij (x)}
)

1≤i≤d
.

Finally, we are given:

(i) an L-Lipschitz function g : Rm → R
d such that g(x) ∈ Q(x) for all x ∈

R
m,

(ii) a generator function, that is, an L-Lipschitz map f : Rm × R
d × Md,q →

R
d .

From now on, we shall appeal to the following assumption:

(Hf) the component i of f (·, y, z) depends only on the component i of the
vector y and on the column i of the matrix z, that is, f i(·, y, z) = f i(·, yi, zi).

We denote by (Y�, Ỹ�,Z�) the solution of the discretely reflected BSDE
D(�, c(X),f (X, ·, ·), g(X)) which reads on each interval [rj , rj+1), for j < κ⎧⎨⎩ Ỹ�

t = Y�
rj+1

+
∫ rj+1

t
f (Xu, Ỹ

�
u ,Z�

u )du −
∫ rj+1

t
Z�

u dWu,

Y�
t = Ỹ�

t 1{t /∈�} + P(Xt , Ỹ
�
t )1{t∈�},

(3.5)

or equivalently on [0, T ] as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ỹ�
t = g(XT ) +

∫ T

t
f (Xu, Ỹ

�
u ,Z�

u )du

−
∫ T

t
Z�

u dWu + (K�
T − K�

t ), 0 ≤ t ≤ T ,

K�
t := ∑

r∈�\{0}

K�

r 1{r≤t} and


K�
t = Y�

t − Ỹ�
t = −(Ỹ�

t − Ỹ�
t−), 0 ≤ t ≤ T .

(3.6)

From (3.2), it follows that the data (c(X),f (X, ·, ·), g(X)) satisfies the integra-
bility condition (Cp) for all p ≥ 2. We thus deduce from the proofs of Propositions
2.1 and 2.2, the following estimate on (Y�, Ỹ�,Z�) and their associated optimal
switched BSDEs, recalling Theorem 2.1.

PROPOSITION 3.1. There exists a unique solution (Ỹ�, Y�,Z�) to (3.5) and
it satisfies

Et

[
sup

s∈[t,T ]
|Ỹ�

s |p +
(∫ T

t
|Z�

s |2 ds

)p/2

+ |K�
T − K�

t |p
]

≤ βX ∀t ≤ T .(3.7)
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Moreover, for all (t, i) ∈ [0, T ] × I , the optimal strategy a∗ ∈ A�
t,i satisfies

Et

[
sup

s∈[t,T ]
|Ua∗

s |p +
(∫ T

t
|V a∗

s |2 ds

)p/2
+ |Aa∗

T |p + |Na∗ |p
]

≤ βX.(3.8)

3.2. Malliavin differentiability of (X,Y�, Ỹ�,Z�). We shall sometimes use
the following regularity assumption on the coefficients:

(Hr) The coefficients b, σ , g f and (cij )i,j are C1,b in all their variables, with
the Lipschitz constants dominated by L.

We denote by D
1,2 the set of random variables G which are differentiable in the

Malliavin sense and such that ‖G‖1,2
D

2 := ‖G‖2
L2 + ∫ T

0 ‖DtG‖2
L2 dt < ∞, where

DtG denotes the Malliavin derivative of G at time t ≤ T . After possibly passing to
a suitable version, an adapted process belongs to the subspace L1,2

a of H2 whenever
Vs ∈ D

1,2 for all s ≤ T and ‖V ‖2
L1,2

a

:= ‖V ‖2
H2 + ∫ T

0 ‖DtV ‖2
H2 dt < ∞. For a

general presentation on Malliavin calculus for stochastic differential equations,
the reader may refer to [19].

REMARK 3.2. Under (Hr), the solution of (3.1) is Malliavin differentiable and
its derivative satisfies ∥∥∥sup

s≤T

|DsX|
∥∥∥

Sp
< ∞,(3.9)

and we have

sup
s≤u

‖DsXt − DsXu‖Lp +
∥∥∥ sup
t≤s≤T

|DtXs − DuXs |
∥∥∥

Lp

(3.10)
≤ C

p
L|t − u|1/2

for any 0 ≤ u ≤ t ≤ T . Let G ∈ D
1,2(Rd). Since X belongs to L1,2

a under (Hr)
and P is LP -Lipschitz continuous, we deduce that P(Xt ,G) ∈ D

1,2(Rd). Using
Lemma 5.1 in [1], we compute

Ds(P(Xt ,G))i

=
d∑

j=1

(
DsG

j − Dscij (Xt )
)
1{Gj−cij (Xt )>max�<j (G�−ci�(Xt ))}(3.11)

× 1{Gj−cij (Xt )≥max�>j (G�−ci�(Xt ))}.

Combining (3.11), Proposition 5.3 in [10] and an induction argument, we obtain
that (Y�, Ỹ�,Z�) is Malliavin differentiable and that a version of (DuỸ

�,DuZ
�)
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is given by

Du(Ỹ
�
t )i = Du(Y

�
rj+1

)i −
d∑

k=1

∫ rj+1

t
Du(Z

�
s )ik dWk

s

+
∫ rj+1

t
∇xf

i(Xs, (Ỹ
�
s )i, (Z�

s )i·)DuXs ds

(3.12)
+
∫ rj+1

t
∇yi f

i(Xs, (Ỹ
�
s )i, (Z�

s )i·)Du(Ỹ
�
s )i ds

+
∫ rj+1

t
∇zf

i(Xs, (Ỹ
�
s )i, (Z�

s )i·)Du(Z
�
s )i· ds

for 0 ≤ u ≤ t ≤ rj+1 and j < κ . Here, ∇zf
i denotes

∑d
�=1 ∇z�.f i , recalling (Hf).

3.3. Representation of Z. For a ∈ A�, we introduce the process �a defined
by

�a
t,s := exp

{∫ s

t
∇zf

ar (Xr, Ỹ
�
r ,Z�

r )dWr

(3.13)

−
∫ s

t

(
1

2
|∇zf

ar (Xr, Ỹ
�
r ,Z�

r )|2 − ∇yf
ar (Xr, Ỹ

�
r ,Z�

r )

)
dr

}
for 0 ≤ t ≤ s ≤ T .

For later use, we remark

sup
a∈A�

∥∥∥ sup
t≤s≤T

�a
t,s

∥∥∥
Lp

≤ C
p
L, 0 ≤ t ≤ T ,p ≥ 2,(3.14)

and deduce from the dynamics of � that

sup
a∈A�

(
‖�a

t,t − �a
t,u‖Lp +

∥∥∥ sup
t≤s≤T

|�a
u,s − �a

t,s |
∥∥∥

Lp

)
(3.15)

≤ C
p
L

√
t − u, u ≤ t ≤ T ,p ≥ 2.

PROPOSITION 3.2. Under (Hr), there is a version of Z� such that

(Z�
t )i = Et

[
∇xg

a∗
T (XT )�a∗

t,T DtXT

+
∫ T

t
∇xf

a∗
s (Xs, Ỹ

�
s ,Z�

s )�a∗
t,sDtXs ds(3.16)

−
Na∗∑
j=1

∇xc
α∗

j−1α
∗
j (Xθ∗

j
)�a∗

t,θ∗
j
(DtX)θ∗

j

]

for (t, i) ∈ [0, T ], with a∗ = (θ∗
j , α∗

j )j≥0 ∈ A�
t,i the optimal strategy given in The-

orem 2.1 and recalling (2.5).
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PROOF. We fix j < κ and, observing that the process a∗ is constant on the
interval [θ∗

j , θ∗
j+1), we deduce from (3.12) and Itô’s formula that

�a∗
t,tDu(Ỹ

�
t )

α∗
j

= Et

[
�a∗

t,θ∗
j+1

(Du(Y
�)

α∗
j )θ∗

j+1
+
∫ θ∗

j+1

t
∇xf

α∗
j (Xs, Ỹ

�
s ,Z�

s )�a∗
t,sDuXs ds

]
for θ∗

j ≤ u ≤ t < θ∗
j+1. Combining (3.11) and the definition of a∗ given in Theo-

rem 2.1(ii), we compute

�a∗
t,θ∗

j+1
(Du(Y

�)
α∗

j )θ∗
j+1

= �a∗
t,θ∗

j+1
(Du(Ỹ

�)
α∗

j+1)θ∗
j+1

− ∇xc
α∗

j α∗
j+1(Xθ∗

j+1
)�a∗

t,θ∗
j+1

(DtX)θ∗
j+1

for j < κ . Plugging the second equality into the first one and summing up over j

concludes the proof. �

We conclude this section by providing a “weak” regularity property of Z� in the
general Lipschitz setting. In order to get rid of the previous assumption (Hr), we
make use of kernel regularization arguments. Since this procedure is very classical,
we do not detail it here precisely (see, e.g., the proofs of Proposition 4.2 in [7] or
Proposition 3.3 in [1]).

PROPOSITION 3.3. There is a version of Z� satisfying

E

[∫ t

s
|Z�

u |2 du

]
≤ CL|t − s|, s ≤ t ≤ T .(3.17)

PROOF. Combining (3.9), with (3.14), (3.16) and Doob’s inequality, we ob-
serve that

sup
t∈[0,T ]

‖Z�
t ‖Lp ≤ C

p
L, p ≥ 2,

holds under (Hr). Therefore (3.17) is satisfied under (Hr). As in the proof of Propo-
sition 4.2 in [7], the stability results of Proposition 2.3 allow us to use classical
Kernel regularization arguments. Since the previous estimate holds uniformly for
the sequence of approximating regularized BSDE, the proof is complete. �

3.4. Regularity results. We consider a grid π := {t0 = 0, . . . , tn = T } on the
time interval [0, T ], with modulus |π | := max0≤i≤n−1 |ti+1 − ti |, such that � ⊂ π .

We want to control the following quantities, representing the H2-regularity of
(Ỹ ,Z):

E

[∫ T

0

∣∣Ỹ�
t − Ỹ�

π(t)

∣∣2 dt

]
and E

[∫ T

0

∣∣Z�
t − Z̄�

π(t)

∣∣2 dt

]
,(3.18)



988 J.-F. CHASSAGNEUX, R. ELIE AND I. KHARROUBI

where π(t) := sup{ti ∈ π; ti ≤ t} is defined on [0, T ] as the projection to the clos-
est previous grid point of π and

Z̄�
ti

:= 1

ti+1 − ti
E

[∫ ti+1

ti

Z�
s ds

∣∣∣ Fti

]
, i ∈ {0, . . . , n − 1}.(3.19)

REMARK 3.3. Observe that (Z̄�
s )s≤T := (Z̄�

π(s))s≤T is interpreted as the best

H2-approximation of the process Z� by adapted processes which are constant on
each interval [ti , ti+1), for all i < n.

PROPOSITION 3.4. The following holds:

1

T
E

[∫ T

0

∣∣Ỹ�
t − Ỹ�

π(t)

∣∣2 dt

]
≤ sup

t∈[0,T ]
E
[∣∣Ỹ�

t − Ỹ�
π(t)

∣∣2]≤ CL|π |.

PROOF. Observe first that

E
[∣∣Ỹ�

t − Ỹ�
π(t)

∣∣2]≤ E

[∣∣∣∣∫ t

π(t)
f (Xs, Ỹ

�
s ,Z�

s )ds +
∫ t

π(t)
Z�

s dWs

∣∣∣∣2], 0 ≤ t ≤ T .

The proof is concluded combining this estimate with (3.2), Propositions 3.1
and 3.3. �

We now turn to the study of the regularity of the process Z�.

THEOREM 3.1. The process Z� satisfies

E

[∫ T

0
|Z�

s − Z̄�
s |2 ds

]
≤ CL(|π |1/2 + κ|π |).(3.20)

PROOF. A regularization argument as in proof of Proposition 3.3 allows us to
work under (Hr). From Remark 3.3, it is clear that

E

[∫ T

0
|Z�

s − Z̄�
s |2 ds

]
≤ E

[∫ T

0

∣∣Z�
s − Z�

π(s)

∣∣2 ds

]
.(3.21)

For s ≤ T and a = (αk, θk)k≥0 ∈ A�
s,�, � ∈ I , we define (V a

s,t )s≤t≤T by

V a
s,t := Et

[
∇xg

aT (XT )�a
s,T DsXT +

∫ T

s
∇xf

au(Xu, Ỹ
�
u ,Z�

u )�a
s,uDsXu du

−
Na∑
k=1

∇xcαj−1,αj
(Xθk

)�a
s,θk

(DsX)θk

]
.

We now fix � ∈ I and denote, for u ≤ T , by au ∈ A�
u,� the optimal strategy associ-

ated to the representation of (Ỹ�
u )�, recalling (ii) in Theorem 2.1.
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Observe that, by definition, we have

Nat = Nau

and at = au, rj ≤ t ≤ u < rj+1, j < κ.(3.22)

Fix i < n, and deduce from Proposition 3.2 and (3.22) that

E[|(Z�
t )� − (Z�

ti
)�|2] = E[|V at

t,t − V ati

ti ,ti
|2]

(3.23)
≤ 2(E[|V ati

t,t − V ati

ti ,t
|2] + E[|V ati

ti ,t
− V ati

ti ,ti
|2])

for t ∈ [ti , ti+1). Combining (Hr), (3.9), (3.10), (3.14), (3.15) and Cauchy–Schwarz
inequality with the definition of V a , we deduce

E[|V ati

t,t − V ati

ti ,t
|2] ≤ CL|π |1/2, ti ≤ t ≤ ti+1, i ≤ n.(3.24)

Since V ati

ti ,.
is a martingale on [ti , ti+1], we obtain

E[|V ati

ti ,t
− V ati

ti ,ti
|2]

≤ E[|V ati

ti ,ti+1
− V ati

ti ,ti
|2]

(3.25)
≤ E[|V ati

ti+1,ti+1
|2 − |V ati

ti ,ti
|2] + E[|V ati

ti ,ti+1
|2 − |V ati

ti+1,ti+1
|2]

≤ E[|V ati

ti+1,ti+1
|2 − |V ati

ti ,ti
|2] + CL|π |1/2, ti ≤ t ≤ ti+1,

where the last inequality follows from (3.24). Combining (3.23), (3.24), (3.25) and
summing up over i, we obtain

E

[∫ T

0

∣∣(Z�
t )� − (

Z�
π(t)

)�∣∣2 dt

]

≤ CL|π |1/2 + |π |
(

E[|V arκ−1
T ,T |2 − |V a0

0,0|2] +
κ−1∑
j=1

(|V a
rj−1

rj ,rj
|2 − |V a

rj

rj ,rj
|2)
)
.

Combined with (3.9) and (3.14), this concludes the proof since � is arbitrary. �

3.5. Extension. We shall approximate the process X by its Euler scheme Xπ ,
with dynamics

Xπ
t = X0 +

∫ t

0
b
(
Xπ

π(s)

)
ds +

∫ t

0
σ
(
Xπ

π(s)

)
dWs, 0 ≤ t ≤ T .(3.26)

Classically, we have the following upper-bound, uniformly in π :

E

[
sup

0≤t≤T

|Xπ
t |p

]1/p ≤ C
p
L, p ≥ 2.(3.27)

The control of the error between X and its Euler scheme Xπ is well understood
(see, e.g., [16]) and we have

E

[
sup

0≤t≤T

|Xt − Xπ
t |p

]1/p ≤ C
p
L|π |1/2, p ≥ 2.(3.28)
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In this context, we denote by (Y eu, Ỹ eu,Zeu) the unique solution of the reflected
BSDE D(�, c(Xπ), f (Xπ, ·), g(Xπ)). Our main result here is the counterpart of
Proposition 3.4 and Theorem 3.1 when X is replaced by Xπ .

PROPOSITION 3.5. The following hold:

E

[∫ T

0

∣∣Ỹ eu
t − Ỹ eu

π(t)

∣∣2 dt

]
≤ CL|π |

and

E

[∫ T

0
|Zeu

s − Z̄eu
s |2 ds

]
≤ CL(|π |1/2 + κ|π |).

PROOF. We only sketch the main step of the proof since it follows exactly the
same arguments as the one used to obtain Proposition 3.4 and Theorem 3.1.

Step 1. We use a kernel regularization argument which allows us to work un-
der (Hr). In this case, we observe that Xπ belongs to L1,2

a and satisfies

DsX
π
t = σ

(
Xπ

π(s)

)+ ∫ t

s
∇xb

(
Xπ

π(r)

)
DsX

π
π(r) dr

+
∫ t

s

q∑
j=1

∇xσ
j (Xπ

π(r)

)
DsX

π
π(r) dWj

r

for s ≤ t . One then checks (see [1], Remark 5.2, for details) that∥∥∥sup
s≤T

|DsX
π |
∥∥∥

Sp
< ∞,

sup
s≤u

‖DsX
π
t − DsX

π
u ‖Lp +

∥∥∥ sup
t≤s≤T

|DtX
π
s − DuX

π
s |
∥∥∥

Lp
≤ C

p
L|t − u|1/2,(3.29)

0 ≤ u ≤ t ≤ T .

It is also straightforward that (Y eu, Ỹ eu,Zeu) is Malliavin differentiable and satis-
fies (3.12) with Xπ instead of X.

Step 2. In order to retrieve the results of the proposition, one then follows exactly
the same steps and arguments as the ones used in the previous Sections 3.3 and 3.4.

�

4. A discrete-time approximation for discretely reflected BSDEs. We
present here a discrete time scheme for the approximation of the solution of the
discretely obliquely reflected BSDE (3.5).

Recall that π := {t0 = 0, . . . , tn = T } is a grid on the time interval [0, T ], such
that � ⊂ π and |π |n ≤ L. In the sequel, the process X is approximated by its Euler
scheme Xπ (see Section 3.5 for details).
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4.1. A Euler scheme for discretely obliquely reflected BSDEs. We introduce a
Euler-type approximation scheme for the discretely reflected BSDEs.

Starting from the terminal condition

Y
�,π
T = Ỹ

�,π
T := g(Xπ

T ) ∈ C(Xπ
T ),

we compute recursively, for i ≤ n − 1,⎧⎪⎪⎨⎪⎪⎩
Z̄

�,π
ti

= (ti+1 − ti)
−1

E[Y�,π
ti+1

(Wti+1 − Wti )
′ | Fti ],

Ỹ
�,π
ti

= E[Y�,π
ti+1

| Fti ] + (ti+1 − ti)f (Xπ
ti
, Ỹ

�,π
ti

, Z̄
�,π
ti

),

Y
�,π
ti

= Ỹ
�,π
ti

1{ti /∈�} + P(Xπ
ti
, Ỹ

�,π
ti

)1{ti∈�}.
(4.1)

This kind of backward scheme has been already considered when no reflection
occurs (see, e.g., [4]) and in the reflected case (see, e.g., [1, 7, 18]). See also [3]
for a recent survey on the subject.

Combining an induction argument with the Lispchitz-continuity of f , g and
the projection operator, one easily checks that the above processes are square in-
tegrable and that the conditional expectations are well defined at each step of the
algorithm.

REMARK 4.1. (i) This so-called “moonwalk” algorithm is given by an im-
plicit formulation, and one should use a fixed point argument to compute explicitly
Ỹ�,π at each grid point.

(ii) In the two-dimensional case, Hamadène and Jeanblanc [13] interpret Y 1 −
Y 2 as the solution of a doubly reflected BSDE. It is worth noticing that the solution
of the corresponding discrete time scheme developed by [7] for the approximation
of doubly reflected BSDE exactly coincides with (Y�,π )1 − (Y�,π )2 derived here.

For later use, we introduce the piecewise continuous time scheme associated
to the triplet (Y�,π , Ỹ�,π , Z̄�,π ). By the martingale representation theorem, there
exists Z�,π ∈ H2 such that

Y
�,π
ti+1

= Eti [Y�,π
ti+1

] +
∫ ti+1

ti

Z�,π
u dWu, i ≤ n − 1,

and by the Itô’s isometry, for i ≤ n − 1,

Z̄
�,π
ti

= 1

ti+1 − ti
E

[∫ ti+1

ti

Z�,π
s ds

∣∣∣ Fti

]
.(4.2)

We set Z̄
�,π
t := Z̄

�,π
π(t) for t ∈ [0, T ], define Ỹ�,π by

Ỹ
�,π
t = Y

�,π
ti+1

+ (ti+1 − t)f (Xπ
ti
, Ỹ

�,π
ti

, Z̄
�,π
ti

)
(4.3)

−
∫ ti+1

t
Z�,π

u dWu, ti ≤ t ≤ ti+1, i ∈ I,
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and introduce Y�,π on [0, T ] by Y
�,π
t := Ỹ

�,π
t 1{t /∈�} + P(Xπ

t , Ỹ
�,π
t )1{t∈�}.

This can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ỹ
�,π
t = g(Xπ

T ) +
∫ T

t
f
(
Xπ

π(u), Ỹ
�,π
π(u), Z̄

�,π
u

)
du −

∫ T

t
Z�,π

u dWu

+ (K
�,π
T − K

�,π
t ),

K
�,π
t := ∑

r∈�\{0}

K�,π

r 1{r≤t} and


K
�,π
t := Y

�,π
t − Ỹ

�,π
t = −(Ỹ

�,π
t − Ỹ

�,π
t− ),

Y
�,π
t = Ỹ

�,π
t 1{t /∈�} + P(Xπ

t , Ỹ
�,π
t )1{t∈�}, 0 ≤ t ≤ T .

(4.4)

We finally provide a useful a priori estimate for the solution of the discrete
time scheme whenever f does not depend on z, whose proof is postponed until
Appendix A.2.

PROPOSITION 4.1. If f does not depend on z and |π |L < 1, the following
bound holds:

E

[
sup

0≤i≤n

|Ỹ�,π
ti

|p
]
≤ C

p
L, p ≥ 2.(4.5)

Recall that C
p
L neither depends on � nor on π .

4.2. Convergence results. The next proposition provides a control on the error
between the discrete-time scheme (4.1) and the solution of the discretely reflected
BSDE (3.5).

PROPOSITION 4.2. The following holds:

sup
t∈[0,T ]

E[|Ỹ�
t − Ỹ

�,π
t |2 + |Y�

t − Y
�,π
t |2] + E

[∫ T

0
|Z�

s − Z̄�,π
s |2 ds

]
(4.6)

≤ CL|LP |2κ(|π |1/2 + κ|π |),
where we recall that LP = √

d is the Lipschitz constant of the projection opera-
tor P .

PROOF. As in Section 3.5, we consider (Y eu, Ỹ eu,Zeu) the unique solution
of the reflected BSDE D(�, c(Xπ), f (Xπ, ·), g(Xπ)). Using Proposition 2.3, the
Lipschitz property of f , g, c and (3.28), we obtain

sup
t∈[0,T ]

E[|Ỹ�
t − Ỹ eu

t |2 + |Y�
t − Y eu

t |2] + 1

κ
E

[∫ T

0
|Z�

s − Zeu
s |2 ds

]
(4.7)

≤ CL|π |.
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Using the same arguments as in the proof of Proposition 3.4.1, Step 1.a in [6],
for example, we get the following inequality:

sup
t∈[ti ,ti+1)

E[|Ỹ eu
t − Ỹ

�,π
t |2 + |Y eu

t − Y
�,π
t |2]

+ E

[∫ ti+1

ti

|Zeu
s − Z̄�,π

s |2 ds

]
(4.8)

≤ CL

(
E

[
|Y eu

ti+1
− Y

�,π
ti+1

|2

+
∫ ti+1

ti

(∣∣Ỹ eu
s − Ỹ�

π(s)

∣∣2 + ∣∣Zeu
s − Z̄�

π(s)

∣∣2)ds

])
.

There are two differences with the proof of Proposition 3.4.1 in [6]. First, P here
depends both on x and y: but this is not a problem since (Y eu, Ỹ eu,Zeu) and
(Y�,π , Ỹ�,π ,Z�,π ) are parametrized by the same forward process Xπ .

Second, P is not 1-Lipschitz but only LP -Lipschitz, with LP > 1, in its y com-
ponent. This explains the term |LP |2κ in (4.6). Indeed, we have, for i < n,

|Y eu
ti+1

− Y
�,π
ti+1

|2 = |P(Xπ
ti+1

, Ỹ eu
ti+1

) − P(Xπ
ti+1

, Ỹ
�,π
ti+1

)|2 ≤ |LP |2|Ỹ eu
ti+1

− Ỹ
�,π
ti+1

|2.
This leads, using an induction argument (see, e.g., Step 1.b in the proof of Propo-
sition 3.4.1 in [6]), to

sup
t∈[0,T ]

E[|Ỹ eu
t − Ỹ

�,π
t |2 + |Y eu

t − Y
�,π
t |2] + E

[∫ T

0
|Zeu

s − Z̄�,π
s |2 ds

]

≤ CL|LP |2κ

(
|π | +

∫ T

0

(∣∣Ỹ eu
s − Ỹ�

π(s)

∣∣2 + ∣∣Zeu
s − Z̄�

π(s)

∣∣2)ds

)
.

Combining the last inequality with Proposition 3.5 and (4.7) completes the
proof. �

The term |LP |2κ , even when κ is small can be very large. Moreover, we shall
see in the next section that it yields to a poor convergence rate for continuously
reflected BSDEs. This term is due to the “geometric” approach, used in the proof of
Proposition 4.2, and the fact that P is only LP -Lipschitz with LP > 1. We obtain
below a better control, using the stability results proved at the end of Section 2
but unfortunately under the assumption that f does not depend on z. The optimal
choice for κ in terms of |π | is discussed in Section 5.3 below.

THEOREM 4.1. If f does not depend on z, the following holds:

sup
t∈[0,T ]

E[|Ỹ�
t − Ỹ

�,π
t |2 + |Y�

t − Y
�,π
t |2] ≤ CL|π |,

E

[∫ T

0
|Z�

t − Z̄
�,π
t |2 dt

]
≤ CL(κ|π | + |π |1/2)
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for |π | small enough.

PROOF. We use here the stability results of Proposition 2.3 setting (1Y�, 1Ỹ�,
1Z�) = (Y�, Ỹ�,Z�) with 1F : (s, y, z) �→ f (Xs, Ỹ

�
s ) and (2Y�, 2Ỹ�, 2Z�) =

(Y�,π , Ỹ�,π ,Z�,π ), with 2F : (s, y, z) �→ f (Xπ
π(s), Ỹ

�,π
π(s) ). Combining (4.5) and

Proposition 3.1 with the Lipschitz property of f , it is clear that (C4) holds. Apply-
ing Proposition 2.3 and (3.28), we derive, for t ∈ [0, T ],

E|Ỹ�
t − Ỹ

�,π
t |2 + 1

κ

∫ T

t
E|Z�

s − Z�,π
s |2 ds

(4.9)

≤ CL

(
|π | +

∫ T

t
E
∣∣Ỹ�

s − Ỹ�
π(s)

∣∣2 ds +
∫ T

t
E
∣∣Ỹ�,π

π(s) − Ỹ�
π(s)

∣∣2 ds

)
.

Applying the discrete version of Gronwall’s lemma to estimate (4.9) rewritten at
time t = tj ∈ π , we deduce

E|Ỹ�
tj

− Ỹ
�,π
tj

|2 ≤ CL

(
|π | +

∫ T

t
E
∣∣Ỹ�

s − Ỹ�
π(s)

∣∣2 ds

)
,

(4.10)
0 ≤ t ≤ tj ≤ T , tj ∈ π.

Plugging this estimate into (4.9), we compute

E|Ỹ�
t − Ỹ

�,π
t |2 + 1

κ

∫ T

t
E|Z�

s − Z�,π
s |2 ds

≤ CL

(
|π | +

∫ T

t
E
∣∣Ỹ�

s − Ỹ�
π(s)

∣∣2 ds

)
, 0 ≤ t ≤ T ,

which combined with Proposition 3.4 leads to the first claim of the theorem.
Observe from the representations (3.19) and (4.2) that

E

[∫ T

0
|Z�

t − Z̄
�,π
t |2 dt

]

≤ CL

(
E

[∫ T

0
|Z�

t − Z̄�
t |2 dt

]
+ E

[∫ T

0
|Z�

t − Z
�,π
t |2 dt

])
.

Plugging (3.20), estimate (4.9) written at time t = 0 and the first claim of this
theorem into this expression concludes the proof. �

5. Extension to the continuously reflected case. In this section, we extend
the convergence results of the scheme (4.1) to the case of continuously reflected
BSDEs. To this end, we show that the error between discretely and continuously
obliquely reflected BSDEs is controlled in a convenient way.
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5.1. Continuously obliquely reflected BSDEs. In the sequel, we shall use the
following assumption on f :

(i) (Hz) The function f is bounded in its last variable: supz∈Md,q |f (0,0, z)| ≤
CL and the following assumption on the cost c.

(ii) (Hc) For i, j ∈ I , the function cij is equal to 1cij −2 cij , with 1cij is C2 with
bounded first and second derivatives and 2cij is a convex function with bounded
first derivative.

This last assumption is needed to retrieve some regularity on the reflecting pro-
cess K (see Lemma 5.1 below).

We denote by (Y,Z,K) ∈ (S 2 × H2 × A2)I the solution of the continuously
obliquely reflected BSDE C([0, T ], c(X),f (X, ·), g(XT )) defined by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Y i
t = gi(XT ) +

∫ T

t
f i(Xs, Y

i
s ,Z

i
s)ds −

∫ T

t
Zi

s dWs + Ki
T − Ki

t ,

Y i
t ≥ max

j∈I
{Y j

t − cij (Xt )}, 0 ≤ t ≤ T ,∫ T

0

[
Y i

t − max
j∈I

{Y j
t − cij (Xt )}

]
dKi

t = 0, i ∈ I.

(5.1)

Under the assumption on f , g and c, the existence and uniqueness of such a solu-
tion is given in [14, 15].

The solution of (5.1) has also a representation property in term of switched
BSDEs, recalling (2.6). Here, of course, the switching times of the strategy are not
restricted to take their values in �. We refer to [8] for more details.

THEOREM 5.1. There exists, for any fixed initial condition (t, i) ∈ [0, T ]× I ,
an optimal switching strategy ȧ := (θ̇k, α̇k)k≥0 ∈ At,i , such that

Y i
t = Uȧ

t = ess sup
a∈At,i

Ua
t , P-a.s.(5.2)

We deduce from (5.2), Theorem 2.1(iii), the monotonicity property of P and
(5.1)

Y 
 Y� 
 Ỹ� for any grid �.(5.3)

Moreover, most of the estimates presented in Section 2 for discretely reflected
BSDEs hold true for continuously reflected BSDEs. For reader’s convenience, we
collect them in the following proposition. The proof itself is postponed to Ap-
pendix A.3.

PROPOSITION 5.1. The following a priori estimates hold. For any p ≥ 2,

|Yt |p + Et

[(∫ T

t
|Zs |2 ds

)p/2]
+ Et [|KT − Kt |p] ≤ Et [βX],

(5.4)
0 ≤ t ≤ T ,
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and, for all (t, i) ∈ [0, T ] × I , the optimal strategy ȧ ∈ At,i satisfies

Et

[
sup

s∈[t,T ]
|Uȧ

s |p
]
+ Et [|Nȧ|p] ≤ Et [βX].(5.5)

5.2. Error between discretely and continuously reflected BSDEs. We first pro-
vide a control of the error on the grid points of � between the solutions of the
obliquely discretely and continuously reflected BSDEs (3.6) and (5.1).

THEOREM 5.2. Under (Hz), the following holds:

E

[
sup
r∈�

{|Yr − Ỹ�
r |2 + |Yr − Y�

r |2}
]
≤ Cε

L|�|1−ε, ε > 0.(5.6)

Moreover, if the cost functions are constant, the last inequality holds true with
ε = 0.

PROOF. The proof of this result relies mainly on the interpretation in terms
of switched BSDEs provided in Section 2.2. For a fixed (t, i) ∈ [0, T ] × I , we
associate to the optimal strategy ȧ = (θ̇k, α̇k)k ∈ At,i not restricted to lie in the
grid �, the corresponding “discretized” strategy a := (θk, αk)k≥0 ∈ A�

t,i defined
by

θk := inf{r ≥ θ̇k; r ∈ �} and αk := α̇k, k ≥ 0.(5.7)

Step 1. We first derive two key controls on the distance between Aȧ and Aa .
We fix p ≥ 2 and, since θ̇k ≤ θk , k ≥ 1, we compute(∫ T

t
|Aȧ

s − Aa
s |2 ds

)p/2

=
(∫ T

t

∣∣∣∣∣
Nȧ∑
k=1

cα̇k−1α̇k (Xθ̇k
)1θ̇k≤s − cα̇k−1α̇k (Xθk

)1θk≤s

∣∣∣∣∣
2

ds

)p/2

(5.8)

≤ C
p
L

∫ T

t

∣∣∣∣∣
Nȧ∑
k=1

[cα̇k−1α̇k (Xθk
) − cα̇k−1α̇k (Xθ̇k

)]1θk≤s

∣∣∣∣∣
p

ds

+ C
p
L

(∫ T

t

∣∣∣∣∣
Nȧ∑
k=1

cα̇k−1α̇k (Xθ̇k
)1θ̇k≤s<θk

∣∣∣∣∣
2

ds

)p/2

.

Using the convexity inequality (
∑n

k=1 |xk|)p ≤ np−1∑n
k=1 |xk|p , we obtain(∫ T

t

∣∣∣∣∣
Nȧ∑
k=1

cα̇k−1α̇k (Xθ̇k
)1θ̇k≤s<θk

∣∣∣∣∣
2

ds

)p/2

(5.9)
≤ C

p
L

(
1 + sup

t∈[0,T ]
|Xt |p

)
|Nȧ|p|�|p/2.
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Using once again the same convexity inequality with p = 2, the Lipschitz property
of the maps (cij )i,j∈I and the definition of θ̇k and θk , we get

∫ T

t

∣∣∣∣∣
Nȧ∑
k=1

[cα̇k−1α̇k (Xθk
) − cα̇k−1α̇k (Xθ̇k

)]1θk≤s

∣∣∣∣∣
p

ds ≤ C
p
L|Nȧ|p−1

Nȧ∑
k=1

|Xθk
− Xθ̇k

|p

≤ C
p
L|Nȧ|pχ |�|,p,

where χ |�|,p :=∑κ
k=1 supr∈[rk−1,rk] |Xr − Xrk |p .

Plugging this estimate and (5.9) in (5.8), we deduce(∫ T

t
|Aȧ

s − Aa
s |2 ds

)p/2

(5.10)
≤ C

p
L|Nȧ|p

((
1 + sup

s∈[0,T ]
|Xs |p

)
|�|p/2 + χ |�|,p).

Observe also that, for r ∈ �, we have 1θ̇k≤r = 1θk≤r which gives

|Aȧ
r − Aa

r |p ≤
(

Nȧ∑
k=1

|cα̇k−1α̇k (Xθ̇k
) − cα̇k−1α̇k (Xθk

)|1θk≤r

)p

(5.11)
≤ CL|Nȧ|pχ |�|,p.

Step 2. We now prove the main result of the theorem.
We introduce the processes � := Ua − Aa and �̇ := Uȧ − Aȧ , so that

|Ua − Uȧ| ≤ |� − �̇| + |Aa − Aȧ|.(5.12)

Applying Itô’s formula to the continuous process |�̇ − �|2 on [t, T ], using Gron-
wall’s lemma and the Lipschitz property of f , we obtain

|�̇t − �t |2
(5.13)

≤ CLEt

[∫ T

t
|[f ȧs − f as ](Xs,U

ȧ
s ,V ȧ

s )|2 ds +
∫ T

t
|Aȧ

s − Aa
s |2 ds

]
.

Elevating this expression to the power p
2 , we deduce

|�̇t − �t |p

≤ C
p
LEt

[(∫ T

t
|[f ȧs − f as ](Xs,U

ȧ
s ,V ȧ

s )|2 ds

)p/2

(5.14)

+
(∫ T

t
|Aȧ

s − Aa
s |2 ds

)p/2]
.
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Combining the definition of θ with the Lipschitz property of f and (Hz), we com-
pute ∫ T

t
|[f ȧs − f as ](Xs,U

ȧ
s ,V ȧ

s )|2 ds

=
∫ T

t

∣∣∣∣∣
Nȧ∑
k=1

f αk−1(Xs,U
ȧ
s ,V ȧ

s )(1θ̇k−1≤s<θ̇k
− 1θk−1≤s<θk

)

∣∣∣∣∣
2

ds

≤ CL|Nȧ|2 sup
s∈[0,T ]

(1 + |Xs |2 + |Uȧ
s |2)|�|.

Plugging the last inequality and (5.10) in (5.14), we deduce

|�̇t − �t |p ≤ C
p
LEt

[
|Nȧ|p

(
sup

s∈[0,T ]
(1 + |Xs |p + |Uȧ

s |p)|�|p/2 + χ |�|,p)].
Restricting to the case where t ∈ �, we deduce from (5.11) and (5.12) that

|Y i
t − (Ỹ�

t )i |2

≤ C
p
L

(
Et

[
|Nȧ|p sup

s∈[0,T ]
(1 + |Xs |p + |Ys |p)

]2/p|�| + Et

[|Nȧ|p|χ |�|,p]2/p
)
.

Using Cauchy–Schwarz inequality and Proposition 5.1 with the last inequality,
we obtain

|Y i
t − (Ỹ�

t )i |2 ≤ C
p
L

(
βX|�| + βX

Et

[∣∣χ |�|,p∣∣2]1/p)
.

Again using Cauchy–Schwarz inequality and defining Mt := Et [|χ |�|,p|2], we
get

E

[
sup
t∈�

|Y i
t − (Ỹ�

t )i |2
]
≤ C

p
L

(
|�| + E

[
sup

t∈[0,T ]
|Mt |2/p

]1/2)
.(5.15)

Combining Burkholder–Davis–Gundy and convexity inequalities with (3.2), we
compute

E

[
sup

t∈[0,T ]
|Mt |2/p

]
≤ C

p
L(|M0|2/p + E[|MT |2]1/p) ≤ C

p
LE

[∣∣χ |�|,p∣∣4]1/p

≤ C
p
L|κ|4/p|�|2.

Plugging this expression in (5.15), we deduce (5.6) from the condition κ|�| ≤ L

and the arbitrariness of i.

Step 3. We finally consider the particular case where the cost functions are con-
stant. Following the same arguments as in Step 1, we observe that (5.10) turns
into (∫ T

t
|Aȧ

s − Aa
s |2 ds

)p/2

≤ C
p
L|Nȧ|p

(
1 + sup

s∈[0,T ]
|Xs |p

)
|�|p/2,
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and that Aȧ
r − Aa

r = 0 for r ∈ �. The same reasoning as in Step 2 then leads to

|Y i
t − Ỹ i

t |2 ≤ C2
LEt

[
|Nȧ|p sup

s∈[0,T ]
(1 + |Xs |p + |Ẏs |p)

]2/p|�|.

Using Cauchy–Schwarz and Proposition 5.1 concludes the proof. �

We now present the main result of this section, which allows us to control the er-
ror between the solutions of the continuously and the discretely obliquely reflected
BSDE at any time between 0 and T .

THEOREM 5.3. Under (Hz)–(Hc), the following holds:

sup
t∈[0,T ]

E[|Yt − Ỹ�
t |2 + |Yt − Y�

t |2] + E

[∫ T

0
|Zs − Z�

s |2 ds

]
≤ Cε

L|�|1/2−ε, ε > 0.

If, furthermore, the cost functions are constant, the previous estimate holds true
for ε = 0.

In order to prove this theorem, we first state the following lemma discussing the
regularity of K .

LEMMA 5.1. Under (Hz)–(Hc), there exists some positive process η satisfying
‖η‖H2 ≤ CL and such that, for all i ∈ I , dKi

s ≤ ηs ds in the sense of random
measure.

PROOF. We follow here the main idea of the proof of Proposition 4.2 in [10]
and divide the proof in three steps.

Step 1. Fix i, j ∈ I . We first observe using Itô–Tanaka formula, that, under (Hc),

cij (Xt ) = cij (X0) +
∫ t

0
bij
s ds +

∫ t

0
νij
s dWs −

∫ t

0
d
ij

s , 0 ≤ t ≤ T ,

where 
ij is an increasing process and

‖bij‖H2 + ‖νij‖H2 ≤ CL.(5.16)

We then introduce �ij := Y i − Y j + cij (X) ≥ 0. Using once again Itô–Tanaka
formula, we compute

[�ij
t ]+ = [�ij

0 ]+ +
∫ t

0

(−f i(Xs,Y
i
s ,Z

i
s) + f j (Xs,Y

j
s ,Zj

s ) + bij
s

)
1{�ij

s >0} ds

+
∫ t

0
(νij

s + Zi
s − Zj

s )1{�ij
s >0} dWs

+
∫ t

0
1{�ij

s >0}(−dKi
s + dKj

s − d
ij
s ) + 1

2

∫ t

0
dLij

s
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for 0 ≤ t ≤ T , where Lij is the local time at 0 of the continuous semi-
martingale �ij . Since �ij ≥ 0 and 
ij , Lij are increasing processes, we compute

1{�ij
s =0} dKi

s ≤ (−f i(Xs,Y
i
s ,Z

i
s) + f j (Xs,Y

j
s ,Zj

s ) + bij
s

)
1{�ij

s =0} ds

+ 1{�ij
s =0} dKj

s

(5.17)
≤ CL

(
1 + |Xs | + sup

�∈I
|Y �

s | + sup
�,k∈I

|b�k
s |
)

ds

+ 1{�ij
s =0} dKj

s

for 0 ≤ s ≤ T , where we used (Hz) in order to obtain the last inequality.

Step 2. We now prove that

1{�ij
s =0} dKj

s = 0(5.18)

in the sense of random measure. We first observe that 1{�ij
s =0} dK

j
s = γ

ij
s dK

j
s with

γ
ij
s := 1{�ij

s =0}1{Y j
s −P j (Xs,Ys)=0}. Indeed, if 1{Y j

s −P j (Xs,Ys)>0} dK
j
s were a positive

random measure on [0, T ], this would contradict the minimality condition (5.1)
for K .

Suppose the existence of a stopping time τ smaller than T , such that

�ij
τ = 0 and Y j

τ − P j (Xτ ,Yτ ) = 0.(5.19)

By definition of the projection P , we have

Y j
τ − P j (Xτ ,Yτ ) = Y j

τ − Y kτ
τ + cjkτ (Xτ ),(5.20)

where kτ takes value in I . Moreover, Y i
τ − Y kτ

τ + cikτ (Xτ ) ≥ 0, which leads, com-
bined with (5.19) and (5.20), to cij (Xτ ) + cjkτ (Xτ ) − cikτ (Xτ ) ≤ 0 and then con-
tradicts (3.3).

Thus, γ
ij
τ = 0 for any stopping time τ smaller than T and we deduce that γ ij is

undistinguishable from 0, which proves (5.18).

Step 3. To conclude, using once again the minimality condition for K in (5.1),
observe that dKi

s =∑
j 1{�ij

s =0} dKi
s ≤ ηs ds, with η := CL(1+|X|+sup�∈I |Y �|+

sup�,k∈I |b�k|) which satisfies ‖η‖H2 ≤ CL, recalling (3.2), (5.4) and (5.16). �

PROOF OF THEOREM 5.3. Fix t ∈ [0, T ] and introduce δỸ := Y − Ỹ�, δY :=
Y − Y�, δZ := Z − Z� and δf := f (X,Y,Z) − f (X, Ỹ�,Z�). Applying Itô’s
formula to the càdlàg process |δỸ |2, we get

|δỸt |2 +
∫ T

t
|δZs |2 ds

(5.21)
= |δỸT |2 − 2

∫
(t,T ]

δỸs− dδỸs − ∑
t<s≤T

|δỸs − δYs |2.
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Recalling that δỸs− = δYs ,
∫
(t,T ] δYs dK�

s ≥ 0 and the Lipschitz property of f ,
standard arguments lead to

E

[
|δỸt |2 +

∫ T

t
|δZs |2 ds

]
≤ CLE

[∫ T

t
δYs dKs

]
(5.22)

≤ CL

∑
j<κ

E

[∫ rj+1

rj

δYs dKs

]
.

Using the expression of δY and Lemma 5.1, we obtain

δYs ≤ δYrj+1 +
∫ rj+1

s
(δfu + ηu)du −

∫ rj+1

s
δZu dWu, rj ≤ s < rj+1, j < κ.

Combining (Hz), (3.2), (3.7), (5.4) and the fact that ‖η‖H2 ≤ CL, we deduce∑
j<κ

E

[∫ rj+1

rj

δYs dKs

]
≤ E

[∑
j<κ

∫ rj+1

rj

∫ rj+1

s
(δfu + ηu)dudKs

]

+ E

[∑
j<κ

∫ rj+1

rj

δYrj+1 dKs

]

≤ CL|�| + E

[
KT sup

r∈�
|δYr |

]
.

Plugging this expression in (5.22) and using Cauchy–Schwarz inequality to-
gether with (5.6) and Proposition 2.1 concludes the proof. �

5.3. Convergence of the discrete-time scheme. Combining the previous results
with the control of the error between the discrete-time scheme and the discretely
obliquely reflected BSDE derived in Section 4, we obtain the convergence of the
discrete time scheme to the solution of the continuously obliquely reflected BSDE.
In the next theorem, we detail the corresponding approximation error for different
optimal choices of reflection time step |�| with respect to the discrete time step |π |.

THEOREM 5.4. The following hold:

(i) If (Hf)–(Hc) holds, taking |�| ∼ logLP−ε log |π | for ε > 0, we have

sup
t∈[0,T ]

E[|Yt − Ỹ
�,π
t |2 + |Yt − Y

�,π
t |2] + E

[∫ T

0
|Zs − Z̄�,π

s |2 ds

]

≤ Cε
L

[−log(|π |)]1/2−ε
.

(ii) If f does not depend on z and |π |L < 1, taking similar grids � = π , we
have

sup
i≤n

E[|Yti − Y
�,π
ti

|2 + |Yti − Ỹ
�,π
ti

|2] ≤ Cε
L|π |1−ε, ε > 0.
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Moreover, under (Hc),

sup
t∈[0,T ]

E[|Yt − Y
�,π
t |2 + |Yt − Ỹ

�,π
t |2] ≤ Cε

L|π |1/2−ε, ε > 0.

(iii) Under (Hc), if f does not depend on z and |π |L < 1, taking |�| ∼ |π |2/3,
we get

E

[∫ T

0
|Zs − Z̄�,π

s |2 ds

]
≤ Cε

L|π |1/3−ε, ε > 0.

(iv) Furthermore, for constant cost functions, (ii) and (iii) hold true with ε = 0.

PROOF. For ε > 0, setting � such that |�| ∼ logLP−ε log |π | , we obtain, combining
Proposition 4.2 and Theorem 5.3, that

sup
t∈[0,T ]

E[|Yt − Ỹ
�,π
t |2 + |Yt − Y

�,π
t |2] + E

[∫ T

|Zs − Z̄�,π
s |2 ds

]

≤ Cε
L

[( −1

log(|π |)
)1/2−ε

∨ |π |1/2−ε

]
.

Therefore, (i) is proved. Furthermore, (ii), (iii) and (iv) are direct consequences of
Theorems 4.1 and 5.2 or 5.3. �

APPENDIX

A.1. A priori estimates for discretely RBSDEs. We collect here the proofs
for a priori estimates given in Propositions 2.1 and 2.2.

PROOF OF PROPOSITION 2.1. Observing that on each interval [rj , rj+1),
(Y�, Ỹ�,Z�) solves a standard BSDE, existence and uniqueness follow from a
concatenation procedure and [20]. The rest of the proof divides in two steps con-
trolling separately Ỹ� and (Z�,K�).

Step 1. Control of Ỹ�.
As in the proof of Theorem 2.4 in [14], we consider two nonreflected BSDEs

bounding Ỹ�.
Define the R

d -valued random variable ξ̆ and the random map F̆ by (ξ̆ )j :=∑d
i=1 |ξ |i and (F̆ )j :=∑d

i=1 |(F )i | for 1 ≤ j ≤ d .

We then denote by (Y̆ , Z̆) ∈ (S 2 × H2)I the solution to the following nonre-
flected BSDE:

Y̆t = ξ̆ +
∫ T

t
F̆ (s, Y̆s, Z̆s)ds −

∫ T

t
Z̆s dWs, 0 ≤ t ≤ T .(A.1)

Since all the components of Y̆ are similar, Y̆ ∈ C .
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We also introduce (0Y, 0Z) the solution to the BSDE

0Yt = ξ +
∫ T

t
F (s, 0Ys,

0Zs)ds −
∫ T

t

0Zs dWs, 0 ≤ t ≤ T .

Using a comparison argument on each interval [rj , rj+1) and the monotony prop-

erty of P , we straightforwardly deduce 0Y � Y� � Y̆ .
Since (0Y, Y̆ ) are solutions to standard nonreflected BSDEs, usual arguments

lead to

sup
0≤s≤T

|Ỹ�
s |p ≤ sup

0≤s≤T

|0Ys |p + sup
0≤s≤T

|Y̆s |p =: β̄,(A.2)

where the positive random variable β̄ satisfies classically E[β̄] ≤ CL, under con-
dition (Cp) for a given p ≥ 2.

Step 2. Control of (Z�,K�).
We fix t ≤ T and applying Itô’s formula to the càdlàg process |Ỹ�|2 on [0, t] to

derive

|Ỹ�
t |2 = |Ỹ�

0 |2 + 2
∫
(0,t]

Ỹ�
s− dỸ�

s +
∫
(0,t]

|Z�
s |2 ds

+∑
s≤t

(|Ỹ�
s |2 − |Ỹ�

s−|2 − 2Ỹ�
s−
Y�

s ).

Since the last term on the right-hand side is nonnegative, we deduce that

|Ỹ�
t |2 +

∫ T

t
|Z�

s |2 ds ≤ |Ỹ�
T |2 + 2

∫ T

t
Ỹ�

s−F(s, Ỹ�
s ,Z�

s )ds

+ 2
∫
(t,T ]

Ỹ�
s− dK�

s + 2
∫ T

t
(Z�

s Ỹ�
s )dWs.

Using standard arguments, together with (A.2) and (Cp) for a fixed p ≥ 2, we
compute∫ T

t
|Z�

s |2 ds ≤ CL

(
β̄2/p + β̄1/p(K�

T − K�
t ) +

∫ T

t
(Z�

s Ỹ�
s )dWs

)
.(A.3)

Moreover, we get from (2.4) and (Cp) that

|K�
T − K�

t |2 ≤ CL

[
β̄2/p +

∫ T

t
|Z�

s |2 ds +
(∫ T

t
Z�

s dWs

)2]
.(A.4)

Combining (A.3) and (A.4) we obtain∫ T

t
|Z�

s |2 ds ≤ CL

ε
β̄2/p + ε

∫ T

t
|Z�

s |2 ds + ε

(∫ T

t
Z�

s dWs

)2

(A.5)

+ CL

∫ T

t
(Z�

s Ỹ�
s )dWs
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for any ε > 0. Elevating the previous estimate to the power p/2, it follows from
Burkholder–Davis–Gundy inequality that

Et

[(∫ T

t
|Z�

s |2 ds

)p/2]

≤ C
p
L

(
ε−p/2

Et [β̄] + εp/2
Et

[(∫ T

t
|Z�

s |2 ds

)p/2]

+ Et

[(∫ T

t
|Z�

s Ỹ�
s |2 ds

)p/4])
≤ C

p
L

(
ε−p/2

Et [β̄] + ε−p/2
Et

[
sup

s∈[t,T ]
|Ỹ�

s |p
]

+ εp/2
Et

[(∫ T

t
|Z�

s |2 ds

)p/2])
.

Using (A.2) and (Cp), we deduce, for ε small enough,

Et

[(∫ T

t
|Z�

s |2 ds

)p/2]
≤ C

p
LEt [β̄].(A.6)

Taking (A.4) up to the power p
2 , and combining Burkholder–Davis–Gundy in-

equality with (A.6) yields Et [|K�
T −K�

t |p] ≤ C
p
LEt [β̄], which concludes the proof

of the proposition, recalling (Cp). �

PROOF OF PROPOSITION 2.2. Fix (t, i) ∈ [0, T ] × I and p ≥ 2. According
to the identification of (Ua∗

,V a∗
) with (Ỹ a∗

,Za∗
), obtained in the proof of The-

orem 2.1, we deduce from Proposition 2.1 the expected controls on Ua∗
and V a∗

.
Writing the equation satisfied by (Ua∗

,V a∗
) and using standard arguments for

BSDEs, we observe that

Et [|Aa∗
T |p] ≤ C

p
L

(
Et

[
sup

s∈[t,T ]
|Ua∗

s |p +
(∫ T

t
|V a∗

s |2 ds

)p/2]
+ |Aa∗

t |p
)
.

By definition of a∗ and (2.2), we have |Aa∗
t | ≤ maxk 
=i |Ci,k

t |, which plugged in the
previous inequality leads to Et [|Aa∗

T |p] ≤ C
p
LEt [β̄], recalling (Cp).

We finally complete the proof, noticing from (2.2) that Et [|Na∗ |p] ≤ C
p
L ×

Et [|Aa∗
T |p]. �

A.2. A priori estimates for the Euler scheme. This paragraph provides the
proof of Proposition 4.1, concerning a priori estimates for the Euler scheme asso-
ciated to RBSDEs.
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PROOF OF PROPOSITION 4.1. The proof follows exactly the same arguments
as in Step 1 of the proof of Proposition 2.1 above. The only difficulty is the use of
a comparison argument for Euler scheme that we provide below in Lemma A.1.

�

We detail here a comparison theorem for discrete-time schemes of BSDEs in
the case where the driver does not depend on the variable z.

For k = 1,2, let ξk be a square integrable random variable and ψk : Rm × R
d →

R an L-Lipschitz generator function. We suppose that ξ1 ≥ ξ2 and ψ1 ≥ ψ2 on
R

m × R
d . For a time grid π , we denote by Yπ,k the discrete-time scheme starting

from the terminal condition Y
π,k
T := ξk and computing recursively, for i = n −

1, . . . ,0,

Y
π,k
ti

= E[Yπ,k
ti+1

| Fti ] + (ti+1 − ti)ψk(X
π
ti
, Y

π,k
ti

).(A.7)

LEMMA A.1. For any π such that |π |L < 1, we have Y
π,1
ti

≥ Y
π,2
ti

, i ≤ n.

PROOF. Since the result holds true on the grid point tn = T and follows from
a backward induction on π , we just prove Y

π,1
tn−1

≥ Y
π,2
tn−1

. Using (A.7), we compute

Y
π,1
tn−1

− Y
π,2
tn−1

= Etn−1[ξ1 − ξ2 | Ftn−1] + (T − tn−1)�n−1(Y
π,1
tn−1

− Y
π,2
tn−1

)
(A.8)

+ 
n−1,

where 
n−1 := ψ1(X
π
tn−1

Y
π,2
tn−1

) − ψ2(X
π
tn−1

Y
π,2
tn−1

) ≥ 0 and

�n−1 :=

⎧⎪⎪⎨⎪⎪⎩
ψ1(X

π
tn−1

Y
π,1
tn−1

) − ψ1(X
π
tn−1

Y
π,2
tn−1

)

Y
π,1
tn−1

− Y
π,2
tn−1

, if Y
π,1
tn−1

− Y
π,2
tn−1


= 0,

0, else.

(A.9)

Since ψ1 is L-Lipschitz, the condition |π |L < 1, implies (T − tn−1)�n−1 < 1.
Plugging this estimate, 
n−1 ≥ 0 and ξ1 ≥ ξ2 and ψ1 in (A.8), the proof is com-
plete. �

A.3. A priori estimates for continuously RBSDEs. This last paragraph is
dedicated to the proof of Proposition 5.1.

PROOF OF PROPOSITION 5.1. The proof of (5.4) is a direct adaptation of
the proof of Proposition 2.1. The only difference is in Step 1: we approximate
(Y,Z,K) by a sequence of penalized BSDEs (see the proof of Theorem 2.4 in
[14] or Step 3 in the proof of Theorem 5.3) which are bounded by 0Y and Y̆ .
Estimate (5.5) follows from the exact same arguments as the one used in the proof
of Proposition 2.2. �
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