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MALLIAVIN CALCULUS FOR BACKWARD STOCHASTIC
DIFFERENTIAL EQUATIONS AND APPLICATION TO NUMERICAL

SOLUTIONS

BY YAOZHONG HU1, DAVID NUALART2 AND XIAOMING SONG
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In this paper we study backward stochastic differential equations with
general terminal value and general random generator. In particular, we do
not require the terminal value be given by a forward diffusion equation. The
randomness of the generator does not need to be from a forward equation,
either. Motivated from applications to numerical simulations, first we obtain
the Lp-Hölder continuity of the solution. Then we construct several numer-
ical approximation schemes for backward stochastic differential equations
and obtain the rate of convergence of the schemes based on the obtained Lp-
Hölder continuity results. The main tool is the Malliavin calculus.

1. Introduction. The backward stochastic differential equation (BSDE, for
short) we shall consider in this paper takes the following form:

Yt = ξ +
∫ T

t
f (r, Yr,Zr) dr −

∫ T

t
Zr dWr, 0 ≤ t ≤ T ,(1.1)

where W = {Wt }0≤t≤T is a standard Brownian motion, ξ is the given terminal
value and f is the given (random) generator. To solve this equation is to find a
pair of adapted processes Y = {Yt }0≤t≤T and Z = {Zt }0≤t≤T satisfying the above
equation (1.1).

Linear backward stochastic differential equations were first studied by Bismut
[3] in an attempt to solve some optimal stochastic control problem through the
method of maximum principle. The general nonlinear backward stochastic differ-
ential equations were first studied by Pardoux and Peng [15]. Since then there have
been extensive studies of this equation. We refer to the review paper by El Karoui,
Peng and Quenez [7], to the books of El Karoui and Mazliak [6] and of Ma and
Yong [12] and the references therein for more comprehensive presentation of the
theory.

A current important topic in the applications of BSDEs is the numerical ap-
proximation schemes. In most work on numerical simulations, a certain forward
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stochastic differential equation of the following form:

Xt = X0 +
∫ t

0
b(r,Xr,Yr) dr +

∫ t

0
σ(r,Xr) dWr(1.2)

is needed. Usually it is assumed that the generator f in (1.1) depends on Xr at the
time r : f (r, Yr,Zr) = f (r,Xr,Yr,Zr), where f (r, x, y, z) is a deterministic func-
tion of (r, x, y, z), and f is global Lipschitz in (x, y, z). If in addition the terminal
value ξ is of the form ξ = h(XT ), where h is a deterministic function, a so-called
four-step numerical scheme has been developed by Ma, Protter and Yong in [11].
A basic ingredient in this paper is that the solution {Yt }0≤t≤T to the BSDE is of
the form Yt = u(t,Xt), where u(t, x) is determined by a quasi-linear partial dif-
ferential equation of parabolic type. Recently, Bouchard and Touzi [4] propose a
Monte-Carlo approach which may be more suitable for high-dimensional prob-
lems. Again in this forward–backward setting, if the generator f has a quadratic
growth in Z, a numerical approximation is developed by Imkeller and Dos Reis
[9] in which a truncation procedure is applied.

In the case where the terminal value ξ is a functional of the path of the forward
diffusion X, namely, ξ = g(X·), different approaches to construct numerical meth-
ods have been proposed. We refer to Bally [1] for a scheme with a random time
partition. In the work by Zhang [16], the L2-regularity of Z is obtained, which
allows one to use deterministic time partitions as well as to obtain the rate estimate
(see Bender and Denk [2], Gobet, Lemor and Warin [8] and Zhang [16] for differ-
ent algorithms). We should also mention the works by Briand, Delyon and Mémin
[5] and Ma et al. [10], where the Brownian motion is replaced by a scaled random
walk.

The purpose of the present paper is to construct numerical schemes for the gen-
eral BSDE (1.1), without assuming any particular form for the terminal value ξ and
generator f . This means that ξ can be an arbitrary random variable, and f (r, y, z)

can be an arbitrary Fr -measurable random variable (see Assumption 2.2 in Sec-
tion 2 for precise conditions on ξ and f ). The natural tool that we shall use is the
Malliavin calculus. We emphasize that the main difficulty in constructing a numer-
ical scheme for BSDEs is usually the approximation of the process Z. It is neces-
sary to obtain some regularity properties for the trajectories of this process Z. The
Malliavin calculus turns out to be a suitable tool to handle these problems because
the random variable Zt can be expressed in terms of the trace of the Malliavin
derivative of Yt , namely, Zt = DtYt . This relationship was proved in the paper
by El Karoui, Peng and Quenez [7] and was used by these authors to obtain esti-
mates for the moments of Zt . We shall further exploit this identity to obtain the
Lp-Hölder continuity of the process Z, which is the critical ingredient for the rate
estimate of our numerical schemes.

Our first numerical scheme was inspired by the paper of Zhang [16], where the
author considers a class of BSDEs whose terminal value ξ takes the form g(X·),
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where X is a forward diffusion of the form (1.2), and g satisfies a Lipschitz con-
dition with respect to the L∞ or L1 norms (similar assumptions for f ). The dis-
cretization scheme is based on the regularity of the process Z in the mean square
sense; that is, for any partition π = {0 = t0 < t1 < · · · < tn = T }, one obtains

n−1∑
i=0

E

∫ ti+1

ti

[|Zt − Zti |2 + |Zt − Zti+1 |2]dt ≤ K|π |,(1.3)

where |π | = max0≤i≤n−1(ti+1 − ti), and K is a constant independent of the parti-
tion π .

We consider the case of a general terminal value ξ which is twice differentiable
in the sense of Malliavin calculus, and the first and second derivatives satisfy some
integrability conditions; we also made similar assumptions for the generator f (see
Assumption 2.2 in Section 2 for details). In this sense our framework extends that
of [13] and is also natural. In this framework, we are able to obtain an estimate of
the form

E|Zt − Zs |p ≤ K|t − s|p/2,(1.4)

where K is a constant independent of s and t . Clearly, (1.4) with p = 2 implies
(1.3). Moreover, (1.4) implies the existence of a γ -Hölder continuous version of
the process Z for any γ < 1

2 − 1
p

. Notice that, up to now the path regularity of Z

has been studied only when the terminal value and the generator are functional of
a forward diffusion.

After establishing the regularity of Z, we consider different types of numerical
schemes. First we analyze a scheme similar to the one proposed in [16] [see (3.2)].
In this case we obtain a rate of convergence of the following type:

E sup
0≤t≤T

|Yt − Yπ
t |2 +

∫ T

0
E|Zt − Zπ

t |2 dt ≤ K(|π | + E|ξ − ξπ |2).

Notice that this result is stronger than that in [16] which can be stated as (when
ξπ = ξ )

sup
0≤t≤T

E|Yt − Yπ
t |2 +

∫ T

0
E|Zt − Zπ

t |2 dt ≤ K|π |.

We also propose and study an “implicit” numerical scheme [see (4.1) in Sec-
tion 4 for the details]. For this scheme we obtain a much better result on the rate
of convergence,

E sup
0≤t≤T

|Yt − Yπ
t |p + E

(∫ T

0
|Zt − Zπ

t |2 dt

)p/2

≤ K(|π |p/2 + E|ξ − ξπ |p),

where p > 1 depends on the assumptions imposed on the terminal value and the
coefficients.
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In both schemes, the integral of the process Z is used in each iteration, and for
this reason they are not completely discrete schemes. In order to implement the
scheme on computers, one must replace an integral of the form

∫ ti+1
ti

Zπ
s ds by dis-

crete sums, and then the convergence of the obtained scheme is hardly guaranteed.
To avoid this discretization we propose a truly discrete numerical scheme using our
representation of Zt as the trace of the Malliavin derivative of Yt (see Section 5 for
details). For this new scheme, we obtain a rate of convergence result of the form

E max
0≤i≤n

{|Yti − Yπ
ti

|p + |Zti − Zπ
ti
|p} ≤ K|π |p/2−ε

for any ε > 0. In fact, we have a slightly better rate of convergence (see Theo-
rem 5.2),

E max
0≤i≤n

{|Yti − Yπ
ti

|p + |Zti − Zπ
ti
|p} ≤ K|π |p/2−p/(2 log(1/|π |))

(
log

1

|π |
)p/2

.

However, this type of result on the rate of convergence applies only to some classes
of BSDEs, and thus this scheme remains to be further investigated.

In the computer realization of our schemes or any other schemes, an extremely
important procedure is to compute the conditional expectation of form E(Y |Fti ).
In this paper we shall not discuss this issue but only mention the papers [2, 4]
and [8].

The paper is organized as follows. In Section 2 we obtain a representation of
the martingale integrand Z in terms of the trace of the Malliavin derivative of Y ,
and then we get the Lp-Hölder continuity of Z by using this representation. The
conditions that we assume on the terminal value ξ and the generator f are also
specified in this section. Some examples of application are presented to explain
the validity of the conditions. Section 3 is devoted to the analysis of the approxi-
mation scheme similar to the one introduced in [16]. Under some differentiability
and integrability conditions in the sense of Malliavin calculus on ξ and the non-
linear coefficient f , we establish a better rate of convergence for this scheme. In
Section 4, we introduce an “implicit” scheme and obtain the rate of convergence in
the Lp norm. A completely discrete scheme is proposed and analyzed in Section 5.

Throughout the paper for simplicity we consider only scalar BSDEs. The results
obtained in this paper can be easily extended to multi-dimensional BSDEs.

2. The Malliavin calculus for BSDEs.

2.1. Notations and preliminaries. Let W = {Wt }0≤t≤T be a one-dimensional
standard Brownian motion defined on some complete filtered probability space
(�, F ,P , {Ft}0≤t≤T ). We assume that {Ft }0≤t≤T is the filtration generated by the
Brownian motion and the P -null sets, and F = FT . We denote by P the progres-
sive σ -field on the product space [0, T ] × �.

For any p ≥ 1 we consider the following classes of processes:
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• M2,p , for any p ≥ 2, denotes the class of square integrable random variables F

with a stochastic integral representation of the form

F = EF +
∫ T

0
ut dWt,

where u is a progressively measurable process satisfying sup0≤t≤T E|ut |p < ∞.
• H

p
F ([0, T ]) denotes the Banach space of all progressively measurable processes

ϕ : ([0, T ] × �, P) → (R, B) with norm

‖ϕ‖Hp =
(

E

(∫ T

0
|ϕt |2 dt

)p/2)1/p

< ∞.

• S
p

F ([0, T ]) denotes the Banach space of all the RCLL (right continuous with left
limits) adapted processes ϕ : ([0, T ] × �, P) → (R, B) with norm

‖ϕ‖Sp =
(
E sup

0≤t≤T

|ϕt |p
)1/p

< ∞.

Next, we present some preliminaries on Malliavin calculus, and we refer the
reader to the book by Nualart [14] for more details.

Let H = L2([0, T ]) be the separable Hilbert space of all square integrable real-
valued functions on the interval [0, T ] with scalar product denoted by 〈·, ·〉H. The
norm of an element h ∈ H will be denoted by ‖h‖H. For any h ∈ H we put W(h) =∫ T

0 h(t) dWt .
We denote by C∞

p (Rn) the set of all infinitely continuously differentiable func-
tions g : Rn → R such that g and all of its partial derivatives have polynomial
growth. We make use of the notation ∂ig = ∂g

∂xi
whenever g ∈ C1(Rn).

Let S denote the class of smooth random variables such that a random variable
F ∈ S has the form

F = g(W(h1), . . . ,W(hn)),(2.1)

where g belongs to C∞
p (Rn), h1, . . . , hn are in H and n ≥ 1.

The Malliavin derivative of a smooth random variable F of the form (2.1) is the
H-valued random variable given by

DF =
n∑

i=1

∂ig(W(h1), . . . ,W(hn))hi.

For any p ≥ 1 we will denote the domain of D in Lp(�) by D
1,p , meaning that

D
1,p is the closure of the class of smooth random variables S with respect to the

norm

‖F‖1,p = (E|F |p + E‖DF‖p
H)1/p.

We can define the iteration of the operator D in such a way that for a smooth
random variable F , the iterated derivative DkF is a random variable with values
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in H⊗k . Then for every p ≥ 1 and any natural number k ≥ 1 we introduce the
seminorm on S defined by

‖F‖k,p =
(

E|F |p +
k∑

j=1

E‖DjF‖p

H⊗j

)1/p

.

We will denote by D
k,p the completion of the family of smooth random variables

S with respect to the norm ‖ · ‖k,p .
Let μ be the Lebesgue measure on [0, T ]. For any k ≥ 1 and F ∈ D

k,p , the
derivative

DkF = {Dk
t1,...,tk

F, ti ∈ [0, T ], i = 1, . . . , k}
is a measurable function on the product space [0, T ]k × �, which is defined a.e.
with respect to the measure μk × P .

We use L
1,p
a to denote the set of real-valued progressively measurable processes

u = {ut }0≤t≤T such that:

(i) For almost all t ∈ [0, T ], ut ∈ D
1,p .

(ii) E((
∫ T

0 |ut |2 dt)p/2 + (
∫ T

0
∫ T

0 |Dθut |2 dθ dt)p/2) < ∞.

Notice that we can choose a progressively measurable version of the H-valued
process {Dut }0≤t≤T .

2.2. Estimates on the solutions of BSDEs. The generator f in the BSDE (1.1)
is a measurable function f : ([0, T ] × � × R × R, P ⊗ B ⊗ B) → (R, B), and the
terminal value ξ is an FT -measurable random variable.

DEFINITION 2.1. A solution to the BSDE (1.1) is a pair of progressively mea-
surable processes (Y,Z) such that

∫ T
0 |Zt |2 dt < ∞,

∫ T
0 |f (t, Yt ,Zt )|dt < ∞, a.s.

and

Yt = ξ +
∫ T

t
f (r, Yr,Zr) dr −

∫ T

t
Zr dWr, 0 ≤ t ≤ T .

The next lemma provides a useful estimate on the solution to the BSDE (1.1).

LEMMA 2.2. Fix q ≥ 2. Suppose that ξ ∈ Lq(�), f (t,0,0) ∈ H
q

F ([0, T ]) and
f is uniformly Lipschitz in (y, z); namely, there exists a positive number L such
that μ × P a.e.

|f (t, y1, z1) − f (t, y2, z2)| ≤ L(|y1 − y2| + |z1 − z2|)
for all y1, y2 ∈ R and z1, z2 ∈ R. Then there exists a unique solution pair (Y,Z) ∈
S

q
F ([0, T ])×H

q
F ([0, T ]) to (1.1). Moreover, we have the following estimate for the
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solution:

E sup
0≤t≤T

|Yt |q + E

(∫ T

0
|Zt |2 dt

)q/2

(2.2)

≤ K

(
E|ξ |q + E

(∫ T

0
|f (t,0,0)|2 dt

)q/2)
,

where K is a constant depending only on L, q and T .

PROOF. The proof of the existence and uniqueness of the solution (Y,Z) can
be found in [7], Theorem 5.1, with the local martingale M ≡ 0, since the filtration
here is the filtration generated by the Brownian motion W . Estimate (2.2) can be
easily obtained from Proposition 5.1 in [7] with (f 1, ξ1) = (f, ξ) and (f 2, ξ2) =
(0,0). �

As we will see later, for a given BSDE the process Z will be expressed in terms
of the Malliavin derivative of the solution Y , which will satisfy a linear BSDE
with random coefficients. To study the properties of Z we need to analyze a class
of linear BSDEs.

Let {αt }0≤t≤T and {βt }0≤t≤T be two progressively measurable processes. We
will make use of the following integrability conditions:

ASSUMPTION 2.1.

(H1) For any λ > 0,

Cλ := E exp
(
λ

∫ T

0
(|αt | + β2

t ) dt

)
< ∞.

(H2) For any p ≥ 1,

Kp := sup
0≤t≤T

E(|αt |p + |βt |p) < ∞.

Under condition (H1), we denote by {ρt }0≤t≤T the solution of the linear stochas-
tic differential equation{

dρt = αtρt dt + βtρt dWt , 0 ≤ t ≤ T ,
ρ0 = 1.

(2.3)

The following theorem is a critical tool for the proof of the main theorem in this
section, and it has also its own interest.

THEOREM 2.3. Let q > p ≥ 2 and let ξ ∈ Lq(�) and f ∈ H
q

F ([0, T ]). As-
sume that {αt }0≤t≤T and {βt }0≤t≤T are two progressively measurable processes
satisfying conditions (H1) and (H2) in Assumption 2.1. Suppose that the random
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variables ξρT and
∫ T

0 ρtft dt belong to M2,q , where {ρt }0≤t≤T is the solution to
(2.3). Then the following linear BSDE,

Yt = ξ +
∫ T

t
[αrYr + βrZr + fr ]dr −

∫ T

t
Zr dWr, 0 ≤ t ≤ T ,(2.4)

has a unique solution pair (Y,Z), and there is a constant K > 0 such that

E|Yt − Ys |p ≤ K|t − s|p/2(2.5)

for all s, t ∈ [0, T ].

We need the following lemma to prove the above result.

LEMMA 2.4. Let {αt }0≤t≤T and {βt }0≤t≤T be two progressively measurable
processes satisfying condition (H1) in Assumption 2.1, and {ρt }0≤t≤T be the solu-
tion of (2.3). Then, for any r ∈ R we have

E sup
0≤t≤T

ρr
t < ∞.(2.6)

PROOF. Let t ∈ [0, T ]. The solution to (2.3) can be written as

ρt = exp
{∫ t

0

(
αs − β2

s

2

)
ds +

∫ t

0
βs dWs

}
.

For any real number r , we have

E sup
0≤t≤T

ρr
t = E sup

0≤t≤T

exp
{∫ t

0
r

(
αs − β2

s

2

)
ds + r

∫ t

0
βs dWs

}

≤ E

(
exp

{
|r|
∫ T

0
|αs |ds + 1

2
(|r| + r2)

∫ T

0
β2

s ds

}

× sup
0≤t≤T

exp
{
r

∫ t

0
βs dWs − r2

2

∫ t

0
β2

s ds

})
.

Then, fixing any p > 1 and using Hölder’s inequality, we obtain

E sup
0≤t≤T

ρr
t ≤ C

(
E sup

0≤t≤T

exp
{
rp

∫ t

0
βs dWs − pr2

2

∫ t

0
β2

s ds

})1/p

,(2.7)

where

C =
(

E exp
{
q|r|

∫ T

0
|αs |ds + q

2
(|r| + r2)

∫ T

0
β2

s ds

})1/q

and 1
p

+ 1
q

= 1.
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Set Mt = exp{r ∫ t
0 βs dWs − r2

2

∫ t
0 β2

s ds}. Then {Mt }0≤t≤T is a martingale due
to (H1). We can rewrite (2.7) into

E sup
0≤t≤T

ρr
t ≤ C

(
E sup

0≤t≤T

M
p
t

)1/p
.(2.8)

By Doob’s maximal inequality, we have

E sup
0≤t≤T

M
p
t ≤ cpEM

p
T(2.9)

for some constant cp > 0 depending only on p. Finally, choosing any γ > 1, λ > 1
such that 1

γ
+ 1

λ
= 1 and applying again the Hölder inequality yield

EM
p
T = E

(
exp

{
rp

∫ T

0
βs dWs − γ

2
p2r2

∫ T

0
β2

s ds

}

× exp
{
γp − 1

2
pr2

∫ T

0
β2

s ds

})

≤
(

E exp
{
rpγ

∫ T

0
βs dWs − 1

2
γ 2p2r2

∫ T

0
β2

s ds

})1/γ

×
(

E exp
{
λ(γp − 1)

2
pr2

∫ T

0
β2

s ds

})1/λ

=
(

E exp
{
λ(γp − 1)

2
pr2

∫ T

0
β2

s ds

})1/λ

< ∞.

Combining this inequality with (2.8) and (2.9) we complete the proof. �

PROOF OF THEOREM 2.3. The existence and uniqueness is well known. We
are going to prove (2.5). Let t ∈ [0, T ]. Denote γt = ρ−1

t , where {ρt }0≤t≤T is the
solution to (2.3). Then {γt }0≤t≤T satisfies the following linear stochastic differen-
tial equation: {

dγt = (−αt + β2
t )γt dt − βtγt dWt , 0 ≤ t ≤ T ,

γ0 = 1.

For any 0 ≤ s ≤ t ≤ T and any positive number r ≥ 1, we have, using (H2), the
Hölder inequality, the Burkholder–Davis–Gundy inequality and Lemma 2.4 ap-
plied to the process {γt }0≤t≤T ,

E|γt − γs |r = E

∣∣∣∣∫ t

s
(−αu + β2

u)γu du −
∫ t

s
βuγu dWu

∣∣∣∣r
≤ 2r−1

[
E

∣∣∣∣∫ t

s
(−αu+β2

u)γu du

∣∣∣∣r+CrE

∣∣∣∣∫ t

s
β2

uγ 2
u du

∣∣∣∣r/2]
(2.10)

≤ C(t − s)r/2,
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where Cr is a constant depending only on r , and C is a constant depending on T ,
r and the constants appearing in conditions (H1) and (H2).

From (2.3), (2.4) and by Itô’s formula, we obtain

d(Ytρt ) = −ρtft dt + (βtρtYt + ρtZt ) dWt .

As a consequence,

Yt = ρ−1
t E

(
ξρT +

∫ T

t
ρrfr dr

∣∣∣Ft

)
= E

(
ξρt,T +

∫ T

t
ρt,rfr dr

∣∣∣Ft

)
,(2.11)

where we write ρt,r = ρ−1
t ρr = γtρr for any 0 ≤ t ≤ r ≤ T .

Now, fix 0 ≤ s ≤ t ≤ T . We have

E|Yt − Ys |p = E

∣∣∣∣E(ξρt,T +
∫ T

t
ρt,rfr dr

∣∣∣Ft

)
− E

(
ξρs,T +

∫ T

s
ρs,rfr dr

∣∣∣Fs

)∣∣∣∣p
≤ 2p−1

[
E
∣∣E(ξρt,T |Ft ) − E(ξρs,T |Fs)

∣∣p
+ E

∣∣∣∣E(∫ T

t
ρt,rfr dr

∣∣∣Ft

)
− E

(∫ T

s
ρs,rfr dr

∣∣∣Fs

)∣∣∣∣p]
= 2p−1(I1 + I2).

First we estimate I1. We have

I1 = E
∣∣E(ξρt,T |Ft ) − E(ξρs,T |Fs)

∣∣p
= E

∣∣E(ξρt,T |Ft ) − E(ξρs,T |Ft ) + E(ξρs,T |Ft ) − E(ξρs,T |Fs)
∣∣p

≤ 2p−1[
E
∣∣E(ξρt,T |Ft ) − E(ξρs,T |Ft )|p + E|E(ξρs,T |Ft ) − E(ξρs,T |Fs)

∣∣p]
≤ 2p−1[

E|ξ(ρt,T − ρs,T )|p + E
∣∣E(ξρs,T |Ft ) − E(ξρs,T |Fs)

∣∣p]
= 2p−1(I3 + I4).

Using the Hölder inequality, Lemma 2.4 and the estimate (2.10) with r = 2pq
q−p

, the
term I3 can be estimated as follows:

I3 ≤ (E|ξ |q)p/q(
E|ρt,T − ρs,T |pq/(q−p))(q−p)/q

≤ (E|ξ |q)p/q(
E|γt − γs |2pq/(q−p))(q−p)/(2q)(

Eρ
2pq/(q−p)
T

)(q−p)/(2q)

≤ C|t − s|p/2,

where C is a constant depending only on p,q,T , E|ξ |q and the constants appear-
ing in conditions (H1) and (H2).

In order to estimate the term I4 we will make use of the condition ξρT ∈ M2,q .
This condition implies that

ξρT = E(ξρT ) +
∫ T

0
ur dWr,
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where u is a progressively measurable process satisfying sup0≤t≤T E|ut |q < ∞.
Therefore, by the Burkholder–Davis–Gundy inequality, we have

E
∣∣E(ξρT |Ft ) − E(ξρT |Fs)

∣∣q
= E

∣∣∣∣∫ t

s
ur dWr

∣∣∣∣q ≤ CqE

∣∣∣∣∫ t

s
u2

r dr

∣∣∣∣q/2

≤ Cq(t − s)(q−2)/2
E

(∫ t

s
|ur |q dr

)
≤ Cq(t − s)q/2 sup

0≤t≤T

E|ut |q .

As a consequence, from the definition of I4 we have

I4 = E
∣∣γs[E(ξρT |Ft ) − E(ξρT |Fs)]

∣∣p
≤ (

Eγ pq/(q−p)
s

)(q−p)/q(
E
∣∣E(ξρT |Ft ) − E(ξρT |Fs)

∣∣q)p/q

≤ C|t − s|p/2,

where C is a constant depending on p,q,T , sup0≤t≤T E|ut |q < ∞ and the con-
stants appearing in conditions (H1) and (H2).

The term I2 can be decomposed as follows:

I2 = E

∣∣∣∣E(∫ T

t
ρt,rfr dr

∣∣∣Ft

)
− E

(∫ T

s
ρs,rfr dr

∣∣∣Fs

)∣∣∣∣p
≤ 3p−1

[
E

∣∣∣∣E(∫ T

t
ρt,rfr dr

∣∣∣Ft

)
− E

(∫ T

t
ρs,rfr dr

∣∣∣Ft

)∣∣∣∣p
+ E

∣∣∣∣E(∫ T

t
ρs,rfr dr

∣∣∣Ft

)
− E

(∫ T

s
ρs,rfr dr

∣∣∣Ft

)∣∣∣∣p
+ E

∣∣∣∣E(∫ T

s
ρs,rfr dr

∣∣∣Ft

)
− E

(∫ T

s
ρs,rfr dr

∣∣∣Fs

)∣∣∣∣p]
= 3p−1(I5 + I6 + I7).

Let us first estimate the term I5. Suppose that p < p′ < q . Then, using (2.10) and
the Hölder inequality, we can write

I5 = E

∣∣∣∣E(∫ T

t
ρt,rfr dr

∣∣∣Ft

)
− E

(∫ T

t
ρs,rfr dr

∣∣∣Ft

)∣∣∣∣p
≤ E

∣∣∣∣∫ T

t
(ρt,r − ρs,r )fr dr

∣∣∣∣p = E

(
|γt − γs |p

∣∣∣∣∫ T

t
ρrfr dr

∣∣∣∣p)

≤ {
E|γt − γs |pp′/(p′−p)}(p′−p)/p′{

E

∣∣∣∣∫ T

t
ρrfr dr

∣∣∣∣p′}p/p′
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≤ C|t − s|p/2
{
E

(∫ T

t
ρ2

r dr

)p′q/(2(q−p′))}p(q−p′)/(p′q)

×
{
E

(∫ T

t
f 2

r dr

)q/2}p/q

≤ Ĉ|t − s|p/2‖f ‖p
Hq ,

where Ĉ is a constant depending on p,p′, q , T and the constants appearing in
conditions (H1) and (H2).

Now we estimate I6. Suppose that p < p′ < q . We have, as in the estimate of
the term I5,

I6 = E

∣∣∣∣E(∫ T

t
ρs,rfr dr

∣∣∣Ft

)
− E

(∫ T

s
ρs,rfr dr

∣∣∣Ft

)∣∣∣∣p
≤ E

∣∣∣∣∫ t

s
ρs,rfr dr

∣∣∣∣p = E

(
ρ−p

s

∣∣∣∣∫ t

s
ρrfr dr

∣∣∣∣p)

≤ {
Eρ−pp′/(p′−p)

s

}(p′−p)/p′{
E

∣∣∣∣∫ t

s
ρrfr dr

∣∣∣∣p′}p/p′

= C

{
E

∣∣∣∣∫ t

s
ρrfr dr

∣∣∣∣p′}p/p′

≤ C|t − s|p/2
{
E sup

0≤t≤T

ρ
p′q/(q−p′)
t

}p(q−p′)/(p′q)‖f ‖p
Hq

= Ĉ|t − s|p/2,

where Ĉ is a constant depending on p,p′, q , T and the constants appearing in
conditions (H1) and (H2).

The fact that
∫ T

0 ρrfr dr belongs to M2,q implies that∫ T

0
ρrfr dr = E

∫ T

0
ρrfr dr +

∫ T

0
vr dWr,

where {vt }0≤t≤T is a progressively measurable process satisfying

sup
0≤t≤T

E|vt |q < ∞.

Then, by the Burkholder–Davis–Gundy inequality we have

E

∣∣∣∣E(∫ T

s
ρrfr dr

∣∣∣Ft

)
− E

(∫ T

s
ρrfr dr

∣∣∣Fs

)∣∣∣∣q
= E

∣∣∣∣E(∫ T

0
ρrfr dr

∣∣∣Ft

)
− E

(∫ T

0
ρrfr dr

∣∣∣Fs

)∣∣∣∣q
= E

∣∣∣∣∫ t

s
vr dWr

∣∣∣∣q ≤ Cq(t − s)q/2 sup
0≤t≤T

E|vt |q.
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Finally, we estimate I7 as follows:

I7 = E

∣∣∣∣E(∫ T

s
ρs,rfr dr

∣∣∣Ft

)
− E

(∫ T

s
ρs,rfr dr

∣∣∣Fs

)∣∣∣∣p
= E

∣∣∣∣ρ−1
s

(
E

(∫ T

s
ρrfr dr

∣∣∣Ft

)
− E

(∫ T

s
ρrfr dr

∣∣∣Fs

))∣∣∣∣p
≤ {

Eρ−pq/(q−p)
s

}(q−p)/p

(2.12)

×
{
E

∣∣∣∣E(∫ T

s
ρrfr dr

∣∣∣Ft

)
− E

(∫ T

s
ρrfr dr

∣∣∣Fs

)∣∣∣∣q}p/q

≤ C

{
E

∣∣∣∣E(∫ T

s
ρrfr dr

∣∣∣Ft

)
− E

(∫ T

s
ρrfr dr

∣∣∣Fs

)∣∣∣∣q}p/q

≤ Ĉ|t − s|p/2,

where Ĉ is a constant depending on p, q , T , sup0≤t≤T E|vt |q and the constants
appearing in conditions (H1) and (H2).

As a consequence, we obtain for all s, t ∈ [0, T ]
E|Yt − Ys |p ≤ K|t − s|p/2,

where K is a constant independent of s and t . �

2.3. The Malliavin calculus for BSDEs. We return to the study of (1.1). The
main assumptions we make on the terminal value ξ and generator f are the fol-
lowing:

ASSUMPTION 2.2. Fix 2 ≤ p <
q
2 .

(i) ξ ∈ D
2,q , and there exists L > 0, such that for all θ, θ ′ ∈ [0, T ],

E|Dθξ − Dθ ′ξ |p ≤ L|θ − θ ′|p/2,(2.13)

sup
0≤θ≤T

E|Dθξ |q < ∞(2.14)

and

sup
0≤θ≤T

sup
0≤u≤T

E|DuDθξ |q < ∞.(2.15)

(ii) The generator f (t, y, z) has continuous and uniformly bounded first-
and second-order partial derivatives with respect to y and z, and f (·,0,0) ∈
H

q
F ([0, T ]).
(iii) Assume that ξ and f satisfy the above conditions (i) and (ii). Let (Y,Z)

be the unique solution to (1.1) with terminal value ξ and generator f . For each
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(y, z) ∈ R × R, f (·, y, z), ∂yf (·, y, z) and ∂zf (·, y, z) belong to L
1,q
a , and the

Malliavin derivatives Df (·, y, z), D∂yf (·, y, z) and D∂zf (·, y, z) satisfy

sup
0≤θ≤T

E

(∫ T

θ
|Dθf (t, Yt ,Zt )|2 dt

)q/2

< ∞,(2.16)

sup
0≤θ≤T

E

(∫ T

θ
|Dθ∂yf (t, Yt ,Zt )|2 dt

)q/2

< ∞,(2.17)

sup
0≤θ≤T

E

(∫ T

θ
|Dθ∂zf (t, Yt ,Zt )|2 dt

)q/2

< ∞,(2.18)

and there exists L > 0 such that for any t ∈ (0, T ], and for any 0 ≤ θ, θ ′ ≤ t ≤ T

E

(∫ T

t
|Dθf (r, Yr,Zr) − Dθ ′f (r, Yr,Zr)|2 dr

)p/2

≤ L|θ − θ ′|p/2.(2.19)

For each θ ∈ [0, T ], and each pair of (y, z), Dθf (·, y, z) ∈ L
1,q
a and it has contin-

uous partial derivatives with respect to y, z, which are denoted by ∂yDθf (t, y, z)

and ∂zDθf (t, y, z), and the Malliavin derivative DuDθf (t, y, z) satisfies

sup
0≤θ≤T

sup
0≤u≤T

E

(∫ T

θ∨u
|DuDθf (t, Yt ,Zt )|2 dt

)q/2

< ∞.(2.20)

The following property is easy to check and we omit the proof.

REMARK 2.5. Conditions (2.17) and (2.18) imply

sup
0≤θ≤T

E

(∫ T

θ
|∂yDθf (t, Yt ,Zt )|2 dt

)q/2

< ∞

and

sup
0≤θ≤T

E

(∫ T

θ
|∂zDθf (t, Yt ,Zt )|2 dt

)q/2

< ∞,

respectively.

The following is the main result of this section.

THEOREM 2.6. Let Assumption 2.2 be satisfied.

(a) There exists a unique solution pair {(Yt ,Zt )}0≤t≤T to the BSDE (1.1), and

Y,Z are in L
1,q
a . A version of the Malliavin derivatives {(DθYt ,DθZt)}0≤θ,t≤T of
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the solution pair satisfies the following linear BSDE:

DθYt = Dθξ +
∫ T

t
[∂yf (r, Yr,Zr)DθYr

+ ∂zf (r, Yr,Zr)DθZr + Dθf (r,Yr,Zr)]dr(2.21)

−
∫ T

t
DθZr dWr, 0 ≤ θ ≤ t ≤ T ;

DθYt = 0, DθZt = 0, 0 ≤ t < θ ≤ T .(2.22)

Moreover, {DtYt }0≤t≤T defined by (2.21) gives a version of {Zt }0≤t≤T , namely,
μ × P a.e.

Zt = DtYt .(2.23)

(b) There exists a constant K > 0, such that, for all s, t ∈ [0, T ],
E|Zt − Zs |p ≤ K|t − s|p/2.(2.24)

PROOF. Part (a): The proof of the existence and uniqueness of the solution
(Y,Z), and Y,Z ∈ L

1,2
a is similar to that of Proposition 5.3 in [7], and also the

fact that (DθYt ,DθZt) is given by (2.21) and (2.22). In Proposition 5.3 in [7] the
exponent q is equal to 4, and one assumes that

∫ T
0 ‖Dθf (·, Y,Z)‖2

H 2 dθ < ∞,
which is a consequence of (2.16) and the fact that Y,Z ∈ L

1,2
a .

Furthermore, from conditions (2.14) and (2.16) and the estimate in Lemma 2.2,
we obtain

sup
0≤θ≤T

{
E sup

θ≤t≤T

|DθYt |q + E

(∫ T

θ
|DθZt |2 dt

)q/2}
< ∞.(2.25)

Hence, by Proposition 1.5.5 in [14], Y and Z belong to L
1,q
a .

Part (b): Let 0 ≤ s ≤ t ≤ T . In this proof, C > 0 will be a constant independent
of s and t , and may vary from line to line.

By representation (2.23) we have

Zt − Zs = DtYt − DsYs = (DtYt − DsYt ) + (DsYt − DsYs).(2.26)

From Lemma 2.2 and equation (2.21) for θ = s and θ ′ = t , respectively, we obtain,
using conditions (2.13) and (2.19),

E|DtYt − DsYt |p + E

(∫ T

t
|DtZr − DsZr |2 dr

)p/2

≤ C

[
E|Dtξ − Dsξ |p

(2.27)

+ E

(∫ T

t
|Dtf (r, Yr,Zr) − Dsf (r, Yr,Zr)|2 dr

)p/2]
≤ C|t − s|p/2.
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Denote αu = ∂yf (u,Yu,Zu) and βu = ∂zf (u,Yu,Zu) for all u ∈ [0, T ]. Then, by
Assumption 2.2(ii), the processes α and β satisfy conditions (H1) and (H2) in
Assumption 2.1, and from (2.21) we have for r ∈ [s, T ]

DsYr = Dsξ +
∫ T

r
[αuDsYu + βuDsZu + Dsf (u,Yu,Zu)]du −

∫ T

r
DsZu dWu.

Next, we are going to use Theorem 2.3 to estimate E|DsYt − DsYs |p . Fix p′
with p < p′ <

q
2 (notice that p′ <

q
2 is equivalent to p′

q−p′ < 1). From conditions

(2.14) and (2.16), it is obvious that Dsξ ∈ Lq(�) ⊂ Lp′
(�) and Dsf (·, Y,Z) ∈

Hq([0, T ]) ⊂ Hp′
([0, T ]) for any s ∈ [0, T ]. We are going to show that, for any

s ∈ [0, T ], ρT Dsξ and
∫ T
s ρuDsf (u,Yu,Zu) du are elements in M2,p′

, where

ρr = exp
{∫ r

0
βu dWu +

∫ r

0

(
αu − 1

2
β2

u

)
du

}
.

For any 0 ≤ θ ≤ r ≤ T , let us compute

Dθρr = ρr

{∫ r

θ
[∂yzf (u,Yu,Zu)DθYu

+ ∂zzf (u,Yu,Zu)DθZu + Dθ∂zf (u,Yu,Zu)]dWu

+ ∂zf (θ,Yθ ,Zθ)

+
∫ r

θ

(
∂yyf (u,Yu,Zu) − ∂yzf (u,Yu,Zu)βu

)
DθYu du

+
∫ r

θ

(
∂yzf (u,Yu,Zu) − ∂zzf (u,Yu,Zu)βu

)
DθZu du

+
∫ r

θ

(
Dθ∂yf (u,Yu,Zu) − βuDθ∂zf (u,Yu,Zu)

)
du

}
.

By the boundedness of the first- and second-order partial derivatives of f with
respect to y and z, (2.17), (2.18), (2.25), Lemma 2.4, the Hölder inequality and the
Burkholder–Davis–Gundy inequality, it is easy to show that for any p′′ < q ,

sup
0≤θ≤T

E sup
θ≤r≤T

|Dθρr |p′′
< ∞.(2.28)

By the Clark–Ocone–Haussman formula, we have

ρT Dsξ = E(ρT Dsξ) +
∫ T

0
E(Dθ(ρT Dsξ)|Fθ ) dWθ

= E(ρT Dsξ) +
∫ T

0
E(DθρT Dsξ + ρT DθDsξ |Fθ ) dWθ

= E(ρT Dsξ) +
∫ T

0
us

θ dWθ
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and ∫ T

s
ρrDsf (r, Yr,Zr) dr

= E

∫ T

s
ρrDsf (r, Yr,Zr) dr

+
∫ T

0
E

(
Dθ

∫ T

s
ρrDsf (r, Yr,Zr) dr

∣∣∣Fθ

)
dWθ

= E

∫ T

s
ρrDsf (r, Yr,Zr) dr

+
∫ T

0
E

(∫ T

s
[DθρrDsf (r, Yr,Zr)

+ ρr∂yDsf (r, Yr,Zr)DθYr

+ ρr∂zDsf (r, Yr,Zr)DθZr

+ ρrDθDsf (r, Yr,Zr)]dr
∣∣∣Fθ

)
dWθ

= E

∫ T

s
ρrDsf (r, Yr,Zr) dr +

∫ T

0
vs
θ dWθ .

We claim that sup0≤θ≤T E|us
θ |p

′
< ∞ and sup0≤θ≤T E|vs

θ |p
′
< ∞. In fact,

E|us
θ |p

′ = E
∣∣E(DθρT Dsξ + ρT DθDsξ |Fθ )

∣∣p′

≤ 2p′−1(E|DθρT Dsξ |p′ + E|ρT DθDsξ |p′
)

≤ 2p′−1((
E|DθρT |p′q/(q−p′))(q−p′)/q

(E|Dsξ |q)p
′/q

+ (
Eρ

p′q/(q−p′)
T

)(q−p′)/q
(E|DθDsξ |q)p′/q).

By (2.14), (2.15), (2.28) and Lemma 2.4, we have sup0≤s≤T sup0≤θ≤T E|us
θ |p

′
<

∞. On the other hand,

E|vs
θ |p

′ = E

∣∣∣∣E(∫ T

s
[DθρrDsf (r, Yr,Zr)

+ ρr∂yDsf (r, Yr,Zr)DθYr

+ ρr∂zDsf (r, Yr,Zr)DθZr

+ ρrDθDsf (r, Yr,Zr)]dr
∣∣∣Fθ

)∣∣∣∣p′

≤ 4p′−1[J1 + J2 + J3 + J4],
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where

J1 = E

∣∣∣∣∫ T

s
DθρrDsf (r, Yr,Zr) dr

∣∣∣∣p′
,

J2 = E

∣∣∣∣∫ T

s
ρr∂yDsf (r, Yr,Zr)DθYr dr

∣∣∣∣p′
,

J3 = E

∣∣∣∣∫ T

s
ρr∂zDsf (r, Yr,Zr)DθZr dr

∣∣∣∣p′

and

J4 = E

∣∣∣∣∫ T

s
ρrDθDsf (r, Yr,Zr) dr

∣∣∣∣p′
.

For J1, we have

J1 ≤ E

(
sup

θ≤r≤T

|Dθρr |p′
∣∣∣∣∫ T

s
Dsf (r, Yr,Zr) dr

∣∣∣∣p′)

≤
(
E sup

θ≤r≤T

|Dθρr |p′q/(q−p′)
)(q−p′)/q

×
(

E

∣∣∣∣∫ T

s
Dsf (r, Yr,Zr) dr

∣∣∣∣q)p′/q

≤ T p′/2
(
E sup

θ≤r≤T

|Dθρr |p′q/(q−p′)
)(q−p′)/q

×
(

E

(∫ T

0
|Dsf (r, Yr,Zr)|2 dr

)q/2)p′/q
.

For J2, we have

J2 ≤ E

(
sup

θ≤r≤T

|DθYr |p′
(

sup
0≤r≤T

ρr

∫ T

s
|∂yDsf (r, Yr,Zr)|dr

)p′)

≤
(
E sup

θ≤r≤T

|DθYr |q
)p′/q

×
(

E

(
sup

0≤r≤T

ρr

∫ T

s
|∂yDsf (r, Yr,Zr)|dr

)p′q/(q−p′))(q−p′)/q

≤
(
E sup

θ≤r≤T

|DθYr |q
)p′/q(

E sup
0≤r≤T

ρp′q/(q−2p′)
r

)(q−2p′)/q

×
(

E

(∫ T

s
|∂yDsf (r, Yr,Zr)|dr

)q)p′/q
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≤ T p′/2
(
E sup

θ≤r≤T

|DθYr |q
)p′/q(

E sup
0≤r≤T

ρp′q/(q−2p′)
r

)(q−2p′)/q

×
(

E

(∫ T

0
|∂yDsf (r, Yr,Zr)|2 dr

)q/2)p′/q
.

Using a similar techniques as before, we obtain that

J3 ≤ T p′/2
(

E

(∫ T

0
|DθZr |2 dr

)q/2)p′/q(
E sup

0≤r≤T

ρp′q/(q−2p′)
r

)(q−2p′)/q

×
(

E

(∫ T

0
|∂zDsf (r, Yr,Zr)|2 dr

)q/2)p′/q

and

J4 ≤ T p′/2
(
E sup

0≤r≤T

ρp′q/(q−p′)
r

)(q−p′)/q

×
(

E

(∫ T

0
|DθDsf (r, Yr,Zr)|2 dr

)q/2)p′/q
.

By (2.16), (2.17)–(2.20), (2.28) and Lemma 2.4, we obtain that

sup
0≤s≤T

sup
0≤θ≤T

E|vs
θ |p

′
< ∞.

Therefore, ρT ξ and
∫ T

0 ρuDsf (u,Yu,Zu) du belong to M2,p′
.

Thus by Theorem 2.3 with p < p′, there is a constant C(s) > 0, such that

E|DsYt − DsYs |p ≤ C(s)|t − s|p/2

for all t ∈ [s, T ]. Furthermore, taking into account the proof of the estimates Ik

(k = 3,4, . . . ,7) in the proof of Theorem 2.3, we can show that sup0≤s≤T C(s) =:
C < ∞. Thus we have

E|DsYt − DsYs |p ≤ C|t − s|p/2(2.29)

for all s, t ∈ [0, T ]. Combining (2.29) with (2.26) and (2.27), we obtain that there
is a constant K > 0 independent of s and t , such that

E|Zt − Zs |p ≤ K|t − s|p/2

for all s, t ∈ [0, T ]. �

COROLLARY 2.7. Under the assumptions in Theorem 2.2, let (Y,Z) ∈
S

q
F ([0, T ])×H

q
F ([0, T ]) be the unique solution pair to (1.1). If sup0≤t≤T E|Zt |q <

∞, then there exists a constant C, such that, for any s, t ∈ [0, T ],
E|Yt − Ys |q ≤ C|t − s|q/2.(2.30)
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PROOF. Without loss of generality we assume 0 ≤ s ≤ t ≤ T . C > 0 is a con-
stant independent of s and t , which may vary from line to line. Since

Ys = Yt +
∫ t

s
f (r, Yr,Zr) dr −

∫ t

s
Zr dWr,

we have, by the Lipschitz condition on f ,

E|Yt − Ys |q = E

∣∣∣∣∫ t

s
f (r, Yr,Zr) dr −

∫ t

s
Zr dWr

∣∣∣∣q
≤ 2q−1

(
E

∣∣∣∣∫ t

s
f (r, Yr,Zr) dr

∣∣∣∣q + E

∣∣∣∣∫ t

s
Zr dWr

∣∣∣∣q)

≤ Cq

(
|t − s|q/2

E

(∫ t

s
|f (r, Yr,Zr)|2 dr

)q/2

+ E

(∫ t

s
|Zr |2 dr

)q/2)

≤ C

{
|t − s|q/2

[
E

(∫ t

s
|Yr |2 dr

)q/2

+ E

(∫ t

s
|Zr |2 dr

)q/2

+ E

(∫ t

s
|f (r,0,0)|2 dr

)q/2]
+ |t − s|q/2 sup

0≤r≤T

E|Zr |q
}

≤ C|t − s|q/2.

The proof is complete. �

REMARK 2.8. From Theorem 2.6 we know that {(DθYt ,DθZt)}0≤θ≤t≤T sat-
isfies equation (2.21) and Zt = DtYt , μ×P a.e. Moreover, since (2.14) and (2.16)
hold, we can apply the estimate (2.2) in Lemma 2.2 to the linear BSDE (2.21) and
deduce sup0≤t≤T E|Zt |q < ∞. Therefore, by Lemma 2.7, the process Y satisfies
the inequality (2.30). By Kolmogorov’s continuity criterion this implies that Y has
Hölder continuous trajectories of order γ for any γ < 1

2 − 1
q

.

2.4. Examples. In this section we discuss three particular examples where As-
sumption 2.2 is satisfied.

EXAMPLE 2.9. Consider equation (1.1). Assume that:

(a) f (t, y, z) : [0, T ] × R × R → R is a deterministic function that has uni-
formly bounded first- and second-order partial derivatives with respect to y and z,
and

∫ T
0 f (t,0,0)2 dt < ∞.

(b) The terminal value ξ is a multiple stochastic integral of the form

ξ =
∫
[0,T ]n

g(t1, . . . , tn) dWt1 · · ·dWtn,(2.31)
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where n ≥ 2 is an integer and g(t1, . . . , tn) is a symmetric function in L2([0, T ]n),
such that

sup
0≤u≤T

∫
[0,T ]n−1

g(t1, . . . , tn−1, u)2 dt1 · · ·dtn−1 < ∞,

sup
0≤u,v≤T

∫
[0,T ]n−2

g(t1, . . . , tn−2, u, v)2 dt1 · · ·dtn−2 < ∞,

and there exists a constant L > 0 such that for any u, v ∈ [0, T ]∫
[0,T ]n−1

|g(t1, . . . , tn−1, u) − g(t1, . . . , tn−1, v)|2 dt1 · · ·dtn−1 < L|u − v|.

From (2.31), we know that

Duξ = n

∫
[0,T ]n−1

g(t1, . . . , tn−1, u) dWt1 · · ·dWtn−1 .

The above assumption implies Assumption 2.2, and therefore, Z satisfies the
Hölder continuity property (2.24).

EXAMPLE 2.10. Let � = C0([0,1]) equipped with the Borel σ -field and
Wiener measure. Then, � is a Banach space with supremum norm ‖ · ‖∞, and
Wt = ω(t) is the canonical Wiener process. Consider equation (1.1) on the inter-
val [0,1]. Assume that:

(g1) f (t, y, z) : [0,1] × R × R → R is a deterministic function that has uni-
formly bounded first- and second-order partial derivatives with respect to y and z,
and

∫ 1
0 f (t,0,0)2 dt < ∞.

(g2) ξ = ϕ(W), where ϕ :� → R is twice Fréchet differentiable, and the first-
and second-order Fréchet derivatives δϕ and δ2ϕ satisfy

|ϕ(ω)| + ‖δϕ(ω)‖ + ‖δ2ϕ(ω)‖ ≤ C1 exp {C2‖ω‖r∞}
for all ω ∈ � and some constants C1 > 0, C2 > 0 and 0 < r < 2, where ‖ · ‖
denotes the operator norm (total variation norm).

(g3) If λ denotes the signed measure on [0,1] associated with δϕ, there exists
a constant L > 0 such that for all 0 ≤ θ ≤ θ ′ ≤ 1,

E|λ((θ, θ ′])|p ≤ L|θ − θ ′|p/2

for some p ≥ 2.

It is easy to show that Dθξ = λ((θ,1]) and DuDθξ = ν((θ,1] × (u,1]), where ν

denotes the signed measure on [0,1] × [0,1] associated with δ2ϕ. From the above
assumptions and Fernique’s theorem, we can get Assumption 2.2, and therefore,
the Hölder continuity property (2.24) of Z.
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EXAMPLE 2.11. Consider the following forward–backward stochastic differ-
ential equation (FBSDE for short):⎧⎪⎪⎪⎨⎪⎪⎪⎩

Xt = X0 +
∫ t

0
b(r,Xr) dr +

∫ t

0
σ(r,Xr) dWr,

Yt = ϕ

(∫ T

0
X2

r dr

)
+
∫ T

t
f (r,Xr,Yr,Zr) dr −

∫ T

t
Zr dWr,

(2.32)

where b,σ , ϕ and f are deterministic functions, and X0 ∈ R.
We make the following assumptions:

(h1) b and σ has uniformly bounded first- and second-order partial derivatives
with respect to x, and there is a constant L > 0, such that, for any s, t ∈ [0, T ],
x ∈ R,

|σ(t, x) − σ(s, x)| ≤ L|t − s|1/2.

(h2) sup0≤t≤T {|b(t,0)| + |σ(t,0)|} < ∞.
(h3) ϕ is twice differentiable, and there exist a constant C > 0 and a positive

integer n such that∣∣∣∣ϕ(∫ T

0
X2

t dt

)∣∣∣∣+ ∣∣∣∣ϕ′
(∫ T

0
X2

t dt

)∣∣∣∣+ ∣∣∣∣ϕ′′
(∫ T

0
X2

t dt

)∣∣∣∣≤ C(1 + ‖X‖∞)n,

where ‖x‖∞ = sup{|x(t)|,0 ≤ t ≤ T } for any x ∈ C([0, T ]).
(h4) f (t, x, y, z) has continuous and uniformly bounded first- and second-

order partial derivatives with respect to x, y and z and
∫ T

0 f (t,0,0,0)2 dt < ∞.

Notice that in this example, �(X) = ϕ(
∫ T

0 X2
t dt) is not necessarily globally Lip-

schitz in X, and the results of [16] cannot be applied directly.
Under the above assumptions, (h1) and (h4), equation (2.32) has a unique so-

lution triple (X,Y,Z), and we have the following classical results: for any real
number r > 0, there exists a constant C > 0 such that

E sup
0≤t≤T

|Xt |r < ∞, E|Xt − Xs |r ≤ C|t − s|r/2

for any t, s ∈ [0, T ]. For any fixed (y, z) ∈ R × R, we have Dθf (t,Xt , y, z) =
∂xf (t,Xt , y, z)DθXt . Then, under all the assumptions in this example, by The-
orem 2.2.1 and Lemma 2.2.2 in [14] and the results listed above, we can verify
Assumption 2.2. Therefore, Z has the Hölder continuity property (2.24).

Note that in the multidimensional case we do not require the matrix σσT to be
invertible.

3. An explicit scheme for BSDEs. In the remaining part of this paper, we let
π = {0 = t0 < t1 < · · · < tn = T } be a partition of the interval [0, T ] and |π | =
max0≤i≤n−1 |ti+1 − ti |. Denote �i = ti+1 − ti ,0 ≤ i ≤ n − 1.
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From (1.1), we know that, when t ∈ [ti , ti+1],
Yt = Yti+1 +

∫ ti+1

t
f (r, Yr,Zr) dr −

∫ ti+1

t
Zr dWr.(3.1)

Comparing with the numerical schemes for forward stochastic differential equa-
tions, we could introduce a numerical scheme of the form

Y
1,π
tn = ξπ ,

Y
1,π
ti

= Y
1,π
ti+1

+ f (ti+1, Y
1,π
ti+1

,Z
1,π
ti+1

)�i −
∫ ti+1

ti

Z1,π
r dWr,

t ∈ [ti , ti+1), i = n − 1, n − 2, . . . ,0,

where ξπ ∈ L2(�) is an approximation of the terminal condition ξ . This leads to
a backward recursive formula for the sequence {Y 1,π

ti
,Z

1,π
ti

}0≤i≤n. In fact, once

Y
1,π
ti+1

and Z
1,π
ti+1

are defined, then we can find Y
1,π
ti

by

Y
1,π
ti

= E
(
Y

1,π
ti+1

+ f (ti+1, Y
1,π
ti+1

,Z
1,π
ti+1

)�i |Fti

)
,

and {Z1,π
r }ti≤r<ti+1 is determined by the stochastic integral representation of the

random variable

Y
1,π
ti

− Y
1,π
ti+1

− f (ti+1, Y
1,π
ti+1

,Z
1,π
ti+1

)�i.

Although {Z1,π
r }ti≤r<ti+1 can be expressed explicitly by Clark–Ocone–Haussman

formula, its computation is a hard problem in practice. On the other hand, there
are difficulties in studying the convergence of the above scheme.

An alternative scheme is introduced in [16], where the approximating pairs
(Y π ,Zπ) are defined recursively by

Yπ
tn

= ξπ , Zπ
tn

= 0,

Y π
t = Yπ

ti+1
+ f

(
ti+1, Y

π
ti+1

,E

(
1

�i+1

∫ ti+2

ti+1

Zπ
r dr

∣∣∣Fti+1

))
�i(3.2)

−
∫ ti+1

t
Zπ

r dWr, t ∈ [ti , ti+1), i = n − 1, n − 2, . . . ,0,

where, by convention, E( 1
�i+1

∫ ti+2
ti+1

Zπ
r dr|Fti+1) = 0 when i = n − 1. In [16] the

following rate of convergence is proved for this approximation scheme, assuming
that the terminal value ξ and the generator f are functionals of a forward diffusion
associated with the BSDE,

max
0≤i≤n

E|Yti − Yπ
ti

|2 + E

∫ T

0
|Zt − Zπ

t |2 dt ≤ K|π |.(3.3)

The main result of this section is the following, which on one hand improves
the above rate of convergence, and on the other hand extends terminal value ξ and
generator f to more general situation.
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THEOREM 3.1. Consider the approximation scheme (3.2). Let Assumption 2.2
be satisfied, and let the partition π satisfy max0≤i≤n−1 �i/�i+1 ≤ L1, where L1
is a constant. Assume that a constant L2 > 0 exists such that

|f (t2, y, z) − f (t1, y, z)| ≤ L2|t2 − t1|1/2(3.4)

for all t1, t2 ∈ [0, T ] and y, z ∈ R. Then there are positive constants K and δ,
independent of the partition π , such that, if |π | < δ, then

E sup
0≤t≤T

|Yt − Yπ
t |2 + E

∫ T

0
|Zt − Zπ

t |2 dt ≤ K(|π | + E|ξ − ξπ |2).(3.5)

PROOF. In this proof, C > 0 will denote a constant independent of the par-
tition π , which may vary from line to line. Inequality (2.24) in Theorem 2.6(b)
yields the following estimate (Theorem 3.1 in [16]) with p = 2:

n−1∑
i=0

E

∫ ti+1

ti

(|Zt − Zti |2 + |Zt − Zti+1 |2) dt ≤ C|π |.

Using this estimate and following the same argument as the proof of Theorem 5.3
in [16], we can obtain the following result:

max
0≤i≤n

E|Yti − Yπ
ti

|2 + E

∫ T

0
|Zt − Zπ

t |2 dt ≤ C(|π | + E|ξ − ξπ |2).(3.6)

Denote

Z̃π
ti

=
⎧⎨⎩

0, if i = n;

E

(
1

�i

∫ ti+1

ti

Zπ
r dr

∣∣∣Fti

)
, if i = n − 1, n − 2, . . . ,0.(3.7)

If ti ≤ t < ti+1, i = n − 1, n − 2, . . . ,0, then, by iteration, we have

Yπ
t = Yπ

ti+1
+ f (ti+1, Y

π
ti+1

, Z̃π
ti+1

)�i −
∫ ti+1

t
Zπ

r dWr

(3.8)

= ξπ +
n∑

k=i+1

f (tk, Y
π
tk

, Z̃π
tk
)�k−1 −

∫ T

t
Zπ

r dWr.

Therefore,

Yπ
t = E

(
ξπ +

n∑
k=i+1

f (tk, Y
π
tk

, Z̃π
tk
)�k−1

∣∣∣Ft

)
, t ∈ [ti , ti+1).

We rewrite the BSDE (1.1) as follows:

Yt = ξ +
∫ T

t
f (r, Yr,Zr) dr −

∫ T

t
Zr dWr

(3.9)

= ξ +
n∑

k=i+1

f (tk, Ytk ,Ztk )�k−1 −
∫ T

t
Zr dWr + Rπ

t ,
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where

|Rπ
t | =

∣∣∣∣∣
∫ T

t
f (r, Yr,Zr) dr −

n∑
k=i+1

f (tk, Ytk ,Ztk )�k−1

∣∣∣∣∣
=
∣∣∣∣∣

n∑
k=i+1

∫ tk

tk−1

[f (r, Yr,Zr) − f (tk, Ytk ,Ztk )]dr −
∫ t

ti

f (r, Yr,Zr) dr

∣∣∣∣∣
≤

n∑
k=i+1

∫ tk

tk−1

|f (r, Yr,Zr) − f (tk, Ytk ,Ztk )|dr +
∫ ti+1

ti

|f (r, Yr,Zr)|dr.

By Lemma 2.2 and the Lipschitz condition on f , we have

E

(∫ T

0
|f (r, Yr,Zr)|2 dr

)p/2

< ∞,

and hence,

E max
0≤i≤n−1

(∫ ti+1

ti

|f (r, Yr,Zr)|dr

)p

(3.10)

≤ |π |p/2
E

(∫ T

0
|f (r, Yr,Zr)|2 dr

)p/2

.

Define a function {t (r)}0≤r≤T by

t (r) =
{

T , if r = T ,
ti+1, if ti ≤ r < ti+1, i = n − 1, . . . ,0.

By the Hölder inequality, the boundedness of the first-order partial derivatives
of f , (3.4), (2.24), Remark 2.8 and (3.10), it is easy to see that

E sup
0≤t≤T

|Rπ
t |p ≤ 2p−1

[
E

(∫ T

0

∣∣f (r, Yr,Zr) − f
(
t (r), Yt(r),Zt(r)

)∣∣dr

)p

+ E max
0≤i≤n−1

(∫ ti+1

ti

|f (r, Yr,Zr)|dr

)p]

≤ (2T )p−1
E

∫ T

0

∣∣f (r, Yr,Zr) − f
(
t (r), Yt(r),Zt(r)

)∣∣p dr(3.11)

+ 2p−1|π |p/2
E

(∫ T

0
|f (r, Yr,Zr)|2 dr

)p/2

≤ C|π |p/2,

where, by convention, RT = 0. In particular, we obtain

E sup
0≤t≤T

|Rπ
t |2 ≤ C|π |.(3.12)
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To simplify the notation we denote

δYπ
t = Yt − Yπ

t , δZπ
t = Zt − Zπ

t for all t ∈ [0, T ]
and

Ẑπ
ti

= Zti − Z̃π
ti

for i = n,n − 1, . . . ,0.

Then, when ti ≤ t < ti+1, by (3.8) and (3.9) we can write

δYπ
t =

n∑
k=i+1

[f (tk, Ytk ,Ztk ) − f (tk, Y
π
tk

, Z̃π
tk
)]�k−1

−
∫ T

t
δZπ

r dWr + Rπ
t + δξπ ,

where δξπ = ξ − ξπ . Therefore, we obtain

δYπ
t = E

(
n∑

k=i+1

[f (tk, Ytk ,Ztk ) − f (tk, Y
π
tk

, Z̃π
tk
)]�k−1 + Rπ

t + δξπ
∣∣∣Ft

)
.(3.13)

Denote f̃ π
tk

= f (tk, Ytk ,Ztk ) − f (tk, Y
π
tk

, Z̃π
tk
). From equality (3.13) for tj ≤ t <

tj+1, where i ≤ j ≤ n − 1, and taking into account that δYπ
T = δYπ

tn
= δξπ , we

obtain

sup
ti≤t≤T

|δYπ
t | ≤ sup

ti≤t≤T

E

(
n∑

k=i+1

|f̃ π
tk

|�k−1 + sup
0≤r≤T

|Rπ
r | + |δξπ |

∣∣∣Ft

)
.

The above conditional expectation is a martingale if it is considered as a process
indexed by t ∈ [ti , T ]. Thus, using Doob’s maximal inequality, we obtain

E sup
ti≤t≤T

|δYπ
t |2 ≤ E sup

ti≤t≤T

[
E

(
n∑

k=i+1

|f̃ π
tk

|�k−1 + sup
0≤r≤T

|Rπ
r | + |δξπ |

∣∣∣Ft

)]2

≤ CE

(
n∑

k=i+1

|f̃ π
tk

|�k−1 + sup
0≤r≤T

|Rπ
r | + |δξπ |

)2

≤ C

{
E

(
n∑

k=i+1

|f̃ π
tk

|�k−1

)2

+ E sup
0≤r≤T

|Rπ
r |2 + E|δξπ |2

}
.

From (3.12), we deduce

E sup
ti≤t≤T

|δYπ
t |2 ≤ C

{
E

(
n∑

k=i+1

|f̃ π
tk

|�k−1

)2

+ E|δξπ |2 + |π |
}
.
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Using the Lipschitz condition on f , we obtain

E sup
ti≤t≤T

|δYπ
t |2 ≤ C

{
(T − ti)

2
E sup

i+1≤k≤n

|δYπ
tk

|2

+ E

(
n−1∑

k=i+1

|Ẑπ
tk
|�k−1

)2

+ E|Ẑtn |2�2
n−1

}
(3.14)

+ C(E|δξπ |2 + |π |).
Notice that

E

(
n−1∑

k=i+1

|Ẑπ
tk
|�k−1

)2

= E

(
n−1∑

k=i+1

∣∣∣∣Ztk − 1

�k

∫ tk+1

tk

E(Zπ
u |Ftk ) du

∣∣∣∣�k−1

)2

≤ E

(
n−1∑

k=i+1

�k−1

�k

∫ tk+1

tk

E(|Ztk − Zπ
u ||Ftk ) du

)2

≤ L2
1E

(
n−1∑

k=i+1

∫ tk+1

tk

E(|Ztk − Zπ
u ||Ftk ) du

)2

(3.15)

≤ 2L2
1

{
E

(
n−1∑

k=i+1

∫ tk+1

tk

E(|Ztk − Zu||Ftk ) du

)2

+ E

(
n−1∑

k=i+1

∫ tk+1

tk

E(|Zu − Zπ
u ||Ftk ) du

)2}

= 2L2
1(I1 + I2).

Now the Minkowski and the Hölder inequalities yield

I1 ≤ E

(
n−1∑

k=i+1

{∫ tk+1

tk

(
E(|Ztk − Zu||Ftk )

)2
du

}1/2

�
1/2
k

)2

≤ (T − ti)

n−1∑
k=i+1

∫ tk+1

tk

E
(
E(|Ztk − Zu||Ftk )

)2
du

(3.16)

≤ (T − ti)

n−1∑
k=i+1

∫ tk+1

tk

E|Ztk − Zu|2 du

≤ C(T − ti)

n−1∑
k=i+1

∫ tk+1

tk

|tk − u|du ≤ C|π |.
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In a similar way and by (3.6), we obtain

I2 ≤ (T − ti)

n−1∑
k=i+1

∫ tk+1

tk

E|Zu − Zπ
u |2 du

(3.17)

= (T − ti)

∫ T

ti+1

E|δZπ
u |2 du ≤ C|π |.

On the other hand,

E(Ẑπ
tn
�n−1)

2 = E|Ztn |2|�n−1|2 ≤ C|π |2.(3.18)

From (3.14)–(3.18), we have

E sup
ti≤t≤T

|δYπ
t |2 ≤ C1(T − ti)

2
E sup

i+1≤k≤n

|δYπ
tk

|2
(3.19)

+ C2(E|δξπ |2 + |π |),
where C1 and C2 are two positive constants independent of the partition π .

We can find a constant δ > 0 independent of the partition π , such that C1(3δ)2 <
1
2 and T > 2δ. Denote l = [ T

2δ
] ([x] means the greatest integer no larger than x).

Then l ≥ 1 is an integer independent of the partition π . If |π | < δ, then for the
partition π we can choose n − 1 > i1 > i2 > · · · > il ≥ 0, such that, T − 2δ ∈
(ti1−1, ti1], T − 4δ ∈ (ti2−1, ti2], . . . , T − 2δl ∈ [0, til ] (with t−1 = 0).

For simplicity, we denote ti0 = T and til+1 = 0. Each interval [tij+1, tij ], j =
0,1, . . . , l, has length less than 3δ, that is, |tij − tij+1 | < 3δ. On each interval
[tij+1, tij ], j = 0,1, . . . , l, we consider the recursive formula (3.2), and (3.19) be-
comes

E sup
tij+1≤t≤tij

|δYπ
t |2 ≤ C1(tij − tij+1)

2
E sup

ij+1+1≤k≤ij

|δYπ
tk

|2

(3.20)
+ C2(E|δYπ

tij
|2 + |π |).

Using (3.20), we can obtain inductively

E sup
tij+1≤t≤tij

|δYπ
t |2

≤ C1(tij − tij+1)
2
E sup

ij+1+1≤k≤ij

|δYπ
tk

|2 + C2(E|δYπ
tij

|2 + |π |)

≤ C1(tij − tij+1)
2 · · ·C1(tij − tij−1)

2
E|δYπ

tij
|2

+ C2(E|δYπ
tij

|2 + |π |)
× (

1 + C1(tij − tij+1)
2 + C1(tij − tij+1)

2C1(tij − tij+1+1)
2

+ · · · + C1(tij − tij+1)
2C1(tij − tij+1+1)

2 · · ·C1(tij − tij−1)
2)(3.21)
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≤ (C1(3δ)2)ij−ij+1E|δYπ
tij

|2

+ C2(E|δYπ
tij

|2 + |π |)
× (

1 + C1(3δ)2 + (C1(3δ)2)2 + · · · + (C1(3δ)2)ij−ij+1
)

≤ E|δYπ
tij

|2 + C2

1 − C1(3δ)2 (E|δYπ
tij

|2 + |π |)

≤ E|δYπ
tij

|2 + 2C2(E|δYπ
tij

|2 + |π |)
= (2C2 + 1)E|δYπ

tij
|2 + 2C2|π |.

By recurrence, we obtain

E sup
tij+1≤t≤tij

|δYπ
t |2

≤ (2C2 + 1)j+1
E|δξπ |2 + C2|π |(1 + (2C2 + 1) + · · · + (2C2 + 1)j

)
(3.22)

≤ (2C2 + 1)l+1
E|δξπ |2 + C2|π |(1 + (2C2 + 1) + · · · + (2C2 + 1)l

)
≤ 3(2C2 + 1)l+1

2
(E|δξπ |2 + |π |).

Therefore, taking C = 3(2C2+1)l+1

2 , we obtain

E sup
0≤t≤T

|δYπ
t |2 ≤ max

0≤j≤l
E sup

tij+1≤t≤tij

|δYπ
t |2 ≤ C(|π | + E|ξ − ξπ |2).

Combining the above estimate with (3.6), we know that there exists a constant
K > 0 independent of the partition π , such that

E sup
0≤t≤T

|Yt − Yπ
t |2 + E

∫ T

0
|Zt − Zπ

t |2 dt ≤ K(|π | + E|ξ − ξπ |2). �

REMARK 3.2. The numerical scheme introduced before, as other similar
schemes, involves the computation of conditional expectations with respect to the
σ -field Fti+1 . To implement this scheme in practice we need to approximate these
conditional expectations. Some work has been done to solve this problem, and we
refer the reader to the references [2, 4] and [8].

4. An implicit scheme for BSDEs. In this section, we propose an implicit
numerical scheme for the BSDE (1.1). Define the approximating pairs (Y π ,Zπ)
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recursively by

Yπ
tn

= ξπ ,

Y π
t = Yπ

ti+1
+ f

(
ti+1, Y

π
ti+1

,
1

�i

∫ ti+1

ti

Zπ
r dr

)
�i −

∫ ti+1

t
Zπ

r dWr,(4.1)

t ∈ [ti , ti+1), i = n − 1, n − 2, . . . ,0,

where the partition π and �i , i = n − 1, . . . ,0, are defined in Section 3, and ξπ

is an approximation of the terminal value ξ . In this recursive formula (4.1), on
each subinterval [ti , ti+1), i = n − 1, . . . ,0, the nonlinear “generator” f contains
the information of Zπ on the same interval. In this sense, this formula is different
from formula (3.2), and (4.1) is an equation for {(Y π

t ,Zπ
t )}ti≤t<ti+1 . When |π |

is sufficiently small, the existence and uniqueness of the solution to the above
equation can be established. In fact, equation (4.1) is of the following form:

Yt = ξ + g

(∫ b

a
Zr dr

)
−
∫ b

t
Zr dWr, t ∈ [a, b] and 0 ≤ a < b ≤ T .(4.2)

For the BSDE (4.2), we have the following theorem.

THEOREM 4.1. Let 0 ≤ a < b ≤ T and p ≥ 2. Let ξ be Fb-measurable and
ξ ∈ Lp(�). If there exists a constant L > 0 such that g : (�×R, Fb ⊗ B) → (R, B)

satisfies

|g(z1) − g(z2)| ≤ L|z1 − z2|
for all z1, z2 ∈ R and g(0) ∈ Lp(�), then there is a constant δ(p,L) > 0,
such that, when b − a < δ(p,L), equation (4.2) has a unique solution (Y,Z) ∈
S

p
F ([a, b]) × H

p
F ([a, b]).

PROOF. We shall use the fixed point theorem for the mapping from H
p

F ([a, b])
into H

p
F ([a, b]) which maps z to Z, where (Y,Z) is the solution of the following

BSDE:

Yt = ξ + g

(∫ b

a
zr dr

)
−
∫ b

t
Zr dWr, t ∈ [a, b].(4.3)

In fact, by the martingale representation theorem, there exist a progressively mea-
surable process Z = {Zt }a≤t≤b such that E

∫ b
a Z2

t dt < ∞ and

ξ + g

(∫ b

a
zr dr

)
= E

(
ξ + g

(∫ b

a
zr dr

)∣∣∣Fa

)
+
∫ b

a
Zt dWt .

By the integrability properties of ξ, g(0) and z, one can show that Z ∈ H
p

F ([a, b]).
Define Yt = E(ξ +g(

∫ b
a zr dr)|Ft ), t ∈ [a, b]. Then (Y,Z) satisfies equation (4.3).
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Notice that Y is a martingale. Then by the Lipschitz condition on g, the inte-
grability of ξ, g(0) and z, and Doob’s maximal inequality, we can prove that
Y ∈ S

p
F ([a, b]).

Let z1, z2 be two elements in the Banach space H
p

F ([a, b]), and let (Y 1,Z1),
(Y 2,Z2) be the associated solutions, that is,

Y i
t = ξ + g

(∫ b

a
zi
r dr

)
−
∫ b

t
Zi

r dWr, t ∈ [a, b], i = 1,2.

Denote

Ȳ = Y 1 − Y 2, Z̄ = Z1 − Z2, z̄ = z1 − z2.

Then

Ȳt = g

(∫ b

a
z1
r dr

)
− g

(∫ b

a
z2
r dr

)
−
∫ b

t
Z̄r dWr(4.4)

for all t ∈ [a, b]. So

Ȳt = E

(
g

(∫ b

a
z1
r dr

)
− g

(∫ b

a
z2
r dr

)∣∣∣Ft

)
for all t ∈ [a, b]. Thus by Doob’s maximal inequality, we have

E sup
a≤t≤b

|Ȳt |p = E sup
a≤t≤b

∣∣∣∣E(g

(∫ b

a
z1
r dr

)
− g

(∫ b

a
z2
r dr

)∣∣∣Ft

)∣∣∣∣p

≤ CE

∣∣∣∣g(∫ b

a
z1
r dr

)
− g

(∫ b

a
z2
r dr

)∣∣∣∣p
(4.5)

≤ CE

∣∣∣∣∫ b

a
z1
r dr −

∫ b

a
z2
r dr

∣∣∣∣p
≤ C(b − a)p/2

E

(∫ b

a
|z̄r |2 dr

)p/2

,

where C > 0 is a generic constant depending on L and p, which may vary from
line to line. From (4.4), it is easy to see

Ȳt = Ȳa +
∫ t

a
Z̄r dWr

for all t ∈ [a, b]. Therefore, by the Burkholder–Davis–Gundy inequality and (4.5),
we have

E

(∫ b

a
|Z̄r |2 dr

)p/2

≤ CE sup
a≤t≤b

∣∣∣∣∫ t

a
Z̄r dWr

∣∣∣∣p
≤ C

[
E|Ȳa|p + E sup

a≤t≤b

|Ȳt |p
]

(4.6)

≤ C(b − a)p/2
E

(∫ b

a
|z̄r |2 dr

)p/2

,
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that is,

‖Z̄‖Hp ≤ C1(b − a)1/2‖z̄‖Hp,

where C1 is a positive constant depending only on L and p.
Take δ(p,L) = 1/C2

1 . It is obvious that the mapping is a contraction when
b − a < δ(p,L), and hence there exists a unique solution (Y,Z) ∈ S

p
F ([a, b]) ×

H
p

F ([a, b]) to the BSDE (4.2). �

Now we begin to study the convergence of the scheme (4.1).

THEOREM 4.2. Let Assumption 2.2 be satisfied, and let π be any partition.
Assume that ξπ ∈ Lp(�) and there exists a constant L1 > 0 such that, for all
t1, t2 ∈ [0, T ],

|f (t2, y, z) − f (t1, y, z)| ≤ L1|t2 − t1|1/2.

Then, there are two positive constants δ and K independent of the partition π ,
such that, when |π | < δ, we have

E sup
0≤t≤T

|Yt − Yπ
t |p + E

(∫ T

0
|Zt − Zπ

t |2 dt

)p/2

≤ K(|π |p/2 + E|ξ − ξπ |p).

PROOF. If |π | < δ(p,L), where δ(p,L) is the constant in Theorem 4.1, then
Theorem 4.1 guarantees the existence and uniqueness of (Y π ,Zπ). Denote, for
i = n − 1, n − 2, . . . ,0,

Z̃π
ti+1

= 1

ti+1 − tti

∫ ti+1

ti

Zπ
r dr.

Notice that {Z̃π
ti
, }i=n−1,n−2,...,0 here is different from that in Section 3. Then

Yπ
ti

= Yπ
ti+1

+ f (ti+1, Y
π
ti+1

, Z̃π
ti+1

)�i

−
∫ ti+1

ti

Zπ
r dWr, i = n − 1, n − 2, . . . ,0.

Recursively, we obtain

Yπ
ti

= ξπ +
n∑

k=i+1

f (tk, Y
π
tk

, Z̃π
tk
)�k−1

−
∫ T

ti

Zπ
r dWr, i = n − 1, n − 2, . . . ,0.

Denote

δξπ = ξ − ξπ , δYπ
t = Yt − Yπ

t , δZπ
t = Zt − Zπ

t , t ∈ [0, T ],
and

Ẑπ
ti

= Zti − Z̃π
ti
, i = n − 1, . . . ,0.



MALLIAVIN CALCULUS, NUMERICAL SOLUTION OF BSDE 2411

If t ∈ [ti , ti+1), i = n − 1, n − 2, . . . ,0, then by iteration, we have

δYπ
t = δξπ +

n∑
k=i+1

[f (tk, Ytk ,Ztk ) − f (tk, Y
π
tk

, Z̃π
tk
)]�k−1

(4.7)

−
∫ T

ti

δZπ
r dWr + Rπ

t ,

where Rπ
t is exactly the same as that in Section 3.

Denote f̃ π
tk

= f (tk, Ytk ,Ztk ) − f (tk, Y
π
tk

, Z̃π
tk
). Then for t ∈ [ti , ti+1), i = n −

1, n − 2, . . . ,0, we have

δYπ
t = E

(
δξπ +

n∑
k=i+1

f̃ π
tk

�k−1 + Rπ
t

∣∣∣Ft

)
.(4.8)

From equality (4.8) for tj ≤ t < tj+1, where i ≤ j ≤ n−1, and taking into account
that δYπ

T = δYπ
tn

= δξπ , we obtain

sup
ti≤t≤T

|δYπ
t | ≤ sup

ti≤t≤T

E

(
n∑

k=i+1

|f̃ π
tk

|�k−1 + sup
0≤r≤T

|Rπ
r | + |δξπ |

∣∣∣Ft

)
.

The above conditional expectation is a martingale if it is considered as a process
indexed by t for t ∈ [ti , T ]. Using Doob’s maximal inequality, (3.11), and the Lip-
schitz condition on f , we have

E sup
ti≤t≤T

|δYπ
t |p

≤ E sup
ti≤t≤T

[
E

(
n∑

k=i+1

|f̃ π
tk

|�k−1 + sup
0≤r≤T

|Rπ
r | + |δξπ |

∣∣∣Ft

)]p

≤ CE

(
n∑

k=i+1

|f̃ π
tk

|�k−1 + sup
0≤r≤T

|Rπ
r | + |δξπ |

)p

≤ C

{
E

(
n∑

k=i+1

|f̃ π
tk

|�k−1

)p

+ E sup
0≤r≤T

|Rπ
r |p + E|δξπ |p

}

≤ C

{
E

(
n∑

k=i+1

|δYπ
tk

|�k−1

)p

+ E

(
n∑

k=i+1

|Ẑπ
tk
|�k−1

)p

+ |π |p/2 + E|δξπ |p
}

≤ C

{
(T − ti)

p
E sup

i+1≤k≤n

|δYπ
tk

|p

+ E

(
n∑

k=i+1

|Ẑπ
tk
|�k−1

)p

+ |π |p/2 + E|δξπ |p
}
,
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where, and in the following, C > 0 denotes a generic constant independent of the
partition π and may vary from line to line. On the other hand, we have, by the
Hölder continuity of Z given by (2.24),

E

(
n∑

k=i+1

|Ẑπ
tk
|�k−1

)p

= E

(
n∑

k=i+1

∣∣∣∣Ztk − 1

�k−1

∫ tk

tk−1

Zπ
r dr

∣∣∣∣�k−1

)p

≤ E

(
n∑

k=i+1

∫ tk

tk−1

|Ztk − Zr |dr +
n∑

k=i+1

∫ tk

tk−1

|Zr − Zπ
r |dr

)p

≤ C|π |p/2 + 2p−1
E

(∫ T

ti

|Zr − Zπ
r |dr

)p

≤ C|π |p/2 + 2p−1(T − ti)
p/2

E

(∫ T

ti

|Zr − Zπ
r |2 dr

)p/2

= C|π |p/2 + 2p−1(T − ti)
p/2

E

(∫ T

ti

|δZπ
r |2 dr

)p/2

.

Hence, we obtain

E sup
ti≤t≤T

|δYπ
t |p

≤ C1

{
(T − ti)

p
E sup

i+1≤k≤n

|δYtk |p
(4.9)

+ (T − ti)
p/2

E

(∫ T

ti

|δZπ
r |2 dr

)p/2

+ |π |p/2 + E|δξπ |p
}
,

where C1 is a constant independent of the partition π . By the Burkholder–Davis–
Gundy inequality, we have

E

(∫ T

ti

|δZπ
r |2 dr

)p/2

≤ cpE

∣∣∣∣∫ T

ti

δZπ
r dWr

∣∣∣∣p.(4.10)

From (4.7), we obtain∫ T

ti

δZπ
r dWr = δξπ +

n∑
k=i+1

f̃ π
tk

�k−1 + Rπ
ti

− δYπ
ti

.(4.11)
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Thus, from (4.10) and (4.11), we obtain

E

(∫ T

ti

|δZπ
r |2 dr

)p/2

≤ Cp

{
E

∣∣∣∣∣
n∑

k=i+1

f̃ π
tk

�k−1

∣∣∣∣∣
p

+ E|δξπ |p + E|Rπ
ti
|p + E|δYπ

ti
|p
}
.

Similar to (4.9), we have

E

(∫ T

ti

|δZπ
r |2 dr

)p/2

≤ C2

{
(T − ti)

p
E sup

i+1≤k≤n

|δYtk |p

+ (T − ti)
p/2

E

(∫ T

ti

|δZπ
r |2 dr

)p/2

+ |π |p/2 + E|δξπ |p
}
,

where C2 is a constant independent of the partition π .
If C2(T − ti)

p/2 < 1
2 , then we have

E

(∫ T

ti

|δZπ
r |2 dr

)p/2

≤ 2C2(T − ti)
p
E sup

i+1≤k≤n

|δYtk |p
(4.12)

+ 2C2(|π |p/2 + E|δξπ |p).

Substituting (4.12) into (4.9), we have

E sup
ti≤t≤T

|δYπ
t |p

≤ C1
(
1 + 2C2(T − ti)

p/2)(T − ti)
p
E sup

i+1≤k≤n

|δYtk |p
(4.13)

+ C1
(
1 + 2C2(T − ti)

p/2)(|π |p/2 + E|δξπ |p)

≤ 2C1(T − ti)
p
E sup

i+1≤k≤n

|δYtk |p + 2C1(|π |p/2 + E|δξπ |p).

We can find a positive constant δ < δ(p,L) independent of the partition π , such
that,

C2(3δ)p/2 < 1
2 ,(4.14)

2C1(3δ)p < 1
2(4.15)

and T > 2δ. Denote l = [ T
2δ

]. Then l ≥ 1 is an integer independent of the parti-
tion π . If |π | < δ, then for the partition π we can choose n − 1 > i1 > i2 > · · · >
il ≥ 0, such that, T − 2δ ∈ (ti1−1, ti1], T − 4δ ∈ (ti2−1, ti2], . . . , T − 2δl ∈ [0, til ]
(with t−1 = 0). For simplicity, we denote ti0 = T and til+1 = 0. Each interval
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[tij+1, tij ], j = 0,1, . . . , l, has length less than 3δ, that is, |tij − tij+1 | < 3δ. On
[tij+1, tij ], we consider the recursive formula (4.1). Then (4.13)–(4.15) yield

E sup
tij+1≤t≤tij

|δYπ
t |p

≤ 2C1(tij − tij+1)
p
E sup

ij+1+1≤k≤ij

|δYtk |p + 2C1(|π |p/2 + E|δYπ
tij

|p)

(4.16)
≤ 2C1(3δ)pE sup

ij+1+1≤k≤ij

|δYtk |p + 2C1(|π |p/2 + E|δYπ
tij

|p)

≤ 1

2
sup

ij+1+1≤k≤ij

|δYtk |p + 2C1(|π |p/2 + E|δYπ
tij

|p).

As in the proof of (3.21) and (3.22), we have

E sup
tij+1≤t≤tij

|δYπ
t |p ≤ (4C1 + 1)E|δYπ

tij
|p + 4C1|π |p/2

and

E sup
tij+1≤t≤tij

|δYπ
t |p ≤ 3(4C1 + 1)l+1

2
(E|δξπ |2 + |π |p/2).

Therefore, we obtain

E sup
0≤t≤T

|δYπ
t |p ≤ max

0≤j≤l
E sup

tij+1≤t≤tij

|δYπ
t |p

(4.17)

≤ 3(4C1 + 1)l+1

2
(E|δξπ |p + |π |p/2).

On [tij+1, tij ], j = 0,1, . . . , l, based on the recursive formula (4.1) and (4.17), in-
equality (4.12) becomes

E

(∫ tij

tij+1

|δZπ
r |2 dr

)p/2

≤ 2C2(tij − tij+1)
p
E sup

ij+1+1≤k≤ij

|δYtk |p + 2C2(|π |p/2 + E|δξπ |p)

≤ 2C2(3δ)pE sup
ij+1+1≤k≤ij

|δYtk |p + 2C2(|π |p/2 + E|δξπ |p)

≤ 1

2
E sup

ij+1+1≤k≤ij

|δYtk |p + 2C2(|π |p/2 + E|δξπ |p)

≤
(

3(4C1 + 1)l+1

4
+ 2C2

)
(|π |p/2 + E|δξπ |p).



MALLIAVIN CALCULUS, NUMERICAL SOLUTION OF BSDE 2415

Thus

E

(∫ T

0
|δZπ

t |2 dt

)p/2

= E

(
l∑

j=0

∫ tij

tij+1

|δZπ
t |2 dt

)p/2

(4.18)

≤ (l + 1)p/2−1
l∑

j=0

E

(∫ tij

tij+1

|δZπ
t |2 dt

)p/2

≤ (l + 1)p/2
(

3(4C1 + 1)l+1

4
+ 2C2

)
(|π |p/2 + E|δξπ |p).

Combining (4.17) and (4.18), we know that there exists a constant

K = (l + 1)p/2
(

3(4C1 + 1)l+1

2
+ 4C2

)
independent of the partition π , such that

E sup
0≤t≤T

|Yt − Yπ
t |p + E

(∫ T

0
|Zt − Zπ

t |2 dt

)p/2

≤ K(|π |p/2 + E|ξ − ξπ |p). �

REMARK 4.3. The advantages of this implicit numerical scheme are:

(i) we can obtain the rate of convergence in Lp sense;
(ii) the partition π can be arbitrary (|π | should be small enough) without as-

suming max0≤i≤n−1 �i/�i+1 ≤ L1.

5. A new discrete scheme. For all the numerical schemes considered in Sec-
tions 3 and 4, one needs to evaluate processes {Zπ

t }0≤t≤T with continuous index t .
In this section, we use the representation of Z in terms of the Malliavin derivative
of Y to derive a completely discrete scheme.

From (2.21), {DθYt }0≤θ≤t≤T can be represented as

DθYt = E

(
ρt,T Dθξ +

∫ T

t
ρt,rDθf (r, Yr,Zr) dr

∣∣∣Ft

)
,(5.1)

where

ρt,r = exp
{∫ r

t
βs dWs +

∫ r

t

(
αs − 1

2
β2

s

)
ds

}
(5.2)

with αs = ∂yf (s, Ys,Zs) and βs = ∂zf (s, Ys,Zs).
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Using that Zt = DtYt , μ × P a.e., from (1.1), (5.1) and (5.2), we propose the
following numerical scheme. We define recursively

Yπ
tn

= ξ, Zπ
tn

= DT ξ,

Yπ
ti

= E
(
Yπ

ti+1
+ f (ti+1, Y

π
ti+1

,Zπ
ti+1

)�i |Fti

)
,

(5.3)

Zπ
ti

= E

(
ρπ

ti+1,tn
Dti ξ +

n−1∑
k=i

ρπ
ti+1,tk+1

Dtif (tk+1, Y
π
tk+1

,Zπ
tk+1

)�k

∣∣∣Fti

)
,

i = n − 1, n − 2, . . . ,0,

where ρπ
ti ,ti

= 1, i = 0,1, . . . , n, and for 0 ≤ i < j ≤ n,

ρπ
ti ,tj

= exp

{j−1∑
k=i

∫ tk+1

tk

∂zf (r, Y π
tk

,Zπ
tk
) dWr

(5.4)

+
j−1∑
k=i

∫ tk+1

tk

(
∂yf (r, Y π

tk
,Zπ

tk
) − 1

2
[∂zf (r, Y π

tk
,Zπ

tk
)]2
)

dr

}
.

An alternative expression for ρπ
ti ,tj

is given by the following formula:

ρπ
ti ,tj

= exp

{j−1∑
k=i

∂zf (tk, Y
π
tk

,Zπ
tk
)(Wtk+1 − Wtk)

(5.5)

+
j−1∑
k=i

(
∂yf (tk, Y

π
tk

,Zπ
tk
) − 1

2
[∂zf (tk, Y

π
tk

,Zπ
tk
)]2
)
�k

}
.

However, we will only consider the scheme (5.3) with ρπ
ti ,tj

given by (5.4).
We make the following assumptions:

(G1) f (t, y, z) is deterministic, which implies Dθf (t, y, z) = 0.
(G2) f (t, y, z) is linear with respect to y and z; namely, there are three func-

tions g(t), h(t) and f1(t) such that

f (t, y, z) = g(t)y + h(t)z + f1(t).

Assume that g, h are bounded and f1 ∈ L2([0, T ]). Moreover, there exists a con-
stant L2 > 0, such that, for all t1, t2 ∈ [0, T ],

|g(t2) − g(t1)| + |h(t2) − h(t1)| + |f1(t2) − f1(t1)| ≤ L|t2 − t1|1/2.

(G3) E sup0≤θ≤T |Dθξ |r < ∞, for all r ≥ 1.
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Notice that (G1) and (G2) imply (ii) and (iii) in Assumption 2.2.

REMARK 5.1. We propose condition (G1) in order to simplify {Zπ
ti
}i=n−1,...,0

in formula (5.3). In fact, there are some difficulties in generalizing the condi-
tion (G)s, especially (G1), to a forward–backward stochastic differential equation
(FBSDE, for short) case.

If we consider a FBSDE⎧⎪⎪⎨⎪⎪⎩
Xt = X0 +

∫ t

0
b(r,Xr) dr +

∫ t

0
σ(r,Xr) dWr,

Yt = ξ +
∫ T

t
f (r,Xr,Yr,Zr) dr −

∫ T

t
Zr dWr,

where X0 ∈ R, and the functions b,σ,f are deterministic, then under some appro-
priate conditions [e.g., (h1)–(h4) in Example 2.11] Zπ

ti
for i = n−1, . . . ,0 in (5.3)

is of the form

Zπ
ti

= E

(
ρπ

ti+1,tn
Dti ξ

+
n−1∑
k=i

ρπ
ti+1,tk+1

∂xf (tk+1,X
π
tk+1

, Y π
tk+1

,Zπ
tk+1

)DtiX
π
tk+1

�k

∣∣∣Fti

)
,

where (Xπ,Yπ,Zπ) is a certain numerical scheme for (X,Y,Z). It is hard to
guarantee the existence and the convergence of Malliavin derivative of Xπ , and
therefore, the convergence of Zπ is difficult to derive.

THEOREM 5.2. Let Assumption 2.2(i) and assumptions (G1)–(G3) be satis-
fied. Then there are positive constants K and δ independent of the partition π ,
such that, when |π | < δ we have

E max
0≤i≤n

{|Yti − Yπ
ti

|p + |Zti − Zπ
ti
|p} ≤ K|π |p/2−p/(2 log(1/|π |))

(
log

1

|π |
)p/2

.

PROOF. In the proof, C > 0 will denote a constant independent of the parti-
tion π , which may vary from line to line. Under the assumption (G1), we can see
that

Zπ
ti

= E(ρπ
ti+1,tn

Dti ξ |Fti ), i = n − 1, n − 2, . . . ,0.(5.6)

Denote, for i = n − 1, n − 2, . . . ,0,

δZπ
ti

= Zti − Zπ
ti
, δY π

ti
= Yti − Yπ

ti
.
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Since |ex − ey | ≤ (ex + ey)|x − y|, we deduce, for all i = n − 1, n − 2, . . . ,0,

|δZπ
ti
| = ∣∣E(ρti ,tnDti ξ |Fti ) − E(ρπ

ti+1,tn
Dti ξ |Fti )

∣∣
≤ E(|ρti,tn − ρπ

ti+1,tn
||Dti ξ ||Fti )

≤ E

(
|Dti ξ |(ρti ,tn + ρπ

ti+1,tn
)

×
∣∣∣∣∫ T

ti

h(r) dWr +
∫ T

ti

g(r) dr − 1

2

∫ T

ti

h(r)2 dr

−
n−1∑

k=i+1

∫ tk+1

tk

h(r) dWr −
n−1∑

k=i+1

∫ tk+1

tk

g(r) dr

+ 1

2

n−1∑
k=i+1

∫ tk+1

tk

h(r)2 dr

∣∣∣∣∣∣∣Fti

)

≤ E

(
|Dti ξ |(ρti ,tn + ρπ

ti+1,tn
)

×
[∣∣∣∣∫ ti+1

ti

h(r) dWr

∣∣∣∣+ ∫ ti+1

ti

|g(r)|dr

+ 1

2

∫ ti+1

ti

h(r)2 dr

]∣∣∣Fti

)
.

From (G2), we have

|Dti ξ |ρπ
ti+1,tn

≤ |Dti ξ | exp

{∫ T

ti+1

h(r) dWr +
n−1∑

k=i+1

∫ tk+1

tk

g(r) dr − 1

2

∫ T

ti+1

h(r)2 dr

}

≤ C1

(
sup

0≤θ≤T

|Dθξ |
)(

sup
0≤t≤T

exp
{∫ T

t
h(r) dWr

})
,

where C1 > 0 is a constant independent of the partition π .
In the same way, we obtain

|Dti ξ |ρti ,tn < C1

(
sup

0≤θ≤T

|Dθξ |
)(

sup
0≤t≤T

exp
{∫ T

t
h(r) dWr

})
.

Thus for i = n − 1, n − 2, . . . ,0,

|δZπ
ti
| ≤ 2C1E

((
sup

0≤θ≤T

|Dθξ |
)(

sup
0≤t≤T

exp
{∫ T

t
h(r) dWr

})

×
[∣∣∣∣∫ ti+1

ti

h(r) dWr

∣∣∣∣+ ∫ ti+1

ti

|g(r)|dr + 1

2

∫ ti+1

ti

h(r)2 dr

]∣∣∣Fti

)
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≤ 2C1E

((
sup

0≤θ≤T

|Dθξ |
)(

sup
0≤t≤T

exp
{∫ T

t
h(r) dWr

})

×
[

sup
0≤k≤n−1

∣∣∣∣∫ tk+1

tk

h(r) dWr

∣∣∣∣+ sup
0≤k≤n−1

∫ tk+1

tk

|g(r)|dr

+ 1

2
sup

0≤k≤n−1

∫ tk+1

tk

h(r)2 dr

]∣∣∣Fti

)
.

The right-hand side of the above inequality is a martingale as a process indexed by
i = n − 1, n − 2, . . . ,0.

Let ηt = exp{− ∫ t
0 h(u)dWu}. Then, ηt satisfies the following linear stochastic

differential equation: {
dηt = −h(t)ηt dWt + 1

2h(t)2ηtdt,

η0 = 1.

By (G1), (G2), the Hölder inequality and Lemma 2.4, it is easy to show that, for
any r ≥ 0,

E

(
sup

0≤t≤T

exp
{∫ T

t
h(u) dWu

})r

= E

(
exp

{∫ T

0
h(u)dWu

}
sup

0≤t≤T

exp
{
−
∫ t

0
h(u)dWu

})r

≤
(

E exp
{

2r

∫ T

0
h(u)dWu

})1/2

(5.7)

×
(

E sup
0≤t≤T

exp
{
−2r

∫ t

0
h(u)dWu

})1/2

= exp
{
r2
∫ T

0
h(u)2 dr

}(
E sup

0≤t≤T

η2r
t

)1/2
< ∞.

For any p′ ∈ (p,
q
2 ), by Doob’s maximal inequality and the Hölder inequality, (G3)

and (5.7), we have

E sup
0≤i≤n

|δZπ
ti
|p

≤ CE

((
sup

0≤θ≤T

|Dθξ |
)p
(

sup
0≤t≤T

exp
{∫ T

t
h(r) dWr

})p

×
[

sup
0≤k≤n−1

∣∣∣∣∫ tk+1

tk

h(r) dWr

∣∣∣∣
+ sup

0≤k≤n−1

∫ tk+1

tk

|g(r)|dr + 1

2
sup

0≤k≤n−1

∫ tk+1

tk

h(r)2 dr

]p)
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≤ C

[
E

((
sup

0≤θ≤T

|Dθξ |
)pp′/(p′−p)

×
(

sup
0≤t≤T

exp
{∫ T

t
h(r) dWr

})pp′/(p′−p))](p′−p)/p′

×
[
E

(
sup

0≤k≤n−1

∣∣∣∣∫ tk+1

tk

h(r) dWr

∣∣∣∣+ sup
0≤k≤n−1

∫ tk+1

tk

|g(r)|dr

+ 1

2
sup

0≤k≤n−1

∫ tk+1

tk

h(r)2 dr

)p′]p/p′

≤ C
[
E

(
sup

0≤θ≤T

|Dθξ |
)2pp′/(p′−p)]p′/(2(p′−p))

×
[
E

(
sup

0≤t≤T

exp
{∫ T

t
h(r) dWr

})2pp′/(p′−p)]p′/(2(p′−p))

×
[
E sup

0≤k≤n−1

∣∣∣∣∫ tk+1

tk

h(r) dWr

∣∣∣∣p′
+ E sup

0≤k≤n−1

(∫ tk+1

tk

|g(r)|dr

)p′

+ E sup
0≤k≤n−1

(∫ tk+1

tk

h(r)2 dr

)p′]p/p′

= C[I1 + I2 + I3]p/p′
.

For any r > 1, by the Hölder inequality we can obtain

I1 = E sup
0≤k≤n−1

∣∣∣∣∫ tk+1

tk

h(r) dWr

∣∣∣∣p′
≤
{
E sup

0≤k≤n−1

∣∣∣∣∫ tk+1

tk

h(r) dWr

∣∣∣∣p′r}1/r

≤
{

E

n−1∑
k=0

∣∣∣∣∫ tk+1

tk

h(r) dWr

∣∣∣∣p′r}1/r

.

For any centered Gaussian variable X, and any γ ≥ 1, we know that

E|X|γ ≤ C̃γ γ γ/2(E|X|2)γ /2,

where C̃ is a constant independent of γ . Thus, we can see that

I1 ≤
(
C̃p′r (p′r)p′r/2

n−1∑
i=0

(∫ ti+1

ti

h(r)2 dr

)p′r/2
)1/r

≤ Crp′/2|π |p′/2−1/r .

Take r = 2 log(1/|π |)
p′ . Assume |π | is small enough; then we have

I1 ≤ C|π |p′/2−p′/(2 log(1/|π |))
(

log
1

|π |
)p′/2

.



MALLIAVIN CALCULUS, NUMERICAL SOLUTION OF BSDE 2421

It is easy to see that

I2 = E sup
0≤k≤n−1

(∫ tk+1

tk

|g(r)|dr

)p′
≤ C|π |p′

and

I3 = E sup
0≤k≤n−1

(∫ tk+1

tk

h(r)2 dr

)p′
≤ C|π |p′

.

Consequently, we obtain

E sup
0≤i≤n

|δZπ
ti
|p ≤ C|π |p/2−p/(2 log(1/|π |))

(
log

1

|π |
)p/2

.(5.8)

Applying recursively the scheme given by (5.3), we obtain

Yπ
ti

= E

(
ξ +

n∑
k=i+1

f (tk, Y
π
tk

,Zπ
tk
)�k−1

∣∣∣Fti

)
, i = n − 1, n − 2, . . . ,0.

Therefore, for i = n − 1, n − 2, . . . ,0,

|δYπ
ti

| ≤ E

(
n∑

k=i+1

|f (tk, Ytk ,Ztk ) − f (tk, Y
π
tk

,Zπ
tk
)|�k−1 + |Rπ

ti
| + |δξπ |

∣∣∣Fti

)
,

where Rπ
t is exactly the same as in Section 3 and δξπ = ξ − ξ = 0. In fact, we

keep the term δξπ to indicate the role it plays as the terminal value.
For j = n − 1, n − 2, . . . , i, we have

|δYπ
tj

| ≤ E

(
n∑

k=i+1

|f (tk, Ytk ,Ztk ) − f (tk, Y
π
tk

,Zπ
tk
)|�k−1

+ sup
0≤t≤T

|Rπ
t | + |δξπ |

∣∣∣Ftj

)
.

By Doob’s maximal inequality and (5.8), we obtain

E sup
i≤j≤n

|δYπ
tj

|p

≤ CE

(
n∑

k=i+1

|f (tk, Ytk ,Ztk ) − f (tk, Y
π
tk

,Zπ
tk
)|�k−1

)p

+ C(|π |p/2 + E|δξπ |p)

≤ C

{
E

(
n∑

k=i+1

|Ytk − Yπ
tk

|�k−1

)p

+ E

(
n∑

k=i+1

|Ztk − Zπ
tk
|�k−1

)p}
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+ C(|π |p/2 + E|δξπ |p)

≤ C2(T − ti)
p
E sup

i+1≤k≤n

|Ytk − Yπ
tk

|p

+ C3

(
|π |p/2−p/(2 log(1/|π |))

(
log

1

|π |
)p/2

+ E|δξπ |p
)
,

where C2 and C3 are constants independent of the partition π .
We can obtain the estimate for E max0≤i≤n|Yti − Yπ

ti
|p by using similar argu-

ments to analyze (4.13) in Theorem 4.2 to get the estimate for E sup0≤t≤T |Yt −
Yπ

t |. �
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