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COEXISTENCE IN LOCALLY REGULATED COMPETING
POPULATIONS AND SURVIVAL OF BRANCHING

ANNIHILATING RANDOM WALK

BY JOCHEN BLATH,1 ALISON ETHERIDGE 2 AND MARK MEREDITH3

Technische Universität Berlin, University of Oxford and University of Oxford

We propose two models of the evolution of a pair of competing popula-
tions. Both are lattice based. The first is a compromise between fully spatial
models, which do not appear amenable to analytic results, and interacting par-
ticle system models, which do not, at present, incorporate all of the compet-
itive strategies that a population might adopt. The second is a simplification
of the first, in which competition is only supposed to act within lattice sites
and the total population size within each lattice point is a constant. In a spe-
cial case, this second model is dual to a branching annihilating random walk.
For each model, using a comparison with oriented percolation, we show that
for certain parameter values, both populations will coexist for all time with
positive probability. As a corollary, we deduce survival for all time of branch-
ing annihilating random walk for sufficiently large branching rates. We also
present a number of conjectures relating to the rôle of space in the survival
probabilities for the two populations.

1. Introduction. Natural populations interact with one another and with their
environment in complex ways. No mathematical model can possibly incorporate
all such interactions and still remain analytically tractable. As a result, in order
to understand the effects of a feature of a population’s dynamics, it is often use-
ful to study “toy models.” In this paper, we investigate two such toy models that
aim to parody the evolution of two populations that are distributed in space and
competing for the same resource. Both of our models can be viewed as a com-
promise between fully spatial models which do not appear to be amenable to a
rigorous mathematical analysis and interacting particle system models which do
not, at present, incorporate all of the competitive strategies that a population of,
say, plants might adopt.

Although lattice based, our first model is highly reminiscent of the models in
continuous space studied by Bolker and Pacala [2] and Murrell and Law [12],
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while admitting a rigorous mathematical analysis. It comprises a system of inter-
acting diffusions, indexed by Z

d , driven by independent Feller noises and cou-
pled through a drift term that reflects migration and competition (both within and
between species). Our second model is much simpler: first, we suppose that the
parameters governing migration of individuals within the two populations are the
same and that competition between the populations acts only within individual lat-
tice sites; second, we suppose that the total population size within each lattice site
is a fixed constant. When we further restrict to the symmetric case, in which the
parameters governing the evolution of the two populations are the same, we shall
exhibit a duality between this second process and a branching annihilating random
walk. The latter is a process that has received considerable attention in the physics
literature and we believe this duality to be of some interest in its own right.

A natural starting point for modeling two competing populations is the classical
Lotka–Volterra model. This is a deterministic model for the evolution of the total
sizes of the two populations, denoted N1(t),N2(t). They are assumed to follow
the following system of differential equations:

dN1

dt
= r1N1

(
1 − N1

K1
− α12

N2

K1

)
,

dN2

dt
= r2N2

(
1 − N2

K2
− α21

N1

K2

)
,(1)

where ri , Ki are respectively the intrinsic growth rates and carrying capacities of
the two species and the αij measure the interspecific competition. It is easy to
check that longterm coexistence of the two populations is possible if K1 > α12K2
and K2 > α21K1. A number of models have been proposed that extend this in two
different ways. First, they incorporate spatial structure into the populations and
second, they assume that the evolution of the populations is stochastic.

It is far from clear how spatial structure affects the chances of longterm coexis-
tence for two competing populations. Traditionally, ecologists have believed that
the local nature of interactions between populations that are dispersed in space pro-
motes coexistence. One reason is the so-called competition–colonization trade-off :
a weaker competitor that is good at colonization may be able to survive by exploit-
ing “gaps” between its competitors. It has also been claimed that because in spatial
models the population tends to become segregated into clusters of a single type,
the intraspecific competition will be more important than the interspecific com-
petition. Pacala and Levin [14] make an attempt to quantify this effect. On the
other hand, Neuhauser and Pacala [13] propose and analyze a spatial stochastic
model for competing species in which space actually makes coexistence harder.
This suggests, then, that in their model, it is actually the interactions at the cluster
boundaries that dominate.

In order to obtain analytic results about spatial stochastic models, simplifying
assumptions must be made. Murrell and Law [12] point out that common assump-
tions are that the parameters of neighborhoods over which individuals compete are
the same, irrespective of species, or that dispersal and competition neighborhoods
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are of the same size, but that dropping such symmetries can have profound con-
sequences. They argue, using a simulation study and the method of moment clo-
sure for a specific stochastic model in two space dimensions, that spatial structure
can promote coexistence, by showing that in the spatial setting, two populations
in which the overall strength of interspecific and intraspecific competition is the
same can coexist, but only if the distance over which individuals sense their het-
erospecific neighbors (i.e., their competitors) is shorter than that over which they
sense their conspecific neighbors. They coin the term heteromyopia for populations
that are “shortsighted” in this way. We explain this concept in a little more detail
in the context of our first model in Section 2. Although this model admits such
differences in neighborhood size, our methods are not strong enough to confirm
the numerical findings of Murrell and Law in this context. Indeed, even when the
populations migrate in a symmetric way and intraspecific and interspecific com-
petition neighborhoods are of the same size, although we conjecture (in Section 2)
that space does not make coexistence harder for our model, our methods are not
strong enough to provide a rigorous proof of this claim.

Model I. Following Bolker and Pacala [2], we assume that the strategies for
survival that individuals in our model can employ are (i) to colonize relatively un-
populated areas quickly, (ii) to quickly exploit resources in those areas and (iii) to
tolerate local competition. We take two different populations (species) and each
can adopt a different combination of strategies for survival. In order to simplify the
proofs of our results, we suppose our populations to be living on Z

d (the biolog-
ically relevant case is d = 2). The dynamics of the model are entirely analogous
to those considered by Bolker and Pacala [2] and by Murrell and Law [12]. We
write {X(t)}t≥0 = {Xi(t), i ∈ Z

d}t≥0 and {Y(t)}t≥0 = {Yi(t), i ∈ Z
d}t≥0 for our

two populations. We shall suppose that the pair of processes {X(t)}t≥0, {Y(t)}t≥0
solves the following system of stochastic differential equations:

dXi(t) = ∑
j∈Zd

mij

(
Xj(t) − Xi(t)

)
dt

+ α

(
M − ∑

j∈Zd

λijXj (t) − ∑
j∈Zd

γijYj (t)

)
Xi(t) dt(2)

+ √
σXi(t) dBi(t),

dYi(t) = ∑
j∈Zd

m′
ij

(
Yj (t) − Yi(t)

)
dt

+ α′
(
M ′ − ∑

j∈Zd

λ′
ij Yj (t) − ∑

j∈Zd

γ ′
ijXj (t)

)
Yi(t) dt(3)

+ √
σYi(t) dB ′

i (t),
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where {{Bi(t)}t≥0, {B ′
i(t)}t≥0, i ∈ Z

d} is a family of independent standard Brown-
ian motions. The (bounded nonnegative) parameters mij , m′

ij , λij , λ′
ij , γij and γ ′

ij

are all supposed to be functions of ‖i − j‖ alone and to vanish for ‖i − j‖ > R for
some R < ∞. In other words, the range of both migration and interaction for the
two populations will be taken to be finite.

Here, ‖ · ‖ can either denote the lattice distance (so that simple random walk
is included) or the maximum norm on Z

d , but it will be convenient to take the
maximum norm. Moreover, notice that by a change of units, there is no loss of
generality in taking the same σ for both populations and indeed, hereafter, we may
and will set σ = 1.

REMARK (Existence and uniqueness). Note that Model I is not covered by
the now standard results in Shiga and Shimizu [17]. However, Blath, Etheridge
and Meredith [1] provide, for 1 ≤ p ∈ N, existence of a continuous posi-
tive (weak) solution in the space �

4p
� = {x ∈ R

Z
d

:‖x‖�,4p < ∞}, where the

weighted �p-norm ‖ · ‖�,p is defined, for � = {�i}Zd ∈ l1((0,∞)Z
d
), by ‖x‖�,p =

(
∑

i∈Zd �i |xi |p)1/p. We assume �i/�j < f (‖i − j‖) for some continuous func-
tion f : [0,∞) → [0,∞). For example, set �i = e−‖i‖ for each i ∈ Z

d . Unique-
ness remains open, after considerable efforts, including those of several experts
whom we have consulted. At first sight, one expects to be able to prove uniqueness
in a suitable weighted �

4p
� space by an application of the (infinite-dimensional)

Yamada–Watanabe theorem. This works only in the special case when λij and γij

both vanish for i �= j . The nonlocal nature of the interaction destroys the vestiges
of monotonicity available in this special case.

REMARK (Blath, Etheridge and Meredith [1]). The full version of this paper,
Blath, Etherige and Meredith [1], which has also successfully undergone the peer
reviewing process of Annals of Applied Probability, proved too long to be pub-
lished in its entirety. It contains full technical details and some additional remarks
and is available from the webpages of the authors.

For the X-population, the first two strategies for survival listed above corre-
spond to taking large mij and large αM , while the third corresponds to taking
small λij (conspecific competition) and γij (interspecific competition). By vary-
ing M , we can also model how efficiently the species uses the available resources:
a species that can tolerate lower resource levels will have a higher value of M .

DEFINITION 1.1 (Notions of survival). Let p ∈ [0,1). We shall say that the
X-population survives for all time with probability greater than p if there exists
κ > 0 such that

lim inf
t→∞ P[X0(t) > κ] > p.
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We shall say that both populations persist for all time with probability greater than
p if there exists κ > 0 such that

P[∀t > 0,∃i, j ∈ Z
d :Xi(t), Yj (t) > κ] > p.

Finally, we shall say that the populations exhibit long-term coexistence with prob-
ability greater than p if there exists κ > 0 such that

lim inf
t→∞ P [X0(t), Y0(t) > κ] > p.

Observe that the third notion is much stronger than the second one. Also, note
that if γij = γ ′

ij is zero for all i, j ∈ Z
d , then each population follows an indepen-

dent copy of the so-called stepping stone version of the Bolker–Pacala model intro-
duced in Etheridge [9]. There, it is proved that if the range of migration is at least as
great as the range over which the population interacts with itself (here determined
by the {λij }), then provided that αM is sufficiently large, the population will sur-
vive. A partial converse of this, proved there only in the context of a continuous-
space analogue of this model, suggests that this condition is actually necessary,
a conclusion reached independently by Law, Murrell and Dieckmann [11]. We
therefore assume from the outset that there exists a constant c > 0 such that for all
i, j ∈ Z

d , we have mij > cλij (resp. m′
ij > cλ′

ij ) whenever λij (resp. λ′
ij ) is strictly

positive. Indeed, Theorem 1.5 in Etheridge [9] then tells us that if αM >
∑

j mij is
sufficiently large (depending on c), the single species model for X started from any
nontrivial translation invariant initial condition survives with positive probability,
that is, there exists a κ > 0 such that lim inft→∞ P [X0(t) > κ] > 0.

For the competing species model, we will have to make similar and additional
assumptions. In particular, we shall choose initial conditions in such a way that
we can find a box where both populations are present, but not so prevalent that the
competitive interaction between them is too large.

Notation and assumptions for Theorem 1.2.

• The parameters mij , m′
ij , λij , λ′

ij , γij and γ ′
ij are nonnegative functions of

‖ i − j‖ alone and vanish for ‖i − j‖ > R for some R < ∞.
• {mij }, {m′

ij }, {λij } and {λ′
ij } are fixed in such a way that there exists a constant

c > 0 such that, for all mij ,m
′
ij �= 0,

1

c
λij < mij < cλij and

1

c
λ′

ij < m′
ij < cλ′

ij .(4)

For all i, j such that mij = 0 (resp. m′
ij = 0) we require λij = 0 (resp. λ′

ij = 0).
Assume that {mij } and {m′

ij } are nondiagonal and of the same range and that

λii, λ
′
ii > 0 for all i ∈ Z

d .
• Let L = max{‖j − i‖ :mij ,m

′
ij �= 0} ≤ R < ∞.

• Assume that αM >
∑

j∈Zd mij and α′M ′ > ∑
j∈Zd m′

ij .
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• Let b ∈ Z such that max{‖j − i‖ :γij or γ ′
ij �= 0} is less than (b − 1)L.

• For m ∈ N ∪ {∞} and 0 < κ1 < κ2 < ∞, 0 < κ ′
1 < κ ′

2 < ∞, we write

(X(0), Y (0)) ∈ H(κ1, κ2;κ ′
1, κ

′
2;m),

if X(0), Y (0) ∈ �
4p
� and there exists a box J = {[−m,m]d ∩ Z

d} ⊂ Z
d, such

that for all i ∈ J ,

X0(i) ∈ [κ1, κ2) and Y0(i) ∈ [κ ′
1, κ

′
2).(5)

REMARK. One can drop the assumption that the range of {mij } and {m′
ij } are

the same, but this will make the proof much more awkward.

THEOREM 1.2. Under the above assumptions, there exist finite constants
M0 > 0,M ′

0 > 0 such that:

1. for each M > M0 and M ′ > 0, there is a constant γ = γ (M,M ′) > 0 and
constants 0 < κ1 < ∞, 0 < κ ′

2 < ∞, such that if
∑

j γij < γ and

(X(0), Y (0)) ∈ H
(
κ1,∞;0, κ ′

2; (b + 1/2)L
)
,

then the X-population survives for all time with probability greater than one
half;

2. similarly, for each M ′ > M ′
0 and M > 0, there is a constant γ ′ = γ ′(M,

M ′) > 0 and constants 0 < κ2 < ∞, 0 < κ ′
1 < ∞, such that if

∑
j γ ′

ij < γ ′
and

(X(0), Y (0)) ∈ H
(
0, κ2;κ ′

1,∞; (b + 1/2)L
)
,

then the Y -population survives for all time with probability greater than one
half.

COROLLARY 1.3. Under the conditions of Theorem 1.2, for each pair
(M,M ′) with M > M0 and M ′ > M ′

0, there is a pair (γ, γ ′) with γ > 0, γ ′ > 0
and constants 0 < κ1 < κ2 < ∞, 0 < κ ′

1 < κ ′
2 < ∞, such that if

∑
j γij < γ,∑

j γ ′
ij < γ ′ and

(X(0), Y (0)) ∈ H
(
κ1, κ2; κ ′

1, κ
′
2; (b + 1/2)L

)
,

then the X- and Y -populations both persist for all time with positive probabil-
ity. Moreover, for each such pair, if H(κ1, κ2;κ ′

1, κ
′
2; (b + 1/2)L) is replaced by

H(κ1, κ2; κ ′
1, κ

′
2; ∞), then there is longterm coexistence with positive probability,

that is, there exists κ > 0 such that

lim inf
t→∞ P [X0(t), Y0(t) > κ] > 0.
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As we will explain in Section 2, we would conjecture a result very much
stronger than Theorem 1.2 (or Corollary 1.3). In particular, we provide evidence
to support the claim that in the biologically relevant case of two dimensions, if
we take the special case of our model in which α = α′, M = M ′ and mij = m′

ij ,
then provided that γ ′

ij ≤ λij (resp. γij ≤ λ′
ij ) with strict inequality whenever λij

(resp. λ′
ij ) �= 0, and that the parameters are such that if γij and γ ′

ij were zero
then the single species models would survive, then with positive probability, the
competing species model will coexist for all time. This would be precisely the
prediction of the corresponding Lotka–Volterra model. If we drop the assumptions
α = α′ and M = M ′, then this conjecture must be modified to reflect competition–
colonization trade-off. We formulate this and other conjectures more carefully in
Section 2. In the process, we are led to consider our second model of two compet-
ing species.

Model II. Suppose now that the neighborhood over which each individual
competes is just the site in which it lives, so that the only interaction between
different points in Z

d is through migration. In addition, we suppose that the migra-
tion mechanism for the two populations is the same and that the total population
size in each site is constant [i.e., Xi(t) + Yi(t) ≡ N > 0 for all i ∈ Z

d and all
t ≥ 0]. Let us write pi(t) = Xi(t)/N for the proportion of the total population in
i at time t that belongs to the X-population. Then, as we will see in Section 2, we
arrive at the much simpler model

dpi(t) = ∑
j∈Zd

mij

(
pj (t) − pi(t)

)
dt + spi(t)

(
1 − pi(t)

)(
1 − µpi(t)

)
dt

(6)
+

√
N−1pi(t)

(
1 − pi(t)

)
dWi(t),

where s = αM − α′M ′ + (α′λ′
ii − αγii)N and

µ = (α′λ′
ii − αγii)N + (αλii − α′γ ′

ii)N

αM − α′M ′ + (α′λ′
ii − αγii)N

,

and, finally, {Wi(t), i ∈ Z
d}t≥0 is a family of independent Brownian motions. This

model is a system of interacting Fisher–Wright diffusions for gene frequencies
in a spatially structured population. From the results in Shiga and Shimizu [17],
it follows that if pi(0) ∈ [0,1] for all i ∈ Z

d , then this system has a continuous,
pathwise unique, [0,1]Zd

-valued strong solution for all times t ≥ 0.
If µ < 1, then in each site i, there is selection in favor of either the X-type or the

Y -type according to whether s > 0 or s < 0. If µ > 1, then in each site i, we have
selection in favor of heterozygosity if s > 0 and selection in favor of homozygosity
if s < 0. In the “neutral” case (s = 0), the process has a moment dual, the so-
called structured coalescent (see, e.g., Shiga [16]), and it is easy to show that if
d ≥ 3, then with positive probability, there will be longterm coexistence of our two
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populations, whereas if d ≤ 2, with probability one, eventually only one population
will be present.

Notice that we have selection in favor of heterozygosity precisely when

(αλii − α′γ ′
ii)N > αM − α′M ′ and (α′λ′

ii − αγii)N > α′M ′ − αM.

We sketch a proof of the following result and present a more detailed analysis in a
forthcoming work.

THEOREM 1.4. Let {pi(t), i ∈ Z
d}t≥0 evolve according to Model II. Suppose

that µ > 1 and let ε ∈ (0,1/4]. Then, if pi(0) ∈ (ε,1 − ε) for some i ∈ Z
d , there

exists an s0 ∈ [0,∞) such that for all s > s0, we have

P[∀t > 0,∃i ∈ Z
d : ε < pi(t) < 1 − ε] > 0.

Moreover, if pi(0) ∈ (ε,1 − ε) for all i ∈ Z
d , then

lim inf
t→∞ P[ε < p0(t) < 1 − ε] > 0.

In the case when the two populations evolve symmetrically, that is, µ = 2,
Model II reduces to

dpi(t) = ∑
j

mij

(
pj (t) − pi(t)

)
dt + spi(t)

(
1 − pi(t)

)(
1 − 2pi(t)

)
dt

(7)
+

√
N−1pi(t)

(
1 − pi(t)

)
dWi(t).

For general s, there is no convenient dual, but in Lemma 2.1, we find an alternative
duality with a system of branching annihilating random walks.

DEFINITION 1.5 (Branching annihilating random walk). The Markov process
{ni(t), i ∈ Z

d}t≥0 with values ni(t) ∈ Z+ and dynamics described by{
ni �→ ni − 1
nj �→ nj + 1 at rate nimij (migration),

ni �→ ni + 2 at rate sni (branching),

ni �→ ni − 2 at rate 1
2ni(ni − 1) (annihilation)

is called a branching annihilating random walk with branching rate s (and off-
spring number two).

COROLLARY 1.6. There exists s0 ≥ 0 such that if s > s0, the branching anni-
hilating random walk, started from an even number of particles at time zero, will
survive for all time with positive probability.
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REMARK. Note that in our branching annihilating random walk, a birth event
results in one individual splitting into three, a net increase of two, whereas an
annihilation event results in the loss of two particles. As a result, we have parity
preservation: if we start from an odd number of particles, then there will always
be an odd number of particles in the system (so, in particular, at least one). This is
why we restrict the initial number of particles in Corollary 1.6 to be even.

Branching annihilating random walk has received considerable attention from
physicists (see Täuber [18] for a review). For example, Cardy and Täuber [3, 4]
consider precisely the process described above. Our conjecture for Model II, stated
in Section 2, is based on their results, which, in turn, are based on perturbation
theory and renormalization group calculations.

The rest of the paper is organized as follows. In Section 2, we explain the re-
lationship between our two models and the duality between the symmetric form
of Model II and branching annihilating random walk. We also make some conjec-
tures about the longterm behavior of our two models and relate them to results and
conjectures for other toy models. The proof of our main result will rely upon a
comparison with oriented 2N -dependent percolation and so in Section 3, we recall
the definition of 2N -dependent percolation and state a suitable comparison result.
The proofs of Theorem 1.2 and Corollary 1.3 are in Section 4 and a sketch of the
proof of Theorem 1.4 is in Section 4.2.3. Corollary 1.6 will then be an immediate
consequence of the duality of Model II and branching annihilating random walk.

2. Heuristics, duality and relation to existing models.

2.1. Relationship between the two models. Suppose that the evolution of our
population follows Model I, that is, it is determined by equations (2) and (3). We
now derive the system of equations governing the proportion of the total population
at time t at site i that belongs to the X-subpopulation. We need some notation. If
we write Ni(t) = Xi(t) + Yi(t) and pi(t) = Xi(t)/Ni(t), then an application of
Itô’s formula (and some rearrangement) gives

dpi(t) = ∑
j∈Zd

mij

Nj (t)

Ni(t)

(
pj (t) − pi(t)

)
dt

− ∑
j∈Zd

(mij − m′
ij )pi(t)

(
1 − pi(t)

)
dt

+ ∑
j∈Zd

(mij − m′
ij )

Nj (t)

Ni(t)
pi(t)

(
1 − pj (t)

)
dt

+
[
αM − α′M ′ + ∑

j∈Zd

(α′λ′
ij − αγij )Nj (t)(8)
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+ ∑
j∈Zd

(αγij +α′γ ′
ij −α′λ′

ij −αλij )Nj (t)pj (t)

]

×pi(t)
(
1 − pi(t)

)
dt

+
√

Ni(t)−1pi(t)
(
1 − pi(t)

)
dWi(t),

where {Wi(t), i ∈ Z
d}t≥0 is a family of independent Brownian motions.

We concentrate on the case when mij = m′
ij . Notice that if we also assume that

λij , λ
′
ij and γij , γ

′
ij are zero for i �= j and that the population sizes Ni(t) are, in

fact, a fixed constant, then we arrive at Model II:

dpi(t) = ∑
j

mij

(
pj (t) − pi(t)

)
dt + spi(t)

(
1 − pi(t)

)(
1 − µpi(t)

)
dt

+
√

N−1pi(t)
(
1 − pi(t)

)
dWi(t),

where s = αM − α′M ′ + N(α′λ′
ii − αγii) and

µ = (α′λ′
ii − αγii)N + (αλii − α′γ ′

ii)N

αM − α′M ′ + (α′λ′
ii − αγii)N

.

2.2. Conjectures for Model II. Our conjectures for Model II are based on the
symmetric case, implying that µ = 2. The model then reduces to the system (7).
In this case, we are able to find a convenient dual process. First, we transform the
equations. Let xi(t) = 1 − 2pi(t). Then

dxi(t) = ∑
j

mij

(
xj (t) − xi(t)

)
dt

(9)
+ s

2

(
x3
i (t) − xi(t)

)
dt −

√(
1 − x2

i (t)
)
dWi(t).

LEMMA 2.1. The system (9) is dual to branching annihilating random walk
with branching rate s/2, denoted {ni(t), i ∈ Z

d}t≥0, through the duality relation-
ship

E
[
x(t)n(0)] = E

[
x(0)n(t)],

where xn ≡ ∏
i∈Zd x

ni

i .

The proof is completely standard (see e.g. Shiga [15]) and is therefore omitted.
Cardy and Täuber [3, 4] consider the branching annihilating random walk model

of Definition 1.5. In particular, their results suggest that although in one dimension
the optimal value for s0 in Corollary 1.6 is strictly positive, in two dimensions one
can take s0 = 0.



1484 J. BLATH, A. ETHERIDGE AND M. MEREDITH

CONJECTURE 2.2. For Model II with µ = 2 and d = 1, there exists a critical
value s0 > 0 such that the populations described by system (7) will both persist for
all time with positive probability if and only if s > s0. In d = 2, there is positive
probability that both populations will persist for all time if and only if s > 0. For
d ≥ 3, this probability is positive if and only if s ≥ 0.

Roughly speaking, for d ≥ 2, if there is a homozygous advantage, then the pop-
ulation will initially form homogenic clusters, but ultimately it will be the interac-
tions at the cluster boundaries that dominate and one type will go extinct. In the
heterozygous advantage case, there will be long term coexistence of species. In
one dimension, the heterozygous advantage must be “sufficiently strong” if we are
to see coexistence.

In fact, we would go further. In view of the genetic interpretation of Model II, it
would be odd if the case µ = 2 were pathological, so we expect that in d ≥ 2, we
will have coexistence for any s > 0, µ > 1.

CONJECTURE 2.3. Conjecture 2.2 holds true for any µ > 1, where in one
dimension, s0 will now also depend on µ.

If this conjecture is true, then in dimensions greater than one, for

(α′λ′
ii − αγii)N > α′M ′ − αM and (αλii − α′γ ′

ii)N > αM − α′M ′,

we have positive probability that both populations survive. Comparing the quanti-
ties α′λ′

ii − αγii and αλii − α′γ ′
ii tells us about the relative effectiveness of the X-

and Y -populations as competitors. If the first is smaller, then the X-population is a
less effective competitor. However, provided that αM > α′M ′, we can even allow
it to be negative and have positive probability of survival for the X-population.
This reflects a competition–colonization trade-off.

2.3. Conjectures for Model I. We now turn to Model I. We assume that the
migration mechanisms governing the two populations are the same. Suppose first
that α = α′, M = M ′, λij = γ ′

ij and λ′
ij = γij . We then see that the system of

equations (8) looks like a selectively neutral stepping stone model with variable
population sizes in each lattice site. If we condition on the trajectories of those
population sizes, then this process will have a dual process: a system of coalescing
random walks in a space-and-time-varying environment. Showing that there is no
longterm coexistence of types amounts to showing that two independent random
walks evolving in this environment will, with probability one, eventually meet and
coalesce. If the environment is sufficiently well behaved, then one might expect
this to be true. Problems will arise if the environment develops large “holes,” so
that the walkers never meet, or very dense clumps, so that when the walkers do
meet, they do so in such a heavily populated site that they do not coalesce before
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moving apart again. Much of our proof of Theorem 1.2 is devoted to showing that
the environment does not clump and a special case of that result says that provided
both populations are initially present in sufficient numbers in all sites, the proba-
bility that any given site is in a “hole” at time t is uniformly bounded below. We
therefore conjecture that in the neutral case, Model I will behave qualitatively in
the same way as Model II. In the biologically relevant case of two spatial dimen-
sions, we have been unable to produce a proof.

More generally, we believe, still assuming that mij = m′
ij and α = α′, M = M ′,

provided that at least one population persists, the question of longterm coexistence
of the populations described by Model I will not be changed by assuming that
competition only acts within individual lattice sites and, moreover, in that case,
the question of coexistence will be the same as for the populations described by
Model II. Namely, we make the following conjecture.

CONJECTURE 2.4. Let mij = m′
ij , α = α′, M = M ′ be fixed. Suppose that

both X- and Y -populations start from nontrivial translation invariant initial con-
ditions and that the parameters are such that each population has positive chance
of survival in the absence of the other. Further, let λij = λ′

ij , γij = γ ′
ij .

1. If λij < γij for all j , then eventually, only one population will be present.
2. If λij > γij for all j , then if d ≥ 2, with positive probability, the populations

will exhibit longterm coexistence. In one dimension, the same result will hold
true provided that λij − γij is sufficiently large.

3. If λij = γij and d ≥ 3, then with positive probability, both populations will
exhibit longterm coexistence.

If d ≤ 2, then with probability one, one of the populations will eventually die
out.

When αM �= α′M ′, we would once again expect to see a competition–
colonization trade-off.

2.4. Heteromyopia. In view of equation (8), it is easy to see that Murrell and
Law’s heteromyopia might lead to coexistence. They work in a continuous space
with the strength of competition between individuals decaying with their distance
apart, according to a Gaussian kernel. The analogue of their model in our setting is
the symmetric version of Model I with λij = λ(‖i − j‖), γij = γ (‖i − j‖), where
the functions λ and γ are monotone decreasing and

∑
j λij = ∑

j γij , but the range
of λij is greater than that of γij . We can think of the effect of this as follows. Over
small scales, we have homozygous advantage, over larger scales, heterozygous
advantage. Again, we expect to see the population forming homogenic clusters,
but now the cluster boundaries will be maintained because the heterogeneity there
confers an advantage to individuals within the clusters which counteracts the dis-
advantage to the individuals actually on the boundary. Reversing the sign to give
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populations with “heterohyperopia” produces the opposite effect. This is not stable
and Murrell and Law observe founder control in this case, which means that the
outcome of the competition is entirely determined by the initial conditions.

CONJECTURE 2.5. Assume nontrivial translation invariant initial conditions.
Suppose that the parameters of Model I are symmetric and such that in the absence
of the competitor, each population survives for all time with positive probability.
For d ≥ 2, if the populations are heteromyopic, then we will see longterm coexis-
tence with positive probability, whereas in d = 1, the populations must be strongly
heteromyopic for there to be longterm coexistence with positive probability.

2.5. Relation to existing models.

The Murrell–Law model. Our conjectures for Model I are entirely in agree-
ment with the numerical results of Murrell and Law [12]. They analyze a stochastic
version of a continuous-space Lotka–Volterra system, similar to ours. The evolu-
tion is characterized in terms of moment equations. These moment equations were
derived from a stochastic individual-based model by Dieckmann and Law [7]. Al-
though the assumption of a spatially continuous environment is clearly desirable,
the price that they pay is that there are very few analytic tools available for the
study of the resulting population models, so they use moment closure, assuming
in this case a “power-1” closure. In particular, they ignore dynamics of all spatial
moments beyond order two. In view of the clustering behavior that is characteristic
of populations evolving according to spatial branching models in two dimensions,
this method has potential pitfalls. In fact, the control of the clumping of the popu-
lations that forms an essential part of our proof of Theorem 1.2 also adds consid-
erable credibility to the moment closure technique for these models and hence to
the numerical predictions of Murrell and Law.

Neuhauser and Pacala [2] also consider an explicitly spatial stochastic version
of the Lotka–Volterra model. Their model is lattice based, but, in contrast to ours,
allows only a single individual to live at each lattice site. Moreover, there is instant
recolonization so that there will always be exactly one individual at each site in Z

d .
This fixed population size makes it more analogous to Model II than to Model I.

DEFINITION 2.6 (Neuhauser–Pacala model). The Markov process {ηi(t),

i ∈ Z
d}t≥0 in which ηi(t) ∈ {1,2} and with dynamics:

1. if ηi(t) = 1, it becomes 2 at rate λf2
λf2+f1

(f1 + α12f2),

2. if ηi(t) = 2, it becomes 1 at rate f1
λf2+f1

(f2 + α21f1),

where fk(i) =
∣∣{j : ηj (t)=k : j∈Ni

}|∣∣Ni

∣∣ and Ni = i + {j : 0 < ‖j‖ ≤ R}, will be said to
follow the Neuhauser–Pacala (stochastic spatial Lotka–Volterra) model.
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The idea is that an individual of type k will die at a rate determined by the
proportion of its neighbors that are conspecific plus some constant multiple of the
proportion of heterospecific neighbors. Thus, for example, if, in Model I, we took
λij and γij to have the same range and to be constant on that range, then a small
value of α12 would correspond to the ratio γij /λij being small. The dead individual
is immediately replaced by an offspring of one of its neighbors chosen according
to a weight that reflects the relative fecundity of the two types. Thus, for example,
λ > 1 would reflect type 2 being more fecund than type 1. In Model I, this would
be modeled by taking α′M ′ > αM . Let us recall some results for this model.

THEOREM 2.7 (Neuhauser and Pacala [13], Theorem 1). Suppose that λ = 1,
d = 1 or 2 and α12 = α21 = α.

1. If α = 0, then, except for the one-dimensional nearest-neighbor case, product
measure with density 1/2 is the limiting distribution starting from any nontrivial
initial distribution.

2. If α is sufficiently small (depending on R), then coexistence is possible except
for the one-dimensional nearest-neighbor case.

For Model I, a result entirely analogous to part (2) is a special case of Theo-
rem 1.2. For Model II, the analogue is Theorem 1.4. If we believe Conjecture 2.2,
then although in d = 1 we require the condition “α sufficiently small,” in d = 2,
the corresponding result is true for all α < 1. This corresponds to Conjecture 1 of
Neuhauser and Pacala [13].

THEOREM 2.8 (Neuhauser and Pacala [13], Corollary 1). Suppose that λ = 1.
Write n = |N | for the number of lattice sites in a neighborhood. Species 1 com-
petitively excludes species 2 if

α12 <




nα21 − n + 1, for α21 ∈
(

1 − 1

n
,1

]
,

1

n
α21 + 1 − 1

n
, for α21 > 1.

Species 2 competitively excludes species 1 if

α12 >




1

n
α21 + 1 − 1

n
, for α21 ∈ (0,1],

nα21 − n + 1, for α21 > 1.

In particular, this result shows that the values of (α12, α21) for which both pop-
ulations persist for all time are contained in the shaded region in Figure 1. This is
a reduction from the range of values predicted by the mean field model. The case
λ = 1 corresponds, in our setting, to taking mij = m′

ij , α = α′ and M = M ′, so in
view of Conjecture 2.3, we expect that the coexistence region for Model II in two
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FIG. 1. The persistence region of the Neuhauser–Pacala model.

dimensions corresponds to the whole region [0,1) × [0,1) in the (α12, α21)-plane,
that is, the region predicted by the mean field model.

Cox and Perkins [5] show that a sequence of processes following the Neuhau-
ser–Pacala model, when suitably rescaled in space and time, converges to a super-
Brownian motion with a nontrivial drift. In low dimensions, they restrict to long-
range models, whereas in dimensions d ≥ 3, they can also consider the nearest-
neighbor case. SuperBrownian motion has emerged as a universal limit of critical
spatial systems above the critical dimension and these results can be seen as special
cases of a general convergence theorem for perturbations of the voter model. In a
recent preprint, Cox and Perkins [6] show that in dimensions d ≥ 3, the drift in the
superBrownian motion is connected to questions of coexistence in the Neuhauser–
Pacala model. Using this connection, they obtain additional information about the
parameter regions in which survival of one type (resp. coexistence) holds. The
biologically relevant case d = 2 is a topic of their current research.

3. 2N -dependent oriented percolation. We now turn to proving our results.
Since our proofs will rely upon comparison with 2N -dependent oriented percola-
tion, we first briefly recall some well-known facts which can be found, for example,
in Durrett [8]. The insistence on 2N - instead of N -dependent percolation will be
explained in the remark below Theorem 3.5.

Oriented percolation will be defined on the lattice

L := {(x, n) ∈ Z
2 :x + n is even, n ≥ 0}.

This set is made into a graph by inserting edges from (x, n) to (x +1, n+1) and to
(x−1, n+1). It is convenient to think of n as time. We introduce a family of {0,1}-
valued random variables ω(x,n) at sites (x, n) ∈ L. A site (x, n) is called open if
ω(x,n) = 1 and closed if ω(x,n) = 0. Given such a family of random variables
and integers 0 ≤ m < n, we say that (y, n) ∈ L can be reached from (x,m) if there
is a sequence of points x = xm,xm+1, . . . , xn = y such that |xk − xk−1| = 1 and
ω(xk, k) = 1 for m ≤ k ≤ n. We write this as (x,m) → (y, n). Finally, given an
initial condition W0 ⊆ 2Z = {x : (x,0) ∈ L}, we may define a percolation process
{Wn}n≥0 by setting, for each n > 0, Wn = {y : (x,0) → (y, n) for some x ∈ W0}.
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DEFINITION 3.1. Let θ ∈ (0,1) and N ∈ N. We say that an oriented percola-
tion process {Wn}n≥0, determined by {ω(x,n)}(x,n)∈L, is 2N -dependent with den-
sity at least 1 − θ if, for any finite set of indices I such that ‖(xk, nk)− (xl, nl)‖ >

2N for all k �= l ∈ I , we have P[ω(xk, nk) = 0, k ∈ I ] ≤ θ |I |.

Define C0 = {(y, n) ∈ L : (0,0) → (y, n)} as the open cluster containing the
origin. We say that percolation occurs if |C0| = ∞. We first cite a result which
gives us a lower bound for the probability of percolation depending on θ and N .
A proof can be found in Durrett [8].

THEOREM 3.2. If θ ≤ 6−4(4N+1)2
, then P[|C0| < ∞] ≤ 55θ1/(4N+1)2 ≤ 1

20 .

For particle system models of evolving populations, a standard strategy for
showing survival is to construct a suitable coupling with oriented percolation. Our
approach amounts to a modification of this strategy to cope with the interactions
between the two populations, so we now describe the relevant comparison theo-
rems. Once again, we are citing Durrett [8], but we also present a modified version
of the results which are adequate for our purposes. In Durrett’s terminology, let
{ξi(n), i ∈ Z

d}n≥0 denote a translation invariant time-homogeneous finite-range
flip process with state space 
 = {0,1}Z

d
, constructed from the usual graphical

representation. Let L ∈ N be fixed. We write

H = {
ξ ∈ {0,1}Z

d

: ξi = 1 ∀i ∈ [−L/2,L/2]d ∩ Z
d}

(10)

and m · H for the translation of H by some integer m with respect to the first
component, that is,

m · H = {
ξ ∈ {0,1}Z

d

: ξi = 1 ∀i ∈ mLe1 + [−L/2,L/2]d ∩ Z
d}

,(11)

where e1 is the unit vector in the direction of the first component.

DEFINITION 3.3. Fix N ∈ N and θ ∈ (0,1). We shall say that the process
{ξ(n)}n≥0 fulfils the classical comparison assumptions for N and θ if, for each
configuration ξ ∈ H , there exists a “good event” Gξ , measurable with respect to
the graphical representation of the flip process inside [−NL,NL]d × [0,1] and
with P[Gξ ] > 1 − θ , so that if ξ(0) = ξ , then on Gξ , we have ξ(1) ∈ (+1) · H ∩
(−1) · H.

Unfortunately, the flip processes we are going to consider in the next section
are functionals of more general underlying stochastic processes driven by inde-
pendent Brownian motions and cannot be obtained from a graphical representa-
tion. However, a modified comparison result holds, based on the behavior of the
Brownian increments. More explicitly, we are going to construct our flip process in
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terms of the system of stochastic differential equations X,Y from Model I. Define
{ξ̄i (n), i ∈ Z

d}n∈N by

ξ̄i (n) =



1, if Xi(2n) > c1 and Yj (2n) < c2
∀j ∈ i + [−bL,bL]d ∩ Z

d ,
0, otherwise,

(12)

where c1, c2 are finite positive numbers and b and L satisfy the assumption of
Theorem 1.2. Note the different time scales for ξ̄ and X,Y (the usefulness of this
time change will become clear in the next section) and observe that X,Y are time-
homogeneous and the underlying system of driving Brownian motions is transla-
tion invariant.

DEFINITION 3.4. Assume N := (b + 2) and θ ∈ (0,1). Define the events H

and m · H for some integer m ∈ Z in terms of the process {ξ̄ (n)}n≥0 in the same
way as in (10) and (11). Define

F ∗(NL, [0,2]) = σ {Bi(s),B
′
j (t) : s, t ∈ [0,2]; i, j ∈ [−NL,NL]d ∩ Z

d},(13)

where {{Bi(s)}s≥0, {B ′
j (t)}t≥0, i, j ∈ Z

d} is the family of independent standard
Brownian motions as in Model I; see (2) and (3). We shall say that the process
{ξ̄ (n)}n≥0 fulfils the modified comparison assumptions for NL and θ if, for each
configuration ξ̄ ∈ H , there exists a “good event” Gξ̄ ∈ F ∗(NL, [0,2]), with
P[Gξ̄ ] > 1 − θ , such that if ξ̄ (0) = ξ̄ , then on Gξ̄ ,

ξ̄ (1) ∈ (+1) · H ∩ (−1) · H.(14)

In other words, if ξ̄ has all 1’s in the box of side length L about the origin at
time 0, then at time 1 (measured in time units for the ξ̄ process), with probability
at least 1−θ , it has successfully “invaded” the boxes of side length L translated by
−Le1 and Le1 in a way that is measurable with respect to the Brownian increments
inside the box around the origin of side 2NL and up to time [0,2] (measured in
time units for X,Y ).

The following two classical theorems (see, e.g., Durrett [8]) apply in both of the
above settings and complete this section.

THEOREM 3.5. If the classical (resp. modified) comparison assumptions hold
for ξ (resp. ξ̄ ) for some N ∈ N and θ ∈ (0,1), we may define random vari-
ables ω(x,n) such that Xn := {(m,n) ∈ L : ξ(n) ∈ m · H } [resp. X̄n := {(m,n) ∈
L : ξ̄ (n) ∈ m · H }] dominates a 2N -dependent oriented percolation process {Wn},
defined on L, with initial configuration W0 = X0 (resp. X̄0) and density pa-
rameter at least 1 − θ , that is, Wn ⊆ Xn (resp. X̄n) for all n ∈ N, where
Wn = {y : (x,0) → (y, n) for some x ∈ W0}.
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THEOREM 3.6. Suppose that {Wn}n≥0 is a 2N -dependent oriented perco-
lation process, started from the trivial initial state W0(x) = 1 for all x. If θ ≤
6−4(4N+1)2

, then

lim inf
n→∞ P[0 ∈ W2n] ≥ 19

20 .

Eventually, this theorem will be the key to proving the coexistence (with positive
probability) of (X,Y ) in Model I and Model II.

4. Proofs. The key to the proof of Theorem 1.2 is to consider the Y -popu-
lation as providing a random environment in which the X-population evolves. Of
course, the environment itself depends on the X-population, but we obtain some
control of the behavior of the environment that is independent of the evolution
of the X-population. This “decoupling” (and a symmetric argument for Y ) then
reduces the coexistence problem to that of survival of a single population: if the
X- and Y -populations can each be shown to survive for all times with probabil-
ity greater than one half, then longterm coexistence (with positive probability) will
follow. We attack the question of survival of the X-population (resp. Y -population)
by comparison with a 2N -dependent oriented percolation process. To this end, we
establish the existence of the corresponding “good events” as required in Defini-
tion 3.4.

4.1. A spin system and estimation of related flip probabilities. The main step is
to construct two spin systems, one for each of the X- and Y -populations, that play
the rôle of {ξ̄i (n), i ∈ Z

d}n≥0 of the last section for some suitable constants c1, c2.
Indeed, we consider the spin system {ζi(n), ηi(n), i ∈ Z

d}n≥0, where {ζi(n), i ∈
Z

d}n≥0 is defined by

ζi(n) =




1, if Xi(2n) >
M

K
and Yj (2n) < a′M ′

∀j ∈ i + [−bL,bL]d ∩ Z
d ,

0, otherwise,

(15)

and similarly,

ηi(n) =




1, if Yi(2n) >
M ′

K ′ and Xj(2n) < aM

∀j ∈ i + [−bL,bL]d ∩ Z
d ,

0, otherwise,

(16)

where K := 2αMc + 1, K ′ := 2α′M ′c + 1 and a, a′ are finite positive constants
to be determined later [see (44) in the proof of Lemma 4.5 (resp. the symmetric
result for a)]. Recall that L denotes the range of the intraspecific interaction and
b denotes the smallest positive integer such that the range of {γij } (resp. {γ ′

ij }) is
less than (b − 1) · L.
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With these definitions, one expects that if the system {ζ(n), η(n)}n≥0 exhibits
longterm coexistence in discrete time, then the system {X(t), Y (t)}t≥0 exhibits
coexistence in continuous time and, in fact, this will follow from our proof. The
convenience of the time change n �→ 2n in (15) and (16) will become clear when
carrying out the comparison arguments in Section 4.2.1.

Outline of this subsection. The notation from Section 4.1.1 is necessary to define
the suitably measurable “good events” Gζ ,Gη. Section 4.1.2 provides “flip prob-
abilities” related to the spin system ζ via comparisons in terms of the aforemen-
tioned behavior of the one-dimensional diffusions, under the additional condition
that the system X evolves in a “safe environment,” that is, given some bounds on
the local Y -population. Finally, in Section 4.1.3, we will find conditions so that the
“safe environment” assumption holds for the Y -population in a way that is inde-
pendent of the evolution of the X-population, again by making use of comparisons
to one-dimensional diffusions.

4.1.1. Some notation and lattices of one-dimensional diffusions.

DEFINITION 4.1. Let {{Bi(s)}s≥0, {B ′
j (t)}t≥0, i, j ∈ Z

d} be the family of in-

dependent standard Brownian motions driving Model I. Fix i ∈ Z
d . For n ∈ N, u >

0, define

F (i, n,u) := σ {Bi(n + s) − Bi(n) : s ∈ [0, u]}
and define F ′(i, n,u) accordingly in terms of B ′. Moreover, let

F (i,NL,n,u) := σ {Bj(n + s) − Bj(n) : s ∈ [0, u], j ∈ i + [−NL,NL]d ∩ Z
d},

and similarly define F ′(i,NL,n,u) in terms of B ′.

These σ -algebras will be used to construct suitably measurable events Gζ̄ ,Gη̄.
Recall from Definition 3.4 that

F ∗(NL, [0,2]) = F (0,NL,0,2) ∨ F ′(0,NL,0,2).

DEFINITION 4.2. Let i ∈ Z
d and assume that the constants α′, M̄, λ, Ū >

0 are chosen such that λŪ > 2M̄ . Moreover, let D1,D2 > 0. Then, for each
j ∈ i + [−NL,NL]d ∩ Z

d , define the one-dimensional diffusions {Zj(t)}t≥0,

{Z̄j (t)}t≥0, {Ẑj (t)}t≥0 and {Z̃j (t)}t≥0, driven by independent standard Brownian
motions {Wj(t)}t≥0, by

dZj (t) = α′(M̄ − λZj (t)
)
Zj(t) dt +

√
Zj(t) dWj (t)(17)

(logistic Feller diffusion),

dZ̃j (t) = D1Z̃j (t) dt +
√

Z̃j (t) dWj (t)(18)
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(supercritical Feller diffusion),

dẐj (t) = D2 dt + D1Ẑj (t) dt +
√

Ẑj (t) dWj (t)(19)

(supercritical Feller diffusion with constant positive immigration),

dZ̄j (t) = α′(M̄ − λŪ)Z̄j (t) dt +
√

Z̄j (t) dWj (t)(20)

(subcritical Feller diffusion).

Since each of the four diffusions admits a (continuous) unique strong solution,
we may assume them to be driven by some given family of independent Brownian
motions, in particular, those obtained either from (2) or from (3).

4.1.2. Infection and recovery probabilities for the X-population. Suppose that
we are interested in the behavior of the X-population within the time interval
[n,n + 1] at site i and that we already know [recall (15)] that

max
t∈[n,n+1]Yj (t) < 2a′M ′ ∀j ∈ i + [−bL,bL]d ∩ Z

d .(21)

Assume the interspecific competition {γij } is chosen such that (21) implies

max
t∈[n,n+1]

∑
l∈Zd

γjlYl(t) < 1 ∀j ∈ i + [−L/2,L/2]d ∩ Z
d .(22)

This is possible since the range of {γjl} is, by assumption, less than (b − 1)L

[choose, e.g.,
∑

j γij < (2a′M ′)−1]. We will later (in Section 4.1.3) construct
events that are measurable with respect to either F ′(i,NL,n,2) or F ′(i,NL,n−
1,2), which imply (21) and are of sufficiently high probability [cf. (39) and (40)].
For the moment, to aid intuition and to simplify notation, we will say that, in either
case, a suitably measurable “safe environment condition G′

sec(i, n) holds at site i

and time n,” which implies that (21) [and for sufficiently small γij , also (22)] holds
and which will be explicitly determined later.

We now consider “flip probabilities” for the X-population that are closely linked
to the flip probabilities of the ζ -population, introduced in (15) and (16), under the
“safe environment condition” G′

sec(i, n) at site i and at time n ∈ N.

LEMMA 4.3 (Infection and nonrecovery). Let n ∈ N and i ∈ Z
d . Let α, {mij },

{λij } be fixed. Given the parameters for the Y -population and some a′ > 0,
choose {γij } such that (21) implies (22). Then, for any ε ∈ (0,1), there exists
a finite constant M0 > 0 such that if M > M0 and K := 2αMc + 1, for each
j ∈ i + [−L/2,L/2]d ∩ Z

d , there exist events

Gnonrec(i, n) ∈ F (i, n,1) and Ginfec(i, j, n) ∈ F (i,L/2, n,1),(23)

both measurable w.r.t. F (i,NL,n,1), such that the following holds:
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(i) we have{{Xi(n) > M/K} ∩ G′
sec(i, n) ∩ Gnonrec(i, n)

} ⊂ {Xi(n + 1) > M/K}
(“nonrecovery”) and for the “nonrecovery probability” pnonrec(i, n), we have the
bound

pnonrec(i, n) := P[Gnonrec(i, n)] > 1 − ε;(24)

(ii) moreover,{{Xi(n) ≤ M/K} ∩ {∃j :mij > 0,Xj (n) > M/K} ∩ G′
sec(i, n)

}
⊂ {Xi(n + 1) > M/K}

(“infection by an occupied neighbor”) and for the “infection probability” pinfec(i,

j, n), we have the bound

pinfec(i, j, n) := P[Ginfec(i, j, n)] > 1 − ε.(25)

PROOF. (i) We distinguish the two cases Xi(n) ∈ (M/K, (3/2)M/K) and
Xi(n) ≥ (3/2)M/K .

Case 1. Suppose that Xi(n) ≥ (3/2)M/K and introduce the first hitting time of
level M/K from above after time n:

τ
Xi

M/K(n) := inf{t > n :Xi(t) = M/K}.(26)

Our goal is to establish the existence of a suitably measurable event Gnonrec(i, n) ∈
F (i, n,1) so that Gnonrec(i, n) implies, under the above conditions, that τ

Xi

M/K(n) >

1. To this end, we set up a suitable comparison to a one-dimensional diffusion.
Indeed, rearranging the drift in equation (2), as long as Yj (t) < a′M ′ for all
j ∈ i + [−bL,bL]d ∩ Z

d and hence∑
l

γj lYl(t) < 1 for all j ∈ i + [−L/2,L/2]d ∩ Z
d

holds, and as long as Xi ≤ 2M/K , we have

dXi(t) ≥ ∑
j∈Zd

(
mij − α

2M

K
λij

)
Xj(t) dt

(27)

+
(
αM − ∑

j∈Zd

mij − α

)
Xi(t) dt + √

Xi(t) dBi(t).

We now check that the first component of the drift on the right-hand side is posi-
tive. Indeed, from the assumption (4), we obtain

mij − α
2M

K
λij > mij − α

2M

K
cmij ,(28)
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which is positive by our choice of K = 2αMc + 1, for all j ∈ Z
d . Moreover, we

have, for each M > 1, that M/K = M/(2αMc + 1) ∈ ((2αc + 1)−1, (2αc)−1).
Under these conditions, (27) implies that

dXi(t) ≥
(
αM − ∑

j∈Zd

mij − α

)
Xi(t) dt + √

Xi(t) dBi(t)(29)

and so while Xi ∈ [0,2M/K], using Corollary A.2 to the Ikeda–Watanabe Com-
parison Theorem A.1 (both found in the Appendix), we may compare Xi to
a dominated supercritical Feller diffusion Z̃i defined in (18), with initial value
Z̃i(n) := (3/2)M/K and D1 = D1(M) = (αM − ∑

j∈Zd mij − α), and driven by
the same Brownian motion, that is, {Wi(t)}t≥0 := {Bi(t)}t≥0. It is an important
observation in Corollary A.2 that actually more is true: our domination argument
holds not only up to the time when Xi leaves the interval [0,2M/K] for the first
time, but, in fact, for as long as Z̃i takes values inside this interval, that is, up to

the first exit time τ
Z̃i

2M/K [defined as in (26)].
Note that for M >

∑
j mij /α, the “supercriticality” (i.e., positive drift) D1 =

(αM −∑
mij −α) in (29) tends to ∞ as M → ∞, while maintaining the condition

Xi(n) ≥ 1/(2αc).
We now make use of the comparison. Indeed, for t ≥ n, as long as Z̃i(t) stays in-

side the interval [0,2M/K] and given that initially Xi(n) ≥ Z̃i(n) := (3/2)M/K ,
we have that Xi dominates Z̃i . To obtain a comparison that is valid throughout
the whole time interval [n,n + 1], we go one step further and modify Z̃i so that
whenever Z̃i hits level 2M/K (and thus is about to leave the area in which the
comparison holds true), we restart the process Z̃i at level (3/2)M/K and repeat
this procedure as often as necessary, so that the comparison holds for all times
t ∈ [n,n + 1]. More precisely, we define a sequence of stopping times, begin-

ning with ν
Z̃i

2M/K(n,1) := τ
Z̃i

2M/K(n), restart the Z̃i process at this time, setting

Z̃i(ν
Z̃i

2M/K(n,1)) := (3/2)M/K , and then iterate this procedure, considering, for
m ∈ N,

ν
Z̃i

2M/K(n,m + 1) := inf{t > ν
Z̃i

2M/K(n,m) : Z̃i(t) = (2M)/K},(30)

and again restarting the Z̃i process accordingly, that is, setting

Z̃i

(
ν

Z̃i

2M/K(n,m + 1)
) = (3/2)(M/K).

Note that ν
Z̃i

2M/K(n,m) ↑ ∞ a.s. as m → ∞. For definiteness, set ν
Z̃i

2M/K(n,0) :=
n. We define the i.i.d. positive lengths of the corresponding upcrossing intervals
from (3/2)M/K to 2M/K for m ≥ 1 by

T̃m := ν
Z̃i

2M/K(n,m) − ν
Z̃i

2M/K(n,m − 1).(31)
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Now observe that there is an event G1
nonrec(i, n), defined only in terms of the

Brownian increments {Bi(n + s) − Bi(n) : s ∈ [0,1]}, and hence being an ele-
ment of F (i, n,1), such that if we start our modified diffusion Z̃i in Z̃i(n) =
(3/2)M/K , this event G1

nonrec(i, n) actually equals {τ Z̃i

M/K(n) > n + 1}. [The set

G1
nonrec(i, n) contains all such ω, such that the corresponding Brownian increments

lead to the desired behavior if they drive the modified diffusion Z̃i started at time

n in (3/2)M/K .] Moreover, by our comparison, the event {τ Z̃i

M/K(n) > n + 1} im-

plies that {τX
M/K(n) > n + 1}, which, in turn, implies that Xi(n + 1) > M/K .

It remains to show that the event G1
nonrec(i, n) has sufficiently high probabil-

ity. To this end, note that the number of upcrossings of the modified and suit-
ably restarted process Z̃i from level (3/2)M/K to level 2M/K before the first
downcrossing from (3/2)M/K to M/K is a geometric random variable with posi-
tive parameter q̃M,K := P[τ Z̃

M/K(n) < τ Z̃
2M/K(n)]. By standard speed measure and

scale function computations, it is possible to show, for sufficiently large D1 and
hence M , that q̃M,K ≤ exp(−D1M/K); see Blath, Meredith and Etheridge [1] for
details. Moreover, by a similar computation, the expected time for Z̃i to exit from
the interval (M/K,2M/K) when being started in (3/2)M/K is bounded below
by 1

32D1
for sufficiently large D1. Hence, for such D1,

E[T1] ≥ E
[
τ

Z̃i

(M/K,2M/K)

] ≥ 1

32D1
.(32)

Now let D̃ denote the number of upcrossings before the first “success,” that is,
a downcrossing from (3/2)M/K to M/K . For each Ñ ∈ N, we may then write

P[τ Z̃i

M/K(n) ≤ n + 1] = P[τ Z̃i

M/K(n) ≤ n + 1; D̃ < Ñ]
+ P[τ Z̃i

M/K(n) ≤ n + 1; D̃ ≥ Ñ]

≤ P[D̃ < Ñ] + P

[
D̃∑

i=1

T̃i < 1; D̃ ≥ Ñ

]

≤ Ñ exp(−D1M/K) + P

[
Ñ∑

i=1

Ti < 1

]
,

using Bernoulli’s inequality. Since, by (32), for large D1, the expectation of the
length of the i.i.d. upcrossing intervals {T̃i} of the modified and suitably restarted
process is bounded below by 1/(32D1), the number of such upcrossing intervals
up to time 1 is at most of order D1. Hence, by the Law of Large Numbers, we
can find a constant d̃ such that for Ñ := d̃ · D1 and all sufficiently large D1,
the last term on the right-hand side is bounded by ε/4. Since the first term on
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the right-hand side still decreases exponentially in D1 once d̃ is fixed (the lin-
early increasing prefactor being squashed), for D1 and hence M sufficiently large,
this bound holds simultaneously for the first and the last term and we arrive at
the desired result: under the above conditions, with Z̃i(n) = (3/2)M/K , we have

P[τ Z̃i

M/K(n) ≤ n + 1] ≤ ε/2 for D1 and hence M sufficiently large, which in turn

implies P[G1
nonrec(i, n)] > 1 − ε

2 , so that Case 1 of part (i) follows.
Case 2. Now suppose that M/K < Xi(n) < (3/2)M/K . In this case, we cannot

find a uniform lower bound on the probability on the previously considered event

{τ Z̃i

M/K(n) > n + 1}, and hence on the probability of {τXi

M/K(n) > n + 1}, that is
sufficiently large. However, we may still use the same comparison as above to a
dominated supercritical Feller diffusion Z̃i , so that the comparison works as long
as Z̃i stays below 2M/K . This time, set Z̃i(n) = M/K < Xi(n) and observe that
there is a constant M2

0 > 0 such that for all M > M2
0 , the deterministic drift in

the supercritical Feller diffusion Z̃i will achieve two goals with sufficiently high
probability: first, make Z̃i hit level (3/2)M/K within the time interval [n,n +
1/2] with sufficiently high probability and second, after hitting level (3/2)M/K ,
arguing just as in the first part of the lemma, ensure that there will be no further
downcrossing from (3/2)M/K to M/K up to time [n + 1]. Thus, once again,
we can find a measurable event G2

nonrec(i, n) ∈ F (i, n,1), depending only on the
corresponding Brownian increments, so that given Z̃i(n) = M/K , by comparison,
G2

nonrec(i, n) implies that Xi(n+1) > M/K and, moreover, that P[G2
nonrec(i, n)] >

1 − ε/2. Hence, the result also holds in Case 2. Finally, in view of both cases,
choose

Gnonrec(i, n) := G1
nonrec(i, n) ∩ G2

nonrec(i, n) ∈ F (i, n,1) ⊂ F (i,NL,n,1)

and part (i) follows.
To prove part (ii), we begin with some preliminary considerations. Note

that by using the same comparison and similar arguments as before, again
considering suitable up- and downcrossings, this time from M/K down to
M/(2K), we can actually go one step further and find a finite constant M3

0
such that if M > M3

0 , and for j ∈ Z
d such that mij > 0, there exists an event

Gper-occ(i, j, n) ∈ F (i,NL,n,1), such that given Xj(n) > M/K and G′
sec(i, n),

the event Gper-occ(i, j, n) implies Xj(n+ 1) > M/K and τ
Xj

M/(2K)(n) > n+ 1 and,
moreover, we have

P[Gper-occ(i, j, n)] > 1 − ε/2.(33)

Note that, once again, we use the assumption that the range of the {γij } is less
than (b − 1)L so that the “safe environment condition,” in particular (22), allows
comparisons of the above type also for site j .

We are now prepared to consider the infection probability at a site i in the pres-
ence of at least one occupied neighbor, say, at j∗. Again, assuming (4), we use a
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comparison based on Corollary A.2. This theorem can be found in the Appendix.
This time, we rearrange the drift so as to highlight the rôle of immigration of mass
to an unoccupied site from occupied neighbors. Once immigrated, we can then
compare the evolution of the mass to a supercritical continuous-state branching
process, as before. Indeed, considering the drift in equation (2), observe that as
long as Xi(t) ≤ 2M/K and given the existence of at least one neighbor at some
site j∗ ∈ Z

d with mij∗ > 0 and Xj∗(n) > M/K (noting that mij∗ is bounded below
by some δ > 0 since the family {mij } is of finite range), we have that, as long as t

satisfies

n ≤ t < τ
Xj∗
M/(2K)(n),(34)

by our choice K = 2αMc + 1,

dXi(t) ≥ mij∗ − (1/c)λij∗

4αc + 2
dt

(35)

+
(
αM − ∑

j∈Zd

mij − α

)
Xi(t) dt + √

Xi(t) dBi(t),

assuming M > max{1,
∑

j mij /α}. Thus, at the uninfected site i, after time n, as
long as (34) holds, we may compare the evolution of the process Xi to a dominated
supercritical branching process Ẑi with constant immigration, as defined in (19),
and driven by the same Brownian motion, that is, {Wi(t)}t≥0 := {Bi(t)}t≥0, where
D2 = (mij∗ − λij∗/c)(4αc + 2)−1 > 0 and D1 = (αM − ∑

j mij − α) > 0. Note

that we here use the fact that we have assumed the strict inequality 1
c
λij∗ < mij∗

from (4) to obtain a strictly positive immigration rate. Also, note that the rate of
immigration is bounded below independently of M . Again, the “supercriticality”
(αM − ∑

j mij − α) tends to ∞ as M tends to ∞. Hence, arguing as before in

part (i), this time starting the dominated process in Ẑi(n) = 0 ≤ Xi(n), stopping
Ẑi once it reaches level 2M/K and then restarting at (3/2)M/K if necessary, we
may find a constant M4

0 > 0 such that if M > M4
0 , under the above conditions, the

event

Ẑi(n + 1) > M/K implies Xi(n + 1) > M/K

and has probability greater than ε/2. As before, there is an event G∗
infec(i, j

∗, n) ∈
F (i, n,1), depending solely on the Brownian increments at i within the time in-
terval [n,n + 1], so that if we start our modified diffusion at time n in Ẑi(n) = 0,
driven by the corresponding Brownian increments, we have G∗

infec(i, j
∗, n) =

{Ẑi(n + 1) > M/K}. Moreover,

P[G∗
infec(i, j

∗, n)] > 1 − ε/2.

Now, observe that, due to our preparations, (34) is actually being guaranteed by
Gper-occ(i, j

∗, n) up to time n + 1. Combining both events (which are actually
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independent), we define

Ginfec(i, j
∗, n) := G∗

infec(i, j
∗, n) ∩ Gper-occ(i, j

∗, n) ∈ F (i,L/2, n,1)

and finally see that P[Ginfec(i, j
∗, n)] > 1 − ε. Together with the fact that given

Xj∗(n) > M/K , our event Ginfec(i, j, n) implies Xi(n + 1) > M/K , defining
M0 = max{M1

0 ,M2
0 ,M3

0 ,M4
0 } completes the proof of Lemma 4.3. �

4.1.3. Control of the environment. We now find estimates for suitably measur-
able events, a combination of which will later provide the “safe environment con-
dition” G′

sec(i, n) at some site i ∈ Z
d and time n ∈ N , which will, in turn, imply

(21). Again, this is done via suitable comparisons to one-dimensional diffusions.

LEMMA 4.4 (Control of the environment). Let n ∈ N and i ∈ Z
d . Let

α′, {m′
ij }, {λij } be fixed. Then, for any ε ∈ (0,1), there is a finite constant v′

0 > 0
such that for all v′ > v′

0, there exists an event E′(i, n)[v′] ∈ F ′(i, n,2) such that
for all α′M ′ > ∑

j m′
ij ,

P
[
E′(i, n)[v′]] > 1 − ε.

Moreover,

E′(i, n)[v′] ⊂
{

sup
0≤s≤1

Yi(n + 1 + s) < 2v′M ′
}

(36)

and

{
E′(i, n)[v′] ∩ {Yi(n) ∈ [0, v′M ′]}} ⊂

{
sup

0≤s≤2
Yi(n + s) < 2v′M ′

}
.(37)

These results hold true for any choice of {γ ′
ij } and any parameter values for the

X-population in Model I.

REMARKS. 1. In the proof, we use the assumption that there is a constant
c > 0 such that m′

ij < cλ′
ij . We do not believe that this is necessary.

2. That the result should be true is again due to the fact that the downward drift
resulting from overcrowding in a site is quadratic, whereas the upward drift due to
reproduction in the population is only linear. Moreover, for sufficiently crowded
sites, immigration from neighboring sites is being compensated by intraspecific
competition.

SKETCH OF PROOF OF LEMMA 4.4. Again, the proof relies on a suitable
comparison to one-dimensional diffusions. This time, the comparison is set up in
a way such that Yi is being dominated by a one-dimensional diffusion. Indeed,
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notice that, for t ≥ n, as long as Yi(t) > m′
ij /(α

′λ′
ij ) for all j �= i, an informal

calculation shows that

dYi(t) ≤ α′
(
M ′ − 1

α′
∑

j �=i,j∈Zd

m′
ij − λ′

iiYi(t)

)
Yi(t) dt + √

Yi(t) dB ′
i (t).(38)

Hence, the immigration of mass from site j is compensated for by the downward
drift due to crowding at site j and we may compare the evolution of Yi (again
applying the Corollary A.2 to the Ikeda–Watanabe Comparison theorem) to that of
the solution Zi of the logistic Feller diffusion (17), this time with driving Brownian
motion given by {Wi(t)}t≥0 := {B ′

i (t)}t≥0. It is then possible, in a way similar to
the proof of Lemma 4.3, to construct the suitably measurable events E′(i, n)[v′]
in terms of Zi with the required properties. Here, the quadratic downward drift in
the logistic Feller diffusion does the trick, as standard speed-measure and scale-
function computations for Zi show. Full details of this proof can again be found in
Blath, Etheridge and Meredith [1]. �

REMARK. Note that for a′ > v′
0 in Lemma 4.4 (and, of course, also for the

stronger condition a′/2 > v′
0), at time n ∈ N, recalling N = b + 2,

⋂
j∈i+[−bL,bL]d∩Zd

E′(j, n−1)[a′] ∈ F ′(i, bL,n−1,2) ⊂ F ′(i,NL,n−1,2)(39)

implies (21). Moreover, together with the additional condition Yj (n) ≤ a′M ′ for
all j ∈ i + [−bL,bL]d ∩ Z

d , both⋂
j∈i+[−bL,bL]d∩Zd

E′(j, n−1)[a′] ∈ F ′(i, bL,n−1,2) ⊂ F ′(i,NL,n−1,2)(40)

and ⋂
j∈i+[−bL,bL]d∩Zd

E′(j, n)[a′] ∈ F ′(i, bL,n,2) ⊂ F ′(i,NL,n,2)(41)

imply (21), too. Thus, all three events can be considered as instances of the “safe
environment condition” G′

sec(i, n) in the sense of Lemma 4.3.

4.2. Comparison arguments.

4.2.1. Comparison of ζ (resp. η) to 2N = 2(b+2)-dependent oriented percola-
tion. We first focus on the X- (resp. ζ -) population and construct a suitable “good
event” Gζ . Recall that by our technical assumption, L denotes the maximum range
of both migration matrices {mij }, {m′

ij } and b is the smallest positive integer such
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that the range of {γij } and {γ ′
ij } is less than (b − 1) · L. Also, recall from (15) the

definition

ζi(n) =




1, if Xi(2n) >
M

K
and Yj (2n) < a′M ′

∀j ∈ i + [−bL,bL]d ∩ Z
d ,

0, otherwise

(42)

and from the comparison assumptions (10) the notation ζ(n) ∈ H if ζi(n) =
1 for all i ∈ [−L/2,L/2]d ∩ Z

d . Finally, recall from (11) the notion of translation
of H by mL, for some m ∈ Z, denoted by m · H .

LEMMA 4.5 (Comparison). Let θ ∈ (0,1). Suppose we are given fixed para-
meters α,α′, {mij }, {m′

ij }, {λij }, {λ′
ij }. Then, under the assumptions on Model I for

Theorem 1.2, there exist finite constants M0 > 0 and a′ > 0 such that if M > M0,
K := 2αMc+1 and M ′ > ∑

j m′
ij /α

′, then there is a finite γ = γ (a′M ′) > 0 such
that if

∑
j γij < γ , and for all {γ ′

ij }, the process {ζ(n)}n≥0 fulfils the modified
comparison assumptions (14) for NL and θ . In particular, for each configuration
ζ ∈ H , there exists a “good event”

Gζ ∈ F ∗(NL, [0,2]),
where N = b + 2, with P[Gζ ] > 1 − θ , such that if ζ(0) = ζ , then on Gζ ,

ζ(1) ∈ (+1)H ∩ (−1)H.

Consequently, using Theorem 3.5, the process Xn := {(m,n) ∈ L : ζ(n) ∈ m · H }
dominates a 2N -dependent oriented percolation process {Wn}n≥0 on L with den-
sity at least 1 − θ and initial condition W0 = X0.

REMARKS. 1. A similar result is true for the Y - (resp. η-) population which,
given θ > 0, produces a similar threshold M ′

0 and parameters M ′, a, γ ′, which
allow a comparison to a 2N = 2(b + 2)-dependent oriented percolation process of
density at least 1 − θ via a similar “good event” Gη.

2. The available degree of freedom in the choice of {γ ′
ij } in this result is crucial

for the simultaneous comparison of {ζ(n)}n≥0 and {η(n)}n≥0 which we will need
to consider later. It is due to the fact that our results for the “control of the environ-
ment” in Lemma 4.4 are entirely independent of these {γ ′

ij }, since competition by
X only facilitates the “good environment condition” determined in terms of Y .

PROOF OF LEMMA 4.5. Fix θ > 0 and let

ε = 1

2

θ

(4(b + 2)L)d
.(43)

We begin with the specification of consistent parameter values for our model
that will lead to the required comparison. First, note that all of the constants
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α,α′, {mij }, {m′
ij }, {λij }, {λ′

ij }, b,N,L will remain fixed throughout what follows.
The only values we need to adjust suitably in order to produce the proof are
M,M ′, a′, {γij }. The proof is entirely independent of the choice of {γ ′

ij } (provided
all parameter values remain compatible with the assumptions of Theorem 1.2).

First, we choose sufficiently large a′ so that for any M ′ > ∑
j m′

ij /α
′,

a′ > 1

2α′M ′c + 1
(44)

and, moreover, such that a′/2 > v′
0 in Lemma 4.4 with the above ε. Then, for each

i and n, we have the bound

P
[
E′(i, n)[a′/2]] > 1 − ε.(45)

Note that this bound does not depend on {γ ′
ij } (and obviously not on {γij }).

From now on, a′ remains fixed. Define, for any M ′ >
∑

j m′
ij /α

′, the constant

γ = γ (a′,M ′) := (2a′M ′)−1 so that, for each i, we have
∑

j∈Zd γij 2a′M ′ < 1.

Finally, we can find M0 > 0 such that for all M > M0, the bounds of Lemma 4.3
for the “infection” and “nonrecovery probabilities” hold with our choice of ε.

We now check that with these parameter values for M0, a
′, γ and for all

M > M0, assuming ζ(0) ∈ H , there is a “good event” Gζ ∈ F ∗(NL, [0,2]), which
implies

ζ(1) ∈ (+1)H ∩ (−1)H(46)

and has probability at least 1 − θ . Recall that ζ(0) ∈ H means:

• Xi(0) > M/K , where K = 2αMc + 1, for all i ∈ [−L/2,L/2]d ∩ Z
d ,

• Yj (0) < a′M ′, for all j ∈ i + [−bL,bL]d ∩ Z
d, i ∈ [−L/2,L/2]d ∩ Z

d .

To construct Gζ , recall that one time step for ζ corresponds to two time units
for X and Y . We split the corresponding time interval [0,2] into two parts, [0,1]
and [1,2]. By Lemma 4.4, applied with v′ = a′ > v′

0, we see that

P

[⋂
i

E′(i,0)[a′] : i ∈ [−(b + 1/2)L, (b + 1/2)L]d ∩ Z
d

]

> 1 − (
2(b + 1/2)L

)d
ε,

and recall that this event, denoted by E′(0, (b + 1/2)L,0,2)[a′] ∈ F ′(0, (b +
1/2)L,0,2) for short, implies, since ζ(0) ∈ H , by Lemma 4.4, that

sup
0≤s≤2

{Yi(s) : i ∈ [−(b + 1/2)L, (b + 1/2)L]d ∩ Z
d} < 2a′M ′.

Next, Lemma 4.3 tells us that [recall Gnonrec(i,0) ∈ F (i,0,1) for n = 0],

P

[⋂
i

Gnonrec(i,0) : i ∈ [−L/2,L/2]d ∩ Z
d

]
> 1 − Ldε
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and this event, denoted by Gnonrec(0,L/2,0,1) ∈ F (0,L/2,0,1), implies

Xi(1) >
M

2αMc + 1
for all i ∈ [−L/2,L/2]d ∩ Z

d .

Now, applying Lemma 4.4 once again, this time with v′ = a′/2, we see that

P

[⋂
i

E′(i,0)[a′/2] : i ∈ [−NL,NL]d ∩ Z
d

]
> 1 − ε(2NL)d

and this event, denoted by E′(0,NL,0,2)[a′/2] ∈ F ′(0,NL,0,2), ensures that

sup
s∈[1,2]

{Yi(s) : i ∈ [−NL,NL]d ∩ Z
d} < a′M ′.

Combining all of these events, we have guaranteed that with probability at least
1 − (2NL)dε − Ldε − (2(b + 1/2)L)dε, we have that

Xi(1) >
M

K
= M

2αMc + 1
for all i ∈ [−L/2,L/2]d ∩ Z

d(47)

and

sup
1≤t≤2

{Yj (t) : j ∈ [−NL,NL]d ∩ Z
d} < a′M ′,(48)

where N = b + 2. Thus, throughout the time interval [1,2], a “safe environ-
ment condition” G′

sec(i,1) ∈ F ′(i,NL,1,1) holds at time n = 1 for all i ∈
[−(3/2)L, (3/2)L]d ∩ Z

d and hence the local Y -population is not “too big,” that
is, for all j ∈ [−(3/2)L, (3/2)L]d ∩ Z

d , we have maxt∈[1,2]
∑

l∈Zd γjlYl(t) < 1.

Thus, the ζ -process can safely invade the neighboring boxes, that is, conditional
on (47) and given the above instance of the “safe environment condition,” for each
site

i ∈ {{Le1 + [−L/2,L/2]d} ∪ {−Le1 + [−L/2,L/2]d}} ∩ Z
d,(49)

where e1 denotes the first unit vector in Z
d , the “infection event” Ginfec(i, j,1) at

i has probability greater than 1 − ε, by Lemma 4.3 (noting that by our choice of
L, and the fact that mij is a function of ‖i − j‖ alone, each such site i has at least
one occupied neighbor j ∈ [−L/2,L/2]). Hence, after all of these prerequisites,
the probability that simultaneously for all such sites i taken from the set in (49), at
time 1, the event

Ginfec(i, j,1) ∈ F (i,NL,1,1) holds for some j ∈ [−L/2,L/2]d ∩ Z
d,

implying, under the above conditions that Xi(2) > M/K = M/(2αMc + 1), is at
least 1 − 2Ldε. We denote this event by Ginfec(L ↑ L/2,1,1) ∈ F (0,NL,0,2).

Thus, we may define the F ∗(NL, [0,2])-measurable “good event”

Gζ := E′(0, (b + 1/2)L,0,2
)[a′] ∩ Gnonrec(i,L/2,0,1)

(50)
∩ E′(i,NL,0,2)[a′/2] ∩ Ginfec(i,L ↑ L/2,1,1),
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which implies, given ζ = ζ(0) ∈ H , that ζ(1) ∈ (+1)H ∩ (−1)H and observe

P[Gζ ] > 1 − (
2(b + 1/2)L

)d
ε − Ldε − (2NL)dε − 2Ldε

> 1 − 4(2NL)dε = 1 − θ,

which completes the comparison. �

4.2.2. Simultaneous comparison and proof of Theorem 1.2 and Corollary 1.3.
Assume that θ ≤ 6−4(4(b+2)+1)2

. We may then choose a, a′ such that for all
M >

∑
j mij /α and M ′ >

∑
j m′

ij /α
′, (45) holds for both populations X and Y

with ε = 1
4

θ
(2NL)d

. The point is that this can be done simultaneously, since the
bounds for the control of the environment do not depend on the behavior of the
competitor.

We may then pick M,M ′ and simultaneously γ, γ ′ such that Lemma 4.3
holds with ε = 1

4
θ

(2NL)d
for both the X- and the Y -population. Condition (45)

is unaffected by this, since the bounds on the environment do not depend on
{γij } and {γ ′

ij } and hold for all M >
∑

j mij /α and M ′ >
∑

j m′
ij /α

′. Assum-
ing, then, that ζ(0) and η(0) ∈ H , observing that condition (44) on a′ ensures
that κ ′

1 := M ′
2α′M ′c+1 < a′M ′ =: κ ′

2 (with a similar inequality for κ1, κ2) leads to the
initial condition

(X(0), Y (0)) ∈ H
(
κ1, κ2;κ ′

1, κ
′
2; (b + 1/2)L

)
specified in Theorem 1.2, with

κ1 = M

2αMc + 1
, κ2 = aM,

κ ′
1 = M ′

2α′M ′c + 1
, κ ′

2 = a′M ′.

Hence, we can simultaneously construct the corresponding good events Gζ and
Gη and infer from Theorem 3.2 that both the X- and Y -population survive, each
with probability greater than 19

20 , which yields persistence of {X,Y } with positive
probability. Moreover, if we make the stronger assumption that the initial configu-
rations of the X- and Y -populations satisfy

(X(0), Y (0)) ∈ H(κ1, κ2; κ ′
1, κ

′
2; ∞),

hence assuming ζi(0) = 1, ηi(0) = 1, for all i ∈ Z
d, then, according to Theo-

rem 3.6, lim infn→∞ P[ζ2n(0) = 1] ≥ 19
20 . The same result holds for η. Thus,

lim inf
n→∞ P[ζ2n(0) = 1, η2n(0) = 1] ≥ 9

10 .
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By the definition of {ζn, ηn}n≥0 and our bounds from the last section applied in
a similar fashion, this implies that there is a uniform positive lower bound on
P[X0(t) ≥ M/(2K),Y0(t) ≥ M/(2K) ∀t ∈ [0,4] given ζ2n(0) = 1, η2n(0) = 1]
and the proof is completed.

4.2.3. Proof of Theorem 1.4. The proof of Theorem 1.4 again follows by com-
parison to suitable one-dimensional diffusions. This time, there is no need to con-
trol a potentially harmful “environment,” making things much easier. For details,
we again refer to Blath, Etheridge and Meredith [1].

APPENDIX

The following classical comparison theorem and, in particular, its subsequent
corollary, whose proof can be found in Blath, Etheridge and Meredith [1], are
tailored for our purposes in Section 4. Note that the corollary allows a comparison,
even if (51) only holds for intervals.

THEOREM A.1 (Ikeda and Watanabe [10]). Let (
,F , {Ft },P) be a filtered
probability space and let x1(t,ω), x2(t,ω) be two real {Ft }-adapted processes. Let
B(t,ω) be a one-dimensional {Ft }-Brownian motion such that B(0) = 0 a.s. and
let β1(t,ω),β2(t,ω) be two real {Ft }-adapted previsible drifts. Assume that with
probability one,

xi(t) − xi(0) =
∫ t

0

√
xi(t) dB(s) +

∫ t

0
βi(s) ds, i = 1,2,

and that pathwise uniqueness of solutions holds for at least one of the equations.
Moreover, assume that with probability one,

x1(0) ≤ x2(0), β1(t) ≤ b1(t, x1) and β2(t) ≥ b2(t, x2) ∀t ≥ 0

for two real continuous functions b1(t, x), b2(t, x) on [0,∞) × R such that

b1(t, x) ≤ b2(t, x)(51)

for all t ≥ 0 and x ∈ R. Then, x1(t) ≤ x2(t) for every t ≥ 0.

COROLLARY A.2. In the framework of Theorem A.1, assume that x1 and x2

are positive and nonexploding. Let δ > 0.

(a) Suppose that condition (51) on b1, b2 is required only for all x ∈ [δ,∞). As-
sume x1(0) ≤ x2(0). Define τ

x2
δ := inf{t ≥ 0 :x2(t) ≤ δ}. Then, with probabil-

ity one, x1(t ∧ τ
x2
δ ) ≤ x2(t ∧ τ

x2
δ ) for all t ≥ 0.
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(b) Suppose that condition (51) on b1, b2 is required only for all x ∈ [0, δ]. Assume
x1(0) ≤ x2(0). Define τ

x1
δ := inf{t ≥ 0 :x1(t) ≥ δ}. Then, with probability one,

x1(t ∧ τ
x1
δ ) ≤ x2(t ∧ τ

x1
δ ) for all t ≥ 0.
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