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Under the assumption of no-arbitrage, the pricing of American and
Bermudan options can be casted into optimal stopping problems. We pro-
pose a new adaptive simulation based algorithm for the numerical solution
of optimal stopping problems in discrete time. Our approach is to recursively
compute the so-called continuation values. They are defined as regression
functions of the cash flow, which would occur over a series of subsequent
time periods, if the approximated optimal exercise strategy is applied. We
use nonparametric least squares regression estimates to approximate the con-
tinuation values from a set of sample paths which we simulate from the un-
derlying stochastic process. The parameters of the regression estimates and
the regression problems are chosen in a data-dependent manner. We present
results concerning the consistency and rate of convergence of the new al-
gorithm. Finally, we illustrate its performance by pricing high-dimensional
Bermudan basket options with strangle-spread payoff based on the average
of the underlying assets.

1. Introduction. Many financial contracts allow for early exercise before ex-
piry. Most of the exchange traded option contracts are of the American type which
allows the holder to choose any exercise date before expiry, or the Bermudan with
exercise dates restricted to a predefined discrete set of dates. Mortgages have em-
bedded prepayment options such that the mortgage can be amortized or repayed.
Also, life insurance contracts may allow for early surrender. In this paper we are
interested in pricing options with early exercise features. It is well known that in
complete and arbitrage free markets the price of a derivative security can be repre-
sented as an expected value with respect to the so-called martingale measure; see,
for instance, [16]. Furthermore, the price of an American option with maturity T

is given by the value of the optimal stopping problem

V0 = sup
τ∈T[0,T ]

E{d0,τ fτ (Xτ )},(1.1)

where ft is a nonnegative payoff function, Xt is a stochastic process, which mod-
els the relevant risk factors, T[0,T ] is the class of all stopping times with values
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in [0, T ], and ds,t are nonnegative F ((Xu)s≤u≤t )-measurable discount factors sat-
isfying d0,t = d0,s · ds,t for s < t . In practice, the process Xt is often a geometric
Brownian motion, as, for instance, in the celebrated Black–Scholes setting. A more
general class of models is obtained with diffusions, jump-diffusion processes or
nonparametric time series models. The model parameters are usually calibrated to
observed time series data.

The first step in addressing the numerical solution of (1.1) is to pass from con-
tinuous time to discrete time, which means in financial terms to approximate the
American option by a Bermudan option. The convergence of the discrete time
approximations to the continuous time optimal stopping problem is considered
in [18] for the Markovian case but also in the abstract setting of general stochastic
processes.

For simplicity, we restrict ourselves directly to a discrete time scale and consider
exclusively Bermudan options. In analogy to (1.1), the price of a Bermudan option
is the value of the discrete time optimal stopping problem

V0 = sup
τ∈T (0,...,T )

E{d0,τ fτ (Xτ )},(1.2)

where X0,X1, . . . ,XT is now a discrete time stochastic process, and T (0, . . . , T )

is the class of all {0, . . . , T }-stopping times. For additional theoretical background
on valuating Bermudan options, we refer to [25].

In the sequel we assume that X0,X1, . . . ,XT is a [−A,A]d -valued Markov
process recording all necessary information about financial variables including
prices of the underlying assets as well as additional risk factors driving stochastic
volatility or stochastic interest rates. We also assume that the law of X0, . . . ,XT

is known such that we can draw random sample paths as well as partial sample
paths Xt, . . . ,XT for arbitrary starting values of Xt . Neither the Markov prop-
erty nor the form of the payoff as a function of the state of Xt is restrictive and
can always be achieved by including supplementary variables. For instance, in the
case of an Asian option we add the running mean as an additional variable into Xt .
Because the diffusion, jump-diffusion or time series models, which appear in prac-
tical applications, lead to unbounded stochastic processes for the underlying state
variables Xt , they must be suitably localized to a bounded set [−A,A]d .

The boundedness assumption Xt ∈ [−A,A]d then allows us to estimate the
price of the Bermudan option from samples of polynomial size in the number of
free parameters. This is in contrast to Glasserman and Yu [13]. Their work does
not impose a boundedness assumption on the underlying process and shows that
for arithmetic and geometric Brownian motions, the sample size must grow expo-
nentially in the number of free parameters in order to retain a convergent estimator.

The computation of (1.2) requires the determination of an optimal stopping rule
τ ∗ ∈ T (0, . . . , T ) which satisfies

V0 = E{d0,τ∗fτ∗(Xτ∗)}.(1.3)
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Let

qt (x) = sup
τ∈T (t+1,...,T )

E{dt,τ fτ (Xτ )|Xt = x}(1.4)

be the so-called continuation value describing the value of the option at time t

given Xt = x and subject to the constraint of holding the option at time t rather
than exercising it. The general theory of optimal stopping for Markov processes
(see, e.g., [5, 11, 22, 26]) implies that

τ ∗ = inf{s ≥ 1 :qs(Xs) ≤ fs(Xs)}
is an optimal stopping time, that is, τ ∗ satisfies (1.3). Therefore, computing the
continuation values (1.4) solves the optimal stopping problem (1.2).

Explicit solutions of (1.2) do not exist, except in very rare cases, but there are a
variety of numerical procedures to solve optimal stopping problems, each with its
strength and weaknesses. In this paper we study a concrete simulation algorithm.
The first attempts to use simulation are [2, 3, 28]. Longstaff and Schwartz [21]
introduce a new algorithm for Bermudan options in discrete time. It combines
Monte Carlo simulation with multivariate function approximation. Tsitsiklis and
Van Roy [29] independently propose an alternative parametric approximation al-
gorithm using stochastic approximation to derive the weights of the approxima-
tion. Both algorithms approximate the value function or the early exercise rule and
therefore provide a lower bound for the true optimal stopping value. Upper bounds
based on the dual problem are derived in [15, 23]. More details and further refer-
ences can be found in [4] and [12]. The article [19] compares several Monte Carlo
approaches empirically.

In this paper we enhance the approach of [21] and its generalization presented
in [10]. We construct estimates q̂t of qt and approximate the optimal stopping
rule τ ∗ by

τ̂ = inf{s ≥ 1 : q̂s(Xs) ≤ fs(Xs)}.(1.5)

Then, a Monte Carlo estimate of

E{d0,τ̂ fτ̂ (Xτ̂ )}(1.6)

provides a lower bound for the price V0 of the Bermudan option.
To this end, we represent qt as a regression function of a distribution (Xt , Yt ),

where Yt depends on the partial sample path Xt+1, . . . ,Xt+w+1 and qt+1, . . . ,

qt+w+1 for some tunable parameter w ∈ {0,1, . . . , T − t − 1}. This distribution
will in turn be approximated by (Xt , Ŷt ), where Ŷt depends on Xt+1, . . . ,Xt+w+1
and q̂t+1, . . . , q̂t+w+1. We construct an estimate q̂t of qt with nonparametric re-
gression techniques applied to a Monte Carlo sample of the distribution (Xt , Ŷt )

and use this estimate together with q̂t+1, . . . , q̂t+w to compute recursive estimates
of qt−1, . . . , q0. Our algorithm is adaptive in the sense that all parameters of the
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estimates and the parameter w of the distribution of (Xt , Yt ) are chosen in a data
dependent manner.

We proceed as follows. In Section 2 we describe in detail the connection be-
tween discrete time optimal stopping problems and recursive regression. The dy-
namic look-ahead Monte Carlo algorithm for solving optimal stopping problems
is introduced in Section 3. The main theoretical results, including the consistency
and the rate of convergence of the algorithm, are presented in Section 4. The fi-
nite sample properties of the proposed algorithm are illustrated in Section 5 with a
simulation study. Section 6 contains the proofs.

2. Discrete time optimal stopping and recursive regression. Let X =
(Xt)t=0,...,T be a discrete time Markov process with values in R

d , µt the law in-
duced by Xt on R

d , and F = (Ft ) be the induced filtration where

Ft = F (X0, . . . ,Xt ) = ∨
s≤t

σ (Xs)(2.1)

is the sigma algebra generated by the random variables {Xs |s ≤ t}. The solution
of the discrete time optimal stopping problem for nonnegative reward or payoff
functions ft is given by the value function

vt (x) = sup
τ∈T (t,...,T )

E[fτ (Xτ )|Xt = x].(2.2)

The supremum runs over the class T (t, . . . , T ) of all F-stopping times with
values in {t, . . . , T }. By definition, each τ ∈ T (t, . . . , T ) satisfies {τ = k} ∈
F (X0, . . . ,Xk) for k ∈ {t, . . . , T }. Here and in the sequel we assume for nota-
tional simplicity that ft contains already the discount factor occurring in (1.2).
Once the value function has been determined, the smallest optimal stopping time
as of time t can be derived as

τ ∗
t = inf{s ≥ t |vs(Xs) ≤ fs(Xs)}.(2.3)

The optimal stopping problem can also be characterized in terms of the so-called
continuation value, which is given by

qt (x) = sup
τ∈T (t+1,...,T )

E[fτ (Xτ )|Xt = x] = E[fτ∗
t+1

(Xτ∗
t+1

)|Xt = x](2.4)

for t ≤ T − 1 and set to qT = 0 at maturity T . The value function and the continu-
ation value are related by

vt (Xt ) = max
(
ft (Xt), qt (Xt)

)
, qt (Xt ) = E[vt+1(Xt+1)|Xt ].(2.5)

From now on we primarily consider qt . The continuation value satisfies the dy-
namic programming equations

qT (x) = 0,
(2.6)

qt (x) = E
[
max

(
ft+1(Xt+1), qt+1(Xt+1)

)|Xt = x
]
.
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The recursion for the optimal stopping rules is given by

τ ∗
T = T ,

(2.7)
τ ∗
t = t1{qt (Xt )≤ft (Xt )} + τ ∗

t+11{qt (Xt )>ft (Xt )}.

The dynamic programming equations (2.6) show that the optimal stopping prob-
lem in discrete time is essentially equivalent to a series of regression problems.
Equation (2.4) provides a different regression representation of the continuation
value, once the optimal stopping rule of the next future period is known. These rep-
resentations are extreme cases, as we will explain in the following. For ht ∈ L1(µt )

with hT = fT , we define on R
(w+1)d = ×w+1R

d the function

ϑt :w(f,ht , . . . , ht+w)(xt , . . . , xt+w)

=
t+w∑
s=t

fs(xs)1{fs(xs)−hs(xs)≥0}
s−1∏
r=t

1{fr (xr )−hr (xr )<0}(2.8)

+ ht+w(xt+w)

t+w∏
r=t

1{fr (xr )−hr (xr )<0},

where we follow the convention that the product over an empty index set is equal
to one. In the following, to reduce notational overhead, we simply write

ϑt :w(f,h) = ϑt :w(f,ht , . . . , ht+w),(2.9)

thereby implicitly assuming that ϑt :w(f,h) is solely depending on ht , . . . , ht+w.
In a financial context the function ϑt :w(f,h) has a natural interpretation as the

future payoff we would get by holding the Bermudan option for at most w periods,
applying the stopping rule τt (h) ∧ (t + w) which is defined recursively by

τT (h) = T ,
(2.10)

τt (h) = t1{ft (Xt )−ht (Xt )≥0} + τt+1(h)1{ft (Xt )−ht (Xt )<0},

and selling the option at time t +w for the price ht+w(Xt+w), if it is not exercised
before.

We now come back to the generalization of the regression representations (2.4)
and (2.6). First note that max(ft+1, qt+1) = ϑt+1:0(f, q) and, therefore,

qt (x) = E[ϑt+1:0(f, q)(Xt+1)|Xt = x].(2.11)

On the other hand, the recursive formula (2.7) for the optimal stopping rule τ ∗
t

shows that

fτ∗
t+1

(Xτ∗
t+1

) = fτt+1(q)

(
Xτt+1(q)

) = ϑt+1:T −t−1(f, q)(Xt+1, . . . ,XT ),

such that we also have [cf. (2.4)]

qt (x) = E[ϑt+1:T −t−1(f, q)(Xt+1, . . . ,XT )|Xt = x].(2.12)
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More generally, we have for any 0 ≤ w ≤ T − t − 1 the representation

qt (x) = E[ϑt+1:w(f, q)(Xt+1, . . . ,Xt+w+1)|Xt = x].(2.13)

To prove (2.13), we start with

qt (Xt) = E
[
max

(
ft+1(Xt+1), qt+1(Xt+1)

)|Xt

]
= E

[
ft+1(Xt+1)1{ft+1(Xt+1)−ht+1(Xt+1)≥0}(2.14)

+ qt+1(Xt+1)1{ft+1(Xt+1)−ht+1(Xt+1)<0}|Ft

]
,

where we have used the Markov property in the second equality. Then we expand
qt+1(Xt+1) in (2.14) by

E
[
ft+2(Xt+2)1{ft+2(Xt+2)−ht+2(Xt+2)≥0}
+ qt+2(Xt+2)1{ft+2(Xt+2)−ht+2(Xt+2)<0}|Ft+1

]
and proceed recursively up to t + w + 1. Equation (2.13) follows from the pro-
jection property E[E[·|Ft+1]|Ft ] = E[·|Ft ] of conditional expectations and by an-
other application of the Markov property.

3. Monte Carlo algorithms for optimal stopping. Equation (2.13) shows
that the continuation value qt at time t can be obtained as the regression function
of ϑt+1:w(f, q) for some 0 ≤ w ≤ T − t − 1. Least squares Monte Carlo methods
pioneered by [21], and extended in [10] to arbitrary w, recursively estimate the
regression function qt from independent sample paths of the underlying Markov
process Xt . Let

Xt+1:w = (Xt+1, . . . ,Xt+w+1)(3.1)

be the partial sample path of length w starting at t + 1. When it comes to estima-
tion of the continuation value qt , these algorithms use the previously determined
estimates q̂t+1, . . . , q̂t+w+1 for qt+1, . . . , qt+w+1 to construct

Ŷt = ϑt+1:w(f, q̂)(Xt+1:w) = ϑt+1:w(f, q̂t+1, . . . , q̂t+w+1)(Xt+1:w),(3.2)

which takes the role of the dependent variable of the regression problem for time
step t . The random variable Ŷt is an estimate of the unknown optimal reward

Yt = ϑt+1:w(f, q)(Xt+1:w) = ϑt+1:w(f, qt+1, . . . , qt+w+1)(Xt+1:w).(3.3)

Given independent sample paths

Xi = (Xi,t )t=0,...,T , i = 1, . . . , n,(3.4)

of the underlying Markov process X, the least squares estimate of qt is obtained as

q̂n,t = arg min
h∈Hn,t

1

n

n∑
i=1

|h(Xi,t ) − Ŷi,t |2,(3.5)
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where

Ŷi,t = ϑt+1:w(f, q̂)(Xi,t+1:w), Xi,t+1:w = (Xi,t+1, . . . ,Xi,t+w+1)(3.6)

and Hn,t is a set of functions h : Rd → R.
With w = 0, the above algorithm corresponds to the Tsitsiklis–Van Roy algo-

rithm [29], while w = T − t − 1 has been proposed in [21]. The idea of using
an intermediate value w ∈ {0,1, . . . , T − t − 1} in order to “interpolate” between
these two algorithms has been introduced in [10]. A further contribution of [10] is
the consistency and the rate of convergence of the above algorithm for fixed w and
fixed convex and uniformly bounded function spaces Hn,t , without imposing any
distributional assumptions on the underlying process Xt .

The boundedness assumption on Hn,t makes the computation of the least
squares estimate in (3.5) difficult because it leads to constrained optimization prob-
lems; see, for instance, [14], Section 10.1. In addition, the convexity assumption
excludes promising choices like spaces of polynomial splines with free knots or
spaces of artificial neural networks, which require restrictions on the number of
knots or the number of hidden neurons, respectively, to control the “complexity”
of the function spaces. The resulting function spaces violate the convexity assump-
tions. Taking the convex hull instead is not an option because it would lead to
function classes with a complexity that is much too high. Furthermore, in view of
applications, it is desirable to choose parameters of the functions spaces and also
the parameter w of the underlying regression problems data dependent. In this pa-
per we modify the above algorithm such that this is possible. For simplicity, we
restrict ourselves to function spaces, which are linear vector spaces, however, it is
straightforward to derive similar results for spaces of polynomial splines with free
knots or spaces of artificial neural networks.

The main problem in analyzing the estimates q̂n,t is the control of the error
propagation, that is, to answer the question how the errors of q̂n,t+1, . . . , q̂n,t+w+1
influence the error of q̂n,t . At this stage Egloff [10] uses the convexity of Hn,t to
bound the L2-error in terms of the approximation error and a sample error derived
from a suitably centered loss function. The difficulty for obtaining error estimates
comes from the fact that q̂t+1, . . . , q̂t+w+1 depend on a single set of sample paths
(3.4) and are thus dependent. Clément, Lamberton and Protter [6] face the same
difficulty while deriving a central limit theorem for the Longstaff–Schwartz algo-
rithm with linear approximation.

In the sequel we use a trick to simplify the analysis of the error propagation.
Instead of using the partial sample path Xt+1:w of our training data again, which
we used in part already in the construction of the estimates q̂n,t+1, . . . , q̂n,t+w+1,
we generate new data X

t,new
t+1:w for Xt+1:w which are conditionally independent from

all previously used data of time s > t given Xt at time point t . We then construct
samples of the distribution of (Xt , Ŷ

w,new
t ), where

Ŷ
w,new
t = ϑt+1:w(f, q̂n,t+1, . . . , q̂n,t+w+1)(X

t,new
t+1:w).
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Since for Xt given, the random variable X
t,new
t+1:w is independent of all previously

used data for all time points s > t , it is, in particular, independent of the data used
in the construction of q̂n,t+1, . . . , q̂n,t+w+1. Set

q
w,new
t (x) = E∗{Ŷ w,new

t |Xt = x},
where in E∗{·|Xt = x} we take the conditional expectation with respect to fixed
Xt = x and with all the data fixed which were used in the construction of
q̂n,t+1, . . . , q̂n,t+w+1. Proposition 6.4 in [10] implies{∫

|qw,new
t (x) − qt (x)|2µt(dx)

}1/2

(3.7)

≤
t+w+1∑
s=t+1

{∫
|q̂n,s(x) − qs(x)|2µs(dx)

}1/2

.

This allows us to control the error propagation. By induction, assume that we have

P

{∫
|q̂n,s(x) − qs(x)|2µs(dx)

>

T −1∑
r=s

c ·
(
δn,r + min

h∈Hn,r

∫
|h(x) − qr(x)|2µr(dx)

)}
(3.8)

→ 0 (n → ∞)

for s ∈ {t + 1, . . . , t + w + 1}. Assume, in addition, that we are able to show

P
{∫

|q̂n,t (x) − q
w,new
t (x)|2µt(dx)

> c ·
(
δn,t + min

h∈Hn,t

∫
|h(x) − q

w,new
t (x)|2µt(dx)

)}
(3.9)

→ 0 (n → ∞),

which is for suitable δn,t (depending on the “complexity” of the function
spaces Hn,t ) a standard rate of convergence result for least squares estimates from
a sample of size n, where in the sample the response variables are independent
given the predictor variables and where the predictor variables are independent;
see [30] or [17].

It can be shown that (3.7)–(3.9) imply

P

{∫
|q̂n,t (x) − qt (x)|2µt(dx)

> c̄ ·
T −1∑
s=t

(
δn,s + min

h∈Hn,s

∫
|h(x) − qs(x)|2µs(dx)

)}

→ 0 (n → ∞).
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Details concerning related arguments can be found in the proofs of Theorems
4.1 and 4.4 below.

The main difference between our work here and the algorithms used in
[21] and [10] is that we generate new data to construct samples of Ŷ

w,new
t . There-

fore, the data used for estimation of q
w,new
t is conditionally independent given

the sample of Xt , which enables us to conclude (3.9) from standard rate-of-
convergence results in nonparametric regression. The generation of the new, in-
dependent data is similar to the data generation in the random tree method (see,
e.g., Section 8.3 in [12]). However, in contrast to the random tree method, we use
nonparametric regression techniques to estimate the regression function, while in
the random tree method simple averages are used to estimate the regression func-
tion point by point. As a consequence, the number of data points for the random
tree method grows exponentially in T , while for our method it grows only linearly
in T .

In the sequel we explain the definition of the estimates in detail. Let n be
the number of samples which we generate for our regression estimates, and let
wmax ∈ {0,1, . . . , T − 1} be the maximal look-ahead which we use. We start with
generating n independent sample paths

Xi = (Xi,t )t=0,...,T (i = 1, . . . , n)

of the underlying Markov process X. Then we set

q̂T = q̂n,T = 0

and construct successively estimates of qT −1, . . . , q0 as follows: Fix t ∈ {0,1, . . . ,

T −1} and assume that estimates q̂n,t+1, . . . , q̂n,T −1 of qt+1, . . . , qT −1 are already
constructed. Let

wmax(t) = min{wmax, T − t − 1}
be the maximal look-ahead of time period t . Generate independent sample paths

X
t,new
i,t :wmax(t)+1 = (X

t,new
i,s )s=t,...,t+wmax(t)+1 (i = 1, . . . , n)

starting at X
t,new
i,t = Xi,t for every i ∈ {1, . . . , n} such that, for all i, the partial

sample paths

X
t,new
i,t :wmax(t)+1(3.10)

have the same distribution as Xi,t :wmax(t)+1, and such that, given X1,t , . . . ,Xn,t ,
this data is independent of all previously generated data points for all time points
s > t . Define

Ŷ
w,new
i,t = ϑt+1:w(f, q̂n,t+1, . . . , q̂n,t+w+1)(X

t,new
i,t+1 , . . . ,X

t,new
i,t+w+1)

for every w ∈ {0, . . . ,wmax(t)} and apply a nonparametric least squares estimate
to the data (

(Xi,t , Ŷ
w,new
i,t )

)
i=1,...,n(3.11)
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to construct estimates q̂w
n,t of qt . The final step is to choose

ŵt ∈ {0,1, . . . ,wmax(t)}.
The resulting estimator for qt is then given by

q̂n,t = q̂
ŵt
n,t .(3.12)

Next, we explain in detail how to define the nonparametric least squares esti-
mates applied to the data (3.11) and how to select ŵt in a data dependent way. To
this end, we split the sample in three parts: a learning sample of size nl , a testing
sample of size nt and a validation sample of size nv , where n = nl + nt + nv . Fur-
thermore, we assume that we are given a finite set Pn of parameters and for each
p ∈ Pn, a set Hn,p of functions h : Rd → R.

For w fixed, we first define q̂w
n,t . For every p ∈ Pn, let

q̃
w,p
n,t (·) = arg min

h∈Hn,p

1

nl

nl∑
i=1

|h(Xi,t ) − Ŷ
w,new
i,t |2(3.13)

be the least squares estimate of q
w,new
t in Hn,p , which we take as an estimate of qt .

In (3.13) we assume for notational simplicity that the minimum exists, however,
we do not require that it is unique. If the minimum is not uniquely defined, we
can choose as estimate any functions which achieves the minimum and for this
function the theoretical results in Section 4 will hold.

REMARK 3.1. It is enough that q̃
w,p
n,t is almost minimizer in the sense that

1

nl

nl∑
i=1

|q̃w,p
n,t (Xi,t ) − Ŷ

w,new
i,t |2

(3.14)

≤ min
h∈Hn,p

1

nl

nl∑
i=1

|h(Xi,t ) − Ŷ
w,new
i,t |2 + o(n−1).

The result follows from the proofs.

Let

TLz = max{−L,min{L,z}}, z ∈ R,(3.15)

denote the truncation operator at threshold level L > 0. For a suitable threshold
parameter βn > 0, to be determined later, we set

q̂
w,p
n,t (x) = Tβnq̃

w,p
n,t (x) (x ∈ R

d),(3.16)

such that q̂
w,p
n,t is bounded in absolute value by βn. Next, we apply the method of

splitting the sample to select the parameter p; see, for instance, Chapter 7 in [14].
We set

q̂w
n,t (x) = q̂

w,p̂w
t

n,t (x) (x ∈ R
d),(3.17)
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where p̂w
t ∈ Pn satisfies

1

nt

nl+nt∑
i=nl+1

|q̂w,p̂w
t

n,t (Xi,t ) − Ŷ
w,new
i,t |2

(3.18)

= min
p∈Pn

1

nt

nl+nt∑
i=nl+1

|q̂w,p
n,t (Xi,t ) − Ŷ

w,new
i,t |2.

Finally, we explain our choice of w. For each w ∈ {0,1, . . . ,wmax(t)}, defini-
tion (3.17) provides an estimate q̂w

n,t of qt . The idea is to compute from q̂w
n,t an

approximately optimal stopping rule which gives a lower bound on the solution of
the optimal stopping problem at time t . The optimal candidate for w is the one that
maximizes the lower bound. We therefore set

ŵt = arg max
w∈{0,1,...,wmax(t)}

1

nv

n∑
i=nl+nt+1

fτ̂w
t (X

t,new
i,t :T −t−1)

(
X

t,new
i,τ̂w

t (X
t,new
i,t :T −t−1)

)
,(3.19)

where for w ∈ {0,1, . . . ,wmax(t)} the approximately optimal stopping rule τ̂ w
t is

defined by

τ̂ w
t = τt (q̂

w
n,t , q̂n,t+1, . . . , q̂n,T −2, q̂T −1),(3.20)

with τt (h) recursively defined as in (2.10). The specification (3.19) for ŵt com-
pletes the definition of the estimator (3.12).

REMARK 3.2. The quality and the computational cost of the estimator primar-
ily depends on the size of nl , which is used in (3.13) to perform the key nonpara-
metric regression. On the other hand, the magnitude of nt and nv is less critical
because they are only used to select optimal parameter values from a relatively
small discrete set and the corresponding objective functions converge, according
to Hoeffding’s and Bernstein’s inequality, very fast. The impact of nt and nv on
the overall computation cost is also minor. In practical applications, nl should be
increased as large as affordable by the available computation capacity.

REMARK 3.3. Note that the optimization in (3.18) and (3.19) is performed
over a finite set, which implies the existence of an optimizer.

4. Main theoretical results. If the stochastic process of the underlying state
variables Xt is unbounded, we first localize it to a bounded set [−A,A]d . For many
industry models, the localization error can be estimated explicitly. For illustration,
we consider a discretely sampled jump-diffusion process Xt . Let

Gf (t, x) = (1
2 tr(A∇2f ) + 〈b,∇f 〉)(t, x)

+
∫

Rd\{0}
(
f (x + u) − f (x)(4.1)

− 1{‖u‖<1}〈u,∇f (t, x)〉)S(t, x, du)
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be the generator of the corresponding continuous time process X0
t , where we as-

sume that A, b are Borel measurable, A is positive definite, with norms ‖A‖ ≤ a0,
‖b‖ ≤ b0, and S is a positive kernel on R

d \ {0}, Borel measurable in x such that

sup
x

S
(
t,‖u‖21{‖u‖≤1} + ‖u‖1{‖u‖>1}, du

) ≤ c0.(4.2)

Define

mt = sup
0≤s≤t

‖X0
s − x‖.(4.3)

Then, Lemma 17 of [20] states that, for every λ ∈ R and positive A, η, there exists
a constant k only depending on a0 and c0 such that

P(mt > A) ≤ 2d exp
(
−λ

d
(A − ‖x‖ − b0t − η) + λ2

2
kt

(
1 + e|λ|)) + c0t

η
.(4.4)

To localize the process X0
t to a bounded set [−A,A]d , we replace X0

t with the
process X

0,A
t killed at first exit from [−A,A]d . The semi-group of the killed

process is

P
0,A
t f (x) = Ex{f (X

0,A
t )} = Ex{f (X0

t )Mt },(4.5)

where Mt is the multiplicative functional Mt = 1{t<τA} for τA = inf{s ≥ 0|X0
s /∈

[−A,A]d}; see, for instance, [1]. We obtain

sup
τ∈T[0,T ]

|E{TLf (X0
τ )} − E{TLf (X0,A

τ )}|
(4.6)

≤ sup
τ∈T[0,T ]

E
{
TLf (X0

τ )1{mτ >A}
} ≤ LP(mT > A),

which, because of (4.4), can be made arbitrarily small by first choosing η and
then A large enough. Proposition 5.2 in [10] estimates the error if the payoff ft

is replaced by the truncated payoff TLft . We arrive at an a priori bound for the
localization and payoff truncation error.

In the following we derive the consistency of our estimator (3.12) under the
assumption

Xt ∈ [−A,A]d a.s. (t ∈ {0,1, . . . , T }).(4.7)

In addition, we assume that the payoff fs is bounded on [−A,A]d by some con-
stant L > 0 such that

|fs(x)| ≤ L for x ∈ [−A,A]d and s ∈ {0,1, . . . , T }.(4.8)

Observe that (4.8) implies |qt (x)| ≤ L for x ∈ [−A,A]d and t ∈ {0,1, . . . , T }, so
that βn = L can serve as the truncation parameter for the estimator.

In the sequel we use polynomial splines to define the function spaces Hn,p =
Hp independent of the sample size n and parameterized by p = (M,α) ∈ N0 ×
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(0,∞). We note that our results can be extended to other function spaces in a
straightforward manner.

For p = (M,α) and k ∈ Z, we set uk = k · α. Let Bk,M : R → R be the univari-
ate B-spline of degree M with knot sequence (ul)l∈Z and support supp(Bk,M) =
[uk,uk+M+1]. In the case of M = 0 the B-spline Bk,0 is the indicator function of
the interval [uk,uk+1). If M = 1, we obtain the so-called hat-functions

Bk,1(x) =




x − uk

uk+1 − uk

, for uk ≤ x ≤ uk+1,

uk+2 − x

uk+2 − uk+1
, for uk+1 < x ≤ uk+2,

0, else.

The general definition of Bk,M can be found, for example, in [8] or in Section 14.1
of [14]. The B-splines Bk,M are basis functions which are piecewise univariate
polynomials of degree M . They are globally (M − 1)-times continuously differen-
tiable, and the M th derivative can only jump at the knots ul .

For every multi-index k = (k1, . . . , kd) ∈ Z
d , we define the tensor product

B-spline Bk,M : Rd → R by

Bk,M

(
x(1), . . . , x(d)) = Bk1,M

(
x(1)) · · ·Bkd,M

(
x(d)) (

x(1), . . . , x(d) ∈ R
)
.

Let

Hn,p =
{ ∑

k∈Zd : supp(Bk,M)∩[−A,A]d 
=∅

ak · Bk,M :ak ∈ R

}

be the span of tensor product B-splines Bk,M , such that supp(Bk,M) has a non-
empty intersection with [−A,A]d . The spanning functions Bk,M are (M − 1)-
times continuously differentiable, piecewise multivariate polynomial of degree less
than or equal to M , defined on rectangular domains

[uk1, uk1+1) × · · · × [ukd
, ukd+1) (k = (k1, . . . , kd) ∈ Z

d),(4.9)

and vanish on all of the rectangles (4.9) for which there exists j ∈ {1, . . . , d} such
that either

kj > 0 and ukj−M > A

or

kj < 0 and ukj+M+1 < −A.

Consequently, Hn,p is a linear space of functions consisting of piecewise poly-
nomials with respect to equidistant partitions of R

d into cubes of edge length α,
vanishing outside a compact set.

For a sample size n, we use the parameters

Pn = {(M,α) :M ∈ N0,M ≤ �log(n)�, α = 2k for some k ∈ Z, |k| ≤ �log(n)�}.
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Here log denotes the natural logarithm, and for z ∈ R, we denote by �z� the small-
est integer greater than or equal to z.

Let q̂n,t be defined as in Section 3 with Pn and Hn,p as above. Note that Hn,p

is a linear function space which implies that the minimum in (3.13) always exists.
According to Remark 3.2, the computational cost of the estimator is not adversely
affected by large values for nt and nv of roughly the size of nl . Therefore, we
choose for simplicity nv = nt = �n/3� and nl = n − nv − nt . Our first result con-
cerns consistency of the estimator.

THEOREM 4.1. Assume (4.7) and (4.8), and let the estimate q̂n,t be defined as
above with βn = L. Then

E
∫

|q̂n,t (x) − qt (x)|2µt(dx) → 0 (n → ∞)

for all t ∈ {0,1, . . . , T − 1}.

REMARK 4.2. Because convergence in L1 implies convergence in probability,
Theorem 4.1 proves, in particular, that

∫ |q̂n,t − qt |2µt(dx) → 0 in probability as
n → ∞.

Next we study the rate of convergence. It is well known in nonparametric re-
gression that without smoothness assumptions on the regression function the rate
of convergence can be arbitrarily slow (cf., e.g., [7, 9] or [14], Chapter 3). We as-
sume that the continuation values qt are (p,C)-smooth according to the following
definition.

DEFINITION 4.3. Let p = k + β for some k ∈ N0, β ∈ (0,1], and let C > 0.
A function f : Rd → R is called (p,C)-smooth, if all partial derivatives

∂f

∂α1x(1) · · · ∂αd x(d)

of total order α1 + · · · + αd = k exist and satisfy∣∣∣∣ ∂f

∂α1x(1) · · · ∂αd x(d)
(x) − ∂f

∂α1x(1) · · · ∂αd x(d)
(z)

∣∣∣∣ ≤ C · ‖x − z‖β

for all x, z ∈ R
d .

Such a smoothness assumption is not unreasonable. For a sufficiently regular
diffusion or jump-diffusion process, the semi-group of Markov transition oper-
ators Ps,t (g)(x) = E[g(Xt)|Xs = x] is strongly smoothing already for arbitrar-
ily small time steps. In particular, we can expect that the continuation value
qt = Pt,t+1(max((ft+1, qt+1)) is (p,C)-smooth under suitable assumptions on
Xt and the payoff ft . At this point, it also becomes clear why it is unfavorable
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to directly work with the value function vt which does not retain the smoothness
because the maximum operation is applied after the transition operator. Next, we
address the rate of convergence of the estimator.

THEOREM 4.4. Let p = k + β for some k ∈ N0, β ∈ (0,1], and let C > 0.
Assume k ≤ Mmax, (4.7), (4.8) and

qt (p,C)-smooth

for all t ∈ {0,1, . . . , T − 1}. Let the estimate q̂n,t be defined as above with βn = L.
Then for every t ∈ {0,1, . . . , T − 1},

E
∫

|q̂n,t (x) − qt (x)|2µt(dx) ≤ const · C2d/(2p+d) ·
(

logn

n

)2p/(2p+d)

.

REMARK 4.5. We would like to stress that in Theorems 4.1 and 4.4 there is no
assumption on the distribution of X besides the assumption (4.7). In particular, it
is not required that Xt has a density with respect to the Lebesgue–Borel measure.

REMARK 4.6. It is well known that the optimal rate of convergence for the es-
timation of (p,C)-smooth functions is n−2p/(2p+d) (see, e.g., [27] or [14], Chap-
ter 3). Hence, the rate of convergence in Theorem 4.4 is optimal up to a logarithmic
factor.

REMARK 4.7. The definition of the estimator in Theorem 4.4 does not de-
pend on the degree of smoothness of qt represented by (p,C). Nevertheless, the
estimator achieves the optimal rate of convergence for a particular smoothness of
the continuation value. In this sense the estimator is able to adapt automatically to
the smoothness of the continuation value, in contrast to the estimates in [10].

REMARK 4.8. Assume X0 = x0 a.s. for some x0 ∈ [−A,A]d . We can estimate
the price

V0 = v0(x0) = max{f0(x0), q0(x0)}
[cf. (1.2), (2.2) and (2.5)] of the Bermudan option by

V̂0 = max{f0(x0), q̂n,0(x0)}.
Since the distribution of X0 is concentrated at x0, Theorem 4.4 leads to the error
bound

E{|V̂0 − V0|2} = E
{|max{f0(x0), q̂n,0(x0)} − max{f0(x0), q0(x0)}|2}

≤ E{|q̂n,0(x0) − q0(x0)|2}

≤ const · C2d/(2p+d) ·
(

logn

n

)2p/(2p+d)

.
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5. Finite sample behavior. In this section we illustrate the finite sample be-
havior of our algorithm (EKT) in comparison to the Longstaff–Schwartz (LS) and
Tsitsiklis–Van Roy (TR) algorithm. To compare the three algorithms, we proceed
as follows. We independently generate sample paths and compute for each algo-
rithm the Monte Carlo estimates (MCE) of the price (1.6). Because all three algo-
rithms provide a lower bound for the optimal stopping value, and since we evalu-
ate the approximative optimal stopping rule on independent sets of sample path, a
higher MCE indicates a better performance.

The underlying model for the dynamics of the stocks is a simple geometric
Brownian motion. We apply a Euler scheme to discretize the time interval [0,1]
into m time steps. Consequently, the prices of the underlying stocks on the time
grid 0, 1

m
, . . . , m−1

m
,1 are given by

Xi,j = X0 · exp
((

r − 1

2
σ 2

)
· j

m
+ σ√

m
· Wi,j

)
(5.1)

(i = 1, . . . , n, j = 1, . . . ,m).

Here, X0 is the initial stock price at time 0, r is the risk-free interest rate, σ the
instantaneous volatility, and

Wi,j =
j∑

l=1

Zi,l

is the sum of independent standard normally distributed random variables Zi,l(i =
1, . . . , n, l = 1, . . . ,m). All option contracts are based on a time to maturity of 1
year and a risk-free continuously compounded interest rate r = 0.05.

Figures 1 and 3 report the results for 100 independent MCE of ordinary Bermu-
dan put option and for a more complicated Bermudan option with a strangle
spread payoff. Each algorithm is based on a sample size n = 10000. For (LS)
and (TR), we use polynomials of degree 3. For (EKT), we set the number of learn-
ing, training and validation samples to nl = 6000, nt = 2000 and nv = 2000, and
choose the degree M , the knot distance α and the look-ahead parameter w(t) in
a data-dependent manner as described in Section 3 from the sets M ∈ {0,1,2},
α ∈ {100

2 , 100
22 , 100

23 , 100
24 }, and w(t) ∈ {0,4, T − t − 1}.

We first analyze the results in Figure 1 for a Bermudan put with exercise price 90
on an underlying with instantaneous volatility σ = 0.25. The time discretization is
performed in monthly steps. Our algorithm is slightly better than (LS) and compa-
rable to (TR). This is not surprising, since it is well known that for simple payoff
functions both (LS) and (TR) perform rather very well.

Figure 3 consolidates the simulation results of a Bermudan option with strangle
spread payoff with 50, 90, 110 and 150, as illustrated in Figure 2. The volatility
is increased to σ = 0.5, the time discretization is set to m = 48. This time (EKT)
provides a higher MCE of the option price and therefore clearly outperforms (LS)
and (TR).
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FIG. 1. Realized option prices of Bermudan put option. The boxes stretch from the 25th percentile
to the 75th percentile, the median is shown as a line across the box.

Finally, Figure 4 reports the simulation results of a Bermudan basket option with
strangle spread payoff on the average of three correlated underlyings. The option
prices are normalized to start at 1. The strikes are set at 0.85, 0.95, 1.05 and 1.15.
This time (EKT) is based on degrees M ∈ {0,1,2}, knot distance α ∈ {1,1.5,2,4}
and a reduced sample size of only n = 4000, split into nt = 800, nl = 2400 and
nv = 800. (LS) and (TR) still use n = 10000 but approximate the continuation

FIG. 2. Strangle spread payoff with strike prices 50, 90, 110 and 150.
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FIG. 3. Realized option prices of Bermudan option with strangle spread-payoff.

FIG. 4. Realized option prices of Bermudan basket option with strangle spread-payoff based on
the average of three correlated underlyings.
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value with polynomials of degree 2 (as polynomials of degree 3 resulted in lower
MCE). Again, (EKT) provides the highest MCE of the option price.

6. Proofs. In the proofs we will need an auxiliary result on the properties of
the method of splitting the sample, which we formulate and prove for the sake of
generality in a fixed design regression model.

Let x1, . . . , xn ∈ R
d and let Y1, . . . , Yn be independent square integrable random

variables which satisfy

EYi = m(xi) (i = 1, . . . , n)

for some function m : R
d → R. Let Pn be a finite set of parameters and assume that

for each p ∈ Pn an estimate mp : Rd → R is given. Choose p∗ ∈ Pn by minimizing
the empirical L2 risk on the sample (x1, Y1), . . . , (xn, Yn), that is, assume

1

n

n∑
i=1

|mp∗(xi) − Yi |2 = min
p∈Pn

1

n

n∑
i=1

|mp(xi) − Yi |2.

Then, the following bound on the error

1

n

n∑
i=1

|mp∗(xi) − m(xi)|2

of mp∗ holds.

LEMMA 6.1. Under the above assumptions, we have for each ε > 0

P

{
1

n

n∑
i=1

|mp∗(xi) − m(xi)|2 > ε + 18 · min
p∈Pn

1

n

n∑
i=1

|mp(xi) − m(xi)|2
}

≤ c1 · max
i=1,...,n

EY 2
i · |Pn|

ε · n
for some constant c1 which does not depend on n or ε.

PROOF. Set

m∗ = arg min
f ∈{mp :p∈Pn}

1

n

n∑
i=1

|f (xi) − m(xi)|2.

By Lemma 1 in [17] or standard results from the book [30] (see proof of Theo-
rem 10.11 in [30]), we have

P

{
1

n

n∑
i=1

|mp∗(xi) − m(xi)|2 > ε + 18 · min
p∈Pn

1

n

n∑
i=1

|mp(xi) − m(xi)|2
}

≤ P

{
ε

2
<

1

n

n∑
i=1

|mp∗(xi) − m∗(xi)|2
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≤ 16

n

n∑
i=1

(
mp∗(xi) − m∗(xi)

) · (
Yi − m(xi)

)}

≤ |Pn| · max
p∈Pn

P

{
ε

2
<

1

n

n∑
i=1

|mp(xi) − m∗(xi)|2

≤ 16

n

n∑
i=1

(
mp(xi) − m∗(xi)

) · (
Yi − m(xi)

)}

≤ |Pn| · max
p∈Pn

∞∑
s=0

P

{
2s−1ε <

1

n

n∑
i=1

|mp(xi) − m∗(xi)|2 ≤ 2sε,

1

n

n∑
i=1

|mp(xi) − m∗(xi)|2

≤ 16

n

n∑
i=1

(
mp(xi) − m∗(xi)

) · (
Yi − m(xi)

)}

≤ |Pn| ·
∞∑

s=0

max
p∈Pn

(1/n)
∑n

i=1 |mp(xi)−m∗(xi )|2≤2sε

P

{
1

n

n∑
i=1

(
mp(xi) − m∗(xi)

)

· (
Yi − m(xi)

)
>

2sε

32

}
.

Because of the variance estimate

V

(
1

n

n∑
i=1

(
mp(xi) − m∗(xi)

) · (
Yi − m(xi)

))

≤ 1

n2

n∑
i=1

(
mp(xi) − m∗(xi)

)2 · max
i=1,...,n

EY 2
i ,

we can bound the right-hand side from above with Chebyshev’s inequality by

|Pn| ·
∞∑

s=0

(1/n) · 2s · ε · maxi=1,...,n EY 2
i

(2sε/32)2 = |Pn|
n

· maxi=1,...,n EY 2
i

ε
·

∞∑
s=0

322

2s
.

�

PROOF OF THEOREM 4.1. Because of

E
∫

|q̂n,t (x) − qt (x)|2µt(dx) ≤
wmax(t)∑
w=0

E
∫

|q̂w
n,t (x) − qt (x)|2µt(dx),

it is enough to prove that

E
∫

|q̂w
n,t (x) − qt (x)|2µt(dx) → 0 (n → ∞)(6.1)
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for every t ∈ {0,1, . . . , T − 1} and every w ∈ {0,1, . . . ,wmax(t)}.
Fix t ∈ {0,1, . . . , T − 1} and assume (by induction) that we have for every s ∈

{t + 1, . . . , T − 1} and every v ∈ {0,1, . . . ,wmax(s)}

E
∫

|q̂v
n,s(x) − qs(x)|2µt(dx) → 0 (n → ∞).(6.2)

Fix w ∈ {0,1, . . . ,wmax(t)}. In the following we show

E
∫

|q̂w
n,t (x) − qt (x)|2µt(dx) → 0 (n → ∞).(6.3)

To this end, we apply for a fixed pn ∈ Pn the error decomposition∫
|q̂w

n,t (x) − qt (x)|2µt(dx)

=
∫

|q̂w
n,t (x) − qt (x)|2µt(dx) − 1

nt

nl+nt∑
i=nl+1

|q̂w
n,t (Xi,t ) − qt (Xi,t )|2

+
(

1

nt

nl+nt∑
i=nl+1

|q̂w
n,t (Xi,t ) − qt (Xi,t )|2

− 2

nt

nl+nt∑
i=nl+1

|q̂w
n,t (Xi,t ) − q

w,new
t (Xi,t )|2

)

+
(

2

nt

nl+nt∑
i=nl+1

|q̂w
n,t (Xi,t ) − q

w,new
t (Xi,t )|2

− 36

nt

nl+nt∑
i=nl+1

|q̂w,pn
n,t (Xi,t ) − q

w,new
t (Xi,t )|2

)

+
(

36

nt

nl+nt∑
i=nl+1

|q̂w,pn
n,t (Xi,t ) − q

w,new
t (Xi,t )|2

− 72

nt

nl+nt∑
i=nl+1

|q̂w,pn
n,t (Xi,t ) − qt (Xi,t )|2

)

+ 72

nt

nl+nt∑
i=nl+1

|q̂w,pn
n,t (Xi,t ) − qt (Xi,t )|2

=
5∑

j=1

Tj,n.
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The proof will be completed once we have shown that

lim sup
n→∞

ETj,n ≤ 0(6.4)

for j ∈ {1,2, . . . ,5}.
From now on we denote by DT

n,t+1 the set of all the data used in the construction
of the estimates q̂

w,p
n,s for s > t , w ∈ {0,1, . . . ,wmax(s)} and p ∈ Pn.

Because q̂w
n,t and qt are bounded in absolute value by L, we conclude from

Hoeffding’s inequality (see, e.g., Lemma A.3 in [14]) that

P
{
T1,n > ε|Xt,new

i,t :wmax(t)+1 (i = 1, . . . , nl),D
T
n,t+1

}

≤ |Pn| · max
p∈Pn

P

{∫
|q̂w,p

n,t (x) − qt (x)|2µt(dx)

− 1

nt

nl+nt∑
i=nl+1

|q̂w,p
n,t (Xi,t ) − qt (Xi,t )|2 > ε

∣∣∣∣Xt,new
i,t :wmax(t)+1(i = 1, . . . , nl),D

T
n,t+1

}

≤ |Pn| · exp
(
− 2ntε

2

(4L2)2

)
= exp

(
log(|Pn|) − 2ntε

2

16L4

)
.

Thus,

ET1,n ≤
∫ ∞

0
P{T1,n > s}ds

=
∫ ∞

0
E

{
P

{
T1,n > s|Xt,new

i,t :wmax(t)+1(i = 1, . . . , nl),D
T
n,t+1

}}
ds

≤ 4L2
√

log(|Pn|)/nt +
∫ ∞

4L2
√

log(|Pn|)/nt

exp
(
− nts

2

16L4

)
ds

≤ 4L2
√

log(|Pn|)/nt

+
∫ ∞

4L2
√

log(|Pn|)/nt

exp
(
−nt · 4L2√log(|Pn|)/nt

16L2 · s
)

ds

≤ 4L2
√

log(|Pn|)/nt

+ 4L2

nt

√
log(|Pn|)/nt

· exp
(
− log(|Pn|)

)
→ 0 (n → ∞).
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Furthermore, by a2 = (a − b + b)2 ≤ 2(a − b)2 + 2b2, we get

T2,n ≤ 2

nt

nl+nt∑
i=nl+1

|qw,new
t (Xi,t ) − qt (Xi,t )|2,

from which we conclude, together with (3.7) and (6.2), that

ET2,n = E
{
E

{
T2,n|Xt,new

i,t :wmax(t)+1 (i = 1, . . . , nl),D
T
n,t+1

}}
≤ 2E

∫
|qw,new

t (x) − qt (x)|2µt(dx) → 0 (n → ∞).

In a similar way we obtain

ET4,n ≤ 72E
∫

|qw,new
t (x) − qt (x)|2µt(dx) → 0 (n → ∞).

To bound T3,n, we use Lemma 6.1, which shows

P
{
T3,n > ε|Xt,new

i,t :wmax(t)+1 (i = 1, . . . , nl),D
T
n,t+1

}

≤ P

{
1

nt

nl+nt∑
i=nl+1

|q̂w
n,t (Xi,t ) − q

w,new
t (Xi,t )|2

>
ε

2
+ 18 · min

p∈Pn

1

nt

nl+nt∑
i=nl+1

|q̂w,p
n,t (Xi,t ) − q

w,new
t (Xi,t )|2

∣∣∣∣Xt,new
i,t :wmax(t)+1 (i = 1, . . . , nl),D

T
n,t+1

}

≤ c2 · |Pn|
ε · nt

.

This implies for any u > 0 that

ET3,n ≤
∫ ∞

0
P{T3,n > ε}dε

≤
∫ ∞

0
E

{
P

{
T3,n > ε|Xt,new

i,t :wmax(t)+1 (i = 1, . . . , nl),D
T
n,t+1

}}
dε

≤ u +
∫ const

u
c2 · |Pn|

ε · nt

dε

= u + c2 · |Pn|
nt

· (
log(const) − logu

)
.

To get to the last line, we have used that (3.16) and the boundedness of q
w,new
t

(which is a consequence of the boundedness of ft on [−A,A]d ) yield

T3,n ≤ 2

nt

nl+nt∑
i=nl+1

|q̂w
n,t (Xi,t ) − q

w,new
t (Xi,t )|2 ≤ const.
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Setting u = |Pn|/nt , we arrive at

lim sup
n→∞

ET3,n ≤ 0.

Furthermore,

ET5,n = E
{
E

{
T5,n|Xt,new

i,t :wmax(t)+1 i = 1, . . . , nl),D
T
n,t+1

}}
(6.5)

= 72 · E
∫

|q̂w,pn
n,t (x) − qt (x)|2µt(dx).

Consequently, it remains to verify that

E
∫

|q̂w,pn
n,t (x) − qt (x)|2µt(dx) → 0 (n → ∞)(6.6)

for some suitably selected pn ∈ Pn.
To prove (6.6), we set pn = (0,2−�log2(n)/(2+d)�) (where log2 is the logarithm

for base 2) and consider the error decomposition∫
|q̂w,pn

n,t (x) − qt (x)|2µt(dx)

=
∫

|q̂w,pn
n,t (x) − qt (x)|2µt(dx) − 2

nl

nl∑
i=1

|q̂w,pn
n,t (Xi,t ) − qt (Xi,t )|2

+ 2

nl

nl∑
i=1

|q̂w,pn
n,t (Xi,t ) − qt (Xi,t )|2 − 2

nl

nl∑
i=1

|q̃w,pn
n,t (Xi,t ) − qt (Xi,t )|2

+
(

2

nl

nl∑
i=1

|q̃w,pn
n,t (Xi,t ) − qt (Xi,t )|2

− 4

nl

nl∑
i=1

|q̃w,pn
n,t (Xi,t ) − q

w,new
t (Xi,t )|2

)

+ 4

nl

nl∑
i=1

|q̃w,pn
n,t (Xi,t ) − q

w,new
t (Xi,t )|2

=
9∑

j=6

Tj,n.

Because qt is bounded in absolute value by L, we have

T7,n ≤ 0 and ET7,n ≤ 0.

In the same way as for T2,n, we obtain from (3.7) and (6.2)

ET8,n ≤ 4 · E

{
E

{
1

nl

nl∑
i=1

|qt (Xi,t ) − q
w,new
t (Xi,t )|2

∣∣∣∣DT
n,t+1

}}
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= 4 · E
∫

|qt (x) − q
w,new
t (x)|2µt(dx) → 0 (n → ∞),

where the last equality follows from the fact that the conditional expectation
q

w,new
t (x) does not depend on data from time t .

Next, we estimate T6,n. The functions q̂
w,pn
n,t and qt are bounded in absolute

value by L, and q̃
w,pn
n,t belongs to the linear vector space Hn,pn , whose dimension

Dn is bounded by some constant (depending on A) times nd/(2+d). As in the proof
of Theorem 11.3 in [14] [in particular, the proof of inequality (11.6)], we obtain

ET6,n = E{E{T6,n|DT
n,t+1}} ≤ c3L

2 (lognl + 1) · nd/(2+d)

nl

→ 0 (n → ∞).

It remains to bound T9,n. With

σ 2 = sup
x∈Rd

E∗{|Ŷ w,new
1,t |2|X1,t = x} ≤ 4L2 < ∞,

we conclude from Theorem 11.1 in [14]

E{T9,n|Xi,t (i = 1, . . . , nl),D
T
n,t+1}

≤ 4σ 2 c4n
d/(2+d)

nl

+ 4 min
h∈Hn,pn

1

nl

nl∑
i=1

|h(Xi,t ) − q
w,new
t (Xi,t )|2,

which then leads to

ET9,n = E
{
E{T9,n|Xi,t (i = 1, . . . , nl),D

T
n,t+1}

}
≤ 4σ 2 c4n

d/(2+d)

nl

+ 4 min
h∈Hn,pn

E
∫

|h(x) − q
w,new
t (x)|2µt(dx)

≤ 4σ 2 c4n
d/(2+d)

nl

+ 8E
∫

|qw,new
t (x) − qt (x)|2µt(dx)

+ 8 min
h∈Hn,pn

∫
|h(x) − qt (x)|2µt(dx).

Because of (3.7), (6.2) and∫
|qt (x)|2µt(dx) ≤ L2 < ∞,

which implies that qt can be approximated arbitrarily closely by functions from
Hn,pn (this is a consequence of Theorem A.1 in [14] and the fact that any con-
tinuous function can be approximated in the supremum norm on the compact
set [−A,A]d arbitrarily closely by the piecewise constant functions in Hn,pn as
n → ∞), the right-hand side of the above inequality tends to zero for n → ∞. The
proof of Theorem 4.1 is complete. �
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PROOF OF THEOREM 4.4. The proof is similar to the proof of Theorem 4.1.
The main difference is that we use Bernstein’s inequality instead of Hoeffding’s
inequality, which requires that we also control the variance. Because of

E
∫

|q̂n,t (x) − qt (x)|2µt(dx) ≤
wmax(t)∑
w=0

E
∫

|q̂w
n,t (x) − qt (x)|2µt(dx),

it suffices to show

E
∫

|q̂w
n,t (x) − qt (x)|2µt(dx) ≤ const · C2d/(2p+d) ·

(
logn

n

)2p/(2p+d)

,(6.7)

for every t ∈ {0,1, . . . , T − 1} and every w ∈ {0,1, . . . ,wmax(t)}.
Fix t ∈ {0,1, . . . , T − 1} and assume (by induction) that we have for every s ∈

{t + 1, . . . , T − 1} and every v ∈ {0,1, . . . ,wmax(s)}

E
∫

|q̂v
n,s(x) − qs(x)|2µt(dx) ≤ const · C2d/(2p+d) ·

(
logn

n

)2p/(2p+d)

.(6.8)

Fix w ∈ {0,1, . . . ,wmax(t)}. We show

E
∫

|q̂w
n,t (x) − qt (x)|2µt(dx) ≤ const · C2d/(2p+d) ·

(
logn

n

)2p/(2p+d)

.(6.9)

To this end, we apply for fixed pn ∈ Pn the error decomposition∫
|q̂w

n,t (x) − qt (x)|2µt(dx)

=
∫

|q̂w
n,t (x) − qt (x)|2µt(dx) − 2

nt

nl+nt∑
i=nl+1

|q̂w
n,t (Xi,t ) − qt (Xi,t )|2

+
(

2

nt

nl+nt∑
i=nl+1

|q̂w
n,t (Xi,t ) − qt (Xi,t )|2

− 4

nt

nl+nt∑
i=nl+1

|q̂w
n,t (Xi,t ) − q

w,new
t (Xi,t )|2

)

+
(

4

nt

nl+nt∑
i=nl+1

|q̂w
n,t (Xi,t ) − q

w,new
t (Xi,t )|2

− 72

nt

nl+nt∑
i=nl+1

|q̂w,pn
n,t (Xi,t ) − q

w,new
t (Xi,t )|2

)

+
(

72

nt

nl+nt∑
i=nl+1

|q̂w,pn
n,t (Xi,t ) − q

w,new
t (Xi,t )|2
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− 144

nt

nl+nt∑
i=nl+1

|q̂w,pn
n,t (Xi,t ) − qt (Xi,t )|2

)

+ 144

nt

nl+nt∑
i=nl+1

|q̂w,pn
n,t (Xi,t ) − qt (Xi,t )|2

=
5∑

j=1

Tj,n.

The proof is completed once we have shown that

ETj,n ≤ const · C2d/(2p+d) ·
(

logn

n

)2p/(2p+d)

(6.10)

for j ∈ {1,2, . . . ,5}.
To apply Bernstein’s inequality, we first bound the variance

σ 2 = V
(|q̂w,p

n,t (Xnl+1,t ) − qt (Xnl+1,t )|2|Xt,new
i,t :wmax(t)+1 (i = 1, . . . , nl),D

T
n,t+1

)
≤ E

(|q̂w,p
n,t (Xnl+1,t ) − qt (Xnl+1,t )|4|Xt,new

i,t :wmax(t)+1 (i = 1, . . . , nl),D
T
n,t+1

)
≤ 4L2E

(|q̂w,p
n,t (Xnl+1,t ) − qt (Xnl+1,t )|2|Xt,new

i,t :wmax(t)+1 (i = 1, . . . , nl),D
T
n,t+1

)
= 4L2

∫
|q̂w,p

n,t (x) − qt (x)|2µt(dx).

Then, because q̂w
n,t and qt are bounded in absolute value by L, we obtain from

Bernstein’s inequality (see, e.g., Lemma A.2 in [14])

P
{
T1,n > ε|Xt,new

i,t :wmax(t)+1 (i = 1, . . . , nl),D
T
n,t+1

}

≤ |Pn| · max
p∈Pn

P

{∫
|q̂w,p

n,t (x) − qt (x)|2µt(dx)

− 2

nt

nl+nt∑
i=nl+1

|q̂w,p
n,t (Xi,t ) − qt (Xi,t )|2 > ε

∣∣∣∣Xt,new
i,t :wmax(t)+1 (i = 1, . . . , nl),D

T
n,t+1

}

= |Pn| · max
p∈Pn

P

{∫
|q̂w,p

n,t (x) − qt (x)|2µt(dx)

− 1

nt

nl+nt∑
i=nl+1

|q̂w,p
n,t (Xi,t ) − qt (Xi,t )|2
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>
ε

2
+ 1

2

∫
|q̂w,p

n,t (x) − qt (x)|2µt(dx)

∣∣∣∣Xt,new
i,t :wmax(t)+1(i = 1, . . . , nl),D

T
n,t+1

}

≤ |Pn| · max
p∈Pn

P

{∫
|q̂w,p

n,t (x) − qt (x)|2µt(dx)

− 1

nt

nl+nt∑
i=nl+1

|q̂w,p
n,t (Xi,t ) − qt (Xi,t )|2

>
ε

2
+ 1

2
· σ 2

4L2

∣∣∣∣Xt,new
i,t :wmax(t)+1 (i = 1, . . . , nl),D

T
n,t+1

}

≤ |Pn| · exp
(
− nt (ε/2 + σ 2/(8L2))2

2σ 2 + 2(ε/2 + σ 2/(8L2)) · (4L2/3)

)

≤ |Pn| · exp
(
− nt (ε/2 + σ 2/(8L2))2

(16L2 + 8L2/3)(ε/2 + σ 2/(8L2))

)

≤ |Pn| · exp
(
− 1

32 + 16/3
· ntε

L2

)
= |Pn| · exp

(
− 3

112
· ntε

L2

)
.

Thus,

ET1,n ≤
∫ ∞

0
P{T1,n > s}ds

=
∫ ∞

0
E

{
P

{
T1,n > s|Xt,new

i,t :wmax(t)+1 (i = 1, . . . , nl),D
T
n,t+1

}}
ds

≤ |Pn| ·
∫ ∞

0
exp

(
− 3nt

112L2 · s
)

ds

≤ 112L2

3
· |Pn|

nt

≤ const · C2d/(2p+d) ·
(

logn

n

)2p/(2p+d)

.

Furthermore, by a2 = (a − b + b)2 ≤ 2(a − b)2 + 2b2, we get

T2,n ≤ 4

nt

nl+nt∑
i=nl+1

|qw,new
t (Xi,t ) − qt (Xi,t )|2,

from which we conclude, together with (3.7) and (6.8), that

ET2,n = E
{
E

{
T2,n|Xt,new

i,t :wmax(t)+1 (i = 1, . . . , nl),D
T
n,t+1

}}
≤ 4E

∫
|qw,new

t (x) − qt (x)|2µt(dx)
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≤ const · C2d/(2p+d) ·
(

logn

n

)2p/(2p+d)

.

Similarly, we get

ET4,n ≤ const · C2d/(2p+d) ·
(

logn

n

)2p/(2p+d)

.

To bound T3,n, we apply Lemma 6.1, which shows

P
{
T3,n > ε|Xt,new

i,t :wmax(t)+1 (i = 1, . . . , nl),D
T
n,t+1

}

≤ P

{
1

nt

nl+nt∑
i=nl+1

|q̂w
n,t (Xi,t ) − q

w,new
t (Xi,t )|2

>
ε

4
+ 18 · min

p∈Pn

1

nt

nl+nt∑
i=nl+1

|q̂w,p
n,t (Xi,t ) − q

w,new
t (Xi,t )|2

∣∣∣∣Xt,new
i,t :wmax(t)+1 (i = 1, . . . , nl),D

T
n,t+1

}

≤ c5 · |Pn|
ε · nt

.

This implies for any u > 0

ET3,n ≤
∫ ∞

0
P{T3,n > ε}dε

≤
∫ ∞

0
E

{
P

{
T3,n > ε|Xt,new

i,t :wmax(t)+1 (i = 1, . . . , nl),D
T
n,t+1

}}
dε

≤ u +
∫ const

u
c5 · |Pn|

ε · nt

dε

= u + c5 · |Pn|
nt

· (
log(const) − logu

)
,

where we have used that (3.16) and the boundedness of q
w,new
t (which is a conse-

quence of the boundedness of ft on [−A,A]d ) yield

T3,n ≤ 4

nt

nl+nt∑
i=nl+1

|q̂w
n,t (Xi,t ) − q

w,new
t (Xi,t )|2 ≤ const.

With u = log(n)/n, we get

ET3,n ≤ logn

n

(
1 + c6

(
log(const) − log

(
logn

n

)))

≤ const · C2d/(2p+d) ·
(

logn

n

)2p/(2p+d)

.
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Furthermore,

ET5,n = E
{
E

{
T5,n|Xt,new

i,t :wmax(t)+1 (i = 1, . . . , nl),D
T
n,t+1

}}
(6.11)

= 144 · E
∫

|q̂w,pn
n,t (x) − qt (x)|2µt(dx).

Consequently, it remains to verify that

E
∫

|q̂w,pn
n,t (x) − qt (x)|2µt(dx) ≤ const · C2d/(2p+d) ·

(
logn

n

)2p/(2p+d)

(6.12)

for some suitably selected pn ∈ Pn.
To bound ET5,n, we use the error decomposition∫
|q̂w,pn

n,t (x) − qt (x)|2µt(dx)

=
∫

|q̂w,pn
n,t (x) − qt (x)|2µt(dx) − 2

nl

nl∑
i=1

|q̂w,pn
n,t (Xi,t ) − qt (Xi,t )|2

+ 2

nl

nl∑
i=1

|q̂w,pn
n,t (Xi,t ) − qt (Xi,t )|2 − 2

nl

nl∑
i=1

|q̃w,pn
n,t (Xi,t ) − qt (Xi,t )|2

+ 2

nl

nl∑
i=1

|q̃w,pn
n,t (Xi,t ) − qt (Xi,t )|2 − 4

nl

nl∑
i=1

|q̃w,pn
n,t (Xi,t ) − q

w,new
t (Xi,t )|2

+ 4

nl

nl∑
i=1

|q̃w,pn
n,t (Xi,t ) − q

w,new
t (Xi,t )|2

=
9∑

j=6

Tj,n,

with

pn = (k,2l) where l = ⌈
log2

(
C−2/(2p+d)(n/ log(n)

)−1/(2p+d))⌉
.

Because qt is bounded in absolute value by L, we have

T7,n ≤ 0 and ET7,n ≤ 0.

Furthermore, in the same way as for T2,n, we obtain from (3.7) and (6.8)

ET8,n ≤ 4E

{
E

{
1

nl

nl∑
i=1

|qt (Xi,t ) − q
w,new
t (Xi,t )|2

∣∣∣∣DT
n,t+1

}}

= 4E
∫

|qt (x) − q
w,new
t (x)|2µt(dx)

≤ const · C2d/(2p+d) ·
(

logn

n

)2p/(2p+d)

,
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where the last equality follows from the fact that the conditional expectation
q

w,new
t (x) does not depend on data from time t .

Next, we bound T6,n. The functions q̂
w,pn
n,t and qt are bounded in absolute

value by L, and q̃
w,pn
n,t belongs to the linear vector space Hn,pn , whose dimen-

sion Dn is bounded by some constant (depending on A and k) times C2d/(2p+d) ·
(n/ log(n))d/(2p+d). As in the proof of Theorem 11.3 in [14] [in particular, the
proof of inequality (11.6)], this implies

ET6,n = E{E{T6,n|DT
n,t+1}}

≤ c7L
2 (lognl + 1) · C2d/(2p+d) · (n/ log(n))d/(2p+d)

nl

≤ const · C2d/(2p+d) ·
(

logn

n

)2p/(2p+d)

.

Finally, we bound T9,n. With

σ 2 = sup
x∈Rd

E∗{|Ŷ w,new
1,t |2|X1,t = x} ≤ 4L2 < ∞,

we can conclude from Theorem 11.1 in [14] that

E{T9,n|Xi,t (i = 1, . . . , nl),D
T
n,t+1}

≤ 4σ 2 · Dn

nl

+ 4 min
h∈Hn,pn

1

nl

nl∑
i=1

|h(Xi,t ) − q
w,new
t (Xi,t )|2

≤ 4σ 2 · C2d/(2p+d) · c8

n2p/(2p+d) · log(n)d/(2p+d)

+ 4 min
h∈Hn,pn

1

nl

nl∑
i=1

|h(Xi,t ) − q
w,new
t (Xi,t )|2.

Therefore,

ET9,n = E
{
E{T9,n|Xi,t (i = 1, . . . , nl),D

T
n,t+1}

}
≤ 12σ 2 · C2d/(2p+d) ·

(
logn

n

)2p/(2p+d)

+ 4 min
h∈Hn,pn

E
∫

|h(x) − q
w,new
t (x)|2µt(dx)

≤ 12σ 2 · C2d/(2p+d) ·
(

logn

n

)2p/(2p+d)

+ 8E
∫

|qw,new
t (x) − qt (x)|2µt(dx)

+ 8 min
h∈Hn,pn

∫
|h(x) − qt (x)|2µt(dx).
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Note that for the last term in the last inequality (without the factor 8) we get

min
h∈Hn,p

∫
|h(x) − qt (x)|2µt(dx) ≤ min

h∈Hn,p

sup
x∈[−A,A]d

|h(x) − qt (x)|2.

Because we have assumed that qt is (p,C)-smooth, there exist a h ∈ Hn,p with

sup
x∈[−A,A]d

|h(x) − qt (x)| ≤ c9 · C · δp
n ,

where δn = C−2/(2p+d) · (n/ log(n))−1/(2p+d) is the edge length in the cubic par-
tition used in the definition of the spline space; see Theorem 12.8 in [24]. We
conclude that

min
h∈Hn,p

∫
|h(x) − qt (x)|2µt(dx)

≤ c2
9 · C2 · δ2p

n

= c2
9 · C2 · C−4p/(2p+d) · (

n/ log(n)
)−2p/(2p+d)

≤ const · C2d/(2p+d) ·
(

logn

n

)2p/(2p+d)

.

From (3.7), (6.8) and the above inequality we see that

ET9,n ≤ const · C2d/(2p+d) ·
(

logn

n

)2p/(2p+d)

has an upper bound with the proper rate. The proof of Theorem 4.4 is complete.
�
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