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ON THE OPTIMAL DIVIDEND PROBLEM FOR A SPECTRALLY
NEGATIVE LÉVY PROCESS
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In this paper we consider the optimal dividend problem for an insurance
company whose risk process evolves as a spectrally negative Lévy process
in the absence of dividend payments. The classical dividend problem for an
insurance company consists in finding a dividend payment policy that maxi-
mizes the total expected discounted dividends. Related is the problem where
we impose the restriction that ruin be prevented: the beneficiaries of the divi-
dends must then keep the insurance company solvent by bail-out loans. Draw-
ing on the fluctuation theory of spectrally negative Lévy processes we give
an explicit analytical description of the optimal strategy in the set of barrier
strategies and the corresponding value function, for either of the problems.
Subsequently we investigate when the dividend policy that is optimal among
all admissible ones takes the form of a barrier strategy.

1. Introduction. In classical collective risk theory (e.g., [11]) the surplus
X = {Xt, t ≥ 0} of an insurance company with initial capital x is described by
the Cramér–Lundberg model:

Xt = x + dt −
Nt∑

k=1

Ck,(1.1)

where Ck are i.i.d. positive random variables representing the claims made, N =
{Nt, t ≥ 0} is an independent Poisson process modeling the times at which the
claims occur and dt represents the premium income up to time t . Under the as-
sumption that the premium income per unit time d is larger than the average
amount claimed, λE[C1], the surplus in the Cramér–Lundberg model has positive
first moment and has therefore the unrealistic property that it converges to infinity
with probability 1. In answer to this objection De Finetti [10] introduced the divi-
dend barrier model, in which all surpluses above a given level are transferred to a
beneficiary. In the mathematical finance and actuarial literature there is a good deal
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of work on dividend barrier models and the problem of finding an optimal policy
for paying out dividends. Gerber and Shiu [12] and Jeanblanc and Shiryaev [15]
consider the optimal dividend problem in a Brownian setting. Irbäck [14] and Zhou
[25] study constant barriers under the model (1.1). Asmussen, Højgaard and Tak-
sar [3] investigate excess-of-loss reinsurance and dividend distribution policies in
a diffusion setting. Azcue and Muler [1] follow a viscosity approach to investigate
optimal reinsurance and dividend policies in the Cramér–Lundberg model.

A drawback of the dividend barrier model is that under this model the risk
process will down-cross the level zero with probability 1. Several ways to com-
bine dividend and ruin considerations are possible; here, we choose one studied
in a Brownian motion setting by Harrison and Taylor [13] and Løkka and Zervos
[19] involving bail-out loans to prevent ruin, over an infinite horizon.

In this paper we shall approach the dividend problem from the point of view
of a general spectrally negative Lévy process. Drawing on the fluctuation theory
for spectrally negative Lévy processes, we derive in Sections 3 and 4 expressions
for the expectations of the discounted accumulated local time of a reflected and
doubly reflected spectrally negative Lévy process, in terms of the scale functions
of the Lévy process. Together with known results from the fluctuation theory of
spectrally negative Lévy processes and control theory we apply these results in
Section 5 to investigate the optimality of barrier dividend strategies for either of
the dividend problems. Finally we conclude the paper with some explicit examples
in the classical and “bail-out” setting.

2. Problem setting. Let X = {Xt, t ≥ 0} be a Lévy process without positive
jumps; that is, X is a stationary stochastic process with independent increments
that has right-continuous paths with left limits, only negative jumps and starts at
X0 = 0, defined on some filtered probability space (�,F ,F = {Ft }t≥0,P), where
F = {Ft }t≥0 is a filtration that satisfies the usual conditions of right-continuity and
completeness. Denote by {Px, x ∈ R} the family of probability measures corre-
sponding to a translation of X such that X0 = x, where we write P = P0. Let Ex

be expectation with respect to Px . To avoid trivialities, we exclude the case that X

has monotone paths. For background on Lévy processes we refer to [24] and [6].
The process X models the risk process of an insurance company or the cash

fund of an investment company before dividends are deducted. Let π be a div-
idend strategy consisting of a nondecreasing left-continuous F-adapted process
π = {Lπ

t , t ≥ 0} with Lπ
0 = 0, where Lπ

t represents the cumulative dividends paid
out by the company up until time t . The risk process with initial capital x ≥ 0 and
controlled by a dividend policy π is then given by Uπ = {Uπ

t , t ≥ 0}, where

Uπ
t = Xt − Lπ

t ,(2.1)

with X0 = x. Writing σπ = inf{t ≥ 0 :Uπ
t < 0} for the time at which ruin occurs,

a dividend strategy is called admissible if, at any time before ruin, a lump sum
dividend payment is smaller than the size of the available reserves: Lπ

t+ −Lπ
t < Uπ

t
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for t < σπ . Denoting the set of all admissible strategies by �, the expected value
discounted at rate q > 0 associated to the dividend policy π ∈ � with initial capital
x ≥ 0 is given by

vπ(x) = Ex

[∫ σπ

0
e−qt dLπ

t

]
.

The objective of the beneficiaries of the insurance company is to maximize vπ(x)

over all admissible strategies π :

v∗(x) = sup
π∈�

vπ(x).(2.2)

Consider next the situation where the insurance company is not allowed to go
bankrupt and the beneficiary of the dividends is required to inject capital into the
insurance company to ensure its risk process stays nonnegative. In this setting
a dividend policy π̄ = {Lπ̄ ,Rπ̄ } is a pair of nondecreasing F-adapted processes
with Rπ

0 = Lπ
0 = 0 such that Rπ̄ = {Rπ̄

t , t ≥ 0} is a right-continuous process de-
scribing the cumulative amount of injected capital and Lπ̄ = {Lπ̄

t , t ≥ 0} is a left-
continuous process representing the cumulative amount of paid dividends. Under
policy π̄ the controlled risk process with initial reserves x ≥ 0 satisfies

V π̄
t = Xt − Lπ̄

t + Rπ̄
t ,

where X0 = x. The set of admissible policies �� consists of those policies for which
V π̄

t is nonnegative for t > 0 and∫ ∞
0

e−qt dRπ̄
t < ∞, Px-almost surely.(2.3)

The value associated to the strategy π̄ ∈ �� starting with capital x ≥ 0 is then given
by

v̄π̄ (x) = Ex

[∫ ∞
0

e−qt dLπ̄
t − ϕ

∫ ∞
0

e−qt dRπ̄
t

]
,

where ϕ is the cost per unit injected capital, and the associated objective then reads
as

v̄∗(x) = sup
π̄∈��

v̄π̄ (x).(2.4)

To ensure that the value function is finite and to avoid degeneracies, we assume
that Ex[X1] > −∞, q > 0 and ϕ > 1. To illustrate what happens if ϕ is (close
to) 1, we consider the case that ϕ = 1 and X is given by (1.1). In this setting, it
is no more expensive to pay incoming claims from the reserves or by a bail-out
loan, and therefore, as a consequence of the positive discount-factor q > 0, it is
optimal to pay out all reserves and premiums immediately as dividends and to pay
all claims by bail-out loans.
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A subclass of possible dividend policies for (2.2), denoted by �≤C , is formed
by the set of all strategies π ∈ � under which the controlled risk process Uπ

stays below the constant level C ≥ 0, Uπ(t) ≤ C for all t > 0. An example of an
element in �≤C is a constant barrier strategy πa at level a ≤ C that corresponds
to reducing the risk process U to the level a if x > a, by paying out the amount
(x − a)+, and subsequently paying out the minimal amount of dividends to keep
the risk process below the level a. Similarly, in problem (2.4), the double barrier
strategy π̄0,a with a lower barrier at zero and an upper barrier at level a consists in
extracting the required amount of capital to bring the risk process down to the level
a and subsequently paying out or in the minimal amount of capital required to keep
the risk process between 0 and a. In the next section we shall use fluctuation theory
of spectrally negative Lévy processes to identify the value functions in problems
(2.2) and (2.4) corresponding to the constant barrier strategies πa and π̄0,a .

3. Reflected Lévy processes. We first review some fluctuation theory of spec-
trally negative Lévy processes and refer the reader for more background to [6–8,
16, 20, 21] and references therein.

3.1. Preliminaries. Since the jumps of a spectrally negative Lévy process X

are all nonpositive, the moment generating function E[eθXt ] exists for all θ ≥ 0
and is given by E[eθXt ] = etψ(θ) for some function ψ(θ) that is well defined at
least on the positive half-axes where it is strictly convex with the property that
limθ→∞ ψ(θ) = +∞. Moreover, ψ is strictly increasing on [	(0),∞), where
	(0) is the largest root of ψ(θ) = 0. We shall denote the right-inverse function
of ψ by 	 : [0,∞) → [	(0),∞).

For any θ for which ψ(θ) = log E[exp θX1] is finite we denote by Pθ an expo-
nential tilting of the measure P with Radon–Nikodym derivative with respect to P
given by

dPθ

dP

∣∣∣∣
Ft

= exp
(
θXt − ψ(θ)t

)
.(3.1)

Under the measure Pθ the process X is still a spectrally negative Lévy process with
characteristic function ψθ given by

ψθ(s) = ψ(s + θ) − ψ(θ).(3.2)

Denote by σ the Gaussian coefficient and by ν the Lévy measure of X. We recall
that if X has bounded variation it takes the form Xt = dt − St for a subordinator
S and constant d > 0, also referred to as the infinitesimal drift of X. Throughout
the paper we assume that X has unbounded variation or ν is absolutely continuous
with respect to the Lebesgue measure:

σ > 0 or
∫ 0

−1
xν(dx) = ∞ or ν(dx) � dx.(3.3)
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3.2. Scale functions. For q ≥ 0, there exists a function W(q) : [0,∞) →
[0,∞), called the q-scale function, that is continuous and increasing with Laplace
transform ∫ ∞

0
e−θxW(q)(y) dy = (

ψ(θ) − q
)−1

, θ > 	(q).(3.4)

The domain of W(q) is extended to the entire real axis by setting W(q)(y) = 0 for
y < 0. For later use we mention some properties of the function W(q) that have
been obtained in the literature. On (0,∞) the function y 	→ W(q)(y) is right- and
left-differentiable and, as shown in [18], under condition (3.3), it holds that y 	→
W(q)(y) is continuously differentiable for y > 0. The value of the scale function
and its derivative in zero can be derived from the Laplace transform (3.4) to be
equal to

W(q)(0) = 1/d and W(q)′(0+) = (
q + ν(−∞,0)

)
/d2,(3.5)

if X has bounded variation, and W(q)(0) = W(0) = 0 if X has unbounded vari-
ation (see, e.g., [16], Exercise 8.5 and Lemma 8.3). Moreover, if σ > 0, it holds
that W(q) ∈ C2(0,∞) with W(q)′(0+) = 2/σ 2; if X has unbounded variation but
σ = 0, it holds that W(q)′(0+) = ∞ (see [21], Lemma 4 and [22], Lemma 1).

The function W(q) plays a key role in the solution of the two-sided exit problem
as shown by the following classical identity. Letting T +

a , T −
a be the entrance times

of X into (a,∞) and (−∞,−a), respectively:

T +
a = inf{t ≥ 0 :Xt > a}, T −

a = inf{t ≥ 0 :Xt < −a},
and letting T0,a = T −

0 ∧ T +
a be the first exit time from [0, a], it holds for y ∈ [0, a]

that

Ey

[
exp(−qT0,a)1{T −

0 >T +
a }

] = W(q)(y)/W(q)(a),(3.6)

where 1A is the indicator of the event A. Closely related to W(q) is the function
Z(q) given by

Z(q)(y) = 1 + q �W(q)(y),

where �W(q)(y) = ∫ y
0 W(q)(z) dz is the antiderivative of W(q). The name q-scale

function for W(q) and Z(q) is justified as these functions are harmonic for the
process X killed upon entering (−∞,0), in the sense that{

e−q(t∧T −
0 )Z(q)(Xt∧T −

0
), t ≥ 0

}
and

{
e−q(t∧T −

0 )W(q)(Xt∧T −
0

), t ≥ 0
}

(3.7)

are martingales, as shown in [21], Proposition 3. Appealing to this martingale prop-
erty one can show the following relation between W(q) and its anti-derivative:

LEMMA 1. For y ∈ [0, a] and a > 0 it holds that

�W(q)(y)/ �W(q)(a) ≤ W(q)(y)/W(q)(a).
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PROOF. Writing h(y) = �W(q)(y)/ �W(q)(a) − W(q)(y)/W(q)(a) as

h(y) = q−1Z(q)(y)/ �W(q)(a) − W(q)(y)/W(q)(a) − q−1/ �W(q)(a)

and using the martingale property of Z(q) and W(q) in conjunction with the op-
tional stopping theorem, it follows that {e−q(t∧T0,a)h(Xt∧T0,a

), t ≥ 0} can be writ-
ten as the sum of a martingale and an increasing process and is thus a submartin-
gale. Therefore

h(y) ≤ Ey

[
e−q(t∧T0,a)h(Xt∧T0,a

)
] ≤ Ey

[
e−qT0,ah(XT0,a

)
] = 0,

where the last equality follows since h(y) = 0 for y ∈ (−∞,0] ∪ {a}. �

3.3. Reflection at the supremum. Write I and S for the running infimum and
supremum of X, respectively; that is,

It = inf
0≤s≤t

(Xs ∧ 0) and St = sup
0≤s≤t

(Xs ∨ 0),

where we used the notation c∨0 = max{c,0} and c∧0 = min{c,0}. By Y = X−I

and Ŷ = S − X we denote the Lévy process X reflected at its past infimum I and
at its past supremum S, respectively. Denoting by η(q) an independent random
variable with parameter q , it follows, by duality and the Wiener–Hopf factorization
of X (e.g., [6], page 45 and pages 188–192, resp.), that

Sη(q) ∼ Yη(q) ∼ exp(	(q)).(3.8)

Further, it was shown in [4] and [21] that the Laplace transform of the entrance
time τa of the reflected process Y into (a,∞) [resp. the entrance time τ̂a of Ŷ into
(a,∞)] can be expressed in terms of the functions Z(q) and W(q) as follows:

Ey[e−qτa ] = Z(q)(y)

Z(q)(a)
,(3.9)

E−y[e−qτ̂a ] = Z(q)(a − y) − qW(q)(a − y)
W(q)(a)

W(q)′(a)
,(3.10)

where y ∈ [0, a] and where we note that under Py [P−y] it holds that Y0 = y

[Ŷ0 = y]. The identity (3.10) together with the strong Markov property implies the
martingale property of

e−q(t∧τ̂a)

{
Z(q)(a − Ŷt∧τ̂a

) − qW(q)(a − Ŷt∧τ̂a
)
W(q)(a)

W(q)′(a)

}
.(3.11)

Denote by πa = {La
t , t ≤ σa} the constant barrier strategy at level a and let Ua =

Uπa be the corresponding risk process. If Ua
0 ∈ [0, a], the strategy πa corresponds

to a reflection of the process X − a at its supremum: for t ≤ σa process La
t can be

explicitly represented by

La
t = sup

s≤t
[Xs − a] ∨ 0.
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Note that La
t is a Markov local time of Ua at a, that is, La is increasing, continuous

and adapted such that the support of the Stieltjes measure dLa
t is contained in the

closure of the set {t :Ua
t = a} (see, e.g. [6], Chapter IV, for background on local

times). In the case that U0 = x > a, La
t has a jump at t = 0 of size x−a to bring Ua

to the level a and a similar structure afterward: La
t = (x − a)1{t>0} + sups≤t [Xs −

x] ∨ 0.
The following result concerns the value function associated to the dividend pol-

icy πa :

PROPOSITION 1. Let a > 0. For x ∈ [0, a] it holds that

Ex

[∫ σa

0
e−qt dLa

t

]
= Ex−a

[∫ τ̂a

0
e−qt dSt

]
= W(q)(x)

W(q)′(a)
,(3.12)

where σa = σπa = inf{t ≥ 0 :Ua
t < 0} is the ruin time.

PROOF. By spatial homogeneity of the Lévy process X, it follows that the
ensemble {Ua

t ,La
t , t ≤ σa;U0 = x} has the same law as {a − Ŷt , St , t ≤ τ̂a; Ŷ0 =

a − x}. Noting that Ŷ0 = a − x precisely if X0 = x − a (since then S0 = 0), the
first equality of (3.12) is seen to hold true. Using excursion theory it was shown in
the proof of [4], Theorem 1, that

E0

[∫ τ̂a

0
e−qt dSt

]
= W(q)(a)

W(q)′(a)
.(3.13)

Applying the strong Markov property of Ŷ at τ̂0 = inf{t ≥ 0 : Ŷt = 0} and using
that {Ŷt , t ≤ τ̂0} is in law equal to {−Xt, t ≤ T +

0 ,X0 = −Ŷ0 = x − a}, we find that

Ex−a

[∫ τ̂a

0
e−qt dSt

]
= Ex−a

[
e−qτ̂01{τ̂0<τ̂a}

]
E0

[∫ τ̂a

0
e−qt dSt

]

= Ex−a

[
e−qT +

0 1{T +
0 <T −

a }
]
E0

[∫ τ̂a

0
e−qt dSt

]
.

Inserting the identities (3.13) and (3.6) into this equation completes the proof. �

Let us complement the previous result by considering what happens in the case
that the barrier is taken to be 0. If X has unbounded variation, 0 is regular for
(−∞,0) so that U0 immediately enters the negative half-axis and P0(σ0 = 0) = 1,
and the right-hand side of (3.12) is zero (if x = a = 0). If ν(−∞,0) is finite, U0

enters (−∞,0) when the first jump occurs so that σ0 is exponential with mean
ν(−∞,0)−1 and

E0

[∫ σ0

0
e−qt dL0

t

]
= dE0

[∫ σ0

0
e−qt dt

]
= d

q + ν(−∞,0)
.(3.14)
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If ν is infinite but X has bounded variation, the validity of (3.14) follows by ap-
proximation. Combining these observations with (3.5), we note that (3.12) remains
valid for x = a = 0 if W(q)′(a) for a = 0 is understood to be W(q)′(0+).

In view of (3.8), (3.13) and since a 	→ τ̂a is nondecreasing with lima→∞ τ̂a =
+∞ a.s., we note for later reference that W(q)/W(q)′ is an increasing function on
(0,∞) with limit

lim
a→∞

W(q)(a)

W(q)′(a)
= E0

[
Sη(q)

] = 1

	(q)
.(3.15)

3.4. Martingales and overshoot. In the sequel we shall need the following
identities of expected discounted overshoots and related martingales in terms of
the anti-derivative �Z(q)(y) of Z(q)(y) which is for y ∈ R defined by

�Z(q)(y) =
∫ y

0
Z(q)(z) dz = y + q

∫ y

0

∫ z

0
W(q)(w)dw dz.

Note that �Z(q)(y) = y for y < 0, since we set W(q)(y) = 0 for y < 0.

PROPOSITION 2. If ψ ′(0+) > −∞, then

e−q(t∧T −
0 ){�Z(q)(Xt∧T −

0
) + ψ ′(0+)/q

}
and

e−q(t∧τ̂a){�Z(q)(a − Ŷt∧τ̂a
) + ψ ′(0+)/q − W(q)(a − Ŷt∧τ̂a

)Z(q)(a)/W(q)′(a)
}

are martingales. In particular, it holds that for y ∈ [0, a] and x ≥ 0,

Ey−a[e−qτ̂a (a − Ŷτ̂a
)] = �Z(q)(y) − ψ ′(0+) �W(q)(y) − CW(q)(y),(3.16)

Ex[e−qT −
0 XT −

0
] = �Z(q)(x) − ψ ′(0+) �W(q)(x) − DW(q)(x),(3.17)

where D = [q − ψ ′(0+)	(q)]/	(q)2 and C = [Z(q)(a) − ψ ′(0+)W(q)(a)]/
W(q)′(a).

PROOF. We first show the validity of the identities (3.16) and (3.17). Writ-
ing W

(q)
v and Z

(q)
v for the (“tilted”) q-scale functions of X under Pv we read off

from [4], Theorem 1 and [17], Theorem 4, that for κ := q − ψ(v) ≥ 0, x ≥ 0 and
y ≤ a it holds that

Ey−a

[
e−qτ̂a−v(Ŷτ̂a −a)] = evy[

Z(κ)
v (y) − CvW

(κ)
v (y)

]
,(3.18)

Ex[e−qT −
0 +vX

T
−
0 ] = evx[

Z(κ)
v (x) − DvW

(κ)
v (x)

]
,(3.19)

where Dv = κ/[	(q) − v] and Cv = [κW
(κ)
v (a) + vZ

(κ)
v (a)]/[W(κ)′

v (a) +
vW

(κ)
v (a)]. The “tilted” scale functions can be linked to nontilted scale functions



164 F. AVRAM, Z. PALMOWSKI AND M. R. PISTORIUS

via the relation evyW
(q−ψ(v))
v (y) = W(q)(y) from [4], Remark 4. This relation

implies that evy[W(κ)′
v (y) + vW

(κ)
v (y)] = W(q)′(y) and

Z(κ)
v (y) = 1 + κ

∫ y

0
e−vzW(q)(z) dz.

In view of these relations it is a matter of algebra to verify that the right-derivatives
with respect to v in v = 0 of Dv , Cv and �(v) := evyZ

(q−ψ(v))
v (y) are respectively

equal to the constants D and C given in the statement of the proposition and

�′(0+) = �Z(q)(y) − ψ ′(0+) �W(q)(y).

Differentiating (3.18) and (3.19) and inserting the derived results we arrive at the
equations (3.16) and (3.17).

Write now h1, h2 for the right-hand sides of (3.16) and (3.17), respectively.
From the overshoot identities (3.16) and (3.17) and the definition for y < 0 of
W(q)(y), �Z(q)(y) and �W(q)(y), it is straightforward to verify that

Ex[e−qT −
0 h1(XT −

0
)] = h1(x), Ey−a[e−qτ̂ah2(a − Ŷτ̂a

)] = h2(y).

The strong Markov property then implies that for t ≥ 0,

Ex[e−qT −
0 h1(XT −

0
)|Ft ] = e−q(t∧T −

0 )h1(Xt∧T −
0

),

Ey−a[e−qτ̂ah2(a − Ŷτ̂a
)|Ft ] = e−q(t∧τ̂a)h2(a − Ŷt∧τ̂a

)

and, in view of (3.7) and (3.11), the stated martingale properties follow. �

4. Doubly reflected Lévy processes. Now we turn to the computation of the
value function corresponding to the constant barrier strategy π̄0,a = {La

t ,R
0
t , t ≥

0} that consists of imposing “reflecting” barriers La and R0 at a and 0, respec-

tively. When the initial capital X0 = x ∈ [0, a] the risk process V a
t := V

π̄0,a

t is a
doubly reflected spectrally negative Lévy process. Informally, this process moves
as a Lévy process while it is inside [0, a] but each time it attempts to down-cross
0 or up-cross a it is “regulated” to keep it inside the interval [0, a]. In [20] a path-
wise construction of a doubly reflected Lévy process was given, showing that V a

is a strong Markov process. See also [2], XIV.3, for a discussion of processes with
two reflecting barriers in the context of queueing models. It was shown ([20], The-
orem 1) that a version of the q-potential measure Ũq(x, dy) = ∫ ∞

0 e−qtPx(V
a
t ∈

dy) of V a is given by Ũq(x, dy) = ũq(x,0)δ0(dy) + ũq(x, y) dy where δ0 is the
pointmass in zero, ũq(x,0) = Z(q)(a − x)W(q)(0)/(qW(q)(a)) and

ũq(x, y) = Z(q)(a − x)W(q)′(y)

qW(q)(a)
− W(q)(y − x),

(4.1)
x, y ∈ [0, a], y �= 0.
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For t ≥ 0, V a
t can be expressed in terms of X,La and R0 as

V a
t = Xt − La

t + R0
t(4.2)

for some increasing adapted processes La and R0 such that the supports of the
Stieltjes measures dLa

t and dR0
t are included in the closures of the sets {t :V a

t = a}
and {t :V a

t = 0}, respectively. For completeness we extend the construction in [20]
to a simultaneous construction of the processes La , R0 and V a , when X0 ∈ [0, a]:
0. Set σ = T0,a . For t < σ , set La

t = R0
t = 0 and V a

t = Xt .
If Xσ ≤ 0 set ξ := Xσ and go to step 2; else set La

σ = 0 and V a
σ = a and go to

step 1.
1. Set Zt = Xt − Xσ . For σ < t < σ ′ := inf{u ≥ σ :Zu < −a}, set

La
t = La

σ + sup
σ≤s≤t

[Zs ∨ 0], V a
t = a + Zt − (La

t − La
σ )

and let R0
t = R0

σ . Set σ := σ ′ and ξ := Xσ ′ − Xσ + a and go to step 2.
2. Set Zt = Xt − Xσ . For σ ≤ t ≤ σ ′′ := inf{u ≥ σ :Zu = a}, set

R0
t = R0

σ− − ξ − inf
σ≤s≤t

[Zs ∧ 0], V a
t = Zt + R0

t − R0
σ

and let La
t = La

σ . Set σ := σ ′′ and go to step 1.

It can be verified by induction that the process V constructed in this way satisfies
Vt ∈ [0, a] and La and R0 are processes with the required properties such that (4.2)
holds.

REMARK. If the initial capital x > a, then the above construction can be easily
adapted: in step 0 set La

0 = 0, V a
0 = x and La

0+ = x − a, V a
0+ = a and in step 1 set

σ = 0 and replace La
0 by La

0+ and repeat the rest of the construction.
In the next result, the expectations of the Laplace–Stieltjes transforms of La and

R0 are identified:

THEOREM 1. Let a > 0. For x ∈ [0, a] and q > 0 it holds that

Ex

[∫ ∞
0

e−qt dLa
t

]
= Z(q)(x)/

[
qW(q)(a)

]
,(4.3)

Ex

[∫ ∞
0

e−qt dR0
t

]
= −�Z(q)(x) − ψ ′(0+)

q
+ Z(q)(a)

qW(q)(a)
Z(q)(x),(4.4)

where the expression in (4.4) is understood to be +∞ if ψ ′(0+) = −∞.

REMARK. If X has bounded variation we can also consider the strategy of
immediately paying out all dividends and paying all incoming claims with bail-out
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loans—this corresponds to keeping the risk process constant equal to zero. Denot-
ing the “reflecting barriers” corresponding to this case by L0 and R0 respectively,
one can directly verify that

E0

[∫ ∞
0

e−qt dLa
t

]
= d/q, E0

[∫ ∞
0

e−qt dR0
t

]
= (

d − ψ ′(0+)
)
/q.(4.5)

PROOF OF THEOREM 1. We first prove (4.3). Denote by f (u) its left-hand
side and write τ ′

b = inf{t ≥ 0 :V a
t = b} for the first hitting time of {b}. We shall

derive a recursion for f (x) by considering one cycle of the process V a . More
specifically, applying the strong Markov property of V a at τ ′

0 we find that

f (x) = Ex

[∫ τ ′
0

0
e−qt dLa

t

]
+ Ex[e−qτ ′

0]f (0).(4.6)

Since {V a
t , t < τ ′

0,V
a
0 = x} has the same law as {a − Ŷt , t < τ̂a, Ŷ0 = a − x},

the first term and first factor in the second term in (4.6) are equal to (3.12)
and (3.10) (with y = a − x), respectively. By the fact that La does not in-
crease until V a reaches the level a, we find by the strong Markov property that
f (0) = E0[e−qτ ′

a ]f (a), where E0[e−qτ ′
a ] = Z(q)(a)−1 in view of (3.9) and the fact

that {V a
t , t ≤ τ ′

a,V
a
0 = x} has the same law as {Yt , t ≤ τa, Y0 = x}. Inserting all the

three formulas into (4.6) results in the equation

f (x) = W(q)(x)

W(q)′(a)
+ f (a)

(
Z(q)(x)

Z(q)(a)
− q

W(q)(x)W(q)(a)

Z(q)(a)W(q)′(a)

)
.(4.7)

As this relation remains valid for x = a, we are led to a recursion for f (a) the so-
lution of which reads as f (a) = Z(q)(a)/[qW(q)(a)]. Inserting f (a) back in (4.7)
finishes the proof of (4.3).

Now we turn to the calculation of the expectation (4.4). Writing g(x) for the
left-hand side of (4.4) and applying the strong Markov property of V a at τ ′

a shows
that

g(x) = Ex

[∫ τ ′
a

0
e−qt dR0

t

]
+ Ex[e−qτ ′

a ]g(a)(4.8)

with g(a) = Ea[e−qτ ′
0�R0

τ ′
0
] + Ea[e−qτ ′

0]g(0), where �R0
τ ′

0
= R0

τ ′
0

− R0
τ ′

0− de-

notes the jump of R at τ ′
0. Appealing to the fact that {V a

t , t < τ ′
0,V

a
0 = x} and

{V a
t , t ≤ τ ′

a,V
a
0 = x} have the same distribution as {a − Ŷt , t < τ̂a, Ŷ0 = a − x}

and {Yt , t ≤ τa, Y0 = x}, respectively, the Laplace transforms of τ ′
a, τ

′
0 and the

expectation involving �R0
τ ′

0
can be identified by (3.9) (with y = x), (3.10) (with

y = 0) and (3.16) respectively. The rest of the proof is devoted to the computa-
tion of the first term on the right-hand side of (4.8). Invoking the strong Markov
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property shows that

−Ex

[∫ τ ′
a

0
e−qt dR0

t

]
= Ex

[∫ τa

0
e−qt dIt

]

= Ex

[∫ ∞
0

e−qt dIt

]
− Ex[e−qτa ]Ea

[∫ ∞
0

e−qt dIt

]

= k(x) − Z(q)(x)

Z(q)(a)
k(a),

where k(x) = Ex[Iη(q)] satisfies

Ex

[
Iη(q)

] = Ex[e−qT −
0 XT −

0
] + Ex[e−qT −

0 ]E0[Iη(q)]
= �Z(q)(x) − 	(q)−1Z(q)(x) + ψ ′(0+)/q.

In the last line we inserted the identities (3.17) and (3.19) (with v = 0). Further, we
used that E0[Iη(q)] = E0[Xη(q)] − E0[(X − I )η(q)] where E0[Xη(q)] = ψ ′(0+)/q

(from the definition of ψ) and E0[(X − I )η(q)] = 1/	(q) from (3.8). Inserting the
found identities into (4.8) and taking x to be zero in (4.8) yields a recursion for
g(0), which can be solved explicitly in terms of the scale functions. After some
algebra one arrives at

g(0) = −ψ ′(0+)

q
+ Z(q)(a)

qW(q)(a)
.

Substituting this expression back into (4.8) results in (4.4). �

5. Optimal dividend strategies. When solving the optimal dividend prob-
lems our method draws on classical optimal control literature such as, for exam-
ple, Jeanblanc and Shiryaev [15] and Harrison and Taylor [13] who deal with the
classical dividend problem and a storage system in a Brownian motion setting, re-
spectively. In these papers it was shown that if the state process follows a Brownian
motion with drift, the optimal strategy takes the form of a barrier strategy. In view
of the fact that our state process is still a Markov process, we expect that barrier
strategies play an important role in the solution of the problems (2.2) and (2.4). In
this section we shall investigate the optimality of barrier strategies in the classical
dividend problem (2.2) and the bail-out problem (2.4).

5.1. Classical dividend problem. From Proposition 1 we read off that the
value functions corresponding to barrier strategies πa at the levels a > 0 are given
by

va(x) = vπa (x) =




W(q)(x)

W(q)′(a)
, 0 ≤ x ≤ a,

x − a + W(q)(a)

W(q)′(a)
, x > a,

(5.1)
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and the strategy of taking out all dividends immediately has value v0(x) = x +
W(q)(0)/W(q)′(0+). To complete the description of the candidate optimal barrier
solution we specify the level c∗ of the barrier as

c∗ = inf
{
a > 0 :W(q)′(a) ≤ W(q)′(x) for all x

}
,(5.2)

where inf ∅ = ∞. Note that, if W(q) is twice continuously differentiable on (0,∞)

(which is in general not the case) and c∗ > 0, then c∗ satisfies

W(q)′′(c∗) = 0,(5.3)

so that in that case the optimal level c∗ is such that the value function vc∗ is C2 on
(0,∞). Recalling that W(q)′(0+) is infinite if X has no Brownian component and
the mass of its Lévy measure ν is infinite, we infer from the definition (5.2) of c∗
that in this case c∗ > 0 irrespective of the sign of the drift Ex[X1]. In comparison, if
X is a Brownian motion with drift µ, c∗ is positive or zero according to whether the
drift µ is positive or nonpositive. (See also Section 6 for other specific examples.)

Denote by � the extended generator of the process X, which acts on C2 func-
tions f with compact support as

�f (x) = σ 2

2
f ′′(x) + cf ′(x) +

∫ 0

−∞
[
f (x + y) − f (x) − f ′(x)y1{|y|<1}

]
ν(dy),

where ν is the Lévy measure of X and σ 2 denotes the Gaussian coefficient and
c = d + ∫ 0

−1 yν(dy) if the jump-part has bounded variation; see [9], Theorem 7.14
and [24], Chapter 6, Theorem 31.5. Note that by the properties of W(q) given in
Section 3.2, it follows that vc∗ is C2 on (0,∞) if σ > 0 and is C1 on (0,∞) if
X has bounded variation. The following result concerns optimality of the barrier
strategy πc∗ for the classical dividend problem.

THEOREM 2. Assume that σ > 0 or that X has bounded variation or, other-
wise, suppose that vc∗ ∈ C2(0,∞). If q > 0, then c∗ < ∞ and the following hold
true:

(i) π∗
c is the optimal strategy in the set �≤c∗ and vc∗ = supπ∈�≤c∗ vπ .

(ii) If (�vc∗ − qvc∗)(x) ≤ 0 for x > c∗, the value function and optimal strategy
of (2.2) are given by v∗ = vc∗ and π∗ = πc∗ , respectively.

REMARK. If the condition (�vc∗ − qvc∗)(x) ≤ 0 is not satisfied for all
x ≥ c∗, but if c∗ > 0 and one can construct a function v on [0,∞) that satisfies
the Hamilton–Jacobi–Bellman (HJB) equation (5.8) (see for a precise statement
Proposition 5 below), the strategy πc∗ is optimal for “small” initial reserves, that
is, it is optimal to apply the barrier strategy πc∗ ◦θt whenever Ut ∈ [0, c∗] (where θ

denotes the shift operator) and it holds that v(x) = v∗(x) = vc∗(x) for x ∈ [0, c∗].
This observation agrees with the description of the optimal value function in the
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setting of the Cramér–Lundberg model, obtained in [1], Section 9, using viscos-
ity methods. Azcue and Muler [1] also constructed an example with c∗ = 0 and
(�vc∗ − qvc∗)(x) > 0 for some x > 0 where the optimal strategy does not take the
form of a barrier strategy.

5.2. Dividends and bail-out. In the “bail-out” setting and under the assump-
tion that ψ ′(0+) > −∞, we read off from Theorem 1 that the value function corre-
sponding to the strategy π̄0,a of putting reflecting barriers at the levels 0 and a > 0
is given by v̄π̄0,a

= v̄a where

v̄a(x) =




ϕ
(�Z(q)(x) + ψ ′(0+)/q

) + Z(q)(x)

[
1 − ϕZ(q)(a)

qW(q)(a)

]
,

0 ≤ x ≤ a,

x − a + v̄a(a), x > a.

(5.4)

In particular, if X is a Lévy process of bounded variation with drift d,

v̄0(x) = x + [ϕψ ′(0+) + (1 − ϕ)d]/q(5.5)

is the value function corresponding to keeping the risk process identically equal to
zero. The barrier level is specified as

d∗ = inf
{
a > 0 :G(a) := [

ϕZ(q)(a) − 1
]
W(q)′(a) − ϕqW(q)(a)2 ≤ 0

}
.(5.6)

Below, in Lemma 2, we shall show that if ν(−∞,0) ≤ q
ϕ−1 and there is no Brown-

ian component, then d∗ = 0; else d∗ > 0.
The constructed solution v̄d∗ can be identified as the value function of the opti-

mal dividend problem (2.4). As a consequence, in the bail-out setting the optimal
strategy takes the form of a barrier strategy for any initial capital:

THEOREM 3. Let q > 0 and suppose that ψ ′(0+) < ∞. Then d∗ < ∞ and
the value function and optimal strategy of (2.4) are given by v̄∗(x) = v̄d∗(x) and
π̄∗ = π̄0,d∗ , respectively.

5.3. Optimal barrier strategies. As a first step in proving Theorems 2 and 3
we show optimality of πc∗ and π̄0,d∗ across the respective set of barrier strategies:

PROPOSITION 3. Let q > 0.

(i) It holds that c∗ < ∞ and πc∗ is an optimal barrier strategy if U0 ∈ [0, c∗],
that is,

va(x) ≤ vc∗(x), x ∈ [0, c∗], a ≥ 0.

(ii) Suppose that ψ ′(0+) < ∞. It holds that d∗ < ∞ and π̄0,d∗ is the optimal
barrier strategy for any initial capital, that is,

v̄a(x) ≤ v̄d∗(x), x, a ≥ 0.



170 F. AVRAM, Z. PALMOWSKI AND M. R. PISTORIUS

To prove Proposition 3 we use the following facts regarding c∗ and d∗:

LEMMA 2. Suppose that q > 0.

(i) It holds that c∗ < ∞.
(ii) If ν(−∞,0) ≤ q/(ϕ − 1) and σ = 0, then d∗ = 0; else d∗ > 0.

PROOF. (i) Recall that W(q)′(y) is nonnegative and continuous for y > 0 and
increases to ∞ as y → ∞. Therefore it holds that either W(q)′(y) attains its finite
minimum at some y ∈ (0,∞) or W(q)′(0+) ≤ W(q)′(y) for all y ∈ (0,∞).

(ii) Write H(a) = E0[e−qτ̂a ] and recall that H(a) is given by (3.10) [with y =
0]. As W(q)(a) and W(q)′(a) are strictly positive, we see that G(a) = 0, with G

defined in (5.6), can be rewritten as F(a) = 0 where

F(a) := [ϕH(a) − 1]W(q)′(a)/
[
qW(q)(a)2]

.(5.7)

Since a 	→ τ̂a is monotonically increasing with lima→∞ τ̂a = ∞ almost surely, it
follows that H(a) monotonically decreases to zero as a → ∞. Therefore F(a) ≤ 0
for all a > 0 if F(0+) ≤ 0. Further, as F is continuous, it follows as a consequence
of the intermediate value theorem that F(a) = 0 has a root in (0,∞) if F(0+) ∈
(0,∞]. In view of the fact that both W(q)(0+) > 0 and W(q)′(0+) < ∞ hold true
precisely if X is a compound Poisson process, we see that F(0+) ≤ 0 if and only
if both σ = 0 and ν(−∞,0) ≤ q/(ϕ − 1) are satisfied. The statement (ii) follows.

�

PROOF OF PROPOSITION 3. (i) From Lemma 2(i) we have that c∗ < ∞. Com-
bining the definition of c∗ and the following estimate for all x ≥ b,

x − b + W(q)(b)

W(q)′(b)
≤ x − b + W(q)(b)

W(q)′(c∗)
≤ W(q)(x)

W(q)′(c∗)
,

the assertion follows in view of the definition of va .
(ii) It is straightforward to verify that, for any x > 0, the derivative of a 	→ v̄a(x)

in a > x is equal to F(a)×[Z(q)(x)] and in 0 < a < x is equal to F(a)×[Z(q)(a)]
respectively, where F(a) is given in (5.7). In particular we note that, for any x > 0,
a 	→ v̄a(x) is C1 on (0,∞). In view of the arguments in the proof of Lemma 2 and
the definition of d∗ we see that F(a) ≤ 0 for a > d∗, and if d∗ > 0, F(d∗) = 0
and F(a) > 0 for 0 < a < d∗. Therefore a 	→ v̄a(x) attains its maximum over
a ∈ (0,∞) in d∗. �

For later use we also collect the following properties of vc∗ and v̄d∗ :

LEMMA 3. Let x, a > 0. The following are true:

(i) v′
c∗(x) ≥ 1.



OPTIMAL DIVIDEND PROBLEM 171

(ii) 1 ≤ v̄′
d∗(x) ≤ ϕ. Further, if d∗ > 0, v̄′

d∗(d∗−) = 1 and v̄′
d∗(0+) = ϕ [resp.

v̄′
d∗(0+) < ϕ] if X has unbounded [resp. bounded] variation.

(iii) a 	→ v̄a(x) is nonincreasing for a > d∗.
(iv) The function v̄a : (0,∞) → R :x 	→ v̄a(x) is concave.

PROOF. (i) Since, by Lemma 2, c∗ < ∞, the statement follows from the defi-
nition of c∗.

(ii) In view of Lemma 2 and the argument in Proposition 3 it follows that if
d∗ > 0 and 0 < x < d∗,

1 = ϕZ(q)(x) + W(q)(x)
[
1 − ϕZ(q)(x)

]
/W(q)(x)

≤ ϕZ(q)(x) + W(q)(x)
[
1 − ϕZ(q)(d∗)

]
/W(q)(d∗) = v̄′

d∗(x).

Also, if d∗ > 0 and 0 < x < d∗, it holds that(
v̄′
d∗(x) − ϕ

)
W(q)(d∗)

= ϕ
(
Z(q)(x) − 1

)
W(q)(d∗) + W(q)(x)

[
1 − ϕZ(q)(d∗)

]
= ϕq

[ �W(q)(x)W(q)(d∗) − W(q)(x) �W(q)(d∗)
] + W(q)(x)(1 − ϕ) ≤ 0,

where in the third line we used Lemma 1. As W(q)(d∗) > 0, we conclude that
v′
d∗(x) ≤ ϕ. The other statements of (ii) follow from the definitions of v̄d∗ and

Z(q) and the form of W(q)(0) [see (3.5)].
(iii) The assertion follows since, from the proof of Proposition 3, (∂v̄a(x)/∂a)

has the same sign as F(a) and F(a) ≤ 0 for a > d∗.
(iv) Suppose that d∗ > 0. In view of the definitions of �Z(q) and Z(q) it holds

for 0 < x < d∗ that

v̄′′
d∗(x)

W(q)(x)
= ϕq + W(q)′(x)

W(q)(x)

[
1 − ϕZ(q)(d∗)

W(q)(d∗)

]

≤ ϕq + W(q)′(d∗)
W(q)(d∗)

[
1 − ϕZ(q)(d∗)

W(q)(d∗)

]
= 0,

where we used in the second line that ϕZ(q)(d∗) > 1 and that W(q)′/W(q) is de-
creasing [see the remark just before (3.15)]. Since v̄′

d∗(d∗−) = 1 and v̄′
d∗(x) = 1

for x > d∗, the assertion follows. �

5.4. Verification theorems. To investigate the optimality of the barrier strategy
πc∗ across all admissible strategies � for the classical dividend problem (2.2) we
are led, by standard Markovian arguments, to consider the following variational
inequality:

max{�w(x) − qw(x),1 − w′(x)} = 0, x > 0,
(5.8)

w(x) = 0, x < 0,
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for functions w : R → R in the domain of the extended generator � of X. For the
“bail-out” problem (2.4) we are led to the variational inequality

max{�w(x) − qw(x),1 − w′(x)} = 0, x > 0,
(5.9)

w′(x) ≤ ϕ, x > 0, w′(x) = ϕ, x < 0,

for w : R → R in the domain of �.
To establish the optimality of the barrier strategies among all admissible strate-

gies we shall show the following verification results. In the case of (5.8) we shall
only prove a local verification theorem.

PROPOSITION 4. Let w : [0,∞) → R be continuous.

(i) Let C ∈ (0,∞], suppose w(0) = w(0+) ≥ 0 and extend w to the negative
half-line by setting w(x) = 0 for x < 0. Suppose w is C2 on (0,C) [if X has
unbounded variation] or is C1 on (0,C) [if X has bounded variation]. If w satisfies
(5.8) for x ∈ (0,C), then w ≥ supπ∈�≤C

vπ . In particular, if C = ∞, w ≥ v∗.

(ii) Suppose w ∈ C2[0,∞) and extend w to the negative half-axis by setting
w(x) = w(0) + ϕx for x ≤ 0. If w satisfies (5.9), then w ≥ v̄∗.

The proof follows below. Inspired by properties of vc∗ and with the smooth-
ness required to apply the appropriate version of Itô’s lemma in mind, we
weaken now the assumptions of the above proposition on the solution w. Let
P = (p1,p2, . . . , pN) with 0 < p1 < · · · < pN be a finite subset of (0,∞) and
let w : [0,∞) → [0,∞) be continuous. If X has bounded variation, suppose that
w ∈ C1(0,∞)\P with finite left- and right-derivatives w′−(x),w′+(x) for x ∈ P
and that w satisfies the HJB equation (5.8) where w′ is understood to be w′−. If
X has unbounded variation, suppose that w ∈ C2(0,∞)\P with w(0) = 0 and
finite left- and right-second derivatives for x ∈ P and that w satisfies the HJB
equation (5.8) where w′′ is understood to be the weak derivative of w′. Finally, we
impose a linear growth condition on w:

w(x) = O(x) (x → ∞).(5.10)

The following result complements Theorem 9.4 in [1]:

PROPOSITION 5. Suppose w is as described above. If w′(0+) > 1, then c∗ > 0
and w(x) = v∗(x) = vc∗(x) for x ∈ [0, c∗].

PROOF OF PROPOSITION 4. (ii) Let π̄ ∈ �� be any admissible policy and
denote by L = Lπ̄ ,R = Rπ̄ the corresponding pair of cumulative dividend and
cumulative loss processes, respectively, and by V = V π̄ the corresponding risk
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process. By an application of Itô’s lemma to e−qtw(Vt ) it can be verified that

e−qtw(Vt ) − w(V0)

= Jt +
∫ t

0
e−qsw′(Vs−) dRc

s −
∫ t

0
e−qsw′(Vs−) dLc

s(5.11)

+
∫ t

0
e−qs(�w − qw)(Vs−) ds + Mt,

where Mt is a local martingale with M0 = 0, Rc and Lc are the pathwise continu-
ous parts of R and L, respectively, and Jt is given by

Jt = ∑
s≤t

e−qs[w(As + Bs) − w(As)]1{Bs �=0},(5.12)

where As = Vs− +�Xs and Bs = �(R −L)s denotes the jump of R −L at time s.
Note that 1 ≤ w′(x) ≤ ϕ holds for all x ∈ R. In particular, we see that w(As +
Bs) − w(As) ≤ ϕ�Rs − �Ls, so that the first three terms on the right-hand side
of (5.11) are bounded above by ϕ

∫ t
0 e−qs dRs − ∫ t

0 e−qs dLs . Let Tn be the first
time the absolute value of any of the five terms on the right-hand side of (5.11)
exceeds the value n, so that, in particular, Tn is a localizing sequence for M with
Tn → ∞ a.s. Taking (5.11) at Tn, taking expectations and using that, on [0,∞), w

is bounded below by some constant, −M say, 1 ≤ w′(x) ≤ ϕ and (�w−qw)(x) ≤
0 for x > 0, it follows after rearranging that

w(x) ≥ Ex

[∫ Tn

0
e−qs dLs − ϕ

∫ Tn

0
e−qs dRs

]
+ Ex[e−qTnw(VTn)]

≥ Ex

[∫ Tn

0
e−qs dLs − ϕ

∫ ∞
0

e−qs dRs

]
− MEx[e−qTn].

Letting n → ∞, in view of the fact that q > 0 and Tn → ∞ a.s. and the condi-
tion (2.3) in conjunction with the monotone convergence theorem, it follows that
v̄π̄ (x) ≤ w(x). Since π̄ was arbitrary we conclude that w dominates the value
function v̄∗.

(i) Let π ∈ �≤C and denote by L = Lπ and U = Uπ the corresponding cumu-
lative dividend process and risk process, respectively. If X has unbounded varia-
tion, w is C2 and we are allowed to apply Itô’s lemma (e.g., [23], Theorem 32) to
e−q(t∧σπ )w(Ut∧σπ ), using that Ut ≤ C. If X has bounded variation, w is C1 and
we apply the change of variable formula (e.g., [23], Theorem 31). Following then
an analogous line of reasoning as in (ii) we find that

w(x) ≥ Ex

[∫ T ′
n∧σπ

0
e−qs dLs

]
(5.13)

for some increasing sequence of stopping times T ′
n with T ′

n → ∞ a.s. Taking
n → ∞ in (5.13) yields, in view of the monotone convergence theorem and the
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fact that w ≥ 0, that,

w(x) ≥ Ex

[∫ σπ

0
e−qs dLs

]
.

Since the previous display holds for arbitrary π ∈ �≤C , it follows that w(x) ≥
supπ∈�≤C

vπ(x) and the proof is complete. �

PROOF OF PROPOSITION 5. Noting that w is smooth enough for an applica-
tion of the appropriate version of Itô’s lemma (as follows from the (proof of) the
Itô–Tanaka–Meyer formula; see, e.g., [23]), it can be verified, as in Proposition 4,
that w ≥ v∗.

Putting m = inf{x > 0 :w′(x−) = 1}, it follows from the assumptions that m ∈
(0,∞) or m = ∞. The latter case can be ruled out as follows. In view of the facts
that w(0+) > 1 and w satisfies (5.8), the assumption that m = ∞ implies that
w′(x) > 1 and �w(x) − qw(x) = 0 for x > 0. An application of Itô’s lemma to
e−q(t∧T0,a)w(Xt∧T0,a

) shows then that for 0 < x < a it holds that

w(x) = Ex

[
e−q(T0,a)w(XT0,a

)
] = W(q)(x)

[
w(a)/W(q)(a)

]
,

where we used (3.6) and that w(x) = 0 for x < 0 and w(0) = 0 if σ > 0 (as
Px[XT −

0
= 0] > 0 if σ > 0). Letting a → ∞, the right-hand side converges to

zero in view of the linear growth condition (5.10) and the fact that W(q)(a) grows
exponentially fast as a → ∞. Since w ≥ v∗, this leads to a contradiction, and we
see that m ∈ (0,∞). Applying subsequently Itô’s lemma to e−q(t∧σπ )w(Ut∧σπ )

with π = πm and using that w′(x) > 1 and �w(x)− qw(x) = 0 for x ∈ (0,m), we
find that

w(x) = Ex

[∫ T ′′
n ∧σπm

0
e−qs dLs

]
+ Ex

[
e−q(σπm∧T ′′

n )w(Uσπm∧T ′′
n
)
]

for some increasing sequence of stopping time T ′′
n with T ′′

n → ∞. Letting n → ∞
and using that w(Uσπm∧T ′′

n
) is bounded (since Uπm ≤ m) and w(Uσπm ) = 0, it

follows that w(x) = vm(x) for x ∈ [0,m]. Since, on the one hand, Proposition 3
implies that vm ≤ vc∗ , while, on the other hand, w ≥ v∗, we deduce that m = c∗
and v∗(x) = vc∗(x) for x ∈ [0, c∗] with c∗ > 0. �

5.5. Proofs of Theorems 2 and 3. We set vc∗(x) = 0 for x < 0 and extend v̄d∗
to the negative half-axis by setting v̄d∗(x) = v̄d∗(x) + ϕx for x < 0. Recalling that
W(q)(x) = 0, Z(q)(x) = 1 and �Z(q)(x) = x for x < 0, we see that these are nat-
ural extensions of the formulas (5.1) and (5.4) and satisfy the HJB equations (5.8)
and (5.9) for x < 0. The proofs of Theorems 2 and 3 are based on the following
lemmas:

LEMMA 4. If c∗ > 0, (�vc∗ − qvc∗)(x) = 0 for x ∈ (0, c∗).
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LEMMA 5. It holds that (�v̄d∗ − qv̄d∗)(x) ≤ 0 [resp. = 0] if x > 0 [resp. if
d∗ > 0 and x ∈ (0, d∗)].

PROOF OF THEOREM 2. (i) In view of Lemmas 3(i) and 4 it follows that
the function vc∗ satisfies the variational inequality (5.8) for x ∈ (0, c∗). Therefore,
Proposition 4 implies the optimality of the strategies π∗

c in the set �≤c∗ .
(ii) If the condition of Theorem 2(ii) holds, then, in view of Lemmas 3(i) and

4, it follows that vc∗ satisfies the variational inequalities (5.8) for x ∈ (0,∞). By
Proposition 4 it then follows that v∗

c = v∗. �

PROOF OF THEOREM 3. In view of Lemmas 3(ii) and 5 it follows that the
function v̄d∗ satisfies the variational inequality (5.9). Therefore, Proposition 4(ii)
implies that v̄∗ = v̄d∗ and the strategy π̄0,d∗ is optimal. �

PROOF OF LEMMA 4. Suppose that c∗ > 0. Since e−q(t∧T0,c∗ )W(q)(Xt∧T0,c∗ )

is a martingale, e−q(t∧T0,c∗ )vc∗(Xt∧T0,c∗ ) inherits this martingale property by defi-
nition of vc∗ . Since vc∗ is smooth enough to apply the appropriate version of Itô’s
lemma ([23], Theorem 31) is applicable if X has bounded variation since then
vc∗ ∈ C1(0, c∗) and [23], Theorem 32 is applicable if X has unbounded variation
as then vc∗ ∈ C2(0, c∗), the martingale property in conjunction with Itô’s lemma
implies that �vc∗(y) − qvc∗(y) = 0 for 0 < y < c∗. �

PROOF OF LEMMA 5. First let d∗ > 0. In view of Proposition 2 and the mar-
tingale property (3.7), it follows that e−q(t∧T0,d∗ )v̄d∗(Xt∧T0,d∗ ) is a martingale. An
application of Itô’s lemma, which we are allowed to apply as Z(q) ∈ C2(0,∞),
then yields that �v̄d∗(y) − qv̄d∗(y) = 0 for 0 < y < d∗.

Let now d∗ ≥ 0. From the form of the infinitesimal generator � and the defini-
tion of v̄d∗ it follows that for x > d∗ we have

�v̄d∗(x) − qv̄d∗(x)

= cv̄′
d∗(x) +

∫ 0

−∞
{
v̄d∗(x + y) − v̄d∗(x) − y1{|y|<1}v̄′

d∗(x)
}
ν(dy) − qv̄d∗(x)

= c +
∫ 0

−∞
{
v̄d∗(x + y) − (x − b) − y1{|y|<1}

}
ν(dy) − q(x − b)

where c is some constant and b = v̄d∗(d∗) − d∗. Since v̄d∗ , considered as function
mapping R to R, is concave [Lemma 3(ii)–(iv)] and integration preserves concav-
ity, it follows from the previous display that g|(d∗,∞) with g : (0,∞) → R given
by g(x) = �v̄d∗(x) − qv̄d∗(x) is concave. Further, in view of continuity of g and
the fact that g|(0,d∗) = 0 it follows that limx↓d∗ g(x) = limx↑d∗ g(x) = 0. We claim
that the right-derivative of g in d∗ is nonpositive, g′+(d∗) ≤ 0. Before we prove
this claim we first show that the claim implies that g(x) ≤ 0 for x > d∗. Indeed, if
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g′+(d∗) ≤ 0 then, in view of the concavity of g, it holds that g′+(x) ≤ 0 for x > d∗
so that g(x) ≤ g(d∗) = 0 for x > d∗.

The rest of the proof is devoted to showing that g′+(d∗) ≤ 0. To that end, we
shall first show that, for a > d∗ and V0 = x ∈ (0, a), it holds that

v̄a(x) − v̄d∗(x) = Ex

[∫ ∞
0

e−qs(�v̄d∗ − qv̄d∗)(V a
s−) ds

]
(5.14)

=
∫ a

d∗
(�v̄d∗ − qv̄d∗)(y)Ũq

a (x, dy),

where Ũ
q
a (x, dy) = Ũq(x, dy) is the resolvent measure of V a given in (4.1).

Note that s 	→ La
s can be taken to be continuous in this case and that the sup-

port of Stieltjes measure dLa
s is contained in the set {s :V a

s− = a}. Further, in this
case R0 jumps at time s if and only if X jumps at time s and �Xs is larger than
V a

s− . Thus �R0
s = −min{0,V a

s− + �Xs} and the measure d(R0)cs has support in-
side {s :V a

s− = 0}. In view of these observations, an application of Itô’s lemma to
e−qt v̄d∗(V a

t ) as in (5.11) shows that

e−qt v̄d∗(V a
t ) − v̄d∗(x)

=
∫ t

0
e−qs v̄′

d∗(0+) d(R0)cs

−
∫ t

0
e−qs v̄′

d∗(a−) dLa
s(5.15)

+ ϕ
∑
s≤t

e−qs�R0
s 1{�R0

s >0}

+
∫ t

0
e−qs(�v̄d∗ − qv̄d∗)(V a

s−) ds + Mt,

where we used that in (5.11) Jt = ϕ
∑

s≤t e
−qs�R0

s 1{�R0
s >0} since, by definition

of the extended function v̄d∗ on (−∞,0], it follows that v̄d∗(x + y)− v̄d∗(x) = ϕy

if x = −y, x < 0. Since v̄d∗ ∈ C2(0,∞) and V a takes values in [0, a], it follows
that in this case M is a martingale. Further, it holds that v̄′

d∗(a−) = 1 (recalling
that a > d∗) and either (R0)c = 0 (if X has bounded variation) or v̄′

d∗(0+) = ϕ (if
X has unbounded variation). Taking then expectations and letting t → ∞ in (5.15)
shows, in view of the dominated convergence theorem and the first part of the
proof, that (5.14) holds true.

We now finish the proof by supposing g′+(d∗) > 0 and showing that this as-
sumption leads to a contradiction. If g′+(d∗) > 0, then, in view of the continuity of
g, there exists an ε > 0 such that g(x) > 0 for x ∈ (d∗, d∗ + ε). Since, for a > 0,
Ũ

q
a (x, dy) is absolutely continuous on (0, a) with positive density [see (4.1)], it

follows from (5.14) that v̄d∗+ε(x) > v̄d∗(x), which contradicts Proposition 3(ii).
Therefore g′+(d∗) ≤ 0 and the proof is done. �
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6. Examples.

6.1. Small claims: Brownian motion. If Xt = σBt + µt is a Brownian motion
with drift µ (a standard model for small claims), then

W(q)(x) = 1

σ 2δ

[
e(−ω+δ)x − e−(ω+δ)x]

,

where δ = σ−2
√

µ2 + 2qσ 2 and ω = µ/σ 2. It is a matter of calculus to verify that

W(q)′′(x) = 2σ−2[
qW(q)(x) − µW(q)′(x)

]
from which it follows that if µ ≤ 0, W(q)′(x) attains its minimum over [0,∞) in
x = 0. Thus in the classical setting it is optimal to take out all dividends immedi-
ately if µ ≤ 0; if µ > 0 it follows that c∗ > 0 and it holds that W(q)′′(c∗) = 0, so
that W(q)(c∗)/W(q)′(c∗) = µ/q , as Gerber and Shiu [12] have found before, and
the optimal level c∗ is explicitly given by

c∗ = log
∣∣∣∣δ + ω

δ − ω

∣∣∣∣1/δ

.

Since σ 2

2 v′′
c∗(x) + µv′

c∗(x) − qvc∗(x) < 0 for x > c∗, it follows by Theorem 2 that
πc∗ is the optimal strategy as shown before by Jeanblanc and Shiryaev [15]. In the
“bail-out” setting d∗ ∈ (0,∞) solves G(a) = 0 where G is given in (5.6) with

Z(q)(y) = q

σ 2δ

[
1

ω + δ
e−(ω+δ)y + 1

δ − ω
e(−ω+δ)y

]
and

W(q)′(y) = 1

σ 2δ

[
(ω + δ)e−(ω+δ)y + (δ − ω)e(−ω+δ)y]

.

The relation between the classical and bail-out strategies in this Brownian setting
is studied in [19].

6.2. Stable claims. We model X as

Xt = σZt ,

where Z is a standard stable process of index α ∈ (1,2] and σ > 0. Its cumulant is
given by ψ(θ) = (σθ)α . By inverting the Laplace transform (ψ(θ)−q)−1, Bertoin
[5] found that the q-scale function is given by

W(q)(y) = α
yα−1

σα
E′

α

(
q

yα

σα

)
, y > 0,

and hence Z(q)(y) = Eα(q(y/σ)α) for y > 0, where Eα is the Mittag–Leffler func-
tion of index α

Eα(y) =
∞∑

n=0

yn

�(1 + αn)
, y ∈ R.
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The form of the value functions vc∗ and v̄d∗ follows by inserting the expressions
for the scale functions in (5.1)–(5.4). The optimal levels c∗, d∗ are given by

c∗ = σq−1/αu(α)1/α, d∗ = σq−1/αv(α)1/α,

where u(α) > 0 and v(α) > 0 are positive roots of the respective equations

(α − 1)(α − 2)E′
α(u) + 3α(α − 1)uE′′

α(u) + α2u2E′′′
α (u) = 0,

ϕαv(E′
α(v))2 + [(α − 1)E′

α(v) + αvE′′
α(v)][1 − ϕEα(v)] = 0.

6.3. Cramér–Lundberg model with exponential jumps. Suppose X is given by
the Cramér–Lundberg model (1.1) with exponential jump sizes, that is, X is a
deterministic drift p (the premium income) minus a compound Poisson process
(with jump intensity λ and jump sizes Ck that are exponentially distributed with
mean 1/µ) such that X has positive drift; that is, p > λ/µ. Then ψ(θ) = pθ −
λθ/(µ + θ) and the scale function W(q) is given by

W(q)(x) = p−1(
A+eq+(q)x − A−eq−(q)x)

,

where A± = µ+q±(q)
q+(q)−q−(q)

with q+(q) = 	(q) and q−(q) the smallest root of
κ(θ) = q:

q±(q) = q + λ − µp ±
√

(q + λ − µp)2 + 4pqµ

2p
.

Then from (5.3) we have that c∗ = 0 if W(q)′′(0) ≥ 0 ⇔ pλµ ≤ (q +λ)2. If pλµ >

(q + λ)2, c∗ is strictly positive and given by

c∗ = 1

q+(q) − q−(q)
log

q−(q)2(µ + q−(q))

q+(q)2(µ + q+(q))
.

Since it is readily verified that �vc∗(x) − qvc∗(x) < 0 for x > c∗, Theorem 2(ii)
implies that πc∗ is the optimal strategy.

Further, if λ(ϕ − 1) ≤ q , then d∗ = 0. Otherwise d∗ > 0 satisfies G(d∗) = 0
where G is given in (5.6).

6.4. Jump-diffusion with hyper exponential jumps. Let X = {Xt, t ≥ 0} be a
jump-diffusion given by

Xt = µt + σWt −
Nt∑
i=1

Yi,

where σ > 0, N is a Poisson process with intensity λ > 0 and {Yi} is a sequence
of i.i.d. random variables with hyper exponential distribution

F(y) = 1 −
n∑

i=1

Aie
−αiy, y ≥ 0,
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where Ai > 0;
∑n

i=1 Ai = 1; and 0 < α1 < · · · < αn. In [4] it was shown that the
function Z(q) of X is given by

Z(q)(x) =
n+1∑
i=0

Di(q)eθi(q)x,

where θi = θi(q) are the roots of ψ(θ) = q , where θn+1 > 0 and the rest of the
roots are negative, and where

Di(q) =
n∏

k=1

(
θi(q)/αk + 1

)/ n+1∏
k=0,k �=i

(
θi(q)/θk(q) − 1

)
.

If c∗ > 0, it is a nonnegative root x of

n+1∑
i=0

θi(q)3Di(q)eθi(q)x = 0.
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